Merge init_rootpow2table and init_pow2table.
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
48
49 #include "libavutil/random.h"
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53 #include "bytestream.h"
54
55 #include "cookdata.h"
56
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 //multichannel Cook, not supported
62
63 #define SUBBAND_SIZE 20
64 //#define COOKDEBUG
65
66 typedef struct {
67 int *now;
68 int *previous;
69 } cook_gains;
70
71 typedef struct cook {
72 /*
73 * The following 5 functions provide the lowlevel arithmetic on
74 * the internal audio buffers.
75 */
76 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
77 int* subband_coef_index, int* subband_coef_sign,
78 float* mlt_p);
79
80 void (* decouple) (struct cook *q,
81 int subband,
82 float f1, float f2,
83 float *decode_buffer,
84 float *mlt_buffer1, float *mlt_buffer2);
85
86 void (* imlt_window) (struct cook *q, float *buffer1,
87 cook_gains *gains_ptr, float *previous_buffer);
88
89 void (* interpolate) (struct cook *q, float* buffer,
90 int gain_index, int gain_index_next);
91
92 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
93
94 GetBitContext gb;
95 /* stream data */
96 int nb_channels;
97 int joint_stereo;
98 int bit_rate;
99 int sample_rate;
100 int samples_per_channel;
101 int samples_per_frame;
102 int subbands;
103 int log2_numvector_size;
104 int numvector_size; //1 << log2_numvector_size;
105 int js_subband_start;
106 int total_subbands;
107 int num_vectors;
108 int bits_per_subpacket;
109 int cookversion;
110 /* states */
111 AVRandomState random_state;
112
113 /* transform data */
114 MDCTContext mdct_ctx;
115 DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
116 float* mlt_window;
117
118 /* gain buffers */
119 cook_gains gains1;
120 cook_gains gains2;
121 int gain_1[9];
122 int gain_2[9];
123 int gain_3[9];
124 int gain_4[9];
125
126 /* VLC data */
127 int js_vlc_bits;
128 VLC envelope_quant_index[13];
129 VLC sqvh[7]; //scalar quantization
130 VLC ccpl; //channel coupling
131
132 /* generatable tables and related variables */
133 int gain_size_factor;
134 float gain_table[23];
135 float pow2tab[127];
136 float rootpow2tab[127];
137
138 /* data buffers */
139
140 uint8_t* decoded_bytes_buffer;
141 DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
142 float mono_previous_buffer1[1024];
143 float mono_previous_buffer2[1024];
144 float decode_buffer_1[1024];
145 float decode_buffer_2[1024];
146 float decode_buffer_0[1060]; /* static allocation for joint decode */
147
148 const float *cplscales[5];
149 } COOKContext;
150
151 /* debug functions */
152
153 #ifdef COOKDEBUG
154 static void dump_float_table(float* table, int size, int delimiter) {
155 int i=0;
156 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
157 for (i=0 ; i<size ; i++) {
158 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
159 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
160 }
161 }
162
163 static void dump_int_table(int* table, int size, int delimiter) {
164 int i=0;
165 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
166 for (i=0 ; i<size ; i++) {
167 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
168 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
169 }
170 }
171
172 static void dump_short_table(short* table, int size, int delimiter) {
173 int i=0;
174 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
175 for (i=0 ; i<size ; i++) {
176 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
177 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
178 }
179 }
180
181 #endif
182
183 /*************** init functions ***************/
184
185 /* table generator */
186 static void init_pow2table(COOKContext *q){
187 int i;
188 q->rootpow2tab[63] =
189 q->pow2tab[63] = 1.0;
190 for (i=1 ; i<64 ; i++){
191 q->pow2tab[63+i]=(float)((uint64_t)1<<i);
192 q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
193 q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
194 q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
195 }
196 }
197
198 /* table generator */
199 static void init_gain_table(COOKContext *q) {
200 int i;
201 q->gain_size_factor = q->samples_per_channel/8;
202 for (i=0 ; i<23 ; i++) {
203 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
204 (1.0/(double)q->gain_size_factor));
205 }
206 }
207
208
209 static int init_cook_vlc_tables(COOKContext *q) {
210 int i, result;
211
212 result = 0;
213 for (i=0 ; i<13 ; i++) {
214 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
215 envelope_quant_index_huffbits[i], 1, 1,
216 envelope_quant_index_huffcodes[i], 2, 2, 0);
217 }
218 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
219 for (i=0 ; i<7 ; i++) {
220 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
221 cvh_huffbits[i], 1, 1,
222 cvh_huffcodes[i], 2, 2, 0);
223 }
224
225 if (q->nb_channels==2 && q->joint_stereo==1){
226 result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
227 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
228 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
229 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
230 }
231
232 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
233 return result;
234 }
235
236 static int init_cook_mlt(COOKContext *q) {
237 int j;
238 float alpha;
239 int mlt_size = q->samples_per_channel;
240
241 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
242 return -1;
243
244 /* Initialize the MLT window: simple sine window. */
245 alpha = M_PI / (2.0 * (float)mlt_size);
246 for(j=0 ; j<mlt_size ; j++)
247 q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
248
249 /* Initialize the MDCT. */
250 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
251 av_free(q->mlt_window);
252 return -1;
253 }
254 av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
255 av_log2(mlt_size)+1);
256
257 return 0;
258 }
259
260 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
261 {
262 if (1)
263 return ptr;
264 }
265
266 static void init_cplscales_table (COOKContext *q) {
267 int i;
268 for (i=0;i<5;i++)
269 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
270 }
271
272 /*************** init functions end ***********/
273
274 /**
275 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
276 * Why? No idea, some checksum/error detection method maybe.
277 *
278 * Out buffer size: extra bytes are needed to cope with
279 * padding/misalignment.
280 * Subpackets passed to the decoder can contain two, consecutive
281 * half-subpackets, of identical but arbitrary size.
282 * 1234 1234 1234 1234 extraA extraB
283 * Case 1: AAAA BBBB 0 0
284 * Case 2: AAAA ABBB BB-- 3 3
285 * Case 3: AAAA AABB BBBB 2 2
286 * Case 4: AAAA AAAB BBBB BB-- 1 5
287 *
288 * Nice way to waste CPU cycles.
289 *
290 * @param inbuffer pointer to byte array of indata
291 * @param out pointer to byte array of outdata
292 * @param bytes number of bytes
293 */
294 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
295 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
296
297 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
298 int i, off;
299 uint32_t c;
300 const uint32_t* buf;
301 uint32_t* obuf = (uint32_t*) out;
302 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
303 * I'm too lazy though, should be something like
304 * for(i=0 ; i<bitamount/64 ; i++)
305 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
306 * Buffer alignment needs to be checked. */
307
308 off = (int)((long)inbuffer & 3);
309 buf = (const uint32_t*) (inbuffer - off);
310 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
311 bytes += 3 + off;
312 for (i = 0; i < bytes/4; i++)
313 obuf[i] = c ^ buf[i];
314
315 return off;
316 }
317
318 /**
319 * Cook uninit
320 */
321
322 static int cook_decode_close(AVCodecContext *avctx)
323 {
324 int i;
325 COOKContext *q = avctx->priv_data;
326 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
327
328 /* Free allocated memory buffers. */
329 av_free(q->mlt_window);
330 av_free(q->decoded_bytes_buffer);
331
332 /* Free the transform. */
333 ff_mdct_end(&q->mdct_ctx);
334
335 /* Free the VLC tables. */
336 for (i=0 ; i<13 ; i++) {
337 free_vlc(&q->envelope_quant_index[i]);
338 }
339 for (i=0 ; i<7 ; i++) {
340 free_vlc(&q->sqvh[i]);
341 }
342 if(q->nb_channels==2 && q->joint_stereo==1 ){
343 free_vlc(&q->ccpl);
344 }
345
346 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
347
348 return 0;
349 }
350
351 /**
352 * Fill the gain array for the timedomain quantization.
353 *
354 * @param q pointer to the COOKContext
355 * @param gaininfo[9] array of gain indices
356 */
357
358 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
359 {
360 int i, n;
361
362 while (get_bits1(gb)) {}
363 n = get_bits_count(gb) - 1; //amount of elements*2 to update
364
365 i = 0;
366 while (n--) {
367 int index = get_bits(gb, 3);
368 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
369
370 while (i <= index) gaininfo[i++] = gain;
371 }
372 while (i <= 8) gaininfo[i++] = 0;
373 }
374
375 /**
376 * Create the quant index table needed for the envelope.
377 *
378 * @param q pointer to the COOKContext
379 * @param quant_index_table pointer to the array
380 */
381
382 static void decode_envelope(COOKContext *q, int* quant_index_table) {
383 int i,j, vlc_index;
384
385 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
386
387 for (i=1 ; i < q->total_subbands ; i++){
388 vlc_index=i;
389 if (i >= q->js_subband_start * 2) {
390 vlc_index-=q->js_subband_start;
391 } else {
392 vlc_index/=2;
393 if(vlc_index < 1) vlc_index = 1;
394 }
395 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
396
397 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
398 q->envelope_quant_index[vlc_index-1].bits,2);
399 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
400 }
401 }
402
403 /**
404 * Calculate the category and category_index vector.
405 *
406 * @param q pointer to the COOKContext
407 * @param quant_index_table pointer to the array
408 * @param category pointer to the category array
409 * @param category_index pointer to the category_index array
410 */
411
412 static void categorize(COOKContext *q, int* quant_index_table,
413 int* category, int* category_index){
414 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
415 int exp_index2[102];
416 int exp_index1[102];
417
418 int tmp_categorize_array[128*2];
419 int tmp_categorize_array1_idx=q->numvector_size;
420 int tmp_categorize_array2_idx=q->numvector_size;
421
422 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
423
424 if(bits_left > q->samples_per_channel) {
425 bits_left = q->samples_per_channel +
426 ((bits_left - q->samples_per_channel)*5)/8;
427 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
428 }
429
430 memset(&exp_index1,0,102*sizeof(int));
431 memset(&exp_index2,0,102*sizeof(int));
432 memset(&tmp_categorize_array,0,128*2*sizeof(int));
433
434 bias=-32;
435
436 /* Estimate bias. */
437 for (i=32 ; i>0 ; i=i/2){
438 num_bits = 0;
439 index = 0;
440 for (j=q->total_subbands ; j>0 ; j--){
441 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
442 index++;
443 num_bits+=expbits_tab[exp_idx];
444 }
445 if(num_bits >= bits_left - 32){
446 bias+=i;
447 }
448 }
449
450 /* Calculate total number of bits. */
451 num_bits=0;
452 for (i=0 ; i<q->total_subbands ; i++) {
453 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
454 num_bits += expbits_tab[exp_idx];
455 exp_index1[i] = exp_idx;
456 exp_index2[i] = exp_idx;
457 }
458 tmpbias1 = tmpbias2 = num_bits;
459
460 for (j = 1 ; j < q->numvector_size ; j++) {
461 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
462 int max = -999999;
463 index=-1;
464 for (i=0 ; i<q->total_subbands ; i++){
465 if (exp_index1[i] < 7) {
466 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
467 if ( v >= max) {
468 max = v;
469 index = i;
470 }
471 }
472 }
473 if(index==-1)break;
474 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
475 tmpbias1 -= expbits_tab[exp_index1[index]] -
476 expbits_tab[exp_index1[index]+1];
477 ++exp_index1[index];
478 } else { /* <--- */
479 int min = 999999;
480 index=-1;
481 for (i=0 ; i<q->total_subbands ; i++){
482 if(exp_index2[i] > 0){
483 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
484 if ( v < min) {
485 min = v;
486 index = i;
487 }
488 }
489 }
490 if(index == -1)break;
491 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
492 tmpbias2 -= expbits_tab[exp_index2[index]] -
493 expbits_tab[exp_index2[index]-1];
494 --exp_index2[index];
495 }
496 }
497
498 for(i=0 ; i<q->total_subbands ; i++)
499 category[i] = exp_index2[i];
500
501 for(i=0 ; i<q->numvector_size-1 ; i++)
502 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
503
504 }
505
506
507 /**
508 * Expand the category vector.
509 *
510 * @param q pointer to the COOKContext
511 * @param category pointer to the category array
512 * @param category_index pointer to the category_index array
513 */
514
515 static inline void expand_category(COOKContext *q, int* category,
516 int* category_index){
517 int i;
518 for(i=0 ; i<q->num_vectors ; i++){
519 ++category[category_index[i]];
520 }
521 }
522
523 /**
524 * The real requantization of the mltcoefs
525 *
526 * @param q pointer to the COOKContext
527 * @param index index
528 * @param quant_index quantisation index
529 * @param subband_coef_index array of indexes to quant_centroid_tab
530 * @param subband_coef_sign signs of coefficients
531 * @param mlt_p pointer into the mlt buffer
532 */
533
534 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
535 int* subband_coef_index, int* subband_coef_sign,
536 float* mlt_p){
537 int i;
538 float f1;
539
540 for(i=0 ; i<SUBBAND_SIZE ; i++) {
541 if (subband_coef_index[i]) {
542 f1 = quant_centroid_tab[index][subband_coef_index[i]];
543 if (subband_coef_sign[i]) f1 = -f1;
544 } else {
545 /* noise coding if subband_coef_index[i] == 0 */
546 f1 = dither_tab[index];
547 if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
548 }
549 mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
550 }
551 }
552 /**
553 * Unpack the subband_coef_index and subband_coef_sign vectors.
554 *
555 * @param q pointer to the COOKContext
556 * @param category pointer to the category array
557 * @param subband_coef_index array of indexes to quant_centroid_tab
558 * @param subband_coef_sign signs of coefficients
559 */
560
561 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
562 int* subband_coef_sign) {
563 int i,j;
564 int vlc, vd ,tmp, result;
565
566 vd = vd_tab[category];
567 result = 0;
568 for(i=0 ; i<vpr_tab[category] ; i++){
569 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
570 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
571 vlc = 0;
572 result = 1;
573 }
574 for(j=vd-1 ; j>=0 ; j--){
575 tmp = (vlc * invradix_tab[category])/0x100000;
576 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
577 vlc = tmp;
578 }
579 for(j=0 ; j<vd ; j++){
580 if (subband_coef_index[i*vd + j]) {
581 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
582 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
583 } else {
584 result=1;
585 subband_coef_sign[i*vd+j]=0;
586 }
587 } else {
588 subband_coef_sign[i*vd+j]=0;
589 }
590 }
591 }
592 return result;
593 }
594
595
596 /**
597 * Fill the mlt_buffer with mlt coefficients.
598 *
599 * @param q pointer to the COOKContext
600 * @param category pointer to the category array
601 * @param quant_index_table pointer to the array
602 * @param mlt_buffer pointer to mlt coefficients
603 */
604
605
606 static void decode_vectors(COOKContext* q, int* category,
607 int *quant_index_table, float* mlt_buffer){
608 /* A zero in this table means that the subband coefficient is
609 random noise coded. */
610 int subband_coef_index[SUBBAND_SIZE];
611 /* A zero in this table means that the subband coefficient is a
612 positive multiplicator. */
613 int subband_coef_sign[SUBBAND_SIZE];
614 int band, j;
615 int index=0;
616
617 for(band=0 ; band<q->total_subbands ; band++){
618 index = category[band];
619 if(category[band] < 7){
620 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
621 index=7;
622 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
623 }
624 }
625 if(index==7) {
626 memset(subband_coef_index, 0, sizeof(subband_coef_index));
627 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
628 }
629 q->scalar_dequant(q, index, quant_index_table[band],
630 subband_coef_index, subband_coef_sign,
631 &mlt_buffer[band * SUBBAND_SIZE]);
632 }
633
634 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
635 return;
636 } /* FIXME: should this be removed, or moved into loop above? */
637 }
638
639
640 /**
641 * function for decoding mono data
642 *
643 * @param q pointer to the COOKContext
644 * @param mlt_buffer pointer to mlt coefficients
645 */
646
647 static void mono_decode(COOKContext *q, float* mlt_buffer) {
648
649 int category_index[128];
650 int quant_index_table[102];
651 int category[128];
652
653 memset(&category, 0, 128*sizeof(int));
654 memset(&category_index, 0, 128*sizeof(int));
655
656 decode_envelope(q, quant_index_table);
657 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
658 categorize(q, quant_index_table, category, category_index);
659 expand_category(q, category, category_index);
660 decode_vectors(q, category, quant_index_table, mlt_buffer);
661 }
662
663
664 /**
665 * the actual requantization of the timedomain samples
666 *
667 * @param q pointer to the COOKContext
668 * @param buffer pointer to the timedomain buffer
669 * @param gain_index index for the block multiplier
670 * @param gain_index_next index for the next block multiplier
671 */
672
673 static void interpolate_float(COOKContext *q, float* buffer,
674 int gain_index, int gain_index_next){
675 int i;
676 float fc1, fc2;
677 fc1 = q->pow2tab[gain_index+63];
678
679 if(gain_index == gain_index_next){ //static gain
680 for(i=0 ; i<q->gain_size_factor ; i++){
681 buffer[i]*=fc1;
682 }
683 return;
684 } else { //smooth gain
685 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
686 for(i=0 ; i<q->gain_size_factor ; i++){
687 buffer[i]*=fc1;
688 fc1*=fc2;
689 }
690 return;
691 }
692 }
693
694 /**
695 * Apply transform window, overlap buffers.
696 *
697 * @param q pointer to the COOKContext
698 * @param inbuffer pointer to the mltcoefficients
699 * @param gains_ptr current and previous gains
700 * @param previous_buffer pointer to the previous buffer to be used for overlapping
701 */
702
703 static void imlt_window_float (COOKContext *q, float *buffer1,
704 cook_gains *gains_ptr, float *previous_buffer)
705 {
706 const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
707 int i;
708 /* The weird thing here, is that the two halves of the time domain
709 * buffer are swapped. Also, the newest data, that we save away for
710 * next frame, has the wrong sign. Hence the subtraction below.
711 * Almost sounds like a complex conjugate/reverse data/FFT effect.
712 */
713
714 /* Apply window and overlap */
715 for(i = 0; i < q->samples_per_channel; i++){
716 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
717 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
718 }
719 }
720
721 /**
722 * The modulated lapped transform, this takes transform coefficients
723 * and transforms them into timedomain samples.
724 * Apply transform window, overlap buffers, apply gain profile
725 * and buffer management.
726 *
727 * @param q pointer to the COOKContext
728 * @param inbuffer pointer to the mltcoefficients
729 * @param gains_ptr current and previous gains
730 * @param previous_buffer pointer to the previous buffer to be used for overlapping
731 */
732
733 static void imlt_gain(COOKContext *q, float *inbuffer,
734 cook_gains *gains_ptr, float* previous_buffer)
735 {
736 float *buffer0 = q->mono_mdct_output;
737 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
738 int i;
739
740 /* Inverse modified discrete cosine transform */
741 q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
742 inbuffer, q->mdct_tmp);
743
744 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
745
746 /* Apply gain profile */
747 for (i = 0; i < 8; i++) {
748 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
749 q->interpolate(q, &buffer1[q->gain_size_factor * i],
750 gains_ptr->now[i], gains_ptr->now[i + 1]);
751 }
752
753 /* Save away the current to be previous block. */
754 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
755 }
756
757
758 /**
759 * function for getting the jointstereo coupling information
760 *
761 * @param q pointer to the COOKContext
762 * @param decouple_tab decoupling array
763 *
764 */
765
766 static void decouple_info(COOKContext *q, int* decouple_tab){
767 int length, i;
768
769 if(get_bits1(&q->gb)) {
770 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
771
772 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
773 for (i=0 ; i<length ; i++) {
774 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
775 }
776 return;
777 }
778
779 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
780
781 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
782 for (i=0 ; i<length ; i++) {
783 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
784 }
785 return;
786 }
787
788 /*
789 * function decouples a pair of signals from a single signal via multiplication.
790 *
791 * @param q pointer to the COOKContext
792 * @param subband index of the current subband
793 * @param f1 multiplier for channel 1 extraction
794 * @param f2 multiplier for channel 2 extraction
795 * @param decode_buffer input buffer
796 * @param mlt_buffer1 pointer to left channel mlt coefficients
797 * @param mlt_buffer2 pointer to right channel mlt coefficients
798 */
799 static void decouple_float (COOKContext *q,
800 int subband,
801 float f1, float f2,
802 float *decode_buffer,
803 float *mlt_buffer1, float *mlt_buffer2)
804 {
805 int j, tmp_idx;
806 for (j=0 ; j<SUBBAND_SIZE ; j++) {
807 tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
808 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
809 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
810 }
811 }
812
813 /**
814 * function for decoding joint stereo data
815 *
816 * @param q pointer to the COOKContext
817 * @param mlt_buffer1 pointer to left channel mlt coefficients
818 * @param mlt_buffer2 pointer to right channel mlt coefficients
819 */
820
821 static void joint_decode(COOKContext *q, float* mlt_buffer1,
822 float* mlt_buffer2) {
823 int i,j;
824 int decouple_tab[SUBBAND_SIZE];
825 float *decode_buffer = q->decode_buffer_0;
826 int idx, cpl_tmp;
827 float f1,f2;
828 const float* cplscale;
829
830 memset(decouple_tab, 0, sizeof(decouple_tab));
831 memset(decode_buffer, 0, sizeof(decode_buffer));
832
833 /* Make sure the buffers are zeroed out. */
834 memset(mlt_buffer1,0, 1024*sizeof(float));
835 memset(mlt_buffer2,0, 1024*sizeof(float));
836 decouple_info(q, decouple_tab);
837 mono_decode(q, decode_buffer);
838
839 /* The two channels are stored interleaved in decode_buffer. */
840 for (i=0 ; i<q->js_subband_start ; i++) {
841 for (j=0 ; j<SUBBAND_SIZE ; j++) {
842 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
843 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
844 }
845 }
846
847 /* When we reach js_subband_start (the higher frequencies)
848 the coefficients are stored in a coupling scheme. */
849 idx = (1 << q->js_vlc_bits) - 1;
850 for (i=q->js_subband_start ; i<q->subbands ; i++) {
851 cpl_tmp = cplband[i];
852 idx -=decouple_tab[cpl_tmp];
853 cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
854 f1 = cplscale[decouple_tab[cpl_tmp]];
855 f2 = cplscale[idx-1];
856 q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
857 idx = (1 << q->js_vlc_bits) - 1;
858 }
859 }
860
861 /**
862 * First part of subpacket decoding:
863 * decode raw stream bytes and read gain info.
864 *
865 * @param q pointer to the COOKContext
866 * @param inbuffer pointer to raw stream data
867 * @param gain_ptr array of current/prev gain pointers
868 */
869
870 static inline void
871 decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
872 cook_gains *gains_ptr)
873 {
874 int offset;
875
876 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
877 q->bits_per_subpacket/8);
878 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
879 q->bits_per_subpacket);
880 decode_gain_info(&q->gb, gains_ptr->now);
881
882 /* Swap current and previous gains */
883 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
884 }
885
886 /**
887 * Saturate the output signal to signed 16bit integers.
888 *
889 * @param q pointer to the COOKContext
890 * @param chan channel to saturate
891 * @param out pointer to the output vector
892 */
893 static void
894 saturate_output_float (COOKContext *q, int chan, int16_t *out)
895 {
896 int j;
897 float *output = q->mono_mdct_output + q->samples_per_channel;
898 /* Clip and convert floats to 16 bits.
899 */
900 for (j = 0; j < q->samples_per_channel; j++) {
901 out[chan + q->nb_channels * j] =
902 av_clip_int16(lrintf(output[j]));
903 }
904 }
905
906 /**
907 * Final part of subpacket decoding:
908 * Apply modulated lapped transform, gain compensation,
909 * clip and convert to integer.
910 *
911 * @param q pointer to the COOKContext
912 * @param decode_buffer pointer to the mlt coefficients
913 * @param gain_ptr array of current/prev gain pointers
914 * @param previous_buffer pointer to the previous buffer to be used for overlapping
915 * @param out pointer to the output buffer
916 * @param chan 0: left or single channel, 1: right channel
917 */
918
919 static inline void
920 mlt_compensate_output(COOKContext *q, float *decode_buffer,
921 cook_gains *gains, float *previous_buffer,
922 int16_t *out, int chan)
923 {
924 imlt_gain(q, decode_buffer, gains, previous_buffer);
925 q->saturate_output (q, chan, out);
926 }
927
928
929 /**
930 * Cook subpacket decoding. This function returns one decoded subpacket,
931 * usually 1024 samples per channel.
932 *
933 * @param q pointer to the COOKContext
934 * @param inbuffer pointer to the inbuffer
935 * @param sub_packet_size subpacket size
936 * @param outbuffer pointer to the outbuffer
937 */
938
939
940 static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
941 int sub_packet_size, int16_t *outbuffer) {
942 /* packet dump */
943 // for (i=0 ; i<sub_packet_size ; i++) {
944 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
945 // }
946 // av_log(NULL, AV_LOG_ERROR, "\n");
947
948 decode_bytes_and_gain(q, inbuffer, &q->gains1);
949
950 if (q->joint_stereo) {
951 joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
952 } else {
953 mono_decode(q, q->decode_buffer_1);
954
955 if (q->nb_channels == 2) {
956 decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
957 mono_decode(q, q->decode_buffer_2);
958 }
959 }
960
961 mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
962 q->mono_previous_buffer1, outbuffer, 0);
963
964 if (q->nb_channels == 2) {
965 if (q->joint_stereo) {
966 mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
967 q->mono_previous_buffer2, outbuffer, 1);
968 } else {
969 mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
970 q->mono_previous_buffer2, outbuffer, 1);
971 }
972 }
973 return q->samples_per_frame * sizeof(int16_t);
974 }
975
976
977 /**
978 * Cook frame decoding
979 *
980 * @param avctx pointer to the AVCodecContext
981 */
982
983 static int cook_decode_frame(AVCodecContext *avctx,
984 void *data, int *data_size,
985 const uint8_t *buf, int buf_size) {
986 COOKContext *q = avctx->priv_data;
987
988 if (buf_size < avctx->block_align)
989 return buf_size;
990
991 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
992
993 /* Discard the first two frames: no valid audio. */
994 if (avctx->frame_number < 2) *data_size = 0;
995
996 return avctx->block_align;
997 }
998
999 #ifdef COOKDEBUG
1000 static void dump_cook_context(COOKContext *q)
1001 {
1002 //int i=0;
1003 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1004 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1005 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
1006 if (q->cookversion > STEREO) {
1007 PRINT("js_subband_start",q->js_subband_start);
1008 PRINT("js_vlc_bits",q->js_vlc_bits);
1009 }
1010 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1011 PRINT("nb_channels",q->nb_channels);
1012 PRINT("bit_rate",q->bit_rate);
1013 PRINT("sample_rate",q->sample_rate);
1014 PRINT("samples_per_channel",q->samples_per_channel);
1015 PRINT("samples_per_frame",q->samples_per_frame);
1016 PRINT("subbands",q->subbands);
1017 PRINT("random_state",q->random_state);
1018 PRINT("js_subband_start",q->js_subband_start);
1019 PRINT("log2_numvector_size",q->log2_numvector_size);
1020 PRINT("numvector_size",q->numvector_size);
1021 PRINT("total_subbands",q->total_subbands);
1022 }
1023 #endif
1024
1025 /**
1026 * Cook initialization
1027 *
1028 * @param avctx pointer to the AVCodecContext
1029 */
1030
1031 static int cook_decode_init(AVCodecContext *avctx)
1032 {
1033 COOKContext *q = avctx->priv_data;
1034 const uint8_t *edata_ptr = avctx->extradata;
1035
1036 /* Take care of the codec specific extradata. */
1037 if (avctx->extradata_size <= 0) {
1038 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1039 return -1;
1040 } else {
1041 /* 8 for mono, 16 for stereo, ? for multichannel
1042 Swap to right endianness so we don't need to care later on. */
1043 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1044 if (avctx->extradata_size >= 8){
1045 q->cookversion = bytestream_get_be32(&edata_ptr);
1046 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
1047 q->subbands = bytestream_get_be16(&edata_ptr);
1048 }
1049 if (avctx->extradata_size >= 16){
1050 bytestream_get_be32(&edata_ptr); //Unknown unused
1051 q->js_subband_start = bytestream_get_be16(&edata_ptr);
1052 q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1053 }
1054 }
1055
1056 /* Take data from the AVCodecContext (RM container). */
1057 q->sample_rate = avctx->sample_rate;
1058 q->nb_channels = avctx->channels;
1059 q->bit_rate = avctx->bit_rate;
1060
1061 /* Initialize RNG. */
1062 av_init_random(1, &q->random_state);
1063
1064 /* Initialize extradata related variables. */
1065 q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1066 q->bits_per_subpacket = avctx->block_align * 8;
1067
1068 /* Initialize default data states. */
1069 q->log2_numvector_size = 5;
1070 q->total_subbands = q->subbands;
1071
1072 /* Initialize version-dependent variables */
1073 av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1074 q->joint_stereo = 0;
1075 switch (q->cookversion) {
1076 case MONO:
1077 if (q->nb_channels != 1) {
1078 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1079 return -1;
1080 }
1081 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1082 break;
1083 case STEREO:
1084 if (q->nb_channels != 1) {
1085 q->bits_per_subpacket = q->bits_per_subpacket/2;
1086 }
1087 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1088 break;
1089 case JOINT_STEREO:
1090 if (q->nb_channels != 2) {
1091 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1092 return -1;
1093 }
1094 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1095 if (avctx->extradata_size >= 16){
1096 q->total_subbands = q->subbands + q->js_subband_start;
1097 q->joint_stereo = 1;
1098 }
1099 if (q->samples_per_channel > 256) {
1100 q->log2_numvector_size = 6;
1101 }
1102 if (q->samples_per_channel > 512) {
1103 q->log2_numvector_size = 7;
1104 }
1105 break;
1106 case MC_COOK:
1107 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1108 return -1;
1109 break;
1110 default:
1111 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1112 return -1;
1113 break;
1114 }
1115
1116 /* Initialize variable relations */
1117 q->numvector_size = (1 << q->log2_numvector_size);
1118
1119 /* Generate tables */
1120 init_pow2table(q);
1121 init_gain_table(q);
1122 init_cplscales_table(q);
1123
1124 if (init_cook_vlc_tables(q) != 0)
1125 return -1;
1126
1127
1128 if(avctx->block_align >= UINT_MAX/2)
1129 return -1;
1130
1131 /* Pad the databuffer with:
1132 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1133 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1134 if (q->nb_channels==2 && q->joint_stereo==0) {
1135 q->decoded_bytes_buffer =
1136 av_mallocz(avctx->block_align/2
1137 + DECODE_BYTES_PAD2(avctx->block_align/2)
1138 + FF_INPUT_BUFFER_PADDING_SIZE);
1139 } else {
1140 q->decoded_bytes_buffer =
1141 av_mallocz(avctx->block_align
1142 + DECODE_BYTES_PAD1(avctx->block_align)
1143 + FF_INPUT_BUFFER_PADDING_SIZE);
1144 }
1145 if (q->decoded_bytes_buffer == NULL)
1146 return -1;
1147
1148 q->gains1.now = q->gain_1;
1149 q->gains1.previous = q->gain_2;
1150 q->gains2.now = q->gain_3;
1151 q->gains2.previous = q->gain_4;
1152
1153 /* Initialize transform. */
1154 if ( init_cook_mlt(q) != 0 )
1155 return -1;
1156
1157 /* Initialize COOK signal arithmetic handling */
1158 if (1) {
1159 q->scalar_dequant = scalar_dequant_float;
1160 q->decouple = decouple_float;
1161 q->imlt_window = imlt_window_float;
1162 q->interpolate = interpolate_float;
1163 q->saturate_output = saturate_output_float;
1164 }
1165
1166 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1167 if (q->total_subbands > 53) {
1168 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1169 return -1;
1170 }
1171 if (q->subbands > 50) {
1172 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1173 return -1;
1174 }
1175 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1176 } else {
1177 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1178 return -1;
1179 }
1180 if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1181 av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1182 return -1;
1183 }
1184
1185 #ifdef COOKDEBUG
1186 dump_cook_context(q);
1187 #endif
1188 return 0;
1189 }
1190
1191
1192 AVCodec cook_decoder =
1193 {
1194 .name = "cook",
1195 .type = CODEC_TYPE_AUDIO,
1196 .id = CODEC_ID_COOK,
1197 .priv_data_size = sizeof(COOKContext),
1198 .init = cook_decode_init,
1199 .close = cook_decode_close,
1200 .decode = cook_decode_frame,
1201 .long_name = "COOK",
1202 };