7717c4bbc680be4d2cab58b374455b50ebc0de84
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
48
49 #include "libavutil/lfg.h"
50 #include "libavutil/random_seed.h"
51 #include "avcodec.h"
52 #include "get_bits.h"
53 #include "dsputil.h"
54 #include "bytestream.h"
55 #include "fft.h"
56 #include "libavutil/audioconvert.h"
57 #include "sinewin.h"
58
59 #include "cookdata.h"
60
61 /* the different Cook versions */
62 #define MONO 0x1000001
63 #define STEREO 0x1000002
64 #define JOINT_STEREO 0x1000003
65 #define MC_COOK 0x2000000 //multichannel Cook, not supported
66
67 #define SUBBAND_SIZE 20
68 #define MAX_SUBPACKETS 5
69 //#define COOKDEBUG
70
71 typedef struct {
72 int *now;
73 int *previous;
74 } cook_gains;
75
76 typedef struct {
77 int ch_idx;
78 int size;
79 int num_channels;
80 int cookversion;
81 int samples_per_frame;
82 int subbands;
83 int js_subband_start;
84 int js_vlc_bits;
85 int samples_per_channel;
86 int log2_numvector_size;
87 unsigned int channel_mask;
88 VLC ccpl; ///< channel coupling
89 int joint_stereo;
90 int bits_per_subpacket;
91 int bits_per_subpdiv;
92 int total_subbands;
93 int numvector_size; ///< 1 << log2_numvector_size;
94
95 float mono_previous_buffer1[1024];
96 float mono_previous_buffer2[1024];
97 /** gain buffers */
98 cook_gains gains1;
99 cook_gains gains2;
100 int gain_1[9];
101 int gain_2[9];
102 int gain_3[9];
103 int gain_4[9];
104 } COOKSubpacket;
105
106 typedef struct cook {
107 /*
108 * The following 5 functions provide the lowlevel arithmetic on
109 * the internal audio buffers.
110 */
111 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
112 int* subband_coef_index, int* subband_coef_sign,
113 float* mlt_p);
114
115 void (* decouple) (struct cook *q,
116 COOKSubpacket *p,
117 int subband,
118 float f1, float f2,
119 float *decode_buffer,
120 float *mlt_buffer1, float *mlt_buffer2);
121
122 void (* imlt_window) (struct cook *q, float *buffer1,
123 cook_gains *gains_ptr, float *previous_buffer);
124
125 void (* interpolate) (struct cook *q, float* buffer,
126 int gain_index, int gain_index_next);
127
128 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
129
130 AVCodecContext* avctx;
131 GetBitContext gb;
132 /* stream data */
133 int nb_channels;
134 int bit_rate;
135 int sample_rate;
136 int num_vectors;
137 int samples_per_channel;
138 /* states */
139 AVLFG random_state;
140
141 /* transform data */
142 FFTContext mdct_ctx;
143 float* mlt_window;
144
145 /* VLC data */
146 VLC envelope_quant_index[13];
147 VLC sqvh[7]; //scalar quantization
148
149 /* generatable tables and related variables */
150 int gain_size_factor;
151 float gain_table[23];
152
153 /* data buffers */
154
155 uint8_t* decoded_bytes_buffer;
156 DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
157 float decode_buffer_1[1024];
158 float decode_buffer_2[1024];
159 float decode_buffer_0[1060]; /* static allocation for joint decode */
160
161 const float *cplscales[5];
162 int num_subpackets;
163 COOKSubpacket subpacket[MAX_SUBPACKETS];
164 } COOKContext;
165
166 static float pow2tab[127];
167 static float rootpow2tab[127];
168
169 /* debug functions */
170
171 #ifdef COOKDEBUG
172 static void dump_float_table(float* table, int size, int delimiter) {
173 int i=0;
174 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
175 for (i=0 ; i<size ; i++) {
176 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
177 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
178 }
179 }
180
181 static void dump_int_table(int* table, int size, int delimiter) {
182 int i=0;
183 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
184 for (i=0 ; i<size ; i++) {
185 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
186 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
187 }
188 }
189
190 static void dump_short_table(short* table, int size, int delimiter) {
191 int i=0;
192 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
193 for (i=0 ; i<size ; i++) {
194 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
195 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
196 }
197 }
198
199 #endif
200
201 /*************** init functions ***************/
202
203 /* table generator */
204 static av_cold void init_pow2table(void){
205 int i;
206 for (i=-63 ; i<64 ; i++){
207 pow2tab[63+i]= pow(2, i);
208 rootpow2tab[63+i]=sqrt(pow(2, i));
209 }
210 }
211
212 /* table generator */
213 static av_cold void init_gain_table(COOKContext *q) {
214 int i;
215 q->gain_size_factor = q->samples_per_channel/8;
216 for (i=0 ; i<23 ; i++) {
217 q->gain_table[i] = pow(pow2tab[i+52] ,
218 (1.0/(double)q->gain_size_factor));
219 }
220 }
221
222
223 static av_cold int init_cook_vlc_tables(COOKContext *q) {
224 int i, result;
225
226 result = 0;
227 for (i=0 ; i<13 ; i++) {
228 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
229 envelope_quant_index_huffbits[i], 1, 1,
230 envelope_quant_index_huffcodes[i], 2, 2, 0);
231 }
232 av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
233 for (i=0 ; i<7 ; i++) {
234 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
235 cvh_huffbits[i], 1, 1,
236 cvh_huffcodes[i], 2, 2, 0);
237 }
238
239 for(i=0;i<q->num_subpackets;i++){
240 if (q->subpacket[i].joint_stereo==1){
241 result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
242 ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
243 ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
244 av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
245 }
246 }
247
248 av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
249 return result;
250 }
251
252 static av_cold int init_cook_mlt(COOKContext *q) {
253 int j;
254 int mlt_size = q->samples_per_channel;
255
256 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
257 return -1;
258
259 /* Initialize the MLT window: simple sine window. */
260 ff_sine_window_init(q->mlt_window, mlt_size);
261 for(j=0 ; j<mlt_size ; j++)
262 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
263
264 /* Initialize the MDCT. */
265 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
266 av_free(q->mlt_window);
267 return -1;
268 }
269 av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
270 av_log2(mlt_size)+1);
271
272 return 0;
273 }
274
275 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
276 {
277 if (1)
278 return ptr;
279 }
280
281 static av_cold void init_cplscales_table (COOKContext *q) {
282 int i;
283 for (i=0;i<5;i++)
284 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
285 }
286
287 /*************** init functions end ***********/
288
289 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
290 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
291
292 /**
293 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
294 * Why? No idea, some checksum/error detection method maybe.
295 *
296 * Out buffer size: extra bytes are needed to cope with
297 * padding/misalignment.
298 * Subpackets passed to the decoder can contain two, consecutive
299 * half-subpackets, of identical but arbitrary size.
300 * 1234 1234 1234 1234 extraA extraB
301 * Case 1: AAAA BBBB 0 0
302 * Case 2: AAAA ABBB BB-- 3 3
303 * Case 3: AAAA AABB BBBB 2 2
304 * Case 4: AAAA AAAB BBBB BB-- 1 5
305 *
306 * Nice way to waste CPU cycles.
307 *
308 * @param inbuffer pointer to byte array of indata
309 * @param out pointer to byte array of outdata
310 * @param bytes number of bytes
311 */
312
313 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
314 int i, off;
315 uint32_t c;
316 const uint32_t* buf;
317 uint32_t* obuf = (uint32_t*) out;
318 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
319 * I'm too lazy though, should be something like
320 * for(i=0 ; i<bitamount/64 ; i++)
321 * (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);
322 * Buffer alignment needs to be checked. */
323
324 off = (intptr_t)inbuffer & 3;
325 buf = (const uint32_t*) (inbuffer - off);
326 c = av_be2ne32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
327 bytes += 3 + off;
328 for (i = 0; i < bytes/4; i++)
329 obuf[i] = c ^ buf[i];
330
331 return off;
332 }
333
334 /**
335 * Cook uninit
336 */
337
338 static av_cold int cook_decode_close(AVCodecContext *avctx)
339 {
340 int i;
341 COOKContext *q = avctx->priv_data;
342 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
343
344 /* Free allocated memory buffers. */
345 av_free(q->mlt_window);
346 av_free(q->decoded_bytes_buffer);
347
348 /* Free the transform. */
349 ff_mdct_end(&q->mdct_ctx);
350
351 /* Free the VLC tables. */
352 for (i=0 ; i<13 ; i++) {
353 free_vlc(&q->envelope_quant_index[i]);
354 }
355 for (i=0 ; i<7 ; i++) {
356 free_vlc(&q->sqvh[i]);
357 }
358 for (i=0 ; i<q->num_subpackets ; i++) {
359 free_vlc(&q->subpacket[i].ccpl);
360 }
361
362 av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
363
364 return 0;
365 }
366
367 /**
368 * Fill the gain array for the timedomain quantization.
369 *
370 * @param gb pointer to the GetBitContext
371 * @param gaininfo[9] array of gain indexes
372 */
373
374 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
375 {
376 int i, n;
377
378 while (get_bits1(gb)) {}
379 n = get_bits_count(gb) - 1; //amount of elements*2 to update
380
381 i = 0;
382 while (n--) {
383 int index = get_bits(gb, 3);
384 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
385
386 while (i <= index) gaininfo[i++] = gain;
387 }
388 while (i <= 8) gaininfo[i++] = 0;
389 }
390
391 /**
392 * Create the quant index table needed for the envelope.
393 *
394 * @param q pointer to the COOKContext
395 * @param quant_index_table pointer to the array
396 */
397
398 static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
399 int i,j, vlc_index;
400
401 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
402
403 for (i=1 ; i < p->total_subbands ; i++){
404 vlc_index=i;
405 if (i >= p->js_subband_start * 2) {
406 vlc_index-=p->js_subband_start;
407 } else {
408 vlc_index/=2;
409 if(vlc_index < 1) vlc_index = 1;
410 }
411 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
412
413 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
414 q->envelope_quant_index[vlc_index-1].bits,2);
415 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
416 }
417 }
418
419 /**
420 * Calculate the category and category_index vector.
421 *
422 * @param q pointer to the COOKContext
423 * @param quant_index_table pointer to the array
424 * @param category pointer to the category array
425 * @param category_index pointer to the category_index array
426 */
427
428 static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
429 int* category, int* category_index){
430 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
431 int exp_index2[102];
432 int exp_index1[102];
433
434 int tmp_categorize_array[128*2];
435 int tmp_categorize_array1_idx=p->numvector_size;
436 int tmp_categorize_array2_idx=p->numvector_size;
437
438 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
439
440 if(bits_left > q->samples_per_channel) {
441 bits_left = q->samples_per_channel +
442 ((bits_left - q->samples_per_channel)*5)/8;
443 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
444 }
445
446 memset(&exp_index1,0,102*sizeof(int));
447 memset(&exp_index2,0,102*sizeof(int));
448 memset(&tmp_categorize_array,0,128*2*sizeof(int));
449
450 bias=-32;
451
452 /* Estimate bias. */
453 for (i=32 ; i>0 ; i=i/2){
454 num_bits = 0;
455 index = 0;
456 for (j=p->total_subbands ; j>0 ; j--){
457 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
458 index++;
459 num_bits+=expbits_tab[exp_idx];
460 }
461 if(num_bits >= bits_left - 32){
462 bias+=i;
463 }
464 }
465
466 /* Calculate total number of bits. */
467 num_bits=0;
468 for (i=0 ; i<p->total_subbands ; i++) {
469 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
470 num_bits += expbits_tab[exp_idx];
471 exp_index1[i] = exp_idx;
472 exp_index2[i] = exp_idx;
473 }
474 tmpbias1 = tmpbias2 = num_bits;
475
476 for (j = 1 ; j < p->numvector_size ; j++) {
477 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
478 int max = -999999;
479 index=-1;
480 for (i=0 ; i<p->total_subbands ; i++){
481 if (exp_index1[i] < 7) {
482 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
483 if ( v >= max) {
484 max = v;
485 index = i;
486 }
487 }
488 }
489 if(index==-1)break;
490 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
491 tmpbias1 -= expbits_tab[exp_index1[index]] -
492 expbits_tab[exp_index1[index]+1];
493 ++exp_index1[index];
494 } else { /* <--- */
495 int min = 999999;
496 index=-1;
497 for (i=0 ; i<p->total_subbands ; i++){
498 if(exp_index2[i] > 0){
499 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
500 if ( v < min) {
501 min = v;
502 index = i;
503 }
504 }
505 }
506 if(index == -1)break;
507 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
508 tmpbias2 -= expbits_tab[exp_index2[index]] -
509 expbits_tab[exp_index2[index]-1];
510 --exp_index2[index];
511 }
512 }
513
514 for(i=0 ; i<p->total_subbands ; i++)
515 category[i] = exp_index2[i];
516
517 for(i=0 ; i<p->numvector_size-1 ; i++)
518 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
519
520 }
521
522
523 /**
524 * Expand the category vector.
525 *
526 * @param q pointer to the COOKContext
527 * @param category pointer to the category array
528 * @param category_index pointer to the category_index array
529 */
530
531 static inline void expand_category(COOKContext *q, int* category,
532 int* category_index){
533 int i;
534 for(i=0 ; i<q->num_vectors ; i++){
535 ++category[category_index[i]];
536 }
537 }
538
539 /**
540 * The real requantization of the mltcoefs
541 *
542 * @param q pointer to the COOKContext
543 * @param index index
544 * @param quant_index quantisation index
545 * @param subband_coef_index array of indexes to quant_centroid_tab
546 * @param subband_coef_sign signs of coefficients
547 * @param mlt_p pointer into the mlt buffer
548 */
549
550 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
551 int* subband_coef_index, int* subband_coef_sign,
552 float* mlt_p){
553 int i;
554 float f1;
555
556 for(i=0 ; i<SUBBAND_SIZE ; i++) {
557 if (subband_coef_index[i]) {
558 f1 = quant_centroid_tab[index][subband_coef_index[i]];
559 if (subband_coef_sign[i]) f1 = -f1;
560 } else {
561 /* noise coding if subband_coef_index[i] == 0 */
562 f1 = dither_tab[index];
563 if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
564 }
565 mlt_p[i] = f1 * rootpow2tab[quant_index+63];
566 }
567 }
568 /**
569 * Unpack the subband_coef_index and subband_coef_sign vectors.
570 *
571 * @param q pointer to the COOKContext
572 * @param category pointer to the category array
573 * @param subband_coef_index array of indexes to quant_centroid_tab
574 * @param subband_coef_sign signs of coefficients
575 */
576
577 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
578 int* subband_coef_sign) {
579 int i,j;
580 int vlc, vd ,tmp, result;
581
582 vd = vd_tab[category];
583 result = 0;
584 for(i=0 ; i<vpr_tab[category] ; i++){
585 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
586 if (p->bits_per_subpacket < get_bits_count(&q->gb)){
587 vlc = 0;
588 result = 1;
589 }
590 for(j=vd-1 ; j>=0 ; j--){
591 tmp = (vlc * invradix_tab[category])/0x100000;
592 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
593 vlc = tmp;
594 }
595 for(j=0 ; j<vd ; j++){
596 if (subband_coef_index[i*vd + j]) {
597 if(get_bits_count(&q->gb) < p->bits_per_subpacket){
598 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
599 } else {
600 result=1;
601 subband_coef_sign[i*vd+j]=0;
602 }
603 } else {
604 subband_coef_sign[i*vd+j]=0;
605 }
606 }
607 }
608 return result;
609 }
610
611
612 /**
613 * Fill the mlt_buffer with mlt coefficients.
614 *
615 * @param q pointer to the COOKContext
616 * @param category pointer to the category array
617 * @param quant_index_table pointer to the array
618 * @param mlt_buffer pointer to mlt coefficients
619 */
620
621
622 static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
623 int *quant_index_table, float* mlt_buffer){
624 /* A zero in this table means that the subband coefficient is
625 random noise coded. */
626 int subband_coef_index[SUBBAND_SIZE];
627 /* A zero in this table means that the subband coefficient is a
628 positive multiplicator. */
629 int subband_coef_sign[SUBBAND_SIZE];
630 int band, j;
631 int index=0;
632
633 for(band=0 ; band<p->total_subbands ; band++){
634 index = category[band];
635 if(category[band] < 7){
636 if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
637 index=7;
638 for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
639 }
640 }
641 if(index>=7) {
642 memset(subband_coef_index, 0, sizeof(subband_coef_index));
643 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
644 }
645 q->scalar_dequant(q, index, quant_index_table[band],
646 subband_coef_index, subband_coef_sign,
647 &mlt_buffer[band * SUBBAND_SIZE]);
648 }
649
650 if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
651 return;
652 } /* FIXME: should this be removed, or moved into loop above? */
653 }
654
655
656 /**
657 * function for decoding mono data
658 *
659 * @param q pointer to the COOKContext
660 * @param mlt_buffer pointer to mlt coefficients
661 */
662
663 static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
664
665 int category_index[128];
666 int quant_index_table[102];
667 int category[128];
668
669 memset(&category, 0, 128*sizeof(int));
670 memset(&category_index, 0, 128*sizeof(int));
671
672 decode_envelope(q, p, quant_index_table);
673 q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
674 categorize(q, p, quant_index_table, category, category_index);
675 expand_category(q, category, category_index);
676 decode_vectors(q, p, category, quant_index_table, mlt_buffer);
677 }
678
679
680 /**
681 * the actual requantization of the timedomain samples
682 *
683 * @param q pointer to the COOKContext
684 * @param buffer pointer to the timedomain buffer
685 * @param gain_index index for the block multiplier
686 * @param gain_index_next index for the next block multiplier
687 */
688
689 static void interpolate_float(COOKContext *q, float* buffer,
690 int gain_index, int gain_index_next){
691 int i;
692 float fc1, fc2;
693 fc1 = pow2tab[gain_index+63];
694
695 if(gain_index == gain_index_next){ //static gain
696 for(i=0 ; i<q->gain_size_factor ; i++){
697 buffer[i]*=fc1;
698 }
699 return;
700 } else { //smooth gain
701 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
702 for(i=0 ; i<q->gain_size_factor ; i++){
703 buffer[i]*=fc1;
704 fc1*=fc2;
705 }
706 return;
707 }
708 }
709
710 /**
711 * Apply transform window, overlap buffers.
712 *
713 * @param q pointer to the COOKContext
714 * @param inbuffer pointer to the mltcoefficients
715 * @param gains_ptr current and previous gains
716 * @param previous_buffer pointer to the previous buffer to be used for overlapping
717 */
718
719 static void imlt_window_float (COOKContext *q, float *inbuffer,
720 cook_gains *gains_ptr, float *previous_buffer)
721 {
722 const float fc = pow2tab[gains_ptr->previous[0] + 63];
723 int i;
724 /* The weird thing here, is that the two halves of the time domain
725 * buffer are swapped. Also, the newest data, that we save away for
726 * next frame, has the wrong sign. Hence the subtraction below.
727 * Almost sounds like a complex conjugate/reverse data/FFT effect.
728 */
729
730 /* Apply window and overlap */
731 for(i = 0; i < q->samples_per_channel; i++){
732 inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
733 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
734 }
735 }
736
737 /**
738 * The modulated lapped transform, this takes transform coefficients
739 * and transforms them into timedomain samples.
740 * Apply transform window, overlap buffers, apply gain profile
741 * and buffer management.
742 *
743 * @param q pointer to the COOKContext
744 * @param inbuffer pointer to the mltcoefficients
745 * @param gains_ptr current and previous gains
746 * @param previous_buffer pointer to the previous buffer to be used for overlapping
747 */
748
749 static void imlt_gain(COOKContext *q, float *inbuffer,
750 cook_gains *gains_ptr, float* previous_buffer)
751 {
752 float *buffer0 = q->mono_mdct_output;
753 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
754 int i;
755
756 /* Inverse modified discrete cosine transform */
757 q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
758
759 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
760
761 /* Apply gain profile */
762 for (i = 0; i < 8; i++) {
763 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
764 q->interpolate(q, &buffer1[q->gain_size_factor * i],
765 gains_ptr->now[i], gains_ptr->now[i + 1]);
766 }
767
768 /* Save away the current to be previous block. */
769 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
770 }
771
772
773 /**
774 * function for getting the jointstereo coupling information
775 *
776 * @param q pointer to the COOKContext
777 * @param decouple_tab decoupling array
778 *
779 */
780
781 static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
782 int length, i;
783
784 if(get_bits1(&q->gb)) {
785 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
786
787 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
788 for (i=0 ; i<length ; i++) {
789 decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
790 }
791 return;
792 }
793
794 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
795
796 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
797 for (i=0 ; i<length ; i++) {
798 decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
799 }
800 return;
801 }
802
803 /*
804 * function decouples a pair of signals from a single signal via multiplication.
805 *
806 * @param q pointer to the COOKContext
807 * @param subband index of the current subband
808 * @param f1 multiplier for channel 1 extraction
809 * @param f2 multiplier for channel 2 extraction
810 * @param decode_buffer input buffer
811 * @param mlt_buffer1 pointer to left channel mlt coefficients
812 * @param mlt_buffer2 pointer to right channel mlt coefficients
813 */
814 static void decouple_float (COOKContext *q,
815 COOKSubpacket *p,
816 int subband,
817 float f1, float f2,
818 float *decode_buffer,
819 float *mlt_buffer1, float *mlt_buffer2)
820 {
821 int j, tmp_idx;
822 for (j=0 ; j<SUBBAND_SIZE ; j++) {
823 tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
824 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
825 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
826 }
827 }
828
829 /**
830 * function for decoding joint stereo data
831 *
832 * @param q pointer to the COOKContext
833 * @param mlt_buffer1 pointer to left channel mlt coefficients
834 * @param mlt_buffer2 pointer to right channel mlt coefficients
835 */
836
837 static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
838 float* mlt_buffer2) {
839 int i,j;
840 int decouple_tab[SUBBAND_SIZE];
841 float *decode_buffer = q->decode_buffer_0;
842 int idx, cpl_tmp;
843 float f1,f2;
844 const float* cplscale;
845
846 memset(decouple_tab, 0, sizeof(decouple_tab));
847 memset(decode_buffer, 0, sizeof(decode_buffer));
848
849 /* Make sure the buffers are zeroed out. */
850 memset(mlt_buffer1,0, 1024*sizeof(float));
851 memset(mlt_buffer2,0, 1024*sizeof(float));
852 decouple_info(q, p, decouple_tab);
853 mono_decode(q, p, decode_buffer);
854
855 /* The two channels are stored interleaved in decode_buffer. */
856 for (i=0 ; i<p->js_subband_start ; i++) {
857 for (j=0 ; j<SUBBAND_SIZE ; j++) {
858 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
859 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
860 }
861 }
862
863 /* When we reach js_subband_start (the higher frequencies)
864 the coefficients are stored in a coupling scheme. */
865 idx = (1 << p->js_vlc_bits) - 1;
866 for (i=p->js_subband_start ; i<p->subbands ; i++) {
867 cpl_tmp = cplband[i];
868 idx -=decouple_tab[cpl_tmp];
869 cplscale = q->cplscales[p->js_vlc_bits-2]; //choose decoupler table
870 f1 = cplscale[decouple_tab[cpl_tmp]];
871 f2 = cplscale[idx-1];
872 q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
873 idx = (1 << p->js_vlc_bits) - 1;
874 }
875 }
876
877 /**
878 * First part of subpacket decoding:
879 * decode raw stream bytes and read gain info.
880 *
881 * @param q pointer to the COOKContext
882 * @param inbuffer pointer to raw stream data
883 * @param gains_ptr array of current/prev gain pointers
884 */
885
886 static inline void
887 decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
888 cook_gains *gains_ptr)
889 {
890 int offset;
891
892 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
893 p->bits_per_subpacket/8);
894 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
895 p->bits_per_subpacket);
896 decode_gain_info(&q->gb, gains_ptr->now);
897
898 /* Swap current and previous gains */
899 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
900 }
901
902 /**
903 * Saturate the output signal to signed 16bit integers.
904 *
905 * @param q pointer to the COOKContext
906 * @param chan channel to saturate
907 * @param out pointer to the output vector
908 */
909 static void
910 saturate_output_float (COOKContext *q, int chan, int16_t *out)
911 {
912 int j;
913 float *output = q->mono_mdct_output + q->samples_per_channel;
914 /* Clip and convert floats to 16 bits.
915 */
916 for (j = 0; j < q->samples_per_channel; j++) {
917 out[chan + q->nb_channels * j] =
918 av_clip_int16(lrintf(output[j]));
919 }
920 }
921
922 /**
923 * Final part of subpacket decoding:
924 * Apply modulated lapped transform, gain compensation,
925 * clip and convert to integer.
926 *
927 * @param q pointer to the COOKContext
928 * @param decode_buffer pointer to the mlt coefficients
929 * @param gains_ptr array of current/prev gain pointers
930 * @param previous_buffer pointer to the previous buffer to be used for overlapping
931 * @param out pointer to the output buffer
932 * @param chan 0: left or single channel, 1: right channel
933 */
934
935 static inline void
936 mlt_compensate_output(COOKContext *q, float *decode_buffer,
937 cook_gains *gains_ptr, float *previous_buffer,
938 int16_t *out, int chan)
939 {
940 imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
941 q->saturate_output (q, chan, out);
942 }
943
944
945 /**
946 * Cook subpacket decoding. This function returns one decoded subpacket,
947 * usually 1024 samples per channel.
948 *
949 * @param q pointer to the COOKContext
950 * @param inbuffer pointer to the inbuffer
951 * @param outbuffer pointer to the outbuffer
952 */
953 static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
954 int sub_packet_size = p->size;
955 /* packet dump */
956 // for (i=0 ; i<sub_packet_size ; i++) {
957 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
958 // }
959 // av_log(q->avctx, AV_LOG_ERROR, "\n");
960 memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
961 decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
962
963 if (p->joint_stereo) {
964 joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
965 } else {
966 mono_decode(q, p, q->decode_buffer_1);
967
968 if (p->num_channels == 2) {
969 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
970 mono_decode(q, p, q->decode_buffer_2);
971 }
972 }
973
974 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
975 p->mono_previous_buffer1, outbuffer, p->ch_idx);
976
977 if (p->num_channels == 2) {
978 if (p->joint_stereo) {
979 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
980 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
981 } else {
982 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
983 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
984 }
985 }
986
987 }
988
989
990 /**
991 * Cook frame decoding
992 *
993 * @param avctx pointer to the AVCodecContext
994 */
995
996 static int cook_decode_frame(AVCodecContext *avctx,
997 void *data, int *data_size,
998 AVPacket *avpkt) {
999 const uint8_t *buf = avpkt->data;
1000 int buf_size = avpkt->size;
1001 COOKContext *q = avctx->priv_data;
1002 int i;
1003 int offset = 0;
1004 int chidx = 0;
1005
1006 if (buf_size < avctx->block_align)
1007 return buf_size;
1008
1009 /* estimate subpacket sizes */
1010 q->subpacket[0].size = avctx->block_align;
1011
1012 for(i=1;i<q->num_subpackets;i++){
1013 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1014 q->subpacket[0].size -= q->subpacket[i].size + 1;
1015 if (q->subpacket[0].size < 0) {
1016 av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1017 return -1;
1018 }
1019 }
1020
1021 /* decode supbackets */
1022 *data_size = 0;
1023 for(i=0;i<q->num_subpackets;i++){
1024 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1025 q->subpacket[i].ch_idx = chidx;
1026 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1027 decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1028 offset += q->subpacket[i].size;
1029 chidx += q->subpacket[i].num_channels;
1030 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1031 }
1032 *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1033
1034 /* Discard the first two frames: no valid audio. */
1035 if (avctx->frame_number < 2) *data_size = 0;
1036
1037 return avctx->block_align;
1038 }
1039
1040 #ifdef COOKDEBUG
1041 static void dump_cook_context(COOKContext *q)
1042 {
1043 //int i=0;
1044 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1045 av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1046 av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1047 if (q->subpacket[0].cookversion > STEREO) {
1048 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1049 PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1050 }
1051 av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1052 PRINT("nb_channels",q->nb_channels);
1053 PRINT("bit_rate",q->bit_rate);
1054 PRINT("sample_rate",q->sample_rate);
1055 PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1056 PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1057 PRINT("subbands",q->subpacket[0].subbands);
1058 PRINT("random_state",q->random_state);
1059 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1060 PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1061 PRINT("numvector_size",q->subpacket[0].numvector_size);
1062 PRINT("total_subbands",q->subpacket[0].total_subbands);
1063 }
1064 #endif
1065
1066 static av_cold int cook_count_channels(unsigned int mask){
1067 int i;
1068 int channels = 0;
1069 for(i = 0;i<32;i++){
1070 if(mask & (1<<i))
1071 ++channels;
1072 }
1073 return channels;
1074 }
1075
1076 /**
1077 * Cook initialization
1078 *
1079 * @param avctx pointer to the AVCodecContext
1080 */
1081
1082 static av_cold int cook_decode_init(AVCodecContext *avctx)
1083 {
1084 COOKContext *q = avctx->priv_data;
1085 const uint8_t *edata_ptr = avctx->extradata;
1086 const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1087 int extradata_size = avctx->extradata_size;
1088 int s = 0;
1089 unsigned int channel_mask = 0;
1090 q->avctx = avctx;
1091
1092 /* Take care of the codec specific extradata. */
1093 if (extradata_size <= 0) {
1094 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1095 return -1;
1096 }
1097 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1098
1099 /* Take data from the AVCodecContext (RM container). */
1100 q->sample_rate = avctx->sample_rate;
1101 q->nb_channels = avctx->channels;
1102 q->bit_rate = avctx->bit_rate;
1103
1104 /* Initialize RNG. */
1105 av_lfg_init(&q->random_state, 0);
1106
1107 while(edata_ptr < edata_ptr_end){
1108 /* 8 for mono, 16 for stereo, ? for multichannel
1109 Swap to right endianness so we don't need to care later on. */
1110 if (extradata_size >= 8){
1111 q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1112 q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1113 q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1114 extradata_size -= 8;
1115 }
1116 if (avctx->extradata_size >= 8){
1117 bytestream_get_be32(&edata_ptr); //Unknown unused
1118 q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1119 q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1120 extradata_size -= 8;
1121 }
1122
1123 /* Initialize extradata related variables. */
1124 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1125 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1126
1127 /* Initialize default data states. */
1128 q->subpacket[s].log2_numvector_size = 5;
1129 q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1130 q->subpacket[s].num_channels = 1;
1131
1132 /* Initialize version-dependent variables */
1133
1134 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1135 q->subpacket[s].joint_stereo = 0;
1136 switch (q->subpacket[s].cookversion) {
1137 case MONO:
1138 if (q->nb_channels != 1) {
1139 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1140 return -1;
1141 }
1142 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1143 break;
1144 case STEREO:
1145 if (q->nb_channels != 1) {
1146 q->subpacket[s].bits_per_subpdiv = 1;
1147 q->subpacket[s].num_channels = 2;
1148 }
1149 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1150 break;
1151 case JOINT_STEREO:
1152 if (q->nb_channels != 2) {
1153 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1154 return -1;
1155 }
1156 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1157 if (avctx->extradata_size >= 16){
1158 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1159 q->subpacket[s].joint_stereo = 1;
1160 q->subpacket[s].num_channels = 2;
1161 }
1162 if (q->subpacket[s].samples_per_channel > 256) {
1163 q->subpacket[s].log2_numvector_size = 6;
1164 }
1165 if (q->subpacket[s].samples_per_channel > 512) {
1166 q->subpacket[s].log2_numvector_size = 7;
1167 }
1168 break;
1169 case MC_COOK:
1170 av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1171 if(extradata_size >= 4)
1172 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1173
1174 if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1175 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1176 q->subpacket[s].joint_stereo = 1;
1177 q->subpacket[s].num_channels = 2;
1178 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1179
1180 if (q->subpacket[s].samples_per_channel > 256) {
1181 q->subpacket[s].log2_numvector_size = 6;
1182 }
1183 if (q->subpacket[s].samples_per_channel > 512) {
1184 q->subpacket[s].log2_numvector_size = 7;
1185 }
1186 }else
1187 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1188
1189 break;
1190 default:
1191 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1192 return -1;
1193 break;
1194 }
1195
1196 if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1197 av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1198 return -1;
1199 } else
1200 q->samples_per_channel = q->subpacket[0].samples_per_channel;
1201
1202
1203 /* Initialize variable relations */
1204 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1205
1206 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1207 if (q->subpacket[s].total_subbands > 53) {
1208 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1209 return -1;
1210 }
1211
1212 if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1213 av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1214 return -1;
1215 }
1216
1217 if (q->subpacket[s].subbands > 50) {
1218 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1219 return -1;
1220 }
1221 q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1222 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1223 q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1224 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1225
1226 q->num_subpackets++;
1227 s++;
1228 if (s > MAX_SUBPACKETS) {
1229 av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1230 return -1;
1231 }
1232 }
1233 /* Generate tables */
1234 init_pow2table();
1235 init_gain_table(q);
1236 init_cplscales_table(q);
1237
1238 if (init_cook_vlc_tables(q) != 0)
1239 return -1;
1240
1241
1242 if(avctx->block_align >= UINT_MAX/2)
1243 return -1;
1244
1245 /* Pad the databuffer with:
1246 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1247 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1248 q->decoded_bytes_buffer =
1249 av_mallocz(avctx->block_align
1250 + DECODE_BYTES_PAD1(avctx->block_align)
1251 + FF_INPUT_BUFFER_PADDING_SIZE);
1252 if (q->decoded_bytes_buffer == NULL)
1253 return -1;
1254
1255 /* Initialize transform. */
1256 if ( init_cook_mlt(q) != 0 )
1257 return -1;
1258
1259 /* Initialize COOK signal arithmetic handling */
1260 if (1) {
1261 q->scalar_dequant = scalar_dequant_float;
1262 q->decouple = decouple_float;
1263 q->imlt_window = imlt_window_float;
1264 q->interpolate = interpolate_float;
1265 q->saturate_output = saturate_output_float;
1266 }
1267
1268 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1269 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1270 } else {
1271 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1272 return -1;
1273 }
1274
1275 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
1276 if (channel_mask)
1277 avctx->channel_layout = channel_mask;
1278 else
1279 avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1280
1281 #ifdef COOKDEBUG
1282 dump_cook_context(q);
1283 #endif
1284 return 0;
1285 }
1286
1287
1288 AVCodec ff_cook_decoder =
1289 {
1290 .name = "cook",
1291 .type = AVMEDIA_TYPE_AUDIO,
1292 .id = CODEC_ID_COOK,
1293 .priv_data_size = sizeof(COOKContext),
1294 .init = cook_decode_init,
1295 .close = cook_decode_close,
1296 .decode = cook_decode_frame,
1297 .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1298 };