e476dede2da6731e16bf25944c45525adef94952
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file libavcodec/cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
48
49 #include "libavutil/random.h"
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53 #include "bytestream.h"
54
55 #include "cookdata.h"
56
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 //multichannel Cook, not supported
62
63 #define SUBBAND_SIZE 20
64 #define MAX_SUBPACKETS 5
65 //#define COOKDEBUG
66
67 typedef struct {
68 int *now;
69 int *previous;
70 } cook_gains;
71
72 typedef struct cook {
73 /*
74 * The following 5 functions provide the lowlevel arithmetic on
75 * the internal audio buffers.
76 */
77 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
78 int* subband_coef_index, int* subband_coef_sign,
79 float* mlt_p);
80
81 void (* decouple) (struct cook *q,
82 int subband,
83 float f1, float f2,
84 float *decode_buffer,
85 float *mlt_buffer1, float *mlt_buffer2);
86
87 void (* imlt_window) (struct cook *q, float *buffer1,
88 cook_gains *gains_ptr, float *previous_buffer);
89
90 void (* interpolate) (struct cook *q, float* buffer,
91 int gain_index, int gain_index_next);
92
93 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
94
95 AVCodecContext* avctx;
96 GetBitContext gb;
97 /* stream data */
98 int nb_channels;
99 int joint_stereo;
100 int bit_rate;
101 int sample_rate;
102 int samples_per_channel;
103 int samples_per_frame;
104 int subbands;
105 int log2_numvector_size;
106 int numvector_size; //1 << log2_numvector_size;
107 int js_subband_start;
108 int total_subbands;
109 int num_vectors;
110 int bits_per_subpacket;
111 int cookversion;
112 /* states */
113 AVRandomState random_state;
114
115 /* transform data */
116 MDCTContext mdct_ctx;
117 float* mlt_window;
118
119 /* gain buffers */
120 cook_gains gains1;
121 cook_gains gains2;
122 int gain_1[9];
123 int gain_2[9];
124 int gain_3[9];
125 int gain_4[9];
126
127 /* VLC data */
128 int js_vlc_bits;
129 VLC envelope_quant_index[13];
130 VLC sqvh[7]; //scalar quantization
131 VLC ccpl; //channel coupling
132
133 /* generatable tables and related variables */
134 int gain_size_factor;
135 float gain_table[23];
136
137 /* data buffers */
138
139 uint8_t* decoded_bytes_buffer;
140 DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
141 float mono_previous_buffer1[1024];
142 float mono_previous_buffer2[1024];
143 float decode_buffer_1[1024];
144 float decode_buffer_2[1024];
145 float decode_buffer_0[1060]; /* static allocation for joint decode */
146
147 const float *cplscales[5];
148 } COOKContext;
149
150 static float pow2tab[127];
151 static float rootpow2tab[127];
152
153 /* debug functions */
154
155 #ifdef COOKDEBUG
156 static void dump_float_table(float* table, int size, int delimiter) {
157 int i=0;
158 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
159 for (i=0 ; i<size ; i++) {
160 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
161 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
162 }
163 }
164
165 static void dump_int_table(int* table, int size, int delimiter) {
166 int i=0;
167 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
168 for (i=0 ; i<size ; i++) {
169 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
170 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
171 }
172 }
173
174 static void dump_short_table(short* table, int size, int delimiter) {
175 int i=0;
176 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
177 for (i=0 ; i<size ; i++) {
178 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
179 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
180 }
181 }
182
183 #endif
184
185 /*************** init functions ***************/
186
187 /* table generator */
188 static av_cold void init_pow2table(void){
189 int i;
190 for (i=-63 ; i<64 ; i++){
191 pow2tab[63+i]= pow(2, i);
192 rootpow2tab[63+i]=sqrt(pow(2, i));
193 }
194 }
195
196 /* table generator */
197 static av_cold void init_gain_table(COOKContext *q) {
198 int i;
199 q->gain_size_factor = q->samples_per_channel/8;
200 for (i=0 ; i<23 ; i++) {
201 q->gain_table[i] = pow(pow2tab[i+52] ,
202 (1.0/(double)q->gain_size_factor));
203 }
204 }
205
206
207 static av_cold int init_cook_vlc_tables(COOKContext *q) {
208 int i, result;
209
210 result = 0;
211 for (i=0 ; i<13 ; i++) {
212 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
213 envelope_quant_index_huffbits[i], 1, 1,
214 envelope_quant_index_huffcodes[i], 2, 2, 0);
215 }
216 av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
217 for (i=0 ; i<7 ; i++) {
218 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
219 cvh_huffbits[i], 1, 1,
220 cvh_huffcodes[i], 2, 2, 0);
221 }
222
223 if (q->nb_channels==2 && q->joint_stereo==1){
224 result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
225 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
226 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
227 av_log(q->avctx,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
228 }
229
230 av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
231 return result;
232 }
233
234 static av_cold int init_cook_mlt(COOKContext *q) {
235 int j;
236 int mlt_size = q->samples_per_channel;
237
238 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
239 return -1;
240
241 /* Initialize the MLT window: simple sine window. */
242 ff_sine_window_init(q->mlt_window, mlt_size);
243 for(j=0 ; j<mlt_size ; j++)
244 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
245
246 /* Initialize the MDCT. */
247 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
248 av_free(q->mlt_window);
249 return -1;
250 }
251 av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
252 av_log2(mlt_size)+1);
253
254 return 0;
255 }
256
257 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
258 {
259 if (1)
260 return ptr;
261 }
262
263 static av_cold void init_cplscales_table (COOKContext *q) {
264 int i;
265 for (i=0;i<5;i++)
266 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
267 }
268
269 /*************** init functions end ***********/
270
271 /**
272 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
273 * Why? No idea, some checksum/error detection method maybe.
274 *
275 * Out buffer size: extra bytes are needed to cope with
276 * padding/misalignment.
277 * Subpackets passed to the decoder can contain two, consecutive
278 * half-subpackets, of identical but arbitrary size.
279 * 1234 1234 1234 1234 extraA extraB
280 * Case 1: AAAA BBBB 0 0
281 * Case 2: AAAA ABBB BB-- 3 3
282 * Case 3: AAAA AABB BBBB 2 2
283 * Case 4: AAAA AAAB BBBB BB-- 1 5
284 *
285 * Nice way to waste CPU cycles.
286 *
287 * @param inbuffer pointer to byte array of indata
288 * @param out pointer to byte array of outdata
289 * @param bytes number of bytes
290 */
291 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
292 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
293
294 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
295 int i, off;
296 uint32_t c;
297 const uint32_t* buf;
298 uint32_t* obuf = (uint32_t*) out;
299 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
300 * I'm too lazy though, should be something like
301 * for(i=0 ; i<bitamount/64 ; i++)
302 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
303 * Buffer alignment needs to be checked. */
304
305 off = (int)((long)inbuffer & 3);
306 buf = (const uint32_t*) (inbuffer - off);
307 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
308 bytes += 3 + off;
309 for (i = 0; i < bytes/4; i++)
310 obuf[i] = c ^ buf[i];
311
312 return off;
313 }
314
315 /**
316 * Cook uninit
317 */
318
319 static av_cold int cook_decode_close(AVCodecContext *avctx)
320 {
321 int i;
322 COOKContext *q = avctx->priv_data;
323 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
324
325 /* Free allocated memory buffers. */
326 av_free(q->mlt_window);
327 av_free(q->decoded_bytes_buffer);
328
329 /* Free the transform. */
330 ff_mdct_end(&q->mdct_ctx);
331
332 /* Free the VLC tables. */
333 for (i=0 ; i<13 ; i++) {
334 free_vlc(&q->envelope_quant_index[i]);
335 }
336 for (i=0 ; i<7 ; i++) {
337 free_vlc(&q->sqvh[i]);
338 }
339 if(q->nb_channels==2 && q->joint_stereo==1 ){
340 free_vlc(&q->ccpl);
341 }
342
343 av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
344
345 return 0;
346 }
347
348 /**
349 * Fill the gain array for the timedomain quantization.
350 *
351 * @param q pointer to the COOKContext
352 * @param gaininfo[9] array of gain indexes
353 */
354
355 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
356 {
357 int i, n;
358
359 while (get_bits1(gb)) {}
360 n = get_bits_count(gb) - 1; //amount of elements*2 to update
361
362 i = 0;
363 while (n--) {
364 int index = get_bits(gb, 3);
365 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
366
367 while (i <= index) gaininfo[i++] = gain;
368 }
369 while (i <= 8) gaininfo[i++] = 0;
370 }
371
372 /**
373 * Create the quant index table needed for the envelope.
374 *
375 * @param q pointer to the COOKContext
376 * @param quant_index_table pointer to the array
377 */
378
379 static void decode_envelope(COOKContext *q, int* quant_index_table) {
380 int i,j, vlc_index;
381
382 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
383
384 for (i=1 ; i < q->total_subbands ; i++){
385 vlc_index=i;
386 if (i >= q->js_subband_start * 2) {
387 vlc_index-=q->js_subband_start;
388 } else {
389 vlc_index/=2;
390 if(vlc_index < 1) vlc_index = 1;
391 }
392 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
393
394 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
395 q->envelope_quant_index[vlc_index-1].bits,2);
396 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
397 }
398 }
399
400 /**
401 * Calculate the category and category_index vector.
402 *
403 * @param q pointer to the COOKContext
404 * @param quant_index_table pointer to the array
405 * @param category pointer to the category array
406 * @param category_index pointer to the category_index array
407 */
408
409 static void categorize(COOKContext *q, int* quant_index_table,
410 int* category, int* category_index){
411 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
412 int exp_index2[102];
413 int exp_index1[102];
414
415 int tmp_categorize_array[128*2];
416 int tmp_categorize_array1_idx=q->numvector_size;
417 int tmp_categorize_array2_idx=q->numvector_size;
418
419 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
420
421 if(bits_left > q->samples_per_channel) {
422 bits_left = q->samples_per_channel +
423 ((bits_left - q->samples_per_channel)*5)/8;
424 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
425 }
426
427 memset(&exp_index1,0,102*sizeof(int));
428 memset(&exp_index2,0,102*sizeof(int));
429 memset(&tmp_categorize_array,0,128*2*sizeof(int));
430
431 bias=-32;
432
433 /* Estimate bias. */
434 for (i=32 ; i>0 ; i=i/2){
435 num_bits = 0;
436 index = 0;
437 for (j=q->total_subbands ; j>0 ; j--){
438 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
439 index++;
440 num_bits+=expbits_tab[exp_idx];
441 }
442 if(num_bits >= bits_left - 32){
443 bias+=i;
444 }
445 }
446
447 /* Calculate total number of bits. */
448 num_bits=0;
449 for (i=0 ; i<q->total_subbands ; i++) {
450 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
451 num_bits += expbits_tab[exp_idx];
452 exp_index1[i] = exp_idx;
453 exp_index2[i] = exp_idx;
454 }
455 tmpbias1 = tmpbias2 = num_bits;
456
457 for (j = 1 ; j < q->numvector_size ; j++) {
458 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
459 int max = -999999;
460 index=-1;
461 for (i=0 ; i<q->total_subbands ; i++){
462 if (exp_index1[i] < 7) {
463 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
464 if ( v >= max) {
465 max = v;
466 index = i;
467 }
468 }
469 }
470 if(index==-1)break;
471 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
472 tmpbias1 -= expbits_tab[exp_index1[index]] -
473 expbits_tab[exp_index1[index]+1];
474 ++exp_index1[index];
475 } else { /* <--- */
476 int min = 999999;
477 index=-1;
478 for (i=0 ; i<q->total_subbands ; i++){
479 if(exp_index2[i] > 0){
480 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
481 if ( v < min) {
482 min = v;
483 index = i;
484 }
485 }
486 }
487 if(index == -1)break;
488 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
489 tmpbias2 -= expbits_tab[exp_index2[index]] -
490 expbits_tab[exp_index2[index]-1];
491 --exp_index2[index];
492 }
493 }
494
495 for(i=0 ; i<q->total_subbands ; i++)
496 category[i] = exp_index2[i];
497
498 for(i=0 ; i<q->numvector_size-1 ; i++)
499 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
500
501 }
502
503
504 /**
505 * Expand the category vector.
506 *
507 * @param q pointer to the COOKContext
508 * @param category pointer to the category array
509 * @param category_index pointer to the category_index array
510 */
511
512 static inline void expand_category(COOKContext *q, int* category,
513 int* category_index){
514 int i;
515 for(i=0 ; i<q->num_vectors ; i++){
516 ++category[category_index[i]];
517 }
518 }
519
520 /**
521 * The real requantization of the mltcoefs
522 *
523 * @param q pointer to the COOKContext
524 * @param index index
525 * @param quant_index quantisation index
526 * @param subband_coef_index array of indexes to quant_centroid_tab
527 * @param subband_coef_sign signs of coefficients
528 * @param mlt_p pointer into the mlt buffer
529 */
530
531 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
532 int* subband_coef_index, int* subband_coef_sign,
533 float* mlt_p){
534 int i;
535 float f1;
536
537 for(i=0 ; i<SUBBAND_SIZE ; i++) {
538 if (subband_coef_index[i]) {
539 f1 = quant_centroid_tab[index][subband_coef_index[i]];
540 if (subband_coef_sign[i]) f1 = -f1;
541 } else {
542 /* noise coding if subband_coef_index[i] == 0 */
543 f1 = dither_tab[index];
544 if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
545 }
546 mlt_p[i] = f1 * rootpow2tab[quant_index+63];
547 }
548 }
549 /**
550 * Unpack the subband_coef_index and subband_coef_sign vectors.
551 *
552 * @param q pointer to the COOKContext
553 * @param category pointer to the category array
554 * @param subband_coef_index array of indexes to quant_centroid_tab
555 * @param subband_coef_sign signs of coefficients
556 */
557
558 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
559 int* subband_coef_sign) {
560 int i,j;
561 int vlc, vd ,tmp, result;
562
563 vd = vd_tab[category];
564 result = 0;
565 for(i=0 ; i<vpr_tab[category] ; i++){
566 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
567 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
568 vlc = 0;
569 result = 1;
570 }
571 for(j=vd-1 ; j>=0 ; j--){
572 tmp = (vlc * invradix_tab[category])/0x100000;
573 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
574 vlc = tmp;
575 }
576 for(j=0 ; j<vd ; j++){
577 if (subband_coef_index[i*vd + j]) {
578 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
579 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
580 } else {
581 result=1;
582 subband_coef_sign[i*vd+j]=0;
583 }
584 } else {
585 subband_coef_sign[i*vd+j]=0;
586 }
587 }
588 }
589 return result;
590 }
591
592
593 /**
594 * Fill the mlt_buffer with mlt coefficients.
595 *
596 * @param q pointer to the COOKContext
597 * @param category pointer to the category array
598 * @param quant_index_table pointer to the array
599 * @param mlt_buffer pointer to mlt coefficients
600 */
601
602
603 static void decode_vectors(COOKContext* q, int* category,
604 int *quant_index_table, float* mlt_buffer){
605 /* A zero in this table means that the subband coefficient is
606 random noise coded. */
607 int subband_coef_index[SUBBAND_SIZE];
608 /* A zero in this table means that the subband coefficient is a
609 positive multiplicator. */
610 int subband_coef_sign[SUBBAND_SIZE];
611 int band, j;
612 int index=0;
613
614 for(band=0 ; band<q->total_subbands ; band++){
615 index = category[band];
616 if(category[band] < 7){
617 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
618 index=7;
619 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
620 }
621 }
622 if(index>=7) {
623 memset(subband_coef_index, 0, sizeof(subband_coef_index));
624 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
625 }
626 q->scalar_dequant(q, index, quant_index_table[band],
627 subband_coef_index, subband_coef_sign,
628 &mlt_buffer[band * SUBBAND_SIZE]);
629 }
630
631 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
632 return;
633 } /* FIXME: should this be removed, or moved into loop above? */
634 }
635
636
637 /**
638 * function for decoding mono data
639 *
640 * @param q pointer to the COOKContext
641 * @param mlt_buffer pointer to mlt coefficients
642 */
643
644 static void mono_decode(COOKContext *q, float* mlt_buffer) {
645
646 int category_index[128];
647 int quant_index_table[102];
648 int category[128];
649
650 memset(&category, 0, 128*sizeof(int));
651 memset(&category_index, 0, 128*sizeof(int));
652
653 decode_envelope(q, quant_index_table);
654 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
655 categorize(q, quant_index_table, category, category_index);
656 expand_category(q, category, category_index);
657 decode_vectors(q, category, quant_index_table, mlt_buffer);
658 }
659
660
661 /**
662 * the actual requantization of the timedomain samples
663 *
664 * @param q pointer to the COOKContext
665 * @param buffer pointer to the timedomain buffer
666 * @param gain_index index for the block multiplier
667 * @param gain_index_next index for the next block multiplier
668 */
669
670 static void interpolate_float(COOKContext *q, float* buffer,
671 int gain_index, int gain_index_next){
672 int i;
673 float fc1, fc2;
674 fc1 = pow2tab[gain_index+63];
675
676 if(gain_index == gain_index_next){ //static gain
677 for(i=0 ; i<q->gain_size_factor ; i++){
678 buffer[i]*=fc1;
679 }
680 return;
681 } else { //smooth gain
682 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
683 for(i=0 ; i<q->gain_size_factor ; i++){
684 buffer[i]*=fc1;
685 fc1*=fc2;
686 }
687 return;
688 }
689 }
690
691 /**
692 * Apply transform window, overlap buffers.
693 *
694 * @param q pointer to the COOKContext
695 * @param inbuffer pointer to the mltcoefficients
696 * @param gains_ptr current and previous gains
697 * @param previous_buffer pointer to the previous buffer to be used for overlapping
698 */
699
700 static void imlt_window_float (COOKContext *q, float *buffer1,
701 cook_gains *gains_ptr, float *previous_buffer)
702 {
703 const float fc = pow2tab[gains_ptr->previous[0] + 63];
704 int i;
705 /* The weird thing here, is that the two halves of the time domain
706 * buffer are swapped. Also, the newest data, that we save away for
707 * next frame, has the wrong sign. Hence the subtraction below.
708 * Almost sounds like a complex conjugate/reverse data/FFT effect.
709 */
710
711 /* Apply window and overlap */
712 for(i = 0; i < q->samples_per_channel; i++){
713 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
714 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
715 }
716 }
717
718 /**
719 * The modulated lapped transform, this takes transform coefficients
720 * and transforms them into timedomain samples.
721 * Apply transform window, overlap buffers, apply gain profile
722 * and buffer management.
723 *
724 * @param q pointer to the COOKContext
725 * @param inbuffer pointer to the mltcoefficients
726 * @param gains_ptr current and previous gains
727 * @param previous_buffer pointer to the previous buffer to be used for overlapping
728 */
729
730 static void imlt_gain(COOKContext *q, float *inbuffer,
731 cook_gains *gains_ptr, float* previous_buffer)
732 {
733 float *buffer0 = q->mono_mdct_output;
734 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
735 int i;
736
737 /* Inverse modified discrete cosine transform */
738 ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
739
740 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
741
742 /* Apply gain profile */
743 for (i = 0; i < 8; i++) {
744 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
745 q->interpolate(q, &buffer1[q->gain_size_factor * i],
746 gains_ptr->now[i], gains_ptr->now[i + 1]);
747 }
748
749 /* Save away the current to be previous block. */
750 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
751 }
752
753
754 /**
755 * function for getting the jointstereo coupling information
756 *
757 * @param q pointer to the COOKContext
758 * @param decouple_tab decoupling array
759 *
760 */
761
762 static void decouple_info(COOKContext *q, int* decouple_tab){
763 int length, i;
764
765 if(get_bits1(&q->gb)) {
766 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
767
768 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
769 for (i=0 ; i<length ; i++) {
770 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
771 }
772 return;
773 }
774
775 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
776
777 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
778 for (i=0 ; i<length ; i++) {
779 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
780 }
781 return;
782 }
783
784 /*
785 * function decouples a pair of signals from a single signal via multiplication.
786 *
787 * @param q pointer to the COOKContext
788 * @param subband index of the current subband
789 * @param f1 multiplier for channel 1 extraction
790 * @param f2 multiplier for channel 2 extraction
791 * @param decode_buffer input buffer
792 * @param mlt_buffer1 pointer to left channel mlt coefficients
793 * @param mlt_buffer2 pointer to right channel mlt coefficients
794 */
795 static void decouple_float (COOKContext *q,
796 int subband,
797 float f1, float f2,
798 float *decode_buffer,
799 float *mlt_buffer1, float *mlt_buffer2)
800 {
801 int j, tmp_idx;
802 for (j=0 ; j<SUBBAND_SIZE ; j++) {
803 tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
804 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
805 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
806 }
807 }
808
809 /**
810 * function for decoding joint stereo data
811 *
812 * @param q pointer to the COOKContext
813 * @param mlt_buffer1 pointer to left channel mlt coefficients
814 * @param mlt_buffer2 pointer to right channel mlt coefficients
815 */
816
817 static void joint_decode(COOKContext *q, float* mlt_buffer1,
818 float* mlt_buffer2) {
819 int i,j;
820 int decouple_tab[SUBBAND_SIZE];
821 float *decode_buffer = q->decode_buffer_0;
822 int idx, cpl_tmp;
823 float f1,f2;
824 const float* cplscale;
825
826 memset(decouple_tab, 0, sizeof(decouple_tab));
827 memset(decode_buffer, 0, sizeof(decode_buffer));
828
829 /* Make sure the buffers are zeroed out. */
830 memset(mlt_buffer1,0, 1024*sizeof(float));
831 memset(mlt_buffer2,0, 1024*sizeof(float));
832 decouple_info(q, decouple_tab);
833 mono_decode(q, decode_buffer);
834
835 /* The two channels are stored interleaved in decode_buffer. */
836 for (i=0 ; i<q->js_subband_start ; i++) {
837 for (j=0 ; j<SUBBAND_SIZE ; j++) {
838 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
839 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
840 }
841 }
842
843 /* When we reach js_subband_start (the higher frequencies)
844 the coefficients are stored in a coupling scheme. */
845 idx = (1 << q->js_vlc_bits) - 1;
846 for (i=q->js_subband_start ; i<q->subbands ; i++) {
847 cpl_tmp = cplband[i];
848 idx -=decouple_tab[cpl_tmp];
849 cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
850 f1 = cplscale[decouple_tab[cpl_tmp]];
851 f2 = cplscale[idx-1];
852 q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
853 idx = (1 << q->js_vlc_bits) - 1;
854 }
855 }
856
857 /**
858 * First part of subpacket decoding:
859 * decode raw stream bytes and read gain info.
860 *
861 * @param q pointer to the COOKContext
862 * @param inbuffer pointer to raw stream data
863 * @param gain_ptr array of current/prev gain pointers
864 */
865
866 static inline void
867 decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
868 cook_gains *gains_ptr)
869 {
870 int offset;
871
872 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
873 q->bits_per_subpacket/8);
874 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
875 q->bits_per_subpacket);
876 decode_gain_info(&q->gb, gains_ptr->now);
877
878 /* Swap current and previous gains */
879 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
880 }
881
882 /**
883 * Saturate the output signal to signed 16bit integers.
884 *
885 * @param q pointer to the COOKContext
886 * @param chan channel to saturate
887 * @param out pointer to the output vector
888 */
889 static void
890 saturate_output_float (COOKContext *q, int chan, int16_t *out)
891 {
892 int j;
893 float *output = q->mono_mdct_output + q->samples_per_channel;
894 /* Clip and convert floats to 16 bits.
895 */
896 for (j = 0; j < q->samples_per_channel; j++) {
897 out[chan + q->nb_channels * j] =
898 av_clip_int16(lrintf(output[j]));
899 }
900 }
901
902 /**
903 * Final part of subpacket decoding:
904 * Apply modulated lapped transform, gain compensation,
905 * clip and convert to integer.
906 *
907 * @param q pointer to the COOKContext
908 * @param decode_buffer pointer to the mlt coefficients
909 * @param gain_ptr array of current/prev gain pointers
910 * @param previous_buffer pointer to the previous buffer to be used for overlapping
911 * @param out pointer to the output buffer
912 * @param chan 0: left or single channel, 1: right channel
913 */
914
915 static inline void
916 mlt_compensate_output(COOKContext *q, float *decode_buffer,
917 cook_gains *gains, float *previous_buffer,
918 int16_t *out, int chan)
919 {
920 imlt_gain(q, decode_buffer, gains, previous_buffer);
921 q->saturate_output (q, chan, out);
922 }
923
924
925 /**
926 * Cook subpacket decoding. This function returns one decoded subpacket,
927 * usually 1024 samples per channel.
928 *
929 * @param q pointer to the COOKContext
930 * @param inbuffer pointer to the inbuffer
931 * @param sub_packet_size subpacket size
932 * @param outbuffer pointer to the outbuffer
933 */
934
935
936 static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
937 int sub_packet_size, int16_t *outbuffer) {
938 /* packet dump */
939 // for (i=0 ; i<sub_packet_size ; i++) {
940 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
941 // }
942 // av_log(q->avctx, AV_LOG_ERROR, "\n");
943
944 decode_bytes_and_gain(q, inbuffer, &q->gains1);
945
946 if (q->joint_stereo) {
947 joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
948 } else {
949 mono_decode(q, q->decode_buffer_1);
950
951 if (q->nb_channels == 2) {
952 decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
953 mono_decode(q, q->decode_buffer_2);
954 }
955 }
956
957 mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
958 q->mono_previous_buffer1, outbuffer, 0);
959
960 if (q->nb_channels == 2) {
961 if (q->joint_stereo) {
962 mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
963 q->mono_previous_buffer2, outbuffer, 1);
964 } else {
965 mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
966 q->mono_previous_buffer2, outbuffer, 1);
967 }
968 }
969 return q->samples_per_frame * sizeof(int16_t);
970 }
971
972
973 /**
974 * Cook frame decoding
975 *
976 * @param avctx pointer to the AVCodecContext
977 */
978
979 static int cook_decode_frame(AVCodecContext *avctx,
980 void *data, int *data_size,
981 const uint8_t *buf, int buf_size) {
982 COOKContext *q = avctx->priv_data;
983
984 if (buf_size < avctx->block_align)
985 return buf_size;
986
987 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
988
989 /* Discard the first two frames: no valid audio. */
990 if (avctx->frame_number < 2) *data_size = 0;
991
992 return avctx->block_align;
993 }
994
995 #ifdef COOKDEBUG
996 static void dump_cook_context(COOKContext *q)
997 {
998 //int i=0;
999 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1000 av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1001 av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
1002 if (q->cookversion > STEREO) {
1003 PRINT("js_subband_start",q->js_subband_start);
1004 PRINT("js_vlc_bits",q->js_vlc_bits);
1005 }
1006 av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1007 PRINT("nb_channels",q->nb_channels);
1008 PRINT("bit_rate",q->bit_rate);
1009 PRINT("sample_rate",q->sample_rate);
1010 PRINT("samples_per_channel",q->samples_per_channel);
1011 PRINT("samples_per_frame",q->samples_per_frame);
1012 PRINT("subbands",q->subbands);
1013 PRINT("random_state",q->random_state);
1014 PRINT("js_subband_start",q->js_subband_start);
1015 PRINT("log2_numvector_size",q->log2_numvector_size);
1016 PRINT("numvector_size",q->numvector_size);
1017 PRINT("total_subbands",q->total_subbands);
1018 }
1019 #endif
1020
1021 static av_cold int cook_count_channels(unsigned int mask){
1022 int i;
1023 int channels = 0;
1024 for(i = 0;i<32;i++){
1025 if(mask & (1<<i))
1026 ++channels;
1027 }
1028 return channels;
1029 }
1030
1031 /**
1032 * Cook initialization
1033 *
1034 * @param avctx pointer to the AVCodecContext
1035 */
1036
1037 static av_cold int cook_decode_init(AVCodecContext *avctx)
1038 {
1039 COOKContext *q = avctx->priv_data;
1040 const uint8_t *edata_ptr = avctx->extradata;
1041 q->avctx = avctx;
1042
1043 /* Take care of the codec specific extradata. */
1044 if (avctx->extradata_size <= 0) {
1045 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1046 return -1;
1047 } else {
1048 /* 8 for mono, 16 for stereo, ? for multichannel
1049 Swap to right endianness so we don't need to care later on. */
1050 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1051 if (avctx->extradata_size >= 8){
1052 q->cookversion = bytestream_get_be32(&edata_ptr);
1053 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
1054 q->subbands = bytestream_get_be16(&edata_ptr);
1055 }
1056 if (avctx->extradata_size >= 16){
1057 bytestream_get_be32(&edata_ptr); //Unknown unused
1058 q->js_subband_start = bytestream_get_be16(&edata_ptr);
1059 q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1060 }
1061 }
1062
1063 /* Take data from the AVCodecContext (RM container). */
1064 q->sample_rate = avctx->sample_rate;
1065 q->nb_channels = avctx->channels;
1066 q->bit_rate = avctx->bit_rate;
1067
1068 /* Initialize RNG. */
1069 av_random_init(&q->random_state, 1);
1070
1071 /* Initialize extradata related variables. */
1072 q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1073 q->bits_per_subpacket = avctx->block_align * 8;
1074
1075 /* Initialize default data states. */
1076 q->log2_numvector_size = 5;
1077 q->total_subbands = q->subbands;
1078
1079 /* Initialize version-dependent variables */
1080 av_log(avctx,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1081 q->joint_stereo = 0;
1082 switch (q->cookversion) {
1083 case MONO:
1084 if (q->nb_channels != 1) {
1085 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1086 return -1;
1087 }
1088 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1089 break;
1090 case STEREO:
1091 if (q->nb_channels != 1) {
1092 q->bits_per_subpacket = q->bits_per_subpacket/2;
1093 }
1094 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1095 break;
1096 case JOINT_STEREO:
1097 if (q->nb_channels != 2) {
1098 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1099 return -1;
1100 }
1101 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1102 if (avctx->extradata_size >= 16){
1103 q->total_subbands = q->subbands + q->js_subband_start;
1104 q->joint_stereo = 1;
1105 }
1106 if (q->samples_per_channel > 256) {
1107 q->log2_numvector_size = 6;
1108 }
1109 if (q->samples_per_channel > 512) {
1110 q->log2_numvector_size = 7;
1111 }
1112 break;
1113 case MC_COOK:
1114 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1115 return -1;
1116 break;
1117 default:
1118 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1119 return -1;
1120 break;
1121 }
1122
1123 /* Initialize variable relations */
1124 q->numvector_size = (1 << q->log2_numvector_size);
1125
1126 /* Generate tables */
1127 init_pow2table();
1128 init_gain_table(q);
1129 init_cplscales_table(q);
1130
1131 if (init_cook_vlc_tables(q) != 0)
1132 return -1;
1133
1134
1135 if(avctx->block_align >= UINT_MAX/2)
1136 return -1;
1137
1138 /* Pad the databuffer with:
1139 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1140 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1141 if (q->nb_channels==2 && q->joint_stereo==0) {
1142 q->decoded_bytes_buffer =
1143 av_mallocz(avctx->block_align/2
1144 + DECODE_BYTES_PAD2(avctx->block_align/2)
1145 + FF_INPUT_BUFFER_PADDING_SIZE);
1146 } else {
1147 q->decoded_bytes_buffer =
1148 av_mallocz(avctx->block_align
1149 + DECODE_BYTES_PAD1(avctx->block_align)
1150 + FF_INPUT_BUFFER_PADDING_SIZE);
1151 }
1152 if (q->decoded_bytes_buffer == NULL)
1153 return -1;
1154
1155 q->gains1.now = q->gain_1;
1156 q->gains1.previous = q->gain_2;
1157 q->gains2.now = q->gain_3;
1158 q->gains2.previous = q->gain_4;
1159
1160 /* Initialize transform. */
1161 if ( init_cook_mlt(q) != 0 )
1162 return -1;
1163
1164 /* Initialize COOK signal arithmetic handling */
1165 if (1) {
1166 q->scalar_dequant = scalar_dequant_float;
1167 q->decouple = decouple_float;
1168 q->imlt_window = imlt_window_float;
1169 q->interpolate = interpolate_float;
1170 q->saturate_output = saturate_output_float;
1171 }
1172
1173 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1174 if (q->total_subbands > 53) {
1175 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1176 return -1;
1177 }
1178 if (q->subbands > 50) {
1179 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1180 return -1;
1181 }
1182 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1183 } else {
1184 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1185 return -1;
1186 }
1187 if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1188 av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1189 return -1;
1190 }
1191
1192 avctx->sample_fmt = SAMPLE_FMT_S16;
1193 avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1194
1195 #ifdef COOKDEBUG
1196 dump_cook_context(q);
1197 #endif
1198 return 0;
1199 }
1200
1201
1202 AVCodec cook_decoder =
1203 {
1204 .name = "cook",
1205 .type = CODEC_TYPE_AUDIO,
1206 .id = CODEC_ID_COOK,
1207 .priv_data_size = sizeof(COOKContext),
1208 .init = cook_decode_init,
1209 .close = cook_decode_close,
1210 .decode = cook_decode_frame,
1211 .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1212 };