a3268e2a54aa50b81e65079235932dab2bd02b9f
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
48
49 #include "libavutil/lfg.h"
50 #include "libavutil/random_seed.h"
51 #include "avcodec.h"
52 #include "get_bits.h"
53 #include "dsputil.h"
54 #include "bytestream.h"
55 #include "fft.h"
56
57 #include "cookdata.h"
58
59 /* the different Cook versions */
60 #define MONO 0x1000001
61 #define STEREO 0x1000002
62 #define JOINT_STEREO 0x1000003
63 #define MC_COOK 0x2000000 //multichannel Cook, not supported
64
65 #define SUBBAND_SIZE 20
66 #define MAX_SUBPACKETS 5
67 //#define COOKDEBUG
68
69 typedef struct {
70 int *now;
71 int *previous;
72 } cook_gains;
73
74 typedef struct {
75 int ch_idx;
76 int size;
77 int num_channels;
78 int cookversion;
79 int samples_per_frame;
80 int subbands;
81 int js_subband_start;
82 int js_vlc_bits;
83 int samples_per_channel;
84 int log2_numvector_size;
85 unsigned int channel_mask;
86 VLC ccpl; ///< channel coupling
87 int joint_stereo;
88 int bits_per_subpacket;
89 int bits_per_subpdiv;
90 int total_subbands;
91 int numvector_size; ///< 1 << log2_numvector_size;
92
93 float mono_previous_buffer1[1024];
94 float mono_previous_buffer2[1024];
95 /** gain buffers */
96 cook_gains gains1;
97 cook_gains gains2;
98 int gain_1[9];
99 int gain_2[9];
100 int gain_3[9];
101 int gain_4[9];
102 } COOKSubpacket;
103
104 typedef struct cook {
105 /*
106 * The following 5 functions provide the lowlevel arithmetic on
107 * the internal audio buffers.
108 */
109 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
110 int* subband_coef_index, int* subband_coef_sign,
111 float* mlt_p);
112
113 void (* decouple) (struct cook *q,
114 COOKSubpacket *p,
115 int subband,
116 float f1, float f2,
117 float *decode_buffer,
118 float *mlt_buffer1, float *mlt_buffer2);
119
120 void (* imlt_window) (struct cook *q, float *buffer1,
121 cook_gains *gains_ptr, float *previous_buffer);
122
123 void (* interpolate) (struct cook *q, float* buffer,
124 int gain_index, int gain_index_next);
125
126 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
127
128 AVCodecContext* avctx;
129 GetBitContext gb;
130 /* stream data */
131 int nb_channels;
132 int bit_rate;
133 int sample_rate;
134 int num_vectors;
135 int samples_per_channel;
136 /* states */
137 AVLFG random_state;
138
139 /* transform data */
140 FFTContext mdct_ctx;
141 float* mlt_window;
142
143 /* VLC data */
144 VLC envelope_quant_index[13];
145 VLC sqvh[7]; //scalar quantization
146
147 /* generatable tables and related variables */
148 int gain_size_factor;
149 float gain_table[23];
150
151 /* data buffers */
152
153 uint8_t* decoded_bytes_buffer;
154 DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
155 float decode_buffer_1[1024];
156 float decode_buffer_2[1024];
157 float decode_buffer_0[1060]; /* static allocation for joint decode */
158
159 const float *cplscales[5];
160 int num_subpackets;
161 COOKSubpacket subpacket[MAX_SUBPACKETS];
162 } COOKContext;
163
164 static float pow2tab[127];
165 static float rootpow2tab[127];
166
167 /* debug functions */
168
169 #ifdef COOKDEBUG
170 static void dump_float_table(float* table, int size, int delimiter) {
171 int i=0;
172 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
173 for (i=0 ; i<size ; i++) {
174 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
175 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
176 }
177 }
178
179 static void dump_int_table(int* table, int size, int delimiter) {
180 int i=0;
181 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
182 for (i=0 ; i<size ; i++) {
183 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
184 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
185 }
186 }
187
188 static void dump_short_table(short* table, int size, int delimiter) {
189 int i=0;
190 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
191 for (i=0 ; i<size ; i++) {
192 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
193 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
194 }
195 }
196
197 #endif
198
199 /*************** init functions ***************/
200
201 /* table generator */
202 static av_cold void init_pow2table(void){
203 int i;
204 for (i=-63 ; i<64 ; i++){
205 pow2tab[63+i]= pow(2, i);
206 rootpow2tab[63+i]=sqrt(pow(2, i));
207 }
208 }
209
210 /* table generator */
211 static av_cold void init_gain_table(COOKContext *q) {
212 int i;
213 q->gain_size_factor = q->samples_per_channel/8;
214 for (i=0 ; i<23 ; i++) {
215 q->gain_table[i] = pow(pow2tab[i+52] ,
216 (1.0/(double)q->gain_size_factor));
217 }
218 }
219
220
221 static av_cold int init_cook_vlc_tables(COOKContext *q) {
222 int i, result;
223
224 result = 0;
225 for (i=0 ; i<13 ; i++) {
226 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
227 envelope_quant_index_huffbits[i], 1, 1,
228 envelope_quant_index_huffcodes[i], 2, 2, 0);
229 }
230 av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
231 for (i=0 ; i<7 ; i++) {
232 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
233 cvh_huffbits[i], 1, 1,
234 cvh_huffcodes[i], 2, 2, 0);
235 }
236
237 for(i=0;i<q->num_subpackets;i++){
238 if (q->subpacket[i].joint_stereo==1){
239 result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
240 ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
241 ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
242 av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
243 }
244 }
245
246 av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
247 return result;
248 }
249
250 static av_cold int init_cook_mlt(COOKContext *q) {
251 int j;
252 int mlt_size = q->samples_per_channel;
253
254 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
255 return -1;
256
257 /* Initialize the MLT window: simple sine window. */
258 ff_sine_window_init(q->mlt_window, mlt_size);
259 for(j=0 ; j<mlt_size ; j++)
260 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
261
262 /* Initialize the MDCT. */
263 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
264 av_free(q->mlt_window);
265 return -1;
266 }
267 av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
268 av_log2(mlt_size)+1);
269
270 return 0;
271 }
272
273 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
274 {
275 if (1)
276 return ptr;
277 }
278
279 static av_cold void init_cplscales_table (COOKContext *q) {
280 int i;
281 for (i=0;i<5;i++)
282 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
283 }
284
285 /*************** init functions end ***********/
286
287 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
288 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
289
290 /**
291 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
292 * Why? No idea, some checksum/error detection method maybe.
293 *
294 * Out buffer size: extra bytes are needed to cope with
295 * padding/misalignment.
296 * Subpackets passed to the decoder can contain two, consecutive
297 * half-subpackets, of identical but arbitrary size.
298 * 1234 1234 1234 1234 extraA extraB
299 * Case 1: AAAA BBBB 0 0
300 * Case 2: AAAA ABBB BB-- 3 3
301 * Case 3: AAAA AABB BBBB 2 2
302 * Case 4: AAAA AAAB BBBB BB-- 1 5
303 *
304 * Nice way to waste CPU cycles.
305 *
306 * @param inbuffer pointer to byte array of indata
307 * @param out pointer to byte array of outdata
308 * @param bytes number of bytes
309 */
310
311 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
312 int i, off;
313 uint32_t c;
314 const uint32_t* buf;
315 uint32_t* obuf = (uint32_t*) out;
316 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
317 * I'm too lazy though, should be something like
318 * for(i=0 ; i<bitamount/64 ; i++)
319 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
320 * Buffer alignment needs to be checked. */
321
322 off = (intptr_t)inbuffer & 3;
323 buf = (const uint32_t*) (inbuffer - off);
324 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
325 bytes += 3 + off;
326 for (i = 0; i < bytes/4; i++)
327 obuf[i] = c ^ buf[i];
328
329 return off;
330 }
331
332 /**
333 * Cook uninit
334 */
335
336 static av_cold int cook_decode_close(AVCodecContext *avctx)
337 {
338 int i;
339 COOKContext *q = avctx->priv_data;
340 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
341
342 /* Free allocated memory buffers. */
343 av_free(q->mlt_window);
344 av_free(q->decoded_bytes_buffer);
345
346 /* Free the transform. */
347 ff_mdct_end(&q->mdct_ctx);
348
349 /* Free the VLC tables. */
350 for (i=0 ; i<13 ; i++) {
351 free_vlc(&q->envelope_quant_index[i]);
352 }
353 for (i=0 ; i<7 ; i++) {
354 free_vlc(&q->sqvh[i]);
355 }
356 for (i=0 ; i<q->num_subpackets ; i++) {
357 free_vlc(&q->subpacket[i].ccpl);
358 }
359
360 av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
361
362 return 0;
363 }
364
365 /**
366 * Fill the gain array for the timedomain quantization.
367 *
368 * @param gb pointer to the GetBitContext
369 * @param gaininfo[9] array of gain indexes
370 */
371
372 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
373 {
374 int i, n;
375
376 while (get_bits1(gb)) {}
377 n = get_bits_count(gb) - 1; //amount of elements*2 to update
378
379 i = 0;
380 while (n--) {
381 int index = get_bits(gb, 3);
382 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
383
384 while (i <= index) gaininfo[i++] = gain;
385 }
386 while (i <= 8) gaininfo[i++] = 0;
387 }
388
389 /**
390 * Create the quant index table needed for the envelope.
391 *
392 * @param q pointer to the COOKContext
393 * @param quant_index_table pointer to the array
394 */
395
396 static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
397 int i,j, vlc_index;
398
399 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
400
401 for (i=1 ; i < p->total_subbands ; i++){
402 vlc_index=i;
403 if (i >= p->js_subband_start * 2) {
404 vlc_index-=p->js_subband_start;
405 } else {
406 vlc_index/=2;
407 if(vlc_index < 1) vlc_index = 1;
408 }
409 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
410
411 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
412 q->envelope_quant_index[vlc_index-1].bits,2);
413 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
414 }
415 }
416
417 /**
418 * Calculate the category and category_index vector.
419 *
420 * @param q pointer to the COOKContext
421 * @param quant_index_table pointer to the array
422 * @param category pointer to the category array
423 * @param category_index pointer to the category_index array
424 */
425
426 static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
427 int* category, int* category_index){
428 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
429 int exp_index2[102];
430 int exp_index1[102];
431
432 int tmp_categorize_array[128*2];
433 int tmp_categorize_array1_idx=p->numvector_size;
434 int tmp_categorize_array2_idx=p->numvector_size;
435
436 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
437
438 if(bits_left > q->samples_per_channel) {
439 bits_left = q->samples_per_channel +
440 ((bits_left - q->samples_per_channel)*5)/8;
441 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
442 }
443
444 memset(&exp_index1,0,102*sizeof(int));
445 memset(&exp_index2,0,102*sizeof(int));
446 memset(&tmp_categorize_array,0,128*2*sizeof(int));
447
448 bias=-32;
449
450 /* Estimate bias. */
451 for (i=32 ; i>0 ; i=i/2){
452 num_bits = 0;
453 index = 0;
454 for (j=p->total_subbands ; j>0 ; j--){
455 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
456 index++;
457 num_bits+=expbits_tab[exp_idx];
458 }
459 if(num_bits >= bits_left - 32){
460 bias+=i;
461 }
462 }
463
464 /* Calculate total number of bits. */
465 num_bits=0;
466 for (i=0 ; i<p->total_subbands ; i++) {
467 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
468 num_bits += expbits_tab[exp_idx];
469 exp_index1[i] = exp_idx;
470 exp_index2[i] = exp_idx;
471 }
472 tmpbias1 = tmpbias2 = num_bits;
473
474 for (j = 1 ; j < p->numvector_size ; j++) {
475 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
476 int max = -999999;
477 index=-1;
478 for (i=0 ; i<p->total_subbands ; i++){
479 if (exp_index1[i] < 7) {
480 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
481 if ( v >= max) {
482 max = v;
483 index = i;
484 }
485 }
486 }
487 if(index==-1)break;
488 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
489 tmpbias1 -= expbits_tab[exp_index1[index]] -
490 expbits_tab[exp_index1[index]+1];
491 ++exp_index1[index];
492 } else { /* <--- */
493 int min = 999999;
494 index=-1;
495 for (i=0 ; i<p->total_subbands ; i++){
496 if(exp_index2[i] > 0){
497 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
498 if ( v < min) {
499 min = v;
500 index = i;
501 }
502 }
503 }
504 if(index == -1)break;
505 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
506 tmpbias2 -= expbits_tab[exp_index2[index]] -
507 expbits_tab[exp_index2[index]-1];
508 --exp_index2[index];
509 }
510 }
511
512 for(i=0 ; i<p->total_subbands ; i++)
513 category[i] = exp_index2[i];
514
515 for(i=0 ; i<p->numvector_size-1 ; i++)
516 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
517
518 }
519
520
521 /**
522 * Expand the category vector.
523 *
524 * @param q pointer to the COOKContext
525 * @param category pointer to the category array
526 * @param category_index pointer to the category_index array
527 */
528
529 static inline void expand_category(COOKContext *q, int* category,
530 int* category_index){
531 int i;
532 for(i=0 ; i<q->num_vectors ; i++){
533 ++category[category_index[i]];
534 }
535 }
536
537 /**
538 * The real requantization of the mltcoefs
539 *
540 * @param q pointer to the COOKContext
541 * @param index index
542 * @param quant_index quantisation index
543 * @param subband_coef_index array of indexes to quant_centroid_tab
544 * @param subband_coef_sign signs of coefficients
545 * @param mlt_p pointer into the mlt buffer
546 */
547
548 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
549 int* subband_coef_index, int* subband_coef_sign,
550 float* mlt_p){
551 int i;
552 float f1;
553
554 for(i=0 ; i<SUBBAND_SIZE ; i++) {
555 if (subband_coef_index[i]) {
556 f1 = quant_centroid_tab[index][subband_coef_index[i]];
557 if (subband_coef_sign[i]) f1 = -f1;
558 } else {
559 /* noise coding if subband_coef_index[i] == 0 */
560 f1 = dither_tab[index];
561 if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
562 }
563 mlt_p[i] = f1 * rootpow2tab[quant_index+63];
564 }
565 }
566 /**
567 * Unpack the subband_coef_index and subband_coef_sign vectors.
568 *
569 * @param q pointer to the COOKContext
570 * @param category pointer to the category array
571 * @param subband_coef_index array of indexes to quant_centroid_tab
572 * @param subband_coef_sign signs of coefficients
573 */
574
575 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
576 int* subband_coef_sign) {
577 int i,j;
578 int vlc, vd ,tmp, result;
579
580 vd = vd_tab[category];
581 result = 0;
582 for(i=0 ; i<vpr_tab[category] ; i++){
583 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
584 if (p->bits_per_subpacket < get_bits_count(&q->gb)){
585 vlc = 0;
586 result = 1;
587 }
588 for(j=vd-1 ; j>=0 ; j--){
589 tmp = (vlc * invradix_tab[category])/0x100000;
590 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
591 vlc = tmp;
592 }
593 for(j=0 ; j<vd ; j++){
594 if (subband_coef_index[i*vd + j]) {
595 if(get_bits_count(&q->gb) < p->bits_per_subpacket){
596 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
597 } else {
598 result=1;
599 subband_coef_sign[i*vd+j]=0;
600 }
601 } else {
602 subband_coef_sign[i*vd+j]=0;
603 }
604 }
605 }
606 return result;
607 }
608
609
610 /**
611 * Fill the mlt_buffer with mlt coefficients.
612 *
613 * @param q pointer to the COOKContext
614 * @param category pointer to the category array
615 * @param quant_index_table pointer to the array
616 * @param mlt_buffer pointer to mlt coefficients
617 */
618
619
620 static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
621 int *quant_index_table, float* mlt_buffer){
622 /* A zero in this table means that the subband coefficient is
623 random noise coded. */
624 int subband_coef_index[SUBBAND_SIZE];
625 /* A zero in this table means that the subband coefficient is a
626 positive multiplicator. */
627 int subband_coef_sign[SUBBAND_SIZE];
628 int band, j;
629 int index=0;
630
631 for(band=0 ; band<p->total_subbands ; band++){
632 index = category[band];
633 if(category[band] < 7){
634 if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
635 index=7;
636 for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
637 }
638 }
639 if(index>=7) {
640 memset(subband_coef_index, 0, sizeof(subband_coef_index));
641 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
642 }
643 q->scalar_dequant(q, index, quant_index_table[band],
644 subband_coef_index, subband_coef_sign,
645 &mlt_buffer[band * SUBBAND_SIZE]);
646 }
647
648 if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
649 return;
650 } /* FIXME: should this be removed, or moved into loop above? */
651 }
652
653
654 /**
655 * function for decoding mono data
656 *
657 * @param q pointer to the COOKContext
658 * @param mlt_buffer pointer to mlt coefficients
659 */
660
661 static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
662
663 int category_index[128];
664 int quant_index_table[102];
665 int category[128];
666
667 memset(&category, 0, 128*sizeof(int));
668 memset(&category_index, 0, 128*sizeof(int));
669
670 decode_envelope(q, p, quant_index_table);
671 q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
672 categorize(q, p, quant_index_table, category, category_index);
673 expand_category(q, category, category_index);
674 decode_vectors(q, p, category, quant_index_table, mlt_buffer);
675 }
676
677
678 /**
679 * the actual requantization of the timedomain samples
680 *
681 * @param q pointer to the COOKContext
682 * @param buffer pointer to the timedomain buffer
683 * @param gain_index index for the block multiplier
684 * @param gain_index_next index for the next block multiplier
685 */
686
687 static void interpolate_float(COOKContext *q, float* buffer,
688 int gain_index, int gain_index_next){
689 int i;
690 float fc1, fc2;
691 fc1 = pow2tab[gain_index+63];
692
693 if(gain_index == gain_index_next){ //static gain
694 for(i=0 ; i<q->gain_size_factor ; i++){
695 buffer[i]*=fc1;
696 }
697 return;
698 } else { //smooth gain
699 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
700 for(i=0 ; i<q->gain_size_factor ; i++){
701 buffer[i]*=fc1;
702 fc1*=fc2;
703 }
704 return;
705 }
706 }
707
708 /**
709 * Apply transform window, overlap buffers.
710 *
711 * @param q pointer to the COOKContext
712 * @param buffer1 pointer to the mltcoefficients
713 * @param gains_ptr current and previous gains
714 * @param previous_buffer pointer to the previous buffer to be used for overlapping
715 */
716
717 static void imlt_window_float (COOKContext *q, float *buffer1,
718 cook_gains *gains_ptr, float *previous_buffer)
719 {
720 const float fc = pow2tab[gains_ptr->previous[0] + 63];
721 int i;
722 /* The weird thing here, is that the two halves of the time domain
723 * buffer are swapped. Also, the newest data, that we save away for
724 * next frame, has the wrong sign. Hence the subtraction below.
725 * Almost sounds like a complex conjugate/reverse data/FFT effect.
726 */
727
728 /* Apply window and overlap */
729 for(i = 0; i < q->samples_per_channel; i++){
730 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
731 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
732 }
733 }
734
735 /**
736 * The modulated lapped transform, this takes transform coefficients
737 * and transforms them into timedomain samples.
738 * Apply transform window, overlap buffers, apply gain profile
739 * and buffer management.
740 *
741 * @param q pointer to the COOKContext
742 * @param inbuffer pointer to the mltcoefficients
743 * @param gains_ptr current and previous gains
744 * @param previous_buffer pointer to the previous buffer to be used for overlapping
745 */
746
747 static void imlt_gain(COOKContext *q, float *inbuffer,
748 cook_gains *gains_ptr, float* previous_buffer)
749 {
750 float *buffer0 = q->mono_mdct_output;
751 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
752 int i;
753
754 /* Inverse modified discrete cosine transform */
755 ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
756
757 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
758
759 /* Apply gain profile */
760 for (i = 0; i < 8; i++) {
761 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
762 q->interpolate(q, &buffer1[q->gain_size_factor * i],
763 gains_ptr->now[i], gains_ptr->now[i + 1]);
764 }
765
766 /* Save away the current to be previous block. */
767 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
768 }
769
770
771 /**
772 * function for getting the jointstereo coupling information
773 *
774 * @param q pointer to the COOKContext
775 * @param decouple_tab decoupling array
776 *
777 */
778
779 static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
780 int length, i;
781
782 if(get_bits1(&q->gb)) {
783 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
784
785 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
786 for (i=0 ; i<length ; i++) {
787 decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
788 }
789 return;
790 }
791
792 if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
793
794 length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
795 for (i=0 ; i<length ; i++) {
796 decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
797 }
798 return;
799 }
800
801 /*
802 * function decouples a pair of signals from a single signal via multiplication.
803 *
804 * @param q pointer to the COOKContext
805 * @param subband index of the current subband
806 * @param f1 multiplier for channel 1 extraction
807 * @param f2 multiplier for channel 2 extraction
808 * @param decode_buffer input buffer
809 * @param mlt_buffer1 pointer to left channel mlt coefficients
810 * @param mlt_buffer2 pointer to right channel mlt coefficients
811 */
812 static void decouple_float (COOKContext *q,
813 COOKSubpacket *p,
814 int subband,
815 float f1, float f2,
816 float *decode_buffer,
817 float *mlt_buffer1, float *mlt_buffer2)
818 {
819 int j, tmp_idx;
820 for (j=0 ; j<SUBBAND_SIZE ; j++) {
821 tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
822 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
823 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
824 }
825 }
826
827 /**
828 * function for decoding joint stereo data
829 *
830 * @param q pointer to the COOKContext
831 * @param mlt_buffer1 pointer to left channel mlt coefficients
832 * @param mlt_buffer2 pointer to right channel mlt coefficients
833 */
834
835 static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
836 float* mlt_buffer2) {
837 int i,j;
838 int decouple_tab[SUBBAND_SIZE];
839 float *decode_buffer = q->decode_buffer_0;
840 int idx, cpl_tmp;
841 float f1,f2;
842 const float* cplscale;
843
844 memset(decouple_tab, 0, sizeof(decouple_tab));
845 memset(decode_buffer, 0, sizeof(decode_buffer));
846
847 /* Make sure the buffers are zeroed out. */
848 memset(mlt_buffer1,0, 1024*sizeof(float));
849 memset(mlt_buffer2,0, 1024*sizeof(float));
850 decouple_info(q, p, decouple_tab);
851 mono_decode(q, p, decode_buffer);
852
853 /* The two channels are stored interleaved in decode_buffer. */
854 for (i=0 ; i<p->js_subband_start ; i++) {
855 for (j=0 ; j<SUBBAND_SIZE ; j++) {
856 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
857 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
858 }
859 }
860
861 /* When we reach js_subband_start (the higher frequencies)
862 the coefficients are stored in a coupling scheme. */
863 idx = (1 << p->js_vlc_bits) - 1;
864 for (i=p->js_subband_start ; i<p->subbands ; i++) {
865 cpl_tmp = cplband[i];
866 idx -=decouple_tab[cpl_tmp];
867 cplscale = q->cplscales[p->js_vlc_bits-2]; //choose decoupler table
868 f1 = cplscale[decouple_tab[cpl_tmp]];
869 f2 = cplscale[idx-1];
870 q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
871 idx = (1 << p->js_vlc_bits) - 1;
872 }
873 }
874
875 /**
876 * First part of subpacket decoding:
877 * decode raw stream bytes and read gain info.
878 *
879 * @param q pointer to the COOKContext
880 * @param inbuffer pointer to raw stream data
881 * @param gains_ptr array of current/prev gain pointers
882 */
883
884 static inline void
885 decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
886 cook_gains *gains_ptr)
887 {
888 int offset;
889
890 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
891 p->bits_per_subpacket/8);
892 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
893 p->bits_per_subpacket);
894 decode_gain_info(&q->gb, gains_ptr->now);
895
896 /* Swap current and previous gains */
897 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
898 }
899
900 /**
901 * Saturate the output signal to signed 16bit integers.
902 *
903 * @param q pointer to the COOKContext
904 * @param chan channel to saturate
905 * @param out pointer to the output vector
906 */
907 static void
908 saturate_output_float (COOKContext *q, int chan, int16_t *out)
909 {
910 int j;
911 float *output = q->mono_mdct_output + q->samples_per_channel;
912 /* Clip and convert floats to 16 bits.
913 */
914 for (j = 0; j < q->samples_per_channel; j++) {
915 out[chan + q->nb_channels * j] =
916 av_clip_int16(lrintf(output[j]));
917 }
918 }
919
920 /**
921 * Final part of subpacket decoding:
922 * Apply modulated lapped transform, gain compensation,
923 * clip and convert to integer.
924 *
925 * @param q pointer to the COOKContext
926 * @param decode_buffer pointer to the mlt coefficients
927 * @param gains array of current/prev gain pointers
928 * @param previous_buffer pointer to the previous buffer to be used for overlapping
929 * @param out pointer to the output buffer
930 * @param chan 0: left or single channel, 1: right channel
931 */
932
933 static inline void
934 mlt_compensate_output(COOKContext *q, float *decode_buffer,
935 cook_gains *gains, float *previous_buffer,
936 int16_t *out, int chan)
937 {
938 imlt_gain(q, decode_buffer, gains, previous_buffer);
939 q->saturate_output (q, chan, out);
940 }
941
942
943 /**
944 * Cook subpacket decoding. This function returns one decoded subpacket,
945 * usually 1024 samples per channel.
946 *
947 * @param q pointer to the COOKContext
948 * @param inbuffer pointer to the inbuffer
949 * @param outbuffer pointer to the outbuffer
950 */
951 static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
952 int sub_packet_size = p->size;
953 /* packet dump */
954 // for (i=0 ; i<sub_packet_size ; i++) {
955 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
956 // }
957 // av_log(q->avctx, AV_LOG_ERROR, "\n");
958 memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
959 decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
960
961 if (p->joint_stereo) {
962 joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
963 } else {
964 mono_decode(q, p, q->decode_buffer_1);
965
966 if (p->num_channels == 2) {
967 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
968 mono_decode(q, p, q->decode_buffer_2);
969 }
970 }
971
972 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
973 p->mono_previous_buffer1, outbuffer, p->ch_idx);
974
975 if (p->num_channels == 2) {
976 if (p->joint_stereo) {
977 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
978 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
979 } else {
980 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
981 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
982 }
983 }
984
985 }
986
987
988 /**
989 * Cook frame decoding
990 *
991 * @param avctx pointer to the AVCodecContext
992 */
993
994 static int cook_decode_frame(AVCodecContext *avctx,
995 void *data, int *data_size,
996 AVPacket *avpkt) {
997 const uint8_t *buf = avpkt->data;
998 int buf_size = avpkt->size;
999 COOKContext *q = avctx->priv_data;
1000 int i;
1001 int offset = 0;
1002 int chidx = 0;
1003
1004 if (buf_size < avctx->block_align)
1005 return buf_size;
1006
1007 /* estimate subpacket sizes */
1008 q->subpacket[0].size = avctx->block_align;
1009
1010 for(i=1;i<q->num_subpackets;i++){
1011 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1012 q->subpacket[0].size -= q->subpacket[i].size + 1;
1013 if (q->subpacket[0].size < 0) {
1014 av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1015 return -1;
1016 }
1017 }
1018
1019 /* decode supbackets */
1020 *data_size = 0;
1021 for(i=0;i<q->num_subpackets;i++){
1022 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1023 q->subpacket[i].ch_idx = chidx;
1024 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1025 decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1026 offset += q->subpacket[i].size;
1027 chidx += q->subpacket[i].num_channels;
1028 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1029 }
1030 *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1031
1032 /* Discard the first two frames: no valid audio. */
1033 if (avctx->frame_number < 2) *data_size = 0;
1034
1035 return avctx->block_align;
1036 }
1037
1038 #ifdef COOKDEBUG
1039 static void dump_cook_context(COOKContext *q)
1040 {
1041 //int i=0;
1042 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1043 av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1044 av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1045 if (q->subpacket[0].cookversion > STEREO) {
1046 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1047 PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1048 }
1049 av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1050 PRINT("nb_channels",q->nb_channels);
1051 PRINT("bit_rate",q->bit_rate);
1052 PRINT("sample_rate",q->sample_rate);
1053 PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1054 PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1055 PRINT("subbands",q->subpacket[0].subbands);
1056 PRINT("random_state",q->random_state);
1057 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1058 PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1059 PRINT("numvector_size",q->subpacket[0].numvector_size);
1060 PRINT("total_subbands",q->subpacket[0].total_subbands);
1061 }
1062 #endif
1063
1064 static av_cold int cook_count_channels(unsigned int mask){
1065 int i;
1066 int channels = 0;
1067 for(i = 0;i<32;i++){
1068 if(mask & (1<<i))
1069 ++channels;
1070 }
1071 return channels;
1072 }
1073
1074 /**
1075 * Cook initialization
1076 *
1077 * @param avctx pointer to the AVCodecContext
1078 */
1079
1080 static av_cold int cook_decode_init(AVCodecContext *avctx)
1081 {
1082 COOKContext *q = avctx->priv_data;
1083 const uint8_t *edata_ptr = avctx->extradata;
1084 const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1085 int extradata_size = avctx->extradata_size;
1086 int s = 0;
1087 unsigned int channel_mask = 0;
1088 q->avctx = avctx;
1089
1090 /* Take care of the codec specific extradata. */
1091 if (extradata_size <= 0) {
1092 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1093 return -1;
1094 }
1095 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1096
1097 /* Take data from the AVCodecContext (RM container). */
1098 q->sample_rate = avctx->sample_rate;
1099 q->nb_channels = avctx->channels;
1100 q->bit_rate = avctx->bit_rate;
1101
1102 /* Initialize RNG. */
1103 av_lfg_init(&q->random_state, 0);
1104
1105 while(edata_ptr < edata_ptr_end){
1106 /* 8 for mono, 16 for stereo, ? for multichannel
1107 Swap to right endianness so we don't need to care later on. */
1108 if (extradata_size >= 8){
1109 q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1110 q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1111 q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1112 extradata_size -= 8;
1113 }
1114 if (avctx->extradata_size >= 8){
1115 bytestream_get_be32(&edata_ptr); //Unknown unused
1116 q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1117 q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1118 extradata_size -= 8;
1119 }
1120
1121 /* Initialize extradata related variables. */
1122 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1123 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1124
1125 /* Initialize default data states. */
1126 q->subpacket[s].log2_numvector_size = 5;
1127 q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1128 q->subpacket[s].num_channels = 1;
1129
1130 /* Initialize version-dependent variables */
1131
1132 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1133 q->subpacket[s].joint_stereo = 0;
1134 switch (q->subpacket[s].cookversion) {
1135 case MONO:
1136 if (q->nb_channels != 1) {
1137 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1138 return -1;
1139 }
1140 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1141 break;
1142 case STEREO:
1143 if (q->nb_channels != 1) {
1144 q->subpacket[s].bits_per_subpdiv = 1;
1145 q->subpacket[s].num_channels = 2;
1146 }
1147 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1148 break;
1149 case JOINT_STEREO:
1150 if (q->nb_channels != 2) {
1151 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1152 return -1;
1153 }
1154 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1155 if (avctx->extradata_size >= 16){
1156 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1157 q->subpacket[s].joint_stereo = 1;
1158 q->subpacket[s].num_channels = 2;
1159 }
1160 if (q->subpacket[s].samples_per_channel > 256) {
1161 q->subpacket[s].log2_numvector_size = 6;
1162 }
1163 if (q->subpacket[s].samples_per_channel > 512) {
1164 q->subpacket[s].log2_numvector_size = 7;
1165 }
1166 break;
1167 case MC_COOK:
1168 av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1169 if(extradata_size >= 4)
1170 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1171
1172 if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1173 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1174 q->subpacket[s].joint_stereo = 1;
1175 q->subpacket[s].num_channels = 2;
1176 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1177
1178 if (q->subpacket[s].samples_per_channel > 256) {
1179 q->subpacket[s].log2_numvector_size = 6;
1180 }
1181 if (q->subpacket[s].samples_per_channel > 512) {
1182 q->subpacket[s].log2_numvector_size = 7;
1183 }
1184 }else
1185 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1186
1187 break;
1188 default:
1189 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1190 return -1;
1191 break;
1192 }
1193
1194 if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1195 av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1196 return -1;
1197 } else
1198 q->samples_per_channel = q->subpacket[0].samples_per_channel;
1199
1200
1201 /* Initialize variable relations */
1202 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1203
1204 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1205 if (q->subpacket[s].total_subbands > 53) {
1206 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1207 return -1;
1208 }
1209
1210 if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1211 av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1212 return -1;
1213 }
1214
1215 if (q->subpacket[s].subbands > 50) {
1216 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1217 return -1;
1218 }
1219 q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1220 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1221 q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1222 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1223
1224 q->num_subpackets++;
1225 s++;
1226 if (s > MAX_SUBPACKETS) {
1227 av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1228 return -1;
1229 }
1230 }
1231 /* Generate tables */
1232 init_pow2table();
1233 init_gain_table(q);
1234 init_cplscales_table(q);
1235
1236 if (init_cook_vlc_tables(q) != 0)
1237 return -1;
1238
1239
1240 if(avctx->block_align >= UINT_MAX/2)
1241 return -1;
1242
1243 /* Pad the databuffer with:
1244 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1245 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1246 q->decoded_bytes_buffer =
1247 av_mallocz(avctx->block_align
1248 + DECODE_BYTES_PAD1(avctx->block_align)
1249 + FF_INPUT_BUFFER_PADDING_SIZE);
1250 if (q->decoded_bytes_buffer == NULL)
1251 return -1;
1252
1253 /* Initialize transform. */
1254 if ( init_cook_mlt(q) != 0 )
1255 return -1;
1256
1257 /* Initialize COOK signal arithmetic handling */
1258 if (1) {
1259 q->scalar_dequant = scalar_dequant_float;
1260 q->decouple = decouple_float;
1261 q->imlt_window = imlt_window_float;
1262 q->interpolate = interpolate_float;
1263 q->saturate_output = saturate_output_float;
1264 }
1265
1266 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1267 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1268 } else {
1269 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1270 return -1;
1271 }
1272
1273 avctx->sample_fmt = SAMPLE_FMT_S16;
1274 if (channel_mask)
1275 avctx->channel_layout = channel_mask;
1276 else
1277 avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1278
1279 #ifdef COOKDEBUG
1280 dump_cook_context(q);
1281 #endif
1282 return 0;
1283 }
1284
1285
1286 AVCodec cook_decoder =
1287 {
1288 .name = "cook",
1289 .type = AVMEDIA_TYPE_AUDIO,
1290 .id = CODEC_ID_COOK,
1291 .priv_data_size = sizeof(COOKContext),
1292 .init = cook_decode_init,
1293 .close = cook_decode_close,
1294 .decode = cook_decode_frame,
1295 .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1296 };