cac3fdb8c43af3b62c7fa3ec036049ead426ced5
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
48
49 #include "libavutil/random.h"
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53 #include "bytestream.h"
54
55 #include "cookdata.h"
56
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 //multichannel Cook, not supported
62
63 #define SUBBAND_SIZE 20
64 //#define COOKDEBUG
65
66 typedef struct {
67 int *now;
68 int *previous;
69 } cook_gains;
70
71 typedef struct cook {
72 /*
73 * The following 5 functions provide the lowlevel arithmetic on
74 * the internal audio buffers.
75 */
76 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
77 int* subband_coef_index, int* subband_coef_sign,
78 float* mlt_p);
79
80 void (* decouple) (struct cook *q,
81 int subband,
82 float f1, float f2,
83 float *decode_buffer,
84 float *mlt_buffer1, float *mlt_buffer2);
85
86 void (* imlt_window) (struct cook *q, float *buffer1,
87 cook_gains *gains_ptr, float *previous_buffer);
88
89 void (* interpolate) (struct cook *q, float* buffer,
90 int gain_index, int gain_index_next);
91
92 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
93
94 GetBitContext gb;
95 /* stream data */
96 int nb_channels;
97 int joint_stereo;
98 int bit_rate;
99 int sample_rate;
100 int samples_per_channel;
101 int samples_per_frame;
102 int subbands;
103 int log2_numvector_size;
104 int numvector_size; //1 << log2_numvector_size;
105 int js_subband_start;
106 int total_subbands;
107 int num_vectors;
108 int bits_per_subpacket;
109 int cookversion;
110 /* states */
111 AVRandomState random_state;
112
113 /* transform data */
114 MDCTContext mdct_ctx;
115 DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
116 float* mlt_window;
117
118 /* gain buffers */
119 cook_gains gains1;
120 cook_gains gains2;
121 int gain_1[9];
122 int gain_2[9];
123 int gain_3[9];
124 int gain_4[9];
125
126 /* VLC data */
127 int js_vlc_bits;
128 VLC envelope_quant_index[13];
129 VLC sqvh[7]; //scalar quantization
130 VLC ccpl; //channel coupling
131
132 /* generatable tables and related variables */
133 int gain_size_factor;
134 float gain_table[23];
135 float pow2tab[127];
136 float rootpow2tab[127];
137
138 /* data buffers */
139
140 uint8_t* decoded_bytes_buffer;
141 DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
142 float mono_previous_buffer1[1024];
143 float mono_previous_buffer2[1024];
144 float decode_buffer_1[1024];
145 float decode_buffer_2[1024];
146 float decode_buffer_0[1060]; /* static allocation for joint decode */
147
148 const float *cplscales[5];
149 } COOKContext;
150
151 /* debug functions */
152
153 #ifdef COOKDEBUG
154 static void dump_float_table(float* table, int size, int delimiter) {
155 int i=0;
156 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
157 for (i=0 ; i<size ; i++) {
158 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
159 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
160 }
161 }
162
163 static void dump_int_table(int* table, int size, int delimiter) {
164 int i=0;
165 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
166 for (i=0 ; i<size ; i++) {
167 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
168 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
169 }
170 }
171
172 static void dump_short_table(short* table, int size, int delimiter) {
173 int i=0;
174 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
175 for (i=0 ; i<size ; i++) {
176 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
177 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
178 }
179 }
180
181 #endif
182
183 /*************** init functions ***************/
184
185 /* table generator */
186 static void init_pow2table(COOKContext *q){
187 int i;
188 for (i=-63 ; i<64 ; i++){
189 q-> pow2tab[63+i]= pow(2, i);
190 q->rootpow2tab[63+i]=sqrt(pow(2, i));
191 }
192 }
193
194 /* table generator */
195 static void init_gain_table(COOKContext *q) {
196 int i;
197 q->gain_size_factor = q->samples_per_channel/8;
198 for (i=0 ; i<23 ; i++) {
199 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
200 (1.0/(double)q->gain_size_factor));
201 }
202 }
203
204
205 static int init_cook_vlc_tables(COOKContext *q) {
206 int i, result;
207
208 result = 0;
209 for (i=0 ; i<13 ; i++) {
210 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
211 envelope_quant_index_huffbits[i], 1, 1,
212 envelope_quant_index_huffcodes[i], 2, 2, 0);
213 }
214 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
215 for (i=0 ; i<7 ; i++) {
216 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
217 cvh_huffbits[i], 1, 1,
218 cvh_huffcodes[i], 2, 2, 0);
219 }
220
221 if (q->nb_channels==2 && q->joint_stereo==1){
222 result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
223 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
224 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
225 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
226 }
227
228 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
229 return result;
230 }
231
232 static int init_cook_mlt(COOKContext *q) {
233 int j;
234 float alpha;
235 int mlt_size = q->samples_per_channel;
236
237 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
238 return -1;
239
240 /* Initialize the MLT window: simple sine window. */
241 alpha = M_PI / (2.0 * (float)mlt_size);
242 for(j=0 ; j<mlt_size ; j++)
243 q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
244
245 /* Initialize the MDCT. */
246 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
247 av_free(q->mlt_window);
248 return -1;
249 }
250 av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
251 av_log2(mlt_size)+1);
252
253 return 0;
254 }
255
256 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
257 {
258 if (1)
259 return ptr;
260 }
261
262 static void init_cplscales_table (COOKContext *q) {
263 int i;
264 for (i=0;i<5;i++)
265 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
266 }
267
268 /*************** init functions end ***********/
269
270 /**
271 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
272 * Why? No idea, some checksum/error detection method maybe.
273 *
274 * Out buffer size: extra bytes are needed to cope with
275 * padding/misalignment.
276 * Subpackets passed to the decoder can contain two, consecutive
277 * half-subpackets, of identical but arbitrary size.
278 * 1234 1234 1234 1234 extraA extraB
279 * Case 1: AAAA BBBB 0 0
280 * Case 2: AAAA ABBB BB-- 3 3
281 * Case 3: AAAA AABB BBBB 2 2
282 * Case 4: AAAA AAAB BBBB BB-- 1 5
283 *
284 * Nice way to waste CPU cycles.
285 *
286 * @param inbuffer pointer to byte array of indata
287 * @param out pointer to byte array of outdata
288 * @param bytes number of bytes
289 */
290 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
291 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
292
293 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
294 int i, off;
295 uint32_t c;
296 const uint32_t* buf;
297 uint32_t* obuf = (uint32_t*) out;
298 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
299 * I'm too lazy though, should be something like
300 * for(i=0 ; i<bitamount/64 ; i++)
301 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
302 * Buffer alignment needs to be checked. */
303
304 off = (int)((long)inbuffer & 3);
305 buf = (const uint32_t*) (inbuffer - off);
306 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
307 bytes += 3 + off;
308 for (i = 0; i < bytes/4; i++)
309 obuf[i] = c ^ buf[i];
310
311 return off;
312 }
313
314 /**
315 * Cook uninit
316 */
317
318 static int cook_decode_close(AVCodecContext *avctx)
319 {
320 int i;
321 COOKContext *q = avctx->priv_data;
322 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
323
324 /* Free allocated memory buffers. */
325 av_free(q->mlt_window);
326 av_free(q->decoded_bytes_buffer);
327
328 /* Free the transform. */
329 ff_mdct_end(&q->mdct_ctx);
330
331 /* Free the VLC tables. */
332 for (i=0 ; i<13 ; i++) {
333 free_vlc(&q->envelope_quant_index[i]);
334 }
335 for (i=0 ; i<7 ; i++) {
336 free_vlc(&q->sqvh[i]);
337 }
338 if(q->nb_channels==2 && q->joint_stereo==1 ){
339 free_vlc(&q->ccpl);
340 }
341
342 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
343
344 return 0;
345 }
346
347 /**
348 * Fill the gain array for the timedomain quantization.
349 *
350 * @param q pointer to the COOKContext
351 * @param gaininfo[9] array of gain indices
352 */
353
354 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
355 {
356 int i, n;
357
358 while (get_bits1(gb)) {}
359 n = get_bits_count(gb) - 1; //amount of elements*2 to update
360
361 i = 0;
362 while (n--) {
363 int index = get_bits(gb, 3);
364 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
365
366 while (i <= index) gaininfo[i++] = gain;
367 }
368 while (i <= 8) gaininfo[i++] = 0;
369 }
370
371 /**
372 * Create the quant index table needed for the envelope.
373 *
374 * @param q pointer to the COOKContext
375 * @param quant_index_table pointer to the array
376 */
377
378 static void decode_envelope(COOKContext *q, int* quant_index_table) {
379 int i,j, vlc_index;
380
381 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
382
383 for (i=1 ; i < q->total_subbands ; i++){
384 vlc_index=i;
385 if (i >= q->js_subband_start * 2) {
386 vlc_index-=q->js_subband_start;
387 } else {
388 vlc_index/=2;
389 if(vlc_index < 1) vlc_index = 1;
390 }
391 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
392
393 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
394 q->envelope_quant_index[vlc_index-1].bits,2);
395 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
396 }
397 }
398
399 /**
400 * Calculate the category and category_index vector.
401 *
402 * @param q pointer to the COOKContext
403 * @param quant_index_table pointer to the array
404 * @param category pointer to the category array
405 * @param category_index pointer to the category_index array
406 */
407
408 static void categorize(COOKContext *q, int* quant_index_table,
409 int* category, int* category_index){
410 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
411 int exp_index2[102];
412 int exp_index1[102];
413
414 int tmp_categorize_array[128*2];
415 int tmp_categorize_array1_idx=q->numvector_size;
416 int tmp_categorize_array2_idx=q->numvector_size;
417
418 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
419
420 if(bits_left > q->samples_per_channel) {
421 bits_left = q->samples_per_channel +
422 ((bits_left - q->samples_per_channel)*5)/8;
423 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
424 }
425
426 memset(&exp_index1,0,102*sizeof(int));
427 memset(&exp_index2,0,102*sizeof(int));
428 memset(&tmp_categorize_array,0,128*2*sizeof(int));
429
430 bias=-32;
431
432 /* Estimate bias. */
433 for (i=32 ; i>0 ; i=i/2){
434 num_bits = 0;
435 index = 0;
436 for (j=q->total_subbands ; j>0 ; j--){
437 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
438 index++;
439 num_bits+=expbits_tab[exp_idx];
440 }
441 if(num_bits >= bits_left - 32){
442 bias+=i;
443 }
444 }
445
446 /* Calculate total number of bits. */
447 num_bits=0;
448 for (i=0 ; i<q->total_subbands ; i++) {
449 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
450 num_bits += expbits_tab[exp_idx];
451 exp_index1[i] = exp_idx;
452 exp_index2[i] = exp_idx;
453 }
454 tmpbias1 = tmpbias2 = num_bits;
455
456 for (j = 1 ; j < q->numvector_size ; j++) {
457 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
458 int max = -999999;
459 index=-1;
460 for (i=0 ; i<q->total_subbands ; i++){
461 if (exp_index1[i] < 7) {
462 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
463 if ( v >= max) {
464 max = v;
465 index = i;
466 }
467 }
468 }
469 if(index==-1)break;
470 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
471 tmpbias1 -= expbits_tab[exp_index1[index]] -
472 expbits_tab[exp_index1[index]+1];
473 ++exp_index1[index];
474 } else { /* <--- */
475 int min = 999999;
476 index=-1;
477 for (i=0 ; i<q->total_subbands ; i++){
478 if(exp_index2[i] > 0){
479 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
480 if ( v < min) {
481 min = v;
482 index = i;
483 }
484 }
485 }
486 if(index == -1)break;
487 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
488 tmpbias2 -= expbits_tab[exp_index2[index]] -
489 expbits_tab[exp_index2[index]-1];
490 --exp_index2[index];
491 }
492 }
493
494 for(i=0 ; i<q->total_subbands ; i++)
495 category[i] = exp_index2[i];
496
497 for(i=0 ; i<q->numvector_size-1 ; i++)
498 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
499
500 }
501
502
503 /**
504 * Expand the category vector.
505 *
506 * @param q pointer to the COOKContext
507 * @param category pointer to the category array
508 * @param category_index pointer to the category_index array
509 */
510
511 static inline void expand_category(COOKContext *q, int* category,
512 int* category_index){
513 int i;
514 for(i=0 ; i<q->num_vectors ; i++){
515 ++category[category_index[i]];
516 }
517 }
518
519 /**
520 * The real requantization of the mltcoefs
521 *
522 * @param q pointer to the COOKContext
523 * @param index index
524 * @param quant_index quantisation index
525 * @param subband_coef_index array of indexes to quant_centroid_tab
526 * @param subband_coef_sign signs of coefficients
527 * @param mlt_p pointer into the mlt buffer
528 */
529
530 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
531 int* subband_coef_index, int* subband_coef_sign,
532 float* mlt_p){
533 int i;
534 float f1;
535
536 for(i=0 ; i<SUBBAND_SIZE ; i++) {
537 if (subband_coef_index[i]) {
538 f1 = quant_centroid_tab[index][subband_coef_index[i]];
539 if (subband_coef_sign[i]) f1 = -f1;
540 } else {
541 /* noise coding if subband_coef_index[i] == 0 */
542 f1 = dither_tab[index];
543 if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
544 }
545 mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
546 }
547 }
548 /**
549 * Unpack the subband_coef_index and subband_coef_sign vectors.
550 *
551 * @param q pointer to the COOKContext
552 * @param category pointer to the category array
553 * @param subband_coef_index array of indexes to quant_centroid_tab
554 * @param subband_coef_sign signs of coefficients
555 */
556
557 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
558 int* subband_coef_sign) {
559 int i,j;
560 int vlc, vd ,tmp, result;
561
562 vd = vd_tab[category];
563 result = 0;
564 for(i=0 ; i<vpr_tab[category] ; i++){
565 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
566 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
567 vlc = 0;
568 result = 1;
569 }
570 for(j=vd-1 ; j>=0 ; j--){
571 tmp = (vlc * invradix_tab[category])/0x100000;
572 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
573 vlc = tmp;
574 }
575 for(j=0 ; j<vd ; j++){
576 if (subband_coef_index[i*vd + j]) {
577 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
578 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
579 } else {
580 result=1;
581 subband_coef_sign[i*vd+j]=0;
582 }
583 } else {
584 subband_coef_sign[i*vd+j]=0;
585 }
586 }
587 }
588 return result;
589 }
590
591
592 /**
593 * Fill the mlt_buffer with mlt coefficients.
594 *
595 * @param q pointer to the COOKContext
596 * @param category pointer to the category array
597 * @param quant_index_table pointer to the array
598 * @param mlt_buffer pointer to mlt coefficients
599 */
600
601
602 static void decode_vectors(COOKContext* q, int* category,
603 int *quant_index_table, float* mlt_buffer){
604 /* A zero in this table means that the subband coefficient is
605 random noise coded. */
606 int subband_coef_index[SUBBAND_SIZE];
607 /* A zero in this table means that the subband coefficient is a
608 positive multiplicator. */
609 int subband_coef_sign[SUBBAND_SIZE];
610 int band, j;
611 int index=0;
612
613 for(band=0 ; band<q->total_subbands ; band++){
614 index = category[band];
615 if(category[band] < 7){
616 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
617 index=7;
618 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
619 }
620 }
621 if(index==7) {
622 memset(subband_coef_index, 0, sizeof(subband_coef_index));
623 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
624 }
625 q->scalar_dequant(q, index, quant_index_table[band],
626 subband_coef_index, subband_coef_sign,
627 &mlt_buffer[band * SUBBAND_SIZE]);
628 }
629
630 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
631 return;
632 } /* FIXME: should this be removed, or moved into loop above? */
633 }
634
635
636 /**
637 * function for decoding mono data
638 *
639 * @param q pointer to the COOKContext
640 * @param mlt_buffer pointer to mlt coefficients
641 */
642
643 static void mono_decode(COOKContext *q, float* mlt_buffer) {
644
645 int category_index[128];
646 int quant_index_table[102];
647 int category[128];
648
649 memset(&category, 0, 128*sizeof(int));
650 memset(&category_index, 0, 128*sizeof(int));
651
652 decode_envelope(q, quant_index_table);
653 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
654 categorize(q, quant_index_table, category, category_index);
655 expand_category(q, category, category_index);
656 decode_vectors(q, category, quant_index_table, mlt_buffer);
657 }
658
659
660 /**
661 * the actual requantization of the timedomain samples
662 *
663 * @param q pointer to the COOKContext
664 * @param buffer pointer to the timedomain buffer
665 * @param gain_index index for the block multiplier
666 * @param gain_index_next index for the next block multiplier
667 */
668
669 static void interpolate_float(COOKContext *q, float* buffer,
670 int gain_index, int gain_index_next){
671 int i;
672 float fc1, fc2;
673 fc1 = q->pow2tab[gain_index+63];
674
675 if(gain_index == gain_index_next){ //static gain
676 for(i=0 ; i<q->gain_size_factor ; i++){
677 buffer[i]*=fc1;
678 }
679 return;
680 } else { //smooth gain
681 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
682 for(i=0 ; i<q->gain_size_factor ; i++){
683 buffer[i]*=fc1;
684 fc1*=fc2;
685 }
686 return;
687 }
688 }
689
690 /**
691 * Apply transform window, overlap buffers.
692 *
693 * @param q pointer to the COOKContext
694 * @param inbuffer pointer to the mltcoefficients
695 * @param gains_ptr current and previous gains
696 * @param previous_buffer pointer to the previous buffer to be used for overlapping
697 */
698
699 static void imlt_window_float (COOKContext *q, float *buffer1,
700 cook_gains *gains_ptr, float *previous_buffer)
701 {
702 const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
703 int i;
704 /* The weird thing here, is that the two halves of the time domain
705 * buffer are swapped. Also, the newest data, that we save away for
706 * next frame, has the wrong sign. Hence the subtraction below.
707 * Almost sounds like a complex conjugate/reverse data/FFT effect.
708 */
709
710 /* Apply window and overlap */
711 for(i = 0; i < q->samples_per_channel; i++){
712 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
713 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
714 }
715 }
716
717 /**
718 * The modulated lapped transform, this takes transform coefficients
719 * and transforms them into timedomain samples.
720 * Apply transform window, overlap buffers, apply gain profile
721 * and buffer management.
722 *
723 * @param q pointer to the COOKContext
724 * @param inbuffer pointer to the mltcoefficients
725 * @param gains_ptr current and previous gains
726 * @param previous_buffer pointer to the previous buffer to be used for overlapping
727 */
728
729 static void imlt_gain(COOKContext *q, float *inbuffer,
730 cook_gains *gains_ptr, float* previous_buffer)
731 {
732 float *buffer0 = q->mono_mdct_output;
733 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
734 int i;
735
736 /* Inverse modified discrete cosine transform */
737 q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
738 inbuffer, q->mdct_tmp);
739
740 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
741
742 /* Apply gain profile */
743 for (i = 0; i < 8; i++) {
744 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
745 q->interpolate(q, &buffer1[q->gain_size_factor * i],
746 gains_ptr->now[i], gains_ptr->now[i + 1]);
747 }
748
749 /* Save away the current to be previous block. */
750 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
751 }
752
753
754 /**
755 * function for getting the jointstereo coupling information
756 *
757 * @param q pointer to the COOKContext
758 * @param decouple_tab decoupling array
759 *
760 */
761
762 static void decouple_info(COOKContext *q, int* decouple_tab){
763 int length, i;
764
765 if(get_bits1(&q->gb)) {
766 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
767
768 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
769 for (i=0 ; i<length ; i++) {
770 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
771 }
772 return;
773 }
774
775 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
776
777 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
778 for (i=0 ; i<length ; i++) {
779 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
780 }
781 return;
782 }
783
784 /*
785 * function decouples a pair of signals from a single signal via multiplication.
786 *
787 * @param q pointer to the COOKContext
788 * @param subband index of the current subband
789 * @param f1 multiplier for channel 1 extraction
790 * @param f2 multiplier for channel 2 extraction
791 * @param decode_buffer input buffer
792 * @param mlt_buffer1 pointer to left channel mlt coefficients
793 * @param mlt_buffer2 pointer to right channel mlt coefficients
794 */
795 static void decouple_float (COOKContext *q,
796 int subband,
797 float f1, float f2,
798 float *decode_buffer,
799 float *mlt_buffer1, float *mlt_buffer2)
800 {
801 int j, tmp_idx;
802 for (j=0 ; j<SUBBAND_SIZE ; j++) {
803 tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
804 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
805 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
806 }
807 }
808
809 /**
810 * function for decoding joint stereo data
811 *
812 * @param q pointer to the COOKContext
813 * @param mlt_buffer1 pointer to left channel mlt coefficients
814 * @param mlt_buffer2 pointer to right channel mlt coefficients
815 */
816
817 static void joint_decode(COOKContext *q, float* mlt_buffer1,
818 float* mlt_buffer2) {
819 int i,j;
820 int decouple_tab[SUBBAND_SIZE];
821 float *decode_buffer = q->decode_buffer_0;
822 int idx, cpl_tmp;
823 float f1,f2;
824 const float* cplscale;
825
826 memset(decouple_tab, 0, sizeof(decouple_tab));
827 memset(decode_buffer, 0, sizeof(decode_buffer));
828
829 /* Make sure the buffers are zeroed out. */
830 memset(mlt_buffer1,0, 1024*sizeof(float));
831 memset(mlt_buffer2,0, 1024*sizeof(float));
832 decouple_info(q, decouple_tab);
833 mono_decode(q, decode_buffer);
834
835 /* The two channels are stored interleaved in decode_buffer. */
836 for (i=0 ; i<q->js_subband_start ; i++) {
837 for (j=0 ; j<SUBBAND_SIZE ; j++) {
838 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
839 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
840 }
841 }
842
843 /* When we reach js_subband_start (the higher frequencies)
844 the coefficients are stored in a coupling scheme. */
845 idx = (1 << q->js_vlc_bits) - 1;
846 for (i=q->js_subband_start ; i<q->subbands ; i++) {
847 cpl_tmp = cplband[i];
848 idx -=decouple_tab[cpl_tmp];
849 cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
850 f1 = cplscale[decouple_tab[cpl_tmp]];
851 f2 = cplscale[idx-1];
852 q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
853 idx = (1 << q->js_vlc_bits) - 1;
854 }
855 }
856
857 /**
858 * First part of subpacket decoding:
859 * decode raw stream bytes and read gain info.
860 *
861 * @param q pointer to the COOKContext
862 * @param inbuffer pointer to raw stream data
863 * @param gain_ptr array of current/prev gain pointers
864 */
865
866 static inline void
867 decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
868 cook_gains *gains_ptr)
869 {
870 int offset;
871
872 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
873 q->bits_per_subpacket/8);
874 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
875 q->bits_per_subpacket);
876 decode_gain_info(&q->gb, gains_ptr->now);
877
878 /* Swap current and previous gains */
879 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
880 }
881
882 /**
883 * Saturate the output signal to signed 16bit integers.
884 *
885 * @param q pointer to the COOKContext
886 * @param chan channel to saturate
887 * @param out pointer to the output vector
888 */
889 static void
890 saturate_output_float (COOKContext *q, int chan, int16_t *out)
891 {
892 int j;
893 float *output = q->mono_mdct_output + q->samples_per_channel;
894 /* Clip and convert floats to 16 bits.
895 */
896 for (j = 0; j < q->samples_per_channel; j++) {
897 out[chan + q->nb_channels * j] =
898 av_clip_int16(lrintf(output[j]));
899 }
900 }
901
902 /**
903 * Final part of subpacket decoding:
904 * Apply modulated lapped transform, gain compensation,
905 * clip and convert to integer.
906 *
907 * @param q pointer to the COOKContext
908 * @param decode_buffer pointer to the mlt coefficients
909 * @param gain_ptr array of current/prev gain pointers
910 * @param previous_buffer pointer to the previous buffer to be used for overlapping
911 * @param out pointer to the output buffer
912 * @param chan 0: left or single channel, 1: right channel
913 */
914
915 static inline void
916 mlt_compensate_output(COOKContext *q, float *decode_buffer,
917 cook_gains *gains, float *previous_buffer,
918 int16_t *out, int chan)
919 {
920 imlt_gain(q, decode_buffer, gains, previous_buffer);
921 q->saturate_output (q, chan, out);
922 }
923
924
925 /**
926 * Cook subpacket decoding. This function returns one decoded subpacket,
927 * usually 1024 samples per channel.
928 *
929 * @param q pointer to the COOKContext
930 * @param inbuffer pointer to the inbuffer
931 * @param sub_packet_size subpacket size
932 * @param outbuffer pointer to the outbuffer
933 */
934
935
936 static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
937 int sub_packet_size, int16_t *outbuffer) {
938 /* packet dump */
939 // for (i=0 ; i<sub_packet_size ; i++) {
940 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
941 // }
942 // av_log(NULL, AV_LOG_ERROR, "\n");
943
944 decode_bytes_and_gain(q, inbuffer, &q->gains1);
945
946 if (q->joint_stereo) {
947 joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
948 } else {
949 mono_decode(q, q->decode_buffer_1);
950
951 if (q->nb_channels == 2) {
952 decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
953 mono_decode(q, q->decode_buffer_2);
954 }
955 }
956
957 mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
958 q->mono_previous_buffer1, outbuffer, 0);
959
960 if (q->nb_channels == 2) {
961 if (q->joint_stereo) {
962 mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
963 q->mono_previous_buffer2, outbuffer, 1);
964 } else {
965 mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
966 q->mono_previous_buffer2, outbuffer, 1);
967 }
968 }
969 return q->samples_per_frame * sizeof(int16_t);
970 }
971
972
973 /**
974 * Cook frame decoding
975 *
976 * @param avctx pointer to the AVCodecContext
977 */
978
979 static int cook_decode_frame(AVCodecContext *avctx,
980 void *data, int *data_size,
981 const uint8_t *buf, int buf_size) {
982 COOKContext *q = avctx->priv_data;
983
984 if (buf_size < avctx->block_align)
985 return buf_size;
986
987 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
988
989 /* Discard the first two frames: no valid audio. */
990 if (avctx->frame_number < 2) *data_size = 0;
991
992 return avctx->block_align;
993 }
994
995 #ifdef COOKDEBUG
996 static void dump_cook_context(COOKContext *q)
997 {
998 //int i=0;
999 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1000 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1001 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
1002 if (q->cookversion > STEREO) {
1003 PRINT("js_subband_start",q->js_subband_start);
1004 PRINT("js_vlc_bits",q->js_vlc_bits);
1005 }
1006 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1007 PRINT("nb_channels",q->nb_channels);
1008 PRINT("bit_rate",q->bit_rate);
1009 PRINT("sample_rate",q->sample_rate);
1010 PRINT("samples_per_channel",q->samples_per_channel);
1011 PRINT("samples_per_frame",q->samples_per_frame);
1012 PRINT("subbands",q->subbands);
1013 PRINT("random_state",q->random_state);
1014 PRINT("js_subband_start",q->js_subband_start);
1015 PRINT("log2_numvector_size",q->log2_numvector_size);
1016 PRINT("numvector_size",q->numvector_size);
1017 PRINT("total_subbands",q->total_subbands);
1018 }
1019 #endif
1020
1021 /**
1022 * Cook initialization
1023 *
1024 * @param avctx pointer to the AVCodecContext
1025 */
1026
1027 static int cook_decode_init(AVCodecContext *avctx)
1028 {
1029 COOKContext *q = avctx->priv_data;
1030 const uint8_t *edata_ptr = avctx->extradata;
1031
1032 /* Take care of the codec specific extradata. */
1033 if (avctx->extradata_size <= 0) {
1034 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1035 return -1;
1036 } else {
1037 /* 8 for mono, 16 for stereo, ? for multichannel
1038 Swap to right endianness so we don't need to care later on. */
1039 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1040 if (avctx->extradata_size >= 8){
1041 q->cookversion = bytestream_get_be32(&edata_ptr);
1042 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
1043 q->subbands = bytestream_get_be16(&edata_ptr);
1044 }
1045 if (avctx->extradata_size >= 16){
1046 bytestream_get_be32(&edata_ptr); //Unknown unused
1047 q->js_subband_start = bytestream_get_be16(&edata_ptr);
1048 q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1049 }
1050 }
1051
1052 /* Take data from the AVCodecContext (RM container). */
1053 q->sample_rate = avctx->sample_rate;
1054 q->nb_channels = avctx->channels;
1055 q->bit_rate = avctx->bit_rate;
1056
1057 /* Initialize RNG. */
1058 av_init_random(1, &q->random_state);
1059
1060 /* Initialize extradata related variables. */
1061 q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1062 q->bits_per_subpacket = avctx->block_align * 8;
1063
1064 /* Initialize default data states. */
1065 q->log2_numvector_size = 5;
1066 q->total_subbands = q->subbands;
1067
1068 /* Initialize version-dependent variables */
1069 av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1070 q->joint_stereo = 0;
1071 switch (q->cookversion) {
1072 case MONO:
1073 if (q->nb_channels != 1) {
1074 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1075 return -1;
1076 }
1077 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1078 break;
1079 case STEREO:
1080 if (q->nb_channels != 1) {
1081 q->bits_per_subpacket = q->bits_per_subpacket/2;
1082 }
1083 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1084 break;
1085 case JOINT_STEREO:
1086 if (q->nb_channels != 2) {
1087 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1088 return -1;
1089 }
1090 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1091 if (avctx->extradata_size >= 16){
1092 q->total_subbands = q->subbands + q->js_subband_start;
1093 q->joint_stereo = 1;
1094 }
1095 if (q->samples_per_channel > 256) {
1096 q->log2_numvector_size = 6;
1097 }
1098 if (q->samples_per_channel > 512) {
1099 q->log2_numvector_size = 7;
1100 }
1101 break;
1102 case MC_COOK:
1103 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1104 return -1;
1105 break;
1106 default:
1107 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1108 return -1;
1109 break;
1110 }
1111
1112 /* Initialize variable relations */
1113 q->numvector_size = (1 << q->log2_numvector_size);
1114
1115 /* Generate tables */
1116 init_pow2table(q);
1117 init_gain_table(q);
1118 init_cplscales_table(q);
1119
1120 if (init_cook_vlc_tables(q) != 0)
1121 return -1;
1122
1123
1124 if(avctx->block_align >= UINT_MAX/2)
1125 return -1;
1126
1127 /* Pad the databuffer with:
1128 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1129 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1130 if (q->nb_channels==2 && q->joint_stereo==0) {
1131 q->decoded_bytes_buffer =
1132 av_mallocz(avctx->block_align/2
1133 + DECODE_BYTES_PAD2(avctx->block_align/2)
1134 + FF_INPUT_BUFFER_PADDING_SIZE);
1135 } else {
1136 q->decoded_bytes_buffer =
1137 av_mallocz(avctx->block_align
1138 + DECODE_BYTES_PAD1(avctx->block_align)
1139 + FF_INPUT_BUFFER_PADDING_SIZE);
1140 }
1141 if (q->decoded_bytes_buffer == NULL)
1142 return -1;
1143
1144 q->gains1.now = q->gain_1;
1145 q->gains1.previous = q->gain_2;
1146 q->gains2.now = q->gain_3;
1147 q->gains2.previous = q->gain_4;
1148
1149 /* Initialize transform. */
1150 if ( init_cook_mlt(q) != 0 )
1151 return -1;
1152
1153 /* Initialize COOK signal arithmetic handling */
1154 if (1) {
1155 q->scalar_dequant = scalar_dequant_float;
1156 q->decouple = decouple_float;
1157 q->imlt_window = imlt_window_float;
1158 q->interpolate = interpolate_float;
1159 q->saturate_output = saturate_output_float;
1160 }
1161
1162 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1163 if (q->total_subbands > 53) {
1164 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1165 return -1;
1166 }
1167 if (q->subbands > 50) {
1168 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1169 return -1;
1170 }
1171 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1172 } else {
1173 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1174 return -1;
1175 }
1176 if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1177 av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1178 return -1;
1179 }
1180
1181 #ifdef COOKDEBUG
1182 dump_cook_context(q);
1183 #endif
1184 return 0;
1185 }
1186
1187
1188 AVCodec cook_decoder =
1189 {
1190 .name = "cook",
1191 .type = CODEC_TYPE_AUDIO,
1192 .id = CODEC_ID_COOK,
1193 .priv_data_size = sizeof(COOKContext),
1194 .init = cook_decode_init,
1195 .close = cook_decode_close,
1196 .decode = cook_decode_frame,
1197 .long_name = "COOK",
1198 };