cook shouldn't try to enforce the bitstream reader type
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 */
21
22 /**
23 * @file cook.c
24 * Cook compatible decoder.
25 * This decoder handles RealNetworks, RealAudio G2 data.
26 * Cook is identified by the codec name cook in RM files.
27 *
28 * To use this decoder, a calling application must supply the extradata
29 * bytes provided from the RM container; 8+ bytes for mono streams and
30 * 16+ for stereo streams (maybe more).
31 *
32 * Codec technicalities (all this assume a buffer length of 1024):
33 * Cook works with several different techniques to achieve its compression.
34 * In the timedomain the buffer is divided into 8 pieces and quantized. If
35 * two neighboring pieces have different quantization index a smooth
36 * quantization curve is used to get a smooth overlap between the different
37 * pieces.
38 * To get to the transformdomain Cook uses a modulated lapped transform.
39 * The transform domain has 50 subbands with 20 elements each. This
40 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
41 * available.
42 */
43
44 #include <math.h>
45 #include <stddef.h>
46 #include <stdio.h>
47
48 #include "avcodec.h"
49 #include "bitstream.h"
50 #include "dsputil.h"
51
52 #include "cookdata.h"
53
54 /* the different Cook versions */
55 #define MONO_COOK1 0x1000001
56 #define MONO_COOK2 0x1000002
57 #define JOINT_STEREO 0x1000003
58 #define MC_COOK 0x2000000 //multichannel Cook, not supported
59
60 #define SUBBAND_SIZE 20
61 //#define COOKDEBUG
62
63 typedef struct {
64 int size;
65 int qidx_table1[8];
66 int qidx_table2[8];
67 } COOKgain;
68
69 typedef struct __attribute__((__packed__)){
70 /* codec data start */
71 uint32_t cookversion; //in network order, bigendian
72 uint16_t samples_per_frame; //amount of samples per frame per channel, bigendian
73 uint16_t subbands; //amount of bands used in the frequency domain, bigendian
74 /* Mono extradata ends here. */
75 uint32_t unused;
76 uint16_t js_subband_start; //bigendian
77 uint16_t js_vlc_bits; //bigendian
78 /* Stereo extradata ends here. */
79 } COOKextradata;
80
81
82 typedef struct {
83 GetBitContext gb;
84 /* stream data */
85 int nb_channels;
86 int joint_stereo;
87 int bit_rate;
88 int sample_rate;
89 int samples_per_channel;
90 int samples_per_frame;
91 int subbands;
92 int log2_numvector_size;
93 int numvector_size; //1 << log2_numvector_size;
94 int js_subband_start;
95 int total_subbands;
96 int num_vectors;
97 int bits_per_subpacket;
98 /* states */
99 int random_state;
100
101 /* transform data */
102 FFTContext fft_ctx;
103 FFTSample mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
104 float* mlt_window;
105 float* mlt_precos;
106 float* mlt_presin;
107 float* mlt_postcos;
108 int fft_size;
109 int fft_order;
110 int mlt_size; //modulated lapped transform size
111
112 /* gain buffers */
113 COOKgain* gain_now_ptr;
114 COOKgain* gain_previous_ptr;
115 COOKgain gain_current;
116 COOKgain gain_now;
117 COOKgain gain_previous;
118 COOKgain gain_channel1[2];
119 COOKgain gain_channel2[2];
120
121 /* VLC data */
122 int js_vlc_bits;
123 VLC envelope_quant_index[13];
124 VLC sqvh[7]; //scalar quantization
125 VLC ccpl; //channel coupling
126
127 /* generatable tables and related variables */
128 int gain_size_factor;
129 float gain_table[23];
130 float pow2tab[127];
131 float rootpow2tab[127];
132
133 /* data buffers */
134
135 uint8_t* decoded_bytes_buffer;
136 float mono_mdct_output[2048] __attribute__((aligned(16)));
137 float* previous_buffer_ptr[2];
138 float mono_previous_buffer1[1024];
139 float mono_previous_buffer2[1024];
140 float* decode_buf_ptr[4];
141 float* decode_buf_ptr2[2];
142 float decode_buffer_1[1024];
143 float decode_buffer_2[1024];
144 float decode_buffer_3[1024];
145 float decode_buffer_4[1024];
146 } COOKContext;
147
148 /* debug functions */
149
150 #ifdef COOKDEBUG
151 static void dump_float_table(float* table, int size, int delimiter) {
152 int i=0;
153 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
154 for (i=0 ; i<size ; i++) {
155 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
156 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
157 }
158 }
159
160 static void dump_int_table(int* table, int size, int delimiter) {
161 int i=0;
162 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
163 for (i=0 ; i<size ; i++) {
164 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
165 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
166 }
167 }
168
169 static void dump_short_table(short* table, int size, int delimiter) {
170 int i=0;
171 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
172 for (i=0 ; i<size ; i++) {
173 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
174 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
175 }
176 }
177
178 #endif
179
180 /*************** init functions ***************/
181
182 /* table generator */
183 static void init_pow2table(COOKContext *q){
184 int i;
185 q->pow2tab[63] = 1.0;
186 for (i=1 ; i<64 ; i++){
187 q->pow2tab[63+i]=(float)((uint64_t)1<<i);
188 q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
189 }
190 }
191
192 /* table generator */
193 static void init_rootpow2table(COOKContext *q){
194 int i;
195 q->rootpow2tab[63] = 1.0;
196 for (i=1 ; i<64 ; i++){
197 q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
198 q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
199 }
200 }
201
202 /* table generator */
203 static void init_gain_table(COOKContext *q) {
204 int i;
205 q->gain_size_factor = q->samples_per_channel/8;
206 for (i=0 ; i<23 ; i++) {
207 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
208 (1.0/(double)q->gain_size_factor));
209 }
210 }
211
212
213 static int init_cook_vlc_tables(COOKContext *q) {
214 int i, result;
215
216 result = 0;
217 for (i=0 ; i<13 ; i++) {
218 result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
219 envelope_quant_index_huffbits[i], 1, 1,
220 envelope_quant_index_huffcodes[i], 2, 2, 0);
221 }
222 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
223 for (i=0 ; i<7 ; i++) {
224 result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
225 cvh_huffbits[i], 1, 1,
226 cvh_huffcodes[i], 2, 2, 0);
227 }
228
229 if (q->nb_channels==2 && q->joint_stereo==1){
230 result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
231 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
232 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
233 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
234 }
235
236 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
237 return result;
238 }
239
240 static int init_cook_mlt(COOKContext *q) {
241 int j;
242 float alpha;
243
244 /* Allocate the buffers, could be replaced with a static [512]
245 array if needed. */
246 q->mlt_size = q->samples_per_channel;
247 q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
248 q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
249 q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
250 q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
251
252 /* Initialize the MLT window: simple sine window. */
253 alpha = M_PI / (2.0 * (float)q->mlt_size);
254 for(j=0 ; j<q->mlt_size ; j++) {
255 q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
256 }
257
258 /* pre/post twiddle factors */
259 for (j=0 ; j<q->mlt_size/2 ; j++){
260 q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
261 q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
262 q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
263 }
264
265 /* Initialize the FFT. */
266 ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
267 av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
268 av_log2(q->samples_per_channel)-1);
269
270 return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
271 }
272
273 /*************** init functions end ***********/
274
275 /**
276 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
277 * Why? No idea, some checksum/error detection method maybe.
278 * Nice way to waste CPU cycles.
279 *
280 * @param in pointer to 32bit array of indata
281 * @param bits amount of bits
282 * @param out pointer to 32bit array of outdata
283 */
284
285 static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
286 int i;
287 uint32_t* buf = (uint32_t*) inbuffer;
288 uint32_t* obuf = (uint32_t*) out;
289 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
290 * I'm too lazy though, should be something like
291 * for(i=0 ; i<bitamount/64 ; i++)
292 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
293 * Buffer alignment needs to be checked. */
294
295
296 for(i=0 ; i<bytes/4 ; i++){
297 #ifdef WORDS_BIGENDIAN
298 obuf[i] = 0x37c511f2^buf[i];
299 #else
300 obuf[i] = 0xf211c537^buf[i];
301 #endif
302 }
303 }
304
305 /**
306 * Cook uninit
307 */
308
309 static int cook_decode_close(AVCodecContext *avctx)
310 {
311 int i;
312 COOKContext *q = avctx->priv_data;
313 av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
314
315 /* Free allocated memory buffers. */
316 av_free(q->mlt_window);
317 av_free(q->mlt_precos);
318 av_free(q->mlt_presin);
319 av_free(q->mlt_postcos);
320 av_free(q->decoded_bytes_buffer);
321
322 /* Free the transform. */
323 ff_fft_end(&q->fft_ctx);
324
325 /* Free the VLC tables. */
326 for (i=0 ; i<13 ; i++) {
327 free_vlc(&q->envelope_quant_index[i]);
328 }
329 for (i=0 ; i<7 ; i++) {
330 free_vlc(&q->sqvh[i]);
331 }
332 if(q->nb_channels==2 && q->joint_stereo==1 ){
333 free_vlc(&q->ccpl);
334 }
335
336 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
337
338 return 0;
339 }
340
341 /**
342 * Fill the COOKgain structure for the timedomain quantization.
343 *
344 * @param q pointer to the COOKContext
345 * @param gaininfo pointer to the COOKgain
346 */
347
348 static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
349 int i;
350
351 while (get_bits1(gb)) {}
352
353 gaininfo->size = get_bits_count(gb) - 1; //amount of elements*2 to update
354
355 if (get_bits_count(gb) - 1 <= 0) return;
356
357 for (i=0 ; i<gaininfo->size ; i++){
358 gaininfo->qidx_table1[i] = get_bits(gb,3);
359 if (get_bits1(gb)) {
360 gaininfo->qidx_table2[i] = get_bits(gb,4) - 7; //convert to signed
361 } else {
362 gaininfo->qidx_table2[i] = -1;
363 }
364 }
365 }
366
367 /**
368 * Create the quant index table needed for the envelope.
369 *
370 * @param q pointer to the COOKContext
371 * @param quant_index_table pointer to the array
372 */
373
374 static void decode_envelope(COOKContext *q, int* quant_index_table) {
375 int i,j, vlc_index;
376 int bitbias;
377
378 bitbias = get_bits_count(&q->gb);
379 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
380
381 for (i=1 ; i < q->total_subbands ; i++){
382 vlc_index=i;
383 if (i >= q->js_subband_start * 2) {
384 vlc_index-=q->js_subband_start;
385 } else {
386 vlc_index/=2;
387 if(vlc_index < 1) vlc_index = 1;
388 }
389 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
390
391 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
392 q->envelope_quant_index[vlc_index-1].bits,2);
393 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
394 }
395 }
396
397 /**
398 * Create the quant value table.
399 *
400 * @param q pointer to the COOKContext
401 * @param quant_value_table pointer to the array
402 */
403
404 static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
405 float* quant_value_table){
406
407 int i;
408 for(i=0 ; i < q->total_subbands ; i++){
409 quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
410 }
411 }
412
413 /**
414 * Calculate the category and category_index vector.
415 *
416 * @param q pointer to the COOKContext
417 * @param quant_index_table pointer to the array
418 * @param category pointer to the category array
419 * @param category_index pointer to the category_index array
420 */
421
422 static void categorize(COOKContext *q, int* quant_index_table,
423 int* category, int* category_index){
424 int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
425 int exp_index2[102];
426 int exp_index1[102];
427
428 int tmp_categorize_array1[128];
429 int tmp_categorize_array1_idx=0;
430 int tmp_categorize_array2[128];
431 int tmp_categorize_array2_idx=0;
432 int category_index_size=0;
433
434 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
435
436 if(bits_left > q->samples_per_channel) {
437 bits_left = q->samples_per_channel +
438 ((bits_left - q->samples_per_channel)*5)/8;
439 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
440 }
441
442 memset(&exp_index1,0,102*sizeof(int));
443 memset(&exp_index2,0,102*sizeof(int));
444 memset(&tmp_categorize_array1,0,128*sizeof(int));
445 memset(&tmp_categorize_array2,0,128*sizeof(int));
446
447 bias=-32;
448
449 /* Estimate bias. */
450 for (i=32 ; i>0 ; i=i/2){
451 num_bits = 0;
452 index = 0;
453 for (j=q->total_subbands ; j>0 ; j--){
454 exp_idx = (i - quant_index_table[index] + bias) / 2;
455 if (exp_idx<0){
456 exp_idx=0;
457 } else if(exp_idx >7) {
458 exp_idx=7;
459 }
460 index++;
461 num_bits+=expbits_tab[exp_idx];
462 }
463 if(num_bits >= bits_left - 32){
464 bias+=i;
465 }
466 }
467
468 /* Calculate total number of bits. */
469 num_bits=0;
470 for (i=0 ; i<q->total_subbands ; i++) {
471 exp_idx = (bias - quant_index_table[i]) / 2;
472 if (exp_idx<0) {
473 exp_idx=0;
474 } else if(exp_idx >7) {
475 exp_idx=7;
476 }
477 num_bits += expbits_tab[exp_idx];
478 exp_index1[i] = exp_idx;
479 exp_index2[i] = exp_idx;
480 }
481 tmpbias = bias = num_bits;
482
483 for (j = 1 ; j < q->numvector_size ; j++) {
484 if (tmpbias + bias > 2*bits_left) { /* ---> */
485 int max = -999999;
486 index=-1;
487 for (i=0 ; i<q->total_subbands ; i++){
488 if (exp_index1[i] < 7) {
489 v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
490 if ( v >= max) {
491 max = v;
492 index = i;
493 }
494 }
495 }
496 if(index==-1)break;
497 tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
498 tmpbias -= expbits_tab[exp_index1[index]] -
499 expbits_tab[exp_index1[index]+1];
500 ++exp_index1[index];
501 } else { /* <--- */
502 int min = 999999;
503 index=-1;
504 for (i=0 ; i<q->total_subbands ; i++){
505 if(exp_index2[i] > 0){
506 v = (-2*exp_index2[i])-quant_index_table[i];
507 if ( v < min) {
508 min = v;
509 index = i;
510 }
511 }
512 }
513 if(index == -1)break;
514 tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
515 tmpbias -= expbits_tab[exp_index2[index]] -
516 expbits_tab[exp_index2[index]-1];
517 --exp_index2[index];
518 }
519 }
520
521 for(i=0 ; i<q->total_subbands ; i++)
522 category[i] = exp_index2[i];
523
524 /* Concatenate the two arrays. */
525 for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
526 category_index[category_index_size++] = tmp_categorize_array2[i];
527
528 for(i=0;i<tmp_categorize_array1_idx;i++)
529 category_index[category_index_size++ ] = tmp_categorize_array1[i];
530
531 /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
532 should fill the remaining bytes. */
533 for(i=category_index_size;i<q->numvector_size;i++)
534 category_index[i]=0;
535
536 }
537
538
539 /**
540 * Expand the category vector.
541 *
542 * @param q pointer to the COOKContext
543 * @param category pointer to the category array
544 * @param category_index pointer to the category_index array
545 */
546
547 static void inline expand_category(COOKContext *q, int* category,
548 int* category_index){
549 int i;
550 for(i=0 ; i<q->num_vectors ; i++){
551 ++category[category_index[i]];
552 }
553 }
554
555 /**
556 * The real requantization of the mltcoefs
557 *
558 * @param q pointer to the COOKContext
559 * @param index index
560 * @param band current subband
561 * @param quant_value_table pointer to the array
562 * @param subband_coef_index array of indexes to quant_centroid_tab
563 * @param subband_coef_noise use random noise instead of predetermined value
564 * @param mlt_buffer pointer to the mlt buffer
565 */
566
567
568 static void scalar_dequant(COOKContext *q, int index, int band,
569 float* quant_value_table, int* subband_coef_index,
570 int* subband_coef_noise, float* mlt_buffer){
571 int i;
572 float f1;
573
574 for(i=0 ; i<SUBBAND_SIZE ; i++) {
575 if (subband_coef_index[i]) {
576 if (subband_coef_noise[i]) {
577 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
578 } else {
579 f1 = quant_centroid_tab[index][subband_coef_index[i]];
580 }
581 } else {
582 /* noise coding if subband_coef_noise[i] == 0 */
583 q->random_state = q->random_state * 214013 + 2531011; //typical RNG numbers
584 f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
585 }
586 mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
587 }
588 }
589 /**
590 * Unpack the subband_coef_index and subband_coef_noise vectors.
591 *
592 * @param q pointer to the COOKContext
593 * @param category pointer to the category array
594 * @param subband_coef_index array of indexes to quant_centroid_tab
595 * @param subband_coef_noise use random noise instead of predetermined value
596 */
597
598 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
599 int* subband_coef_noise) {
600 int i,j;
601 int vlc, vd ,tmp, result;
602 int ub;
603 int cb;
604
605 vd = vd_tab[category];
606 result = 0;
607 for(i=0 ; i<vpr_tab[category] ; i++){
608 ub = get_bits_count(&q->gb);
609 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
610 cb = get_bits_count(&q->gb);
611 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
612 vlc = 0;
613 result = 1;
614 }
615 for(j=vd-1 ; j>=0 ; j--){
616 tmp = (vlc * invradix_tab[category])/0x100000;
617 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
618 vlc = tmp;
619 }
620 for(j=0 ; j<vd ; j++){
621 if (subband_coef_index[i*vd + j]) {
622 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
623 subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
624 } else {
625 result=1;
626 subband_coef_noise[i*vd+j]=0;
627 }
628 } else {
629 subband_coef_noise[i*vd+j]=0;
630 }
631 }
632 }
633 return result;
634 }
635
636
637 /**
638 * Fill the mlt_buffer with mlt coefficients.
639 *
640 * @param q pointer to the COOKContext
641 * @param category pointer to the category array
642 * @param quant_value_table pointer to the array
643 * @param mlt_buffer pointer to mlt coefficients
644 */
645
646
647 static void decode_vectors(COOKContext* q, int* category,
648 float* quant_value_table, float* mlt_buffer){
649 /* A zero in this table means that the subband coefficient is
650 random noise coded. */
651 int subband_coef_noise[SUBBAND_SIZE];
652 /* A zero in this table means that the subband coefficient is a
653 positive multiplicator. */
654 int subband_coef_index[SUBBAND_SIZE];
655 int band, j;
656 int index=0;
657
658 for(band=0 ; band<q->total_subbands ; band++){
659 index = category[band];
660 if(category[band] < 7){
661 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
662 index=7;
663 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
664 }
665 }
666 if(index==7) {
667 memset(subband_coef_index, 0, sizeof(subband_coef_index));
668 memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
669 }
670 scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
671 subband_coef_noise, mlt_buffer);
672 }
673
674 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
675 return;
676 }
677 }
678
679
680 /**
681 * function for decoding mono data
682 *
683 * @param q pointer to the COOKContext
684 * @param mlt_buffer1 pointer to left channel mlt coefficients
685 * @param mlt_buffer2 pointer to right channel mlt coefficients
686 */
687
688 static void mono_decode(COOKContext *q, float* mlt_buffer) {
689
690 int category_index[128];
691 float quant_value_table[102];
692 int quant_index_table[102];
693 int category[128];
694
695 memset(&category, 0, 128*sizeof(int));
696 memset(&quant_value_table, 0, 102*sizeof(int));
697 memset(&category_index, 0, 128*sizeof(int));
698
699 decode_envelope(q, quant_index_table);
700 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
701 dequant_envelope(q, quant_index_table, quant_value_table);
702 categorize(q, quant_index_table, category, category_index);
703 expand_category(q, category, category_index);
704 decode_vectors(q, category, quant_value_table, mlt_buffer);
705 }
706
707
708 /**
709 * The modulated lapped transform, this takes transform coefficients
710 * and transforms them into timedomain samples. This is done through
711 * an FFT-based algorithm with pre- and postrotation steps.
712 * A window and reorder step is also included.
713 *
714 * @param q pointer to the COOKContext
715 * @param inbuffer pointer to the mltcoefficients
716 * @param outbuffer pointer to the timedomain buffer
717 * @param mlt_tmp pointer to temporary storage space
718 */
719
720 static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
721 float* mlt_tmp){
722 int i;
723
724 /* prerotation */
725 for(i=0 ; i<q->mlt_size ; i+=2){
726 outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
727 (q->mlt_precos[i/2] * inbuffer[i]);
728 outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
729 (q->mlt_presin[i/2] * inbuffer[i]);
730 }
731
732 /* FFT */
733 ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
734 ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
735
736 /* postrotation */
737 for(i=0 ; i<q->mlt_size ; i+=2){
738 mlt_tmp[i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
739 (q->mlt_postcos[i/2] * outbuffer[i]);
740 mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
741 (q->mlt_postcos[i/2] * outbuffer[i+1]);
742 }
743
744 /* window and reorder */
745 for(i=0 ; i<q->mlt_size/2 ; i++){
746 outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
747 outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
748 q->mlt_window[q->mlt_size-1-i];
749 outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
750 q->mlt_window[q->mlt_size-1-i];
751 outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
752 q->mlt_window[i]);
753 }
754 }
755
756
757 /**
758 * the actual requantization of the timedomain samples
759 *
760 * @param q pointer to the COOKContext
761 * @param buffer pointer to the timedomain buffer
762 * @param gain_index index for the block multiplier
763 * @param gain_index_next index for the next block multiplier
764 */
765
766 static void interpolate(COOKContext *q, float* buffer,
767 int gain_index, int gain_index_next){
768 int i;
769 float fc1, fc2;
770 fc1 = q->pow2tab[gain_index+63];
771
772 if(gain_index == gain_index_next){ //static gain
773 for(i=0 ; i<q->gain_size_factor ; i++){
774 buffer[i]*=fc1;
775 }
776 return;
777 } else { //smooth gain
778 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
779 for(i=0 ; i<q->gain_size_factor ; i++){
780 buffer[i]*=fc1;
781 fc1*=fc2;
782 }
783 return;
784 }
785 }
786
787 /**
788 * timedomain requantization of the timedomain samples
789 *
790 * @param q pointer to the COOKContext
791 * @param buffer pointer to the timedomain buffer
792 * @param gain_now current gain structure
793 * @param gain_previous previous gain structure
794 */
795
796 static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
797 COOKgain* gain_previous){
798 int i, index;
799 int gain_index[9];
800 int tmp_gain_index;
801
802 gain_index[8]=0;
803 index = gain_previous->size;
804 for (i=7 ; i>=0 ; i--) {
805 if(index && gain_previous->qidx_table1[index-1]==i) {
806 gain_index[i] = gain_previous->qidx_table2[index-1];
807 index--;
808 } else {
809 gain_index[i]=gain_index[i+1];
810 }
811 }
812 /* This is applied to the to be previous data buffer. */
813 for(i=0;i<8;i++){
814 interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
815 gain_index[i], gain_index[i+1]);
816 }
817
818 tmp_gain_index = gain_index[0];
819 index = gain_now->size;
820 for (i=7 ; i>=0 ; i--) {
821 if(index && gain_now->qidx_table1[index-1]==i) {
822 gain_index[i]= gain_now->qidx_table2[index-1];
823 index--;
824 } else {
825 gain_index[i]=gain_index[i+1];
826 }
827 }
828
829 /* This is applied to the to be current block. */
830 for(i=0;i<8;i++){
831 interpolate(q, &buffer[i*q->gain_size_factor],
832 tmp_gain_index+gain_index[i],
833 tmp_gain_index+gain_index[i+1]);
834 }
835 }
836
837
838 /**
839 * mlt overlapping and buffer management
840 *
841 * @param q pointer to the COOKContext
842 * @param buffer pointer to the timedomain buffer
843 * @param gain_now current gain structure
844 * @param gain_previous previous gain structure
845 * @param previous_buffer pointer to the previous buffer to be used for overlapping
846 *
847 */
848
849 static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
850 COOKgain* gain_previous, float* previous_buffer) {
851 int i;
852 if((gain_now->size || gain_previous->size)) {
853 gain_window(q, buffer, gain_now, gain_previous);
854 }
855
856 /* Overlap with the previous block. */
857 for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
858
859 /* Save away the current to be previous block. */
860 memcpy(previous_buffer, buffer+q->samples_per_channel,
861 sizeof(float)*q->samples_per_channel);
862 }
863
864
865 /**
866 * function for getting the jointstereo coupling information
867 *
868 * @param q pointer to the COOKContext
869 * @param decouple_tab decoupling array
870 *
871 */
872
873 static void decouple_info(COOKContext *q, int* decouple_tab){
874 int length, i;
875
876 if(get_bits1(&q->gb)) {
877 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
878
879 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
880 for (i=0 ; i<length ; i++) {
881 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
882 }
883 return;
884 }
885
886 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
887
888 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
889 for (i=0 ; i<length ; i++) {
890 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
891 }
892 return;
893 }
894
895
896 /**
897 * function for decoding joint stereo data
898 *
899 * @param q pointer to the COOKContext
900 * @param mlt_buffer1 pointer to left channel mlt coefficients
901 * @param mlt_buffer2 pointer to right channel mlt coefficients
902 */
903
904 static void joint_decode(COOKContext *q, float* mlt_buffer1,
905 float* mlt_buffer2) {
906 int i,j;
907 int decouple_tab[SUBBAND_SIZE];
908 float decode_buffer[1060];
909 int idx, cpl_tmp,tmp_idx;
910 float f1,f2;
911 float* cplscale;
912
913 memset(decouple_tab, 0, sizeof(decouple_tab));
914 memset(decode_buffer, 0, sizeof(decode_buffer));
915
916 /* Make sure the buffers are zeroed out. */
917 memset(mlt_buffer1,0, 1024*sizeof(float));
918 memset(mlt_buffer2,0, 1024*sizeof(float));
919 decouple_info(q, decouple_tab);
920 mono_decode(q, decode_buffer);
921
922 /* The two channels are stored interleaved in decode_buffer. */
923 for (i=0 ; i<q->js_subband_start ; i++) {
924 for (j=0 ; j<SUBBAND_SIZE ; j++) {
925 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
926 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
927 }
928 }
929
930 /* When we reach js_subband_start (the higher frequencies)
931 the coefficients are stored in a coupling scheme. */
932 idx = (1 << q->js_vlc_bits) - 1;
933 for (i=q->js_subband_start ; i<q->subbands ; i++) {
934 cpl_tmp = cplband[i];
935 idx -=decouple_tab[cpl_tmp];
936 cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table
937 f1 = cplscale[decouple_tab[cpl_tmp]];
938 f2 = cplscale[idx-1];
939 for (j=0 ; j<SUBBAND_SIZE ; j++) {
940 tmp_idx = ((q->js_subband_start + i)*20)+j;
941 mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
942 mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
943 }
944 idx = (1 << q->js_vlc_bits) - 1;
945 }
946 }
947
948 /**
949 * Cook subpacket decoding. This function returns one decoded subpacket,
950 * usually 1024 samples per channel.
951 *
952 * @param q pointer to the COOKContext
953 * @param inbuffer pointer to the inbuffer
954 * @param sub_packet_size subpacket size
955 * @param outbuffer pointer to the outbuffer
956 */
957
958
959 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
960 int sub_packet_size, int16_t *outbuffer) {
961 int i,j;
962 int value;
963 float* tmp_ptr;
964
965 /* packet dump */
966 // for (i=0 ; i<sub_packet_size ; i++) {
967 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
968 // }
969 // av_log(NULL, AV_LOG_ERROR, "\n");
970
971 decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
972 init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
973 decode_gain_info(&q->gb, &q->gain_current);
974
975 if(q->nb_channels==2 && q->joint_stereo==1){
976 joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
977
978 /* Swap buffer pointers. */
979 tmp_ptr = q->decode_buf_ptr[1];
980 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
981 q->decode_buf_ptr[0] = tmp_ptr;
982 tmp_ptr = q->decode_buf_ptr[3];
983 q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
984 q->decode_buf_ptr[2] = tmp_ptr;
985
986 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
987 now/previous swap */
988 q->gain_now_ptr = &q->gain_now;
989 q->gain_previous_ptr = &q->gain_previous;
990 for (i=0 ; i<q->nb_channels ; i++){
991
992 cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
993 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
994 q->gain_previous_ptr, q->previous_buffer_ptr[0]);
995
996 /* Swap out the previous buffer. */
997 tmp_ptr = q->previous_buffer_ptr[0];
998 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
999 q->previous_buffer_ptr[1] = tmp_ptr;
1000
1001 /* Clip and convert the floats to 16 bits. */
1002 for (j=0 ; j<q->samples_per_frame ; j++){
1003 value = lrintf(q->mono_mdct_output[j]);
1004 if(value < -32768) value = -32768;
1005 else if(value > 32767) value = 32767;
1006 outbuffer[2*j+i] = value;
1007 }
1008 }
1009
1010 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1011 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1012
1013 } else if (q->nb_channels==2 && q->joint_stereo==0) {
1014 /* channel 0 */
1015 mono_decode(q, q->decode_buf_ptr2[0]);
1016
1017 tmp_ptr = q->decode_buf_ptr2[0];
1018 q->decode_buf_ptr2[0] = q->decode_buf_ptr2[1];
1019 q->decode_buf_ptr2[1] = tmp_ptr;
1020
1021 memcpy(&q->gain_channel1[0], &q->gain_current ,sizeof(COOKgain));
1022 q->gain_now_ptr = &q->gain_channel1[0];
1023 q->gain_previous_ptr = &q->gain_channel1[1];
1024
1025 cook_imlt(q, q->decode_buf_ptr2[0], q->mono_mdct_output,q->mlt_tmp);
1026 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1027 q->gain_previous_ptr, q->mono_previous_buffer1);
1028
1029 memcpy(&q->gain_channel1[1], &q->gain_channel1[0],sizeof(COOKgain));
1030
1031
1032 for (j=0 ; j<q->samples_per_frame ; j++){
1033 value = lrintf(q->mono_mdct_output[j]);
1034 if(value < -32768) value = -32768;
1035 else if(value > 32767) value = 32767;
1036 outbuffer[2*j+1] = value;
1037 }
1038
1039 /* channel 1 */
1040 //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1041 init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
1042
1043 q->gain_now_ptr = &q->gain_channel2[0];
1044 q->gain_previous_ptr = &q->gain_channel2[1];
1045
1046 decode_gain_info(&q->gb, &q->gain_channel2[0]);
1047 mono_decode(q, q->decode_buf_ptr[0]);
1048
1049 tmp_ptr = q->decode_buf_ptr[0];
1050 q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1051 q->decode_buf_ptr[1] = tmp_ptr;
1052
1053 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1054 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1055 q->gain_previous_ptr, q->mono_previous_buffer2);
1056
1057 /* Swap out the previous buffer. */
1058 tmp_ptr = q->previous_buffer_ptr[0];
1059 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1060 q->previous_buffer_ptr[1] = tmp_ptr;
1061
1062 memcpy(&q->gain_channel2[1], &q->gain_channel2[0] ,sizeof(COOKgain));
1063
1064 for (j=0 ; j<q->samples_per_frame ; j++){
1065 value = lrintf(q->mono_mdct_output[j]);
1066 if(value < -32768) value = -32768;
1067 else if(value > 32767) value = 32767;
1068 outbuffer[2*j] = value;
1069 }
1070
1071 } else {
1072 mono_decode(q, q->decode_buf_ptr[0]);
1073
1074 /* Swap buffer pointers. */
1075 tmp_ptr = q->decode_buf_ptr[1];
1076 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1077 q->decode_buf_ptr[0] = tmp_ptr;
1078
1079 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1080 now/previous swap */
1081 q->gain_now_ptr = &q->gain_now;
1082 q->gain_previous_ptr = &q->gain_previous;
1083
1084 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1085 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1086 q->gain_previous_ptr, q->mono_previous_buffer1);
1087
1088 /* Clip and convert the floats to 16 bits */
1089 for (j=0 ; j<q->samples_per_frame ; j++){
1090 value = lrintf(q->mono_mdct_output[j]);
1091 if(value < -32768) value = -32768;
1092 else if(value > 32767) value = 32767;
1093 outbuffer[j] = value;
1094 }
1095 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1096 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1097 }
1098 return q->samples_per_frame * sizeof(int16_t);
1099 }
1100
1101
1102 /**
1103 * Cook frame decoding
1104 *
1105 * @param avctx pointer to the AVCodecContext
1106 */
1107
1108 static int cook_decode_frame(AVCodecContext *avctx,
1109 void *data, int *data_size,
1110 uint8_t *buf, int buf_size) {
1111 COOKContext *q = avctx->priv_data;
1112
1113 if (buf_size < avctx->block_align)
1114 return buf_size;
1115
1116 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1117
1118 return avctx->block_align;
1119 }
1120
1121 #ifdef COOKDEBUG
1122 static void dump_cook_context(COOKContext *q, COOKextradata *e)
1123 {
1124 //int i=0;
1125 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1126 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1127 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1128 if (e->cookversion > MONO_COOK2) {
1129 PRINT("js_subband_start",e->js_subband_start);
1130 PRINT("js_vlc_bits",e->js_vlc_bits);
1131 }
1132 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1133 PRINT("nb_channels",q->nb_channels);
1134 PRINT("bit_rate",q->bit_rate);
1135 PRINT("sample_rate",q->sample_rate);
1136 PRINT("samples_per_channel",q->samples_per_channel);
1137 PRINT("samples_per_frame",q->samples_per_frame);
1138 PRINT("subbands",q->subbands);
1139 PRINT("random_state",q->random_state);
1140 PRINT("mlt_size",q->mlt_size);
1141 PRINT("js_subband_start",q->js_subband_start);
1142 PRINT("log2_numvector_size",q->log2_numvector_size);
1143 PRINT("numvector_size",q->numvector_size);
1144 PRINT("total_subbands",q->total_subbands);
1145 }
1146 #endif
1147
1148 /**
1149 * Cook initialization
1150 *
1151 * @param avctx pointer to the AVCodecContext
1152 */
1153
1154 static int cook_decode_init(AVCodecContext *avctx)
1155 {
1156 COOKextradata *e = avctx->extradata;
1157 COOKContext *q = avctx->priv_data;
1158
1159 /* Take care of the codec specific extradata. */
1160 if (avctx->extradata_size <= 0) {
1161 av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1162 return -1;
1163 } else {
1164 /* 8 for mono, 16 for stereo, ? for multichannel
1165 Swap to right endianness so we don't need to care later on. */
1166 av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1167 if (avctx->extradata_size >= 8){
1168 e->cookversion = be2me_32(e->cookversion);
1169 e->samples_per_frame = be2me_16(e->samples_per_frame);
1170 e->subbands = be2me_16(e->subbands);
1171 }
1172 if (avctx->extradata_size >= 16){
1173 e->js_subband_start = be2me_16(e->js_subband_start);
1174 e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1175 }
1176 }
1177
1178 /* Take data from the AVCodecContext (RM container). */
1179 q->sample_rate = avctx->sample_rate;
1180 q->nb_channels = avctx->channels;
1181 q->bit_rate = avctx->bit_rate;
1182
1183 /* Initialize state. */
1184 q->random_state = 1;
1185
1186 /* Initialize extradata related variables. */
1187 q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1188 q->samples_per_frame = e->samples_per_frame;
1189 q->subbands = e->subbands;
1190 q->bits_per_subpacket = avctx->block_align * 8;
1191
1192 /* Initialize default data states. */
1193 q->js_subband_start = 0;
1194 q->log2_numvector_size = 5;
1195 q->total_subbands = q->subbands;
1196
1197 /* Initialize version-dependent variables */
1198 av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1199 switch (e->cookversion) {
1200 case MONO_COOK1:
1201 if (q->nb_channels != 1) {
1202 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1203 return -1;
1204 }
1205 av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1206 break;
1207 case MONO_COOK2:
1208 if (q->nb_channels != 1) {
1209 q->joint_stereo = 0;
1210 q->bits_per_subpacket = q->bits_per_subpacket/2;
1211 }
1212 av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1213 break;
1214 case JOINT_STEREO:
1215 if (q->nb_channels != 2) {
1216 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1217 return -1;
1218 }
1219 av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1220 if (avctx->extradata_size >= 16){
1221 q->total_subbands = q->subbands + e->js_subband_start;
1222 q->js_subband_start = e->js_subband_start;
1223 q->joint_stereo = 1;
1224 q->js_vlc_bits = e->js_vlc_bits;
1225 }
1226 if (q->samples_per_channel > 256) {
1227 q->log2_numvector_size = 6;
1228 }
1229 if (q->samples_per_channel > 512) {
1230 q->log2_numvector_size = 7;
1231 }
1232 break;
1233 case MC_COOK:
1234 av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1235 return -1;
1236 break;
1237 default:
1238 av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1239 return -1;
1240 break;
1241 }
1242
1243 /* Initialize variable relations */
1244 q->mlt_size = q->samples_per_channel;
1245 q->numvector_size = (1 << q->log2_numvector_size);
1246
1247 /* Generate tables */
1248 init_rootpow2table(q);
1249 init_pow2table(q);
1250 init_gain_table(q);
1251
1252 if (init_cook_vlc_tables(q) != 0)
1253 return -1;
1254
1255
1256 if(avctx->block_align >= UINT_MAX/2)
1257 return -1;
1258
1259 /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1260 this is for the bitstreamreader. */
1261 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t))) == NULL)
1262 return -1;
1263
1264 q->decode_buf_ptr[0] = q->decode_buffer_1;
1265 q->decode_buf_ptr[1] = q->decode_buffer_2;
1266 q->decode_buf_ptr[2] = q->decode_buffer_3;
1267 q->decode_buf_ptr[3] = q->decode_buffer_4;
1268
1269 q->decode_buf_ptr2[0] = q->decode_buffer_3;
1270 q->decode_buf_ptr2[1] = q->decode_buffer_4;
1271
1272 q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1273 q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1274
1275 /* Initialize transform. */
1276 if ( init_cook_mlt(q) == 0 )
1277 return -1;
1278
1279 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1280 if (q->total_subbands > 53) {
1281 av_log(NULL,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1282 return -1;
1283 }
1284 if (q->subbands > 50) {
1285 av_log(NULL,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1286 return -1;
1287 }
1288 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1289 } else {
1290 av_log(NULL,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1291 return -1;
1292 }
1293
1294 #ifdef COOKDEBUG
1295 dump_cook_context(q,e);
1296 #endif
1297 return 0;
1298 }
1299
1300
1301 AVCodec cook_decoder =
1302 {
1303 .name = "cook",
1304 .type = CODEC_TYPE_AUDIO,
1305 .id = CODEC_ID_COOK,
1306 .priv_data_size = sizeof(COOKContext),
1307 .init = cook_decode_init,
1308 .close = cook_decode_close,
1309 .decode = cook_decode_frame,
1310 };