8e50daa24f89b57f557602ad98c0548814710e1e
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
48
49 #include "libavutil/lfg.h"
50 #include "libavutil/random_seed.h"
51 #include "avcodec.h"
52 #include "get_bits.h"
53 #include "dsputil.h"
54 #include "bytestream.h"
55 #include "fft.h"
56 #include "libavutil/audioconvert.h"
57
58 #include "cookdata.h"
59
60 /* the different Cook versions */
61 #define MONO 0x1000001
62 #define STEREO 0x1000002
63 #define JOINT_STEREO 0x1000003
64 #define MC_COOK 0x2000000 //multichannel Cook, not supported
65
66 #define SUBBAND_SIZE 20
67 #define MAX_SUBPACKETS 5
68 //#define COOKDEBUG
69
70 typedef struct {
71 int *now;
72 int *previous;
73 } cook_gains;
74
75 typedef struct {
76 int ch_idx;
77 int size;
78 int num_channels;
79 int cookversion;
80 int samples_per_frame;
81 int subbands;
82 int js_subband_start;
83 int js_vlc_bits;
84 int samples_per_channel;
85 int log2_numvector_size;
86 unsigned int channel_mask;
87 VLC ccpl; ///< channel coupling
88 int joint_stereo;
89 int bits_per_subpacket;
90 int bits_per_subpdiv;
91 int total_subbands;
92 int numvector_size; ///< 1 << log2_numvector_size;
93
94 float mono_previous_buffer1[1024];
95 float mono_previous_buffer2[1024];
96 /** gain buffers */
97 cook_gains gains1;
98 cook_gains gains2;
99 int gain_1[9];
100 int gain_2[9];
101 int gain_3[9];
102 int gain_4[9];
103 } COOKSubpacket;
104
105 typedef struct cook {
106 /*
107 * The following 5 functions provide the lowlevel arithmetic on
108 * the internal audio buffers.
109 */
110 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
111 int* subband_coef_index, int* subband_coef_sign,
112 float* mlt_p);
113
114 void (* decouple) (struct cook *q,
115 COOKSubpacket *p,
116 int subband,
117 float f1, float f2,
118 float *decode_buffer,
119 float *mlt_buffer1, float *mlt_buffer2);
120
121 void (* imlt_window) (struct cook *q, float *buffer1,
122 cook_gains *gains_ptr, float *previous_buffer);
123
124 void (* interpolate) (struct cook *q, float* buffer,
125 int gain_index, int gain_index_next);
126
127 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
128
129 AVCodecContext* avctx;
130 GetBitContext gb;
131 /* stream data */
132 int nb_channels;
133 int bit_rate;
134 int sample_rate;
135 int num_vectors;
136 int samples_per_channel;
137 /* states */
138 AVLFG random_state;
139
140 /* transform data */
141 FFTContext mdct_ctx;
142 float* mlt_window;
143
144 /* VLC data */
145 VLC envelope_quant_index[13];
146 VLC sqvh[7]; //scalar quantization
147
148 /* generatable tables and related variables */
149 int gain_size_factor;
150 float gain_table[23];
151
152 /* data buffers */
153
154 uint8_t* decoded_bytes_buffer;
155 DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
156 float decode_buffer_1[1024];
157 float decode_buffer_2[1024];
158 float decode_buffer_0[1060]; /* static allocation for joint decode */
159
160 const float *cplscales[5];
161 int num_subpackets;
162 COOKSubpacket subpacket[MAX_SUBPACKETS];
163 } COOKContext;
164
165 static float pow2tab[127];
166 static float rootpow2tab[127];
167
168 /* debug functions */
169
170 #ifdef COOKDEBUG
171 static void dump_float_table(float* table, int size, int delimiter) {
172 int i=0;
173 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
174 for (i=0 ; i<size ; i++) {
175 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
176 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
177 }
178 }
179
180 static void dump_int_table(int* table, int size, int delimiter) {
181 int i=0;
182 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
183 for (i=0 ; i<size ; i++) {
184 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
185 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
186 }
187 }
188
189 static void dump_short_table(short* table, int size, int delimiter) {
190 int i=0;
191 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
192 for (i=0 ; i<size ; i++) {
193 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
194 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
195 }
196 }
197
198 #endif
199
200 /*************** init functions ***************/
201
202 /* table generator */
203 static av_cold void init_pow2table(void){
204 int i;
205 for (i=-63 ; i<64 ; i++){
206 pow2tab[63+i]= pow(2, i);
207 rootpow2tab[63+i]=sqrt(pow(2, i));
208 }
209 }
210
211 /* table generator */
212 static av_cold void init_gain_table(COOKContext *q) {
213 int i;
214 q->gain_size_factor = q->samples_per_channel/8;
215 for (i=0 ; i<23 ; i++) {
216 q->gain_table[i] = pow(pow2tab[i+52] ,
217 (1.0/(double)q->gain_size_factor));
218 }
219 }
220
221
222 static av_cold int init_cook_vlc_tables(COOKContext *q) {
223 int i, result;
224
225 result = 0;
226 for (i=0 ; i<13 ; i++) {
227 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
228 envelope_quant_index_huffbits[i], 1, 1,
229 envelope_quant_index_huffcodes[i], 2, 2, 0);
230 }
231 av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
232 for (i=0 ; i<7 ; i++) {
233 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
234 cvh_huffbits[i], 1, 1,
235 cvh_huffcodes[i], 2, 2, 0);
236 }
237
238 for(i=0;i<q->num_subpackets;i++){
239 if (q->subpacket[i].joint_stereo==1){
240 result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
241 ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
242 ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
243 av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
244 }
245 }
246
247 av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
248 return result;
249 }
250
251 static av_cold int init_cook_mlt(COOKContext *q) {
252 int j;
253 int mlt_size = q->samples_per_channel;
254
255 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
256 return -1;
257
258 /* Initialize the MLT window: simple sine window. */
259 ff_sine_window_init(q->mlt_window, mlt_size);
260 for(j=0 ; j<mlt_size ; j++)
261 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
262
263 /* Initialize the MDCT. */
264 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
265 av_free(q->mlt_window);
266 return -1;
267 }
268 av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
269 av_log2(mlt_size)+1);
270
271 return 0;
272 }
273
274 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
275 {
276 if (1)
277 return ptr;
278 }
279
280 static av_cold void init_cplscales_table (COOKContext *q) {
281 int i;
282 for (i=0;i<5;i++)
283 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
284 }
285
286 /*************** init functions end ***********/
287
288 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
289 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
290
291 /**
292 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
293 * Why? No idea, some checksum/error detection method maybe.
294 *
295 * Out buffer size: extra bytes are needed to cope with
296 * padding/misalignment.
297 * Subpackets passed to the decoder can contain two, consecutive
298 * half-subpackets, of identical but arbitrary size.
299 * 1234 1234 1234 1234 extraA extraB
300 * Case 1: AAAA BBBB 0 0
301 * Case 2: AAAA ABBB BB-- 3 3
302 * Case 3: AAAA AABB BBBB 2 2
303 * Case 4: AAAA AAAB BBBB BB-- 1 5
304 *
305 * Nice way to waste CPU cycles.
306 *
307 * @param inbuffer pointer to byte array of indata
308 * @param out pointer to byte array of outdata
309 * @param bytes number of bytes
310 */
311
312 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
313 int i, off;
314 uint32_t c;
315 const uint32_t* buf;
316 uint32_t* obuf = (uint32_t*) out;
317 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
318 * I'm too lazy though, should be something like
319 * for(i=0 ; i<bitamount/64 ; i++)
320 * (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);
321 * Buffer alignment needs to be checked. */
322
323 off = (intptr_t)inbuffer & 3;
324 buf = (const uint32_t*) (inbuffer - off);
325 c = av_be2ne32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
326 bytes += 3 + off;
327 for (i = 0; i < bytes/4; i++)
328 obuf[i] = c ^ buf[i];
329
330 return off;
331 }
332
333 /**
334 * Cook uninit
335 */
336
337 static av_cold int cook_decode_close(AVCodecContext *avctx)
338 {
339 int i;
340 COOKContext *q = avctx->priv_data;
341 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
342
343 /* Free allocated memory buffers. */
344 av_free(q->mlt_window);
345 av_free(q->decoded_bytes_buffer);
346
347 /* Free the transform. */
348 ff_mdct_end(&q->mdct_ctx);
349
350 /* Free the VLC tables. */
351 for (i=0 ; i<13 ; i++) {
352 free_vlc(&q->envelope_quant_index[i]);
353 }
354 for (i=0 ; i<7 ; i++) {
355 free_vlc(&q->sqvh[i]);
356 }
357 for (i=0 ; i<q->num_subpackets ; i++) {
358 free_vlc(&q->subpacket[i].ccpl);
359 }
360
361 av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
362
363 return 0;
364 }
365
366 /**
367 * Fill the gain array for the timedomain quantization.
368 *
369 * @param gb pointer to the GetBitContext
370 * @param gaininfo[9] array of gain indexes
371 */
372
373 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
374 {
375 int i, n;
376
377 while (get_bits1(gb)) {}
378 n = get_bits_count(gb) - 1; //amount of elements*2 to update
379
380 i = 0;
381 while (n--) {
382 int index = get_bits(gb, 3);
383 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
384
385 while (i <= index) gaininfo[i++] = gain;
386 }
387 while (i <= 8) gaininfo[i++] = 0;
388 }
389
390 /**
391 * Create the quant index table needed for the envelope.
392 *
393 * @param q pointer to the COOKContext
394 * @param quant_index_table pointer to the array
395 */
396
397 static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
398 int i,j, vlc_index;
399
400 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
401
402 for (i=1 ; i < p->total_subbands ; i++){
403 vlc_index=i;
404 if (i >= p->js_subband_start * 2) {
405 vlc_index-=p->js_subband_start;
406 } else {
407 vlc_index/=2;
408 if(vlc_index < 1) vlc_index = 1;
409 }
410 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
411
412 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
413 q->envelope_quant_index[vlc_index-1].bits,2);
414 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
415 }
416 }
417
418 /**
419 * Calculate the category and category_index vector.
420 *
421 * @param q pointer to the COOKContext
422 * @param quant_index_table pointer to the array
423 * @param category pointer to the category array
424 * @param category_index pointer to the category_index array
425 */
426
427 static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
428 int* category, int* category_index){
429 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
430 int exp_index2[102];
431 int exp_index1[102];
432
433 int tmp_categorize_array[128*2];
434 int tmp_categorize_array1_idx=p->numvector_size;
435 int tmp_categorize_array2_idx=p->numvector_size;
436
437 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
438
439 if(bits_left > q->samples_per_channel) {
440 bits_left = q->samples_per_channel +
441 ((bits_left - q->samples_per_channel)*5)/8;
442 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
443 }
444
445 memset(&exp_index1,0,102*sizeof(int));
446 memset(&exp_index2,0,102*sizeof(int));
447 memset(&tmp_categorize_array,0,128*2*sizeof(int));
448
449 bias=-32;
450
451 /* Estimate bias. */
452 for (i=32 ; i>0 ; i=i/2){
453 num_bits = 0;
454 index = 0;
455 for (j=p->total_subbands ; j>0 ; j--){
456 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
457 index++;
458 num_bits+=expbits_tab[exp_idx];
459 }
460 if(num_bits >= bits_left - 32){
461 bias+=i;
462 }
463 }
464
465 /* Calculate total number of bits. */
466 num_bits=0;
467 for (i=0 ; i<p->total_subbands ; i++) {
468 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
469 num_bits += expbits_tab[exp_idx];
470 exp_index1[i] = exp_idx;
471 exp_index2[i] = exp_idx;
472 }
473 tmpbias1 = tmpbias2 = num_bits;
474
475 for (j = 1 ; j < p->numvector_size ; j++) {
476 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
477 int max = -999999;
478 index=-1;
479 for (i=0 ; i<p->total_subbands ; i++){
480 if (exp_index1[i] < 7) {
481 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
482 if ( v >= max) {
483 max = v;
484 index = i;
485 }
486 }
487 }
488 if(index==-1)break;
489 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
490 tmpbias1 -= expbits_tab[exp_index1[index]] -
491 expbits_tab[exp_index1[index]+1];
492 ++exp_index1[index];
493 } else { /* <--- */
494 int min = 999999;
495 index=-1;
496 for (i=0 ; i<p->total_subbands ; i++){
497 if(exp_index2[i] > 0){
498 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
499 if ( v < min) {
500 min = v;
501 index = i;
502 }
503 }
504 }
505 if(index == -1)break;
506 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
507 tmpbias2 -= expbits_tab[exp_index2[index]] -
508 expbits_tab[exp_index2[index]-1];
509 --exp_index2[index];
510 }
511 }
512
513 for(i=0 ; i<p->total_subbands ; i++)
514 category[i] = exp_index2[i];
515
516 for(i=0 ; i<p->numvector_size-1 ; i++)
517 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
518
519 }
520
521
522 /**
523 * Expand the category vector.
524 *
525 * @param q pointer to the COOKContext
526 * @param category pointer to the category array
527 * @param category_index pointer to the category_index array
528 */
529
530 static inline void expand_category(COOKContext *q, int* category,
531 int* category_index){
532 int i;
533 for(i=0 ; i<q->num_vectors ; i++){
534 ++category[category_index[i]];
535 }
536 }
537
538 /**
539 * The real requantization of the mltcoefs
540 *
541 * @param q pointer to the COOKContext
542 * @param index index
543 * @param quant_index quantisation index
544 * @param subband_coef_index array of indexes to quant_centroid_tab
545 * @param subband_coef_sign signs of coefficients
546 * @param mlt_p pointer into the mlt buffer
547 */
548
549 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
550 int* subband_coef_index, int* subband_coef_sign,
551 float* mlt_p){
552 int i;
553 float f1;
554
555 for(i=0 ; i<SUBBAND_SIZE ; i++) {
556 if (subband_coef_index[i]) {
557 f1 = quant_centroid_tab[index][subband_coef_index[i]];
558 if (subband_coef_sign[i]) f1 = -f1;
559 } else {
560 /* noise coding if subband_coef_index[i] == 0 */
561 f1 = dither_tab[index];
562 if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
563 }
564 mlt_p[i] = f1 * rootpow2tab[quant_index+63];
565 }
566 }
567 /**
568 * Unpack the subband_coef_index and subband_coef_sign vectors.
569 *
570 * @param q pointer to the COOKContext
571 * @param category pointer to the category array
572 * @param subband_coef_index array of indexes to quant_centroid_tab
573 * @param subband_coef_sign signs of coefficients
574 */
575
576 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
577 int* subband_coef_sign) {
578 int i,j;
579 int vlc, vd ,tmp, result;
580
581 vd = vd_tab[category];
582 result = 0;
583 for(i=0 ; i<vpr_tab[category] ; i++){
584 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
585 if (p->bits_per_subpacket < get_bits_count(&q->gb)){
586 vlc = 0;
587 result = 1;
588 }
589 for(j=vd-1 ; j>=0 ; j--){
590 tmp = (vlc * invradix_tab[category])/0x100000;
591 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
592 vlc = tmp;
593 }
594 for(j=0 ; j<vd ; j++){
595 if (subband_coef_index[i*vd + j]) {
596 if(get_bits_count(&q->gb) < p->bits_per_subpacket){
597 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
598 } else {
599 result=1;
600 subband_coef_sign[i*vd+j]=0;
601 }
602 } else {
603 subband_coef_sign[i*vd+j]=0;
604 }
605 }
606 }
607 return result;
608 }
609
610
611 /**
612 * Fill the mlt_buffer with mlt coefficients.
613 *
614 * @param q pointer to the COOKContext
615 * @param category pointer to the category array
616 * @param quant_index_table pointer to the array
617 * @param mlt_buffer pointer to mlt coefficients
618 */
619
620
621 static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
622 int *quant_index_table, float* mlt_buffer){
623 /* A zero in this table means that the subband coefficient is
624 random noise coded. */
625 int subband_coef_index[SUBBAND_SIZE];
626 /* A zero in this table means that the subband coefficient is a
627 positive multiplicator. */
628 int subband_coef_sign[SUBBAND_SIZE];
629 int band, j;
630 int index=0;
631
632 for(band=0 ; band<p->total_subbands ; band++){
633 index = category[band];
634 if(category[band] < 7){
635 if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
636 index=7;
637 for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
638 }
639 }
640 if(index>=7) {
641 memset(subband_coef_index, 0, sizeof(subband_coef_index));
642 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
643 }
644 q->scalar_dequant(q, index, quant_index_table[band],
645 subband_coef_index, subband_coef_sign,
646 &mlt_buffer[band * SUBBAND_SIZE]);
647 }
648
649 if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
650 return;
651 } /* FIXME: should this be removed, or moved into loop above? */
652 }
653
654
655 /**
656 * function for decoding mono data
657 *
658 * @param q pointer to the COOKContext
659 * @param mlt_buffer pointer to mlt coefficients
660 */
661
662 static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
663
664 int category_index[128];
665 int quant_index_table[102];
666 int category[128];
667
668 memset(&category, 0, 128*sizeof(int));
669 memset(&category_index, 0, 128*sizeof(int));
670
671 decode_envelope(q, p, quant_index_table);
672 q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
673 categorize(q, p, quant_index_table, category, category_index);
674 expand_category(q, category, category_index);
675 decode_vectors(q, p, category, quant_index_table, mlt_buffer);
676 }
677
678
679 /**
680 * the actual requantization of the timedomain samples
681 *
682 * @param q pointer to the COOKContext
683 * @param buffer pointer to the timedomain buffer
684 * @param gain_index index for the block multiplier
685 * @param gain_index_next index for the next block multiplier
686 */
687
688 static void interpolate_float(COOKContext *q, float* buffer,
689 int gain_index, int gain_index_next){
690 int i;
691 float fc1, fc2;
692 fc1 = pow2tab[gain_index+63];
693
694 if(gain_index == gain_index_next){ //static gain
695 for(i=0 ; i<q->gain_size_factor ; i++){
696 buffer[i]*=fc1;
697 }
698 return;
699 } else { //smooth gain
700 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
701 for(i=0 ; i<q->gain_size_factor ; i++){
702 buffer[i]*=fc1;
703 fc1*=fc2;
704 }
705 return;
706 }
707 }
708
709 /**
710 * Apply transform window, overlap buffers.
711 *
712 * @param q pointer to the COOKContext
713 * @param inbuffer pointer to the mltcoefficients
714 * @param gains_ptr current and previous gains
715 * @param previous_buffer pointer to the previous buffer to be used for overlapping
716 */
717
718 static void imlt_window_float (COOKContext *q, float *inbuffer,
719 cook_gains *gains_ptr, float *previous_buffer)
720 {
721 const float fc = pow2tab[gains_ptr->previous[0] + 63];
722 int i;
723 /* The weird thing here, is that the two halves of the time domain
724 * buffer are swapped. Also, the newest data, that we save away for
725 * next frame, has the wrong sign. Hence the subtraction below.
726 * Almost sounds like a complex conjugate/reverse data/FFT effect.
727 */
728
729 /* Apply window and overlap */
730 for(i = 0; i < q->samples_per_channel; i++){
731 inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
732 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
733 }
734 }
735
736 /**
737 * The modulated lapped transform, this takes transform coefficients
738 * and transforms them into timedomain samples.
739 * Apply transform window, overlap buffers, apply gain profile
740 * and buffer management.
741 *
742 * @param q pointer to the COOKContext
743 * @param inbuffer pointer to the mltcoefficients
744 * @param gains_ptr current and previous gains
745 * @param previous_buffer pointer to the previous buffer to be used for overlapping
746 */
747
748 static void imlt_gain(COOKContext *q, float *inbuffer,
749 cook_gains *gains_ptr, float* previous_buffer)
750 {
751 float *buffer0 = q->mono_mdct_output;
752 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
753 int i;
754
755 /* Inverse modified discrete cosine transform */
756 q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
757
758 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
759
760 /* Apply gain profile */
761 for (i = 0; i < 8; i++) {
762 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
763 q->interpolate(q, &buffer1[q->gain_size_factor * i],
764 gains_ptr->now[i], gains_ptr->now[i + 1]);
765 }
766
767 /* Save away the current to be previous block. */
768 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
769 }
770
771
772 /**
773 * function for getting the jointstereo coupling information
774 *
775 * @param q pointer to the COOKContext
776 * @param decouple_tab decoupling array
777 *
778 */
779
780 static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
781 int length, i;
782
783 if(get_bits1(&q->gb)) {
784 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
785
786 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
787 for (i=0 ; i<length ; i++) {
788 decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
789 }
790 return;
791 }
792
793 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
794
795 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
796 for (i=0 ; i<length ; i++) {
797 decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
798 }
799 return;
800 }
801
802 /*
803 * function decouples a pair of signals from a single signal via multiplication.
804 *
805 * @param q pointer to the COOKContext
806 * @param subband index of the current subband
807 * @param f1 multiplier for channel 1 extraction
808 * @param f2 multiplier for channel 2 extraction
809 * @param decode_buffer input buffer
810 * @param mlt_buffer1 pointer to left channel mlt coefficients
811 * @param mlt_buffer2 pointer to right channel mlt coefficients
812 */
813 static void decouple_float (COOKContext *q,
814 COOKSubpacket *p,
815 int subband,
816 float f1, float f2,
817 float *decode_buffer,
818 float *mlt_buffer1, float *mlt_buffer2)
819 {
820 int j, tmp_idx;
821 for (j=0 ; j<SUBBAND_SIZE ; j++) {
822 tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
823 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
824 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
825 }
826 }
827
828 /**
829 * function for decoding joint stereo data
830 *
831 * @param q pointer to the COOKContext
832 * @param mlt_buffer1 pointer to left channel mlt coefficients
833 * @param mlt_buffer2 pointer to right channel mlt coefficients
834 */
835
836 static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
837 float* mlt_buffer2) {
838 int i,j;
839 int decouple_tab[SUBBAND_SIZE];
840 float *decode_buffer = q->decode_buffer_0;
841 int idx, cpl_tmp;
842 float f1,f2;
843 const float* cplscale;
844
845 memset(decouple_tab, 0, sizeof(decouple_tab));
846 memset(decode_buffer, 0, sizeof(decode_buffer));
847
848 /* Make sure the buffers are zeroed out. */
849 memset(mlt_buffer1,0, 1024*sizeof(float));
850 memset(mlt_buffer2,0, 1024*sizeof(float));
851 decouple_info(q, p, decouple_tab);
852 mono_decode(q, p, decode_buffer);
853
854 /* The two channels are stored interleaved in decode_buffer. */
855 for (i=0 ; i<p->js_subband_start ; i++) {
856 for (j=0 ; j<SUBBAND_SIZE ; j++) {
857 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
858 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
859 }
860 }
861
862 /* When we reach js_subband_start (the higher frequencies)
863 the coefficients are stored in a coupling scheme. */
864 idx = (1 << p->js_vlc_bits) - 1;
865 for (i=p->js_subband_start ; i<p->subbands ; i++) {
866 cpl_tmp = cplband[i];
867 idx -=decouple_tab[cpl_tmp];
868 cplscale = q->cplscales[p->js_vlc_bits-2]; //choose decoupler table
869 f1 = cplscale[decouple_tab[cpl_tmp]];
870 f2 = cplscale[idx-1];
871 q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
872 idx = (1 << p->js_vlc_bits) - 1;
873 }
874 }
875
876 /**
877 * First part of subpacket decoding:
878 * decode raw stream bytes and read gain info.
879 *
880 * @param q pointer to the COOKContext
881 * @param inbuffer pointer to raw stream data
882 * @param gains_ptr array of current/prev gain pointers
883 */
884
885 static inline void
886 decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
887 cook_gains *gains_ptr)
888 {
889 int offset;
890
891 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
892 p->bits_per_subpacket/8);
893 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
894 p->bits_per_subpacket);
895 decode_gain_info(&q->gb, gains_ptr->now);
896
897 /* Swap current and previous gains */
898 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
899 }
900
901 /**
902 * Saturate the output signal to signed 16bit integers.
903 *
904 * @param q pointer to the COOKContext
905 * @param chan channel to saturate
906 * @param out pointer to the output vector
907 */
908 static void
909 saturate_output_float (COOKContext *q, int chan, int16_t *out)
910 {
911 int j;
912 float *output = q->mono_mdct_output + q->samples_per_channel;
913 /* Clip and convert floats to 16 bits.
914 */
915 for (j = 0; j < q->samples_per_channel; j++) {
916 out[chan + q->nb_channels * j] =
917 av_clip_int16(lrintf(output[j]));
918 }
919 }
920
921 /**
922 * Final part of subpacket decoding:
923 * Apply modulated lapped transform, gain compensation,
924 * clip and convert to integer.
925 *
926 * @param q pointer to the COOKContext
927 * @param decode_buffer pointer to the mlt coefficients
928 * @param gains_ptr array of current/prev gain pointers
929 * @param previous_buffer pointer to the previous buffer to be used for overlapping
930 * @param out pointer to the output buffer
931 * @param chan 0: left or single channel, 1: right channel
932 */
933
934 static inline void
935 mlt_compensate_output(COOKContext *q, float *decode_buffer,
936 cook_gains *gains_ptr, float *previous_buffer,
937 int16_t *out, int chan)
938 {
939 imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
940 q->saturate_output (q, chan, out);
941 }
942
943
944 /**
945 * Cook subpacket decoding. This function returns one decoded subpacket,
946 * usually 1024 samples per channel.
947 *
948 * @param q pointer to the COOKContext
949 * @param inbuffer pointer to the inbuffer
950 * @param outbuffer pointer to the outbuffer
951 */
952 static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
953 int sub_packet_size = p->size;
954 /* packet dump */
955 // for (i=0 ; i<sub_packet_size ; i++) {
956 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
957 // }
958 // av_log(q->avctx, AV_LOG_ERROR, "\n");
959 memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
960 decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
961
962 if (p->joint_stereo) {
963 joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
964 } else {
965 mono_decode(q, p, q->decode_buffer_1);
966
967 if (p->num_channels == 2) {
968 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
969 mono_decode(q, p, q->decode_buffer_2);
970 }
971 }
972
973 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
974 p->mono_previous_buffer1, outbuffer, p->ch_idx);
975
976 if (p->num_channels == 2) {
977 if (p->joint_stereo) {
978 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
979 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
980 } else {
981 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
982 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
983 }
984 }
985
986 }
987
988
989 /**
990 * Cook frame decoding
991 *
992 * @param avctx pointer to the AVCodecContext
993 */
994
995 static int cook_decode_frame(AVCodecContext *avctx,
996 void *data, int *data_size,
997 AVPacket *avpkt) {
998 const uint8_t *buf = avpkt->data;
999 int buf_size = avpkt->size;
1000 COOKContext *q = avctx->priv_data;
1001 int i;
1002 int offset = 0;
1003 int chidx = 0;
1004
1005 if (buf_size < avctx->block_align)
1006 return buf_size;
1007
1008 /* estimate subpacket sizes */
1009 q->subpacket[0].size = avctx->block_align;
1010
1011 for(i=1;i<q->num_subpackets;i++){
1012 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1013 q->subpacket[0].size -= q->subpacket[i].size + 1;
1014 if (q->subpacket[0].size < 0) {
1015 av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1016 return -1;
1017 }
1018 }
1019
1020 /* decode supbackets */
1021 *data_size = 0;
1022 for(i=0;i<q->num_subpackets;i++){
1023 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1024 q->subpacket[i].ch_idx = chidx;
1025 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1026 decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1027 offset += q->subpacket[i].size;
1028 chidx += q->subpacket[i].num_channels;
1029 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1030 }
1031 *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1032
1033 /* Discard the first two frames: no valid audio. */
1034 if (avctx->frame_number < 2) *data_size = 0;
1035
1036 return avctx->block_align;
1037 }
1038
1039 #ifdef COOKDEBUG
1040 static void dump_cook_context(COOKContext *q)
1041 {
1042 //int i=0;
1043 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1044 av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1045 av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1046 if (q->subpacket[0].cookversion > STEREO) {
1047 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1048 PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1049 }
1050 av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1051 PRINT("nb_channels",q->nb_channels);
1052 PRINT("bit_rate",q->bit_rate);
1053 PRINT("sample_rate",q->sample_rate);
1054 PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1055 PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1056 PRINT("subbands",q->subpacket[0].subbands);
1057 PRINT("random_state",q->random_state);
1058 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1059 PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1060 PRINT("numvector_size",q->subpacket[0].numvector_size);
1061 PRINT("total_subbands",q->subpacket[0].total_subbands);
1062 }
1063 #endif
1064
1065 static av_cold int cook_count_channels(unsigned int mask){
1066 int i;
1067 int channels = 0;
1068 for(i = 0;i<32;i++){
1069 if(mask & (1<<i))
1070 ++channels;
1071 }
1072 return channels;
1073 }
1074
1075 /**
1076 * Cook initialization
1077 *
1078 * @param avctx pointer to the AVCodecContext
1079 */
1080
1081 static av_cold int cook_decode_init(AVCodecContext *avctx)
1082 {
1083 COOKContext *q = avctx->priv_data;
1084 const uint8_t *edata_ptr = avctx->extradata;
1085 const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1086 int extradata_size = avctx->extradata_size;
1087 int s = 0;
1088 unsigned int channel_mask = 0;
1089 q->avctx = avctx;
1090
1091 /* Take care of the codec specific extradata. */
1092 if (extradata_size <= 0) {
1093 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1094 return -1;
1095 }
1096 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1097
1098 /* Take data from the AVCodecContext (RM container). */
1099 q->sample_rate = avctx->sample_rate;
1100 q->nb_channels = avctx->channels;
1101 q->bit_rate = avctx->bit_rate;
1102
1103 /* Initialize RNG. */
1104 av_lfg_init(&q->random_state, 0);
1105
1106 while(edata_ptr < edata_ptr_end){
1107 /* 8 for mono, 16 for stereo, ? for multichannel
1108 Swap to right endianness so we don't need to care later on. */
1109 if (extradata_size >= 8){
1110 q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1111 q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1112 q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1113 extradata_size -= 8;
1114 }
1115 if (avctx->extradata_size >= 8){
1116 bytestream_get_be32(&edata_ptr); //Unknown unused
1117 q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1118 q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1119 extradata_size -= 8;
1120 }
1121
1122 /* Initialize extradata related variables. */
1123 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1124 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1125
1126 /* Initialize default data states. */
1127 q->subpacket[s].log2_numvector_size = 5;
1128 q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1129 q->subpacket[s].num_channels = 1;
1130
1131 /* Initialize version-dependent variables */
1132
1133 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1134 q->subpacket[s].joint_stereo = 0;
1135 switch (q->subpacket[s].cookversion) {
1136 case MONO:
1137 if (q->nb_channels != 1) {
1138 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1139 return -1;
1140 }
1141 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1142 break;
1143 case STEREO:
1144 if (q->nb_channels != 1) {
1145 q->subpacket[s].bits_per_subpdiv = 1;
1146 q->subpacket[s].num_channels = 2;
1147 }
1148 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1149 break;
1150 case JOINT_STEREO:
1151 if (q->nb_channels != 2) {
1152 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1153 return -1;
1154 }
1155 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1156 if (avctx->extradata_size >= 16){
1157 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1158 q->subpacket[s].joint_stereo = 1;
1159 q->subpacket[s].num_channels = 2;
1160 }
1161 if (q->subpacket[s].samples_per_channel > 256) {
1162 q->subpacket[s].log2_numvector_size = 6;
1163 }
1164 if (q->subpacket[s].samples_per_channel > 512) {
1165 q->subpacket[s].log2_numvector_size = 7;
1166 }
1167 break;
1168 case MC_COOK:
1169 av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1170 if(extradata_size >= 4)
1171 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1172
1173 if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1174 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1175 q->subpacket[s].joint_stereo = 1;
1176 q->subpacket[s].num_channels = 2;
1177 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1178
1179 if (q->subpacket[s].samples_per_channel > 256) {
1180 q->subpacket[s].log2_numvector_size = 6;
1181 }
1182 if (q->subpacket[s].samples_per_channel > 512) {
1183 q->subpacket[s].log2_numvector_size = 7;
1184 }
1185 }else
1186 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1187
1188 break;
1189 default:
1190 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1191 return -1;
1192 break;
1193 }
1194
1195 if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1196 av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1197 return -1;
1198 } else
1199 q->samples_per_channel = q->subpacket[0].samples_per_channel;
1200
1201
1202 /* Initialize variable relations */
1203 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1204
1205 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1206 if (q->subpacket[s].total_subbands > 53) {
1207 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1208 return -1;
1209 }
1210
1211 if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1212 av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1213 return -1;
1214 }
1215
1216 if (q->subpacket[s].subbands > 50) {
1217 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1218 return -1;
1219 }
1220 q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1221 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1222 q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1223 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1224
1225 q->num_subpackets++;
1226 s++;
1227 if (s > MAX_SUBPACKETS) {
1228 av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1229 return -1;
1230 }
1231 }
1232 /* Generate tables */
1233 init_pow2table();
1234 init_gain_table(q);
1235 init_cplscales_table(q);
1236
1237 if (init_cook_vlc_tables(q) != 0)
1238 return -1;
1239
1240
1241 if(avctx->block_align >= UINT_MAX/2)
1242 return -1;
1243
1244 /* Pad the databuffer with:
1245 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1246 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1247 q->decoded_bytes_buffer =
1248 av_mallocz(avctx->block_align
1249 + DECODE_BYTES_PAD1(avctx->block_align)
1250 + FF_INPUT_BUFFER_PADDING_SIZE);
1251 if (q->decoded_bytes_buffer == NULL)
1252 return -1;
1253
1254 /* Initialize transform. */
1255 if ( init_cook_mlt(q) != 0 )
1256 return -1;
1257
1258 /* Initialize COOK signal arithmetic handling */
1259 if (1) {
1260 q->scalar_dequant = scalar_dequant_float;
1261 q->decouple = decouple_float;
1262 q->imlt_window = imlt_window_float;
1263 q->interpolate = interpolate_float;
1264 q->saturate_output = saturate_output_float;
1265 }
1266
1267 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1268 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1269 } else {
1270 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1271 return -1;
1272 }
1273
1274 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
1275 if (channel_mask)
1276 avctx->channel_layout = channel_mask;
1277 else
1278 avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1279
1280 #ifdef COOKDEBUG
1281 dump_cook_context(q);
1282 #endif
1283 return 0;
1284 }
1285
1286
1287 AVCodec ff_cook_decoder =
1288 {
1289 .name = "cook",
1290 .type = AVMEDIA_TYPE_AUDIO,
1291 .id = CODEC_ID_COOK,
1292 .priv_data_size = sizeof(COOKContext),
1293 .init = cook_decode_init,
1294 .close = cook_decode_close,
1295 .decode = cook_decode_frame,
1296 .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1297 };