Fix broken cosmetics commit and add a check for valid headers.
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 */
21
22 /**
23 * @file cook.c
24 * Cook compatible decoder.
25 * This decoder handles RealNetworks, RealAudio G2 data.
26 * Cook is identified by the codec name cook in RM files.
27 *
28 * To use this decoder, a calling application must supply the extradata
29 * bytes provided from the RM container; 8+ bytes for mono streams and
30 * 16+ for stereo streams (maybe more).
31 *
32 * Codec technicalities (all this assume a buffer length of 1024):
33 * Cook works with several different techniques to achieve its compression.
34 * In the timedomain the buffer is divided into 8 pieces and quantized. If
35 * two neighboring pieces have different quantization index a smooth
36 * quantization curve is used to get a smooth overlap between the different
37 * pieces.
38 * To get to the transformdomain Cook uses a modulated lapped transform.
39 * The transform domain has 50 subbands with 20 elements each. This
40 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
41 * available.
42 */
43
44 #include <math.h>
45 #include <stddef.h>
46 #include <stdio.h>
47
48 #define ALT_BITSTREAM_READER
49 #include "avcodec.h"
50 #include "bitstream.h"
51 #include "dsputil.h"
52
53 #include "cookdata.h"
54
55 /* the different Cook versions */
56 #define MONO_COOK1 0x1000001
57 #define MONO_COOK2 0x1000002
58 #define JOINT_STEREO 0x1000003
59 #define MC_COOK 0x2000000 //multichannel Cook, not supported
60
61 #define SUBBAND_SIZE 20
62 //#define COOKDEBUG
63
64 typedef struct {
65 int size;
66 int qidx_table1[8];
67 int qidx_table2[8];
68 } COOKgain;
69
70 typedef struct __attribute__((__packed__)){
71 /* codec data start */
72 uint32_t cookversion; //in network order, bigendian
73 uint16_t samples_per_frame; //amount of samples per frame per channel, bigendian
74 uint16_t subbands; //amount of bands used in the frequency domain, bigendian
75 /* Mono extradata ends here. */
76 uint32_t unused;
77 uint16_t js_subband_start; //bigendian
78 uint16_t js_vlc_bits; //bigendian
79 /* Stereo extradata ends here. */
80 } COOKextradata;
81
82
83 typedef struct {
84 GetBitContext gb;
85 /* stream data */
86 int nb_channels;
87 int joint_stereo;
88 int bit_rate;
89 int sample_rate;
90 int samples_per_channel;
91 int samples_per_frame;
92 int subbands;
93 int log2_numvector_size;
94 int numvector_size; //1 << log2_numvector_size;
95 int js_subband_start;
96 int total_subbands;
97 int num_vectors;
98 int bits_per_subpacket;
99 /* states */
100 int random_state;
101
102 /* transform data */
103 FFTContext fft_ctx;
104 FFTSample mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
105 float* mlt_window;
106 float* mlt_precos;
107 float* mlt_presin;
108 float* mlt_postcos;
109 int fft_size;
110 int fft_order;
111 int mlt_size; //modulated lapped transform size
112
113 /* gain buffers */
114 COOKgain* gain_now_ptr;
115 COOKgain* gain_previous_ptr;
116 COOKgain gain_current;
117 COOKgain gain_now;
118 COOKgain gain_previous;
119 COOKgain gain_channel1[2];
120 COOKgain gain_channel2[2];
121
122 /* VLC data */
123 int js_vlc_bits;
124 VLC envelope_quant_index[13];
125 VLC sqvh[7]; //scalar quantization
126 VLC ccpl; //channel coupling
127
128 /* generatable tables and related variables */
129 int gain_size_factor;
130 float gain_table[23];
131 float pow2tab[127];
132 float rootpow2tab[127];
133
134 /* data buffers */
135
136 uint8_t* decoded_bytes_buffer;
137 float mono_mdct_output[2048] __attribute__((aligned(16)));
138 float* previous_buffer_ptr[2];
139 float mono_previous_buffer1[1024];
140 float mono_previous_buffer2[1024];
141 float* decode_buf_ptr[4];
142 float* decode_buf_ptr2[2];
143 float decode_buffer_1[1024];
144 float decode_buffer_2[1024];
145 float decode_buffer_3[1024];
146 float decode_buffer_4[1024];
147 } COOKContext;
148
149 /* debug functions */
150
151 #ifdef COOKDEBUG
152 static void dump_float_table(float* table, int size, int delimiter) {
153 int i=0;
154 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
155 for (i=0 ; i<size ; i++) {
156 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
157 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
158 }
159 }
160
161 static void dump_int_table(int* table, int size, int delimiter) {
162 int i=0;
163 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
164 for (i=0 ; i<size ; i++) {
165 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
166 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
167 }
168 }
169
170 static void dump_short_table(short* table, int size, int delimiter) {
171 int i=0;
172 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
173 for (i=0 ; i<size ; i++) {
174 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
175 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
176 }
177 }
178
179 #endif
180
181 /*************** init functions ***************/
182
183 /* table generator */
184 static void init_pow2table(COOKContext *q){
185 int i;
186 q->pow2tab[63] = 1.0;
187 for (i=1 ; i<64 ; i++){
188 q->pow2tab[63+i]=(float)pow(2.0,(double)i);
189 q->pow2tab[63-i]=1.0/(float)pow(2.0,(double)i);
190 }
191 }
192
193 /* table generator */
194 static void init_rootpow2table(COOKContext *q){
195 int i;
196 q->rootpow2tab[63] = 1.0;
197 for (i=1 ; i<64 ; i++){
198 q->rootpow2tab[63+i]=sqrt((float)powf(2.0,(float)i));
199 q->rootpow2tab[63-i]=sqrt(1.0/(float)powf(2.0,(float)i));
200 }
201 }
202
203 /* table generator */
204 static void init_gain_table(COOKContext *q) {
205 int i;
206 q->gain_size_factor = q->samples_per_channel/8;
207 for (i=0 ; i<23 ; i++) {
208 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
209 (1.0/(double)q->gain_size_factor));
210 }
211 }
212
213
214 static int init_cook_vlc_tables(COOKContext *q) {
215 int i, result;
216
217 result = 0;
218 for (i=0 ; i<13 ; i++) {
219 result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
220 envelope_quant_index_huffbits[i], 1, 1,
221 envelope_quant_index_huffcodes[i], 2, 2, 0);
222 }
223 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
224 for (i=0 ; i<7 ; i++) {
225 result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
226 cvh_huffbits[i], 1, 1,
227 cvh_huffcodes[i], 2, 2, 0);
228 }
229
230 if (q->nb_channels==2 && q->joint_stereo==1){
231 result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
232 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
233 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
234 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
235 }
236
237 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
238 return result;
239 }
240
241 static int init_cook_mlt(COOKContext *q) {
242 int j;
243 float alpha;
244
245 /* Allocate the buffers, could be replaced with a static [512]
246 array if needed. */
247 q->mlt_size = q->samples_per_channel;
248 q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
249 q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
250 q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
251 q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
252
253 /* Initialize the MLT window: simple sine window. */
254 alpha = M_PI / (2.0 * (float)q->mlt_size);
255 for(j=0 ; j<q->mlt_size ; j++) {
256 q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
257 }
258
259 /* pre/post twiddle factors */
260 for (j=0 ; j<q->mlt_size/2 ; j++){
261 q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
262 q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
263 q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
264 }
265
266 /* Initialize the FFT. */
267 ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
268 av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
269 av_log2(q->samples_per_channel)-1);
270
271 return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
272 }
273
274 /*************** init functions end ***********/
275
276 /**
277 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
278 * Why? No idea, some checksum/error detection method maybe.
279 * Nice way to waste CPU cycles.
280 *
281 * @param in pointer to 32bit array of indata
282 * @param bits amount of bits
283 * @param out pointer to 32bit array of outdata
284 */
285
286 static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
287 int i;
288 uint32_t* buf = (uint32_t*) inbuffer;
289 uint32_t* obuf = (uint32_t*) out;
290 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
291 * I'm too lazy though, should be something like
292 * for(i=0 ; i<bitamount/64 ; i++)
293 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
294 * Buffer alignment needs to be checked. */
295
296
297 for(i=0 ; i<bytes/4 ; i++){
298 #ifdef WORDS_BIGENDIAN
299 obuf[i] = 0x37c511f2^buf[i];
300 #else
301 obuf[i] = 0xf211c537^buf[i];
302 #endif
303 }
304 }
305
306 /**
307 * Cook uninit
308 */
309
310 static int cook_decode_close(AVCodecContext *avctx)
311 {
312 int i;
313 COOKContext *q = avctx->priv_data;
314 av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
315
316 /* Free allocated memory buffers. */
317 av_free(q->mlt_window);
318 av_free(q->mlt_precos);
319 av_free(q->mlt_presin);
320 av_free(q->mlt_postcos);
321 av_free(q->decoded_bytes_buffer);
322
323 /* Free the transform. */
324 ff_fft_end(&q->fft_ctx);
325
326 /* Free the VLC tables. */
327 for (i=0 ; i<13 ; i++) {
328 free_vlc(&q->envelope_quant_index[i]);
329 }
330 for (i=0 ; i<7 ; i++) {
331 free_vlc(&q->sqvh[i]);
332 }
333 if(q->nb_channels==2 && q->joint_stereo==1 ){
334 free_vlc(&q->ccpl);
335 }
336
337 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
338
339 return 0;
340 }
341
342 /**
343 * Fill the COOKgain structure for the timedomain quantization.
344 *
345 * @param q pointer to the COOKContext
346 * @param gaininfo pointer to the COOKgain
347 */
348
349 static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
350 int i;
351
352 while (get_bits1(gb)) {}
353
354 gaininfo->size = get_bits_count(gb) - 1; //amount of elements*2 to update
355
356 if (get_bits_count(gb) - 1 <= 0) return;
357
358 for (i=0 ; i<gaininfo->size ; i++){
359 gaininfo->qidx_table1[i] = get_bits(gb,3);
360 if (get_bits1(gb)) {
361 gaininfo->qidx_table2[i] = get_bits(gb,4) - 7; //convert to signed
362 } else {
363 gaininfo->qidx_table2[i] = -1;
364 }
365 }
366 }
367
368 /**
369 * Create the quant index table needed for the envelope.
370 *
371 * @param q pointer to the COOKContext
372 * @param quant_index_table pointer to the array
373 */
374
375 static void decode_envelope(COOKContext *q, int* quant_index_table) {
376 int i,j, vlc_index;
377 int bitbias;
378
379 bitbias = get_bits_count(&q->gb);
380 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
381
382 for (i=1 ; i < q->total_subbands ; i++){
383 vlc_index=i;
384 if (i >= q->js_subband_start * 2) {
385 vlc_index-=q->js_subband_start;
386 } else {
387 vlc_index/=2;
388 if(vlc_index < 1) vlc_index = 1;
389 }
390 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
391
392 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
393 q->envelope_quant_index[vlc_index-1].bits,2);
394 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
395 }
396 }
397
398 /**
399 * Create the quant value table.
400 *
401 * @param q pointer to the COOKContext
402 * @param quant_value_table pointer to the array
403 */
404
405 static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
406 float* quant_value_table){
407
408 int i;
409 for(i=0 ; i < q->total_subbands ; i++){
410 quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
411 }
412 }
413
414 /**
415 * Calculate the category and category_index vector.
416 *
417 * @param q pointer to the COOKContext
418 * @param quant_index_table pointer to the array
419 * @param category pointer to the category array
420 * @param category_index pointer to the category_index array
421 */
422
423 static void categorize(COOKContext *q, int* quant_index_table,
424 int* category, int* category_index){
425 int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
426 int exp_index2[102];
427 int exp_index1[102];
428
429 int tmp_categorize_array1[128];
430 int tmp_categorize_array1_idx=0;
431 int tmp_categorize_array2[128];
432 int tmp_categorize_array2_idx=0;
433 int category_index_size=0;
434
435 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
436
437 if(bits_left > q->samples_per_channel) {
438 bits_left = q->samples_per_channel +
439 ((bits_left - q->samples_per_channel)*5)/8;
440 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
441 }
442
443 memset(&exp_index1,0,102*sizeof(int));
444 memset(&exp_index2,0,102*sizeof(int));
445 memset(&tmp_categorize_array1,0,128*sizeof(int));
446 memset(&tmp_categorize_array2,0,128*sizeof(int));
447
448 bias=-32;
449
450 /* Estimate bias. */
451 for (i=32 ; i>0 ; i=i/2){
452 num_bits = 0;
453 index = 0;
454 for (j=q->total_subbands ; j>0 ; j--){
455 exp_idx = (i - quant_index_table[index] + bias) / 2;
456 if (exp_idx<0){
457 exp_idx=0;
458 } else if(exp_idx >7) {
459 exp_idx=7;
460 }
461 index++;
462 num_bits+=expbits_tab[exp_idx];
463 }
464 if(num_bits >= bits_left - 32){
465 bias+=i;
466 }
467 }
468
469 /* Calculate total number of bits. */
470 num_bits=0;
471 for (i=0 ; i<q->total_subbands ; i++) {
472 exp_idx = (bias - quant_index_table[i]) / 2;
473 if (exp_idx<0) {
474 exp_idx=0;
475 } else if(exp_idx >7) {
476 exp_idx=7;
477 }
478 num_bits += expbits_tab[exp_idx];
479 exp_index1[i] = exp_idx;
480 exp_index2[i] = exp_idx;
481 }
482 tmpbias = bias = num_bits;
483
484 for (j = 1 ; j < q->numvector_size ; j++) {
485 if (tmpbias + bias > 2*bits_left) { /* ---> */
486 int max = -999999;
487 index=-1;
488 for (i=0 ; i<q->total_subbands ; i++){
489 if (exp_index1[i] < 7) {
490 v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
491 if ( v >= max) {
492 max = v;
493 index = i;
494 }
495 }
496 }
497 if(index==-1)break;
498 tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
499 tmpbias -= expbits_tab[exp_index1[index]] -
500 expbits_tab[exp_index1[index]+1];
501 ++exp_index1[index];
502 } else { /* <--- */
503 int min = 999999;
504 index=-1;
505 for (i=0 ; i<q->total_subbands ; i++){
506 if(exp_index2[i] > 0){
507 v = (-2*exp_index2[i])-quant_index_table[i];
508 if ( v < min) {
509 min = v;
510 index = i;
511 }
512 }
513 }
514 if(index == -1)break;
515 tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
516 tmpbias -= expbits_tab[exp_index2[index]] -
517 expbits_tab[exp_index2[index]-1];
518 --exp_index2[index];
519 }
520 }
521
522 for(i=0 ; i<q->total_subbands ; i++)
523 category[i] = exp_index2[i];
524
525 /* Concatenate the two arrays. */
526 for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
527 category_index[category_index_size++] = tmp_categorize_array2[i];
528
529 for(i=0;i<tmp_categorize_array1_idx;i++)
530 category_index[category_index_size++ ] = tmp_categorize_array1[i];
531
532 /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
533 should fill the remaining bytes. */
534 for(i=category_index_size;i<q->numvector_size;i++)
535 category_index[i]=0;
536
537 }
538
539
540 /**
541 * Expand the category vector.
542 *
543 * @param q pointer to the COOKContext
544 * @param category pointer to the category array
545 * @param category_index pointer to the category_index array
546 */
547
548 static void inline expand_category(COOKContext *q, int* category,
549 int* category_index){
550 int i;
551 for(i=0 ; i<q->num_vectors ; i++){
552 ++category[category_index[i]];
553 }
554 }
555
556 /**
557 * The real requantization of the mltcoefs
558 *
559 * @param q pointer to the COOKContext
560 * @param index index
561 * @param band current subband
562 * @param quant_value_table pointer to the array
563 * @param subband_coef_index array of indexes to quant_centroid_tab
564 * @param subband_coef_noise use random noise instead of predetermined value
565 * @param mlt_buffer pointer to the mlt buffer
566 */
567
568
569 static void scalar_dequant(COOKContext *q, int index, int band,
570 float* quant_value_table, int* subband_coef_index,
571 int* subband_coef_noise, float* mlt_buffer){
572 int i;
573 float f1;
574
575 for(i=0 ; i<SUBBAND_SIZE ; i++) {
576 if (subband_coef_index[i]) {
577 if (subband_coef_noise[i]) {
578 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
579 } else {
580 f1 = quant_centroid_tab[index][subband_coef_index[i]];
581 }
582 } else {
583 /* noise coding if subband_coef_noise[i] == 0 */
584 q->random_state = q->random_state * 214013 + 2531011; //typical RNG numbers
585 f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
586 }
587 mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
588 }
589 }
590 /**
591 * Unpack the subband_coef_index and subband_coef_noise vectors.
592 *
593 * @param q pointer to the COOKContext
594 * @param category pointer to the category array
595 * @param subband_coef_index array of indexes to quant_centroid_tab
596 * @param subband_coef_noise use random noise instead of predetermined value
597 */
598
599 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
600 int* subband_coef_noise) {
601 int i,j;
602 int vlc, vd ,tmp, result;
603 int ub;
604 int cb;
605
606 vd = vd_tab[category];
607 result = 0;
608 for(i=0 ; i<vpr_tab[category] ; i++){
609 ub = get_bits_count(&q->gb);
610 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
611 cb = get_bits_count(&q->gb);
612 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
613 vlc = 0;
614 result = 1;
615 }
616 for(j=vd-1 ; j>=0 ; j--){
617 tmp = (vlc * invradix_tab[category])/0x100000;
618 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
619 vlc = tmp;
620 }
621 for(j=0 ; j<vd ; j++){
622 if (subband_coef_index[i*vd + j]) {
623 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
624 subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
625 } else {
626 result=1;
627 subband_coef_noise[i*vd+j]=0;
628 }
629 } else {
630 subband_coef_noise[i*vd+j]=0;
631 }
632 }
633 }
634 return result;
635 }
636
637
638 /**
639 * Fill the mlt_buffer with mlt coefficients.
640 *
641 * @param q pointer to the COOKContext
642 * @param category pointer to the category array
643 * @param quant_value_table pointer to the array
644 * @param mlt_buffer pointer to mlt coefficients
645 */
646
647
648 static void decode_vectors(COOKContext* q, int* category,
649 float* quant_value_table, float* mlt_buffer){
650 /* A zero in this table means that the subband coefficient is
651 random noise coded. */
652 int subband_coef_noise[SUBBAND_SIZE];
653 /* A zero in this table means that the subband coefficient is a
654 positive multiplicator. */
655 int subband_coef_index[SUBBAND_SIZE];
656 int band, j;
657 int index=0;
658
659 for(band=0 ; band<q->total_subbands ; band++){
660 index = category[band];
661 if(category[band] < 7){
662 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
663 index=7;
664 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
665 }
666 }
667 if(index==7) {
668 memset(subband_coef_index, 0, sizeof(subband_coef_index));
669 memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
670 }
671 scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
672 subband_coef_noise, mlt_buffer);
673 }
674
675 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
676 return;
677 }
678 }
679
680
681 /**
682 * function for decoding mono data
683 *
684 * @param q pointer to the COOKContext
685 * @param mlt_buffer1 pointer to left channel mlt coefficients
686 * @param mlt_buffer2 pointer to right channel mlt coefficients
687 */
688
689 static void mono_decode(COOKContext *q, float* mlt_buffer) {
690
691 int category_index[128];
692 float quant_value_table[102];
693 int quant_index_table[102];
694 int category[128];
695
696 memset(&category, 0, 128*sizeof(int));
697 memset(&quant_value_table, 0, 102*sizeof(int));
698 memset(&category_index, 0, 128*sizeof(int));
699
700 decode_envelope(q, quant_index_table);
701 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
702 dequant_envelope(q, quant_index_table, quant_value_table);
703 categorize(q, quant_index_table, category, category_index);
704 expand_category(q, category, category_index);
705 decode_vectors(q, category, quant_value_table, mlt_buffer);
706 }
707
708
709 /**
710 * The modulated lapped transform, this takes transform coefficients
711 * and transforms them into timedomain samples. This is done through
712 * an FFT-based algorithm with pre- and postrotation steps.
713 * A window and reorder step is also included.
714 *
715 * @param q pointer to the COOKContext
716 * @param inbuffer pointer to the mltcoefficients
717 * @param outbuffer pointer to the timedomain buffer
718 * @param mlt_tmp pointer to temporary storage space
719 */
720
721 static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
722 float* mlt_tmp){
723 int i;
724
725 /* prerotation */
726 for(i=0 ; i<q->mlt_size ; i+=2){
727 outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
728 (q->mlt_precos[i/2] * inbuffer[i]);
729 outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
730 (q->mlt_presin[i/2] * inbuffer[i]);
731 }
732
733 /* FFT */
734 ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
735 ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
736
737 /* postrotation */
738 for(i=0 ; i<q->mlt_size ; i+=2){
739 mlt_tmp[i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
740 (q->mlt_postcos[i/2] * outbuffer[i]);
741 mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
742 (q->mlt_postcos[i/2] * outbuffer[i+1]);
743 }
744
745 /* window and reorder */
746 for(i=0 ; i<q->mlt_size/2 ; i++){
747 outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
748 outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
749 q->mlt_window[q->mlt_size-1-i];
750 outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
751 q->mlt_window[q->mlt_size-1-i];
752 outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
753 q->mlt_window[i]);
754 }
755 }
756
757
758 /**
759 * the actual requantization of the timedomain samples
760 *
761 * @param q pointer to the COOKContext
762 * @param buffer pointer to the timedomain buffer
763 * @param gain_index index for the block multiplier
764 * @param gain_index_next index for the next block multiplier
765 */
766
767 static void interpolate(COOKContext *q, float* buffer,
768 int gain_index, int gain_index_next){
769 int i;
770 float fc1, fc2;
771 fc1 = q->pow2tab[gain_index+63];
772
773 if(gain_index == gain_index_next){ //static gain
774 for(i=0 ; i<q->gain_size_factor ; i++){
775 buffer[i]*=fc1;
776 }
777 return;
778 } else { //smooth gain
779 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
780 for(i=0 ; i<q->gain_size_factor ; i++){
781 buffer[i]*=fc1;
782 fc1*=fc2;
783 }
784 return;
785 }
786 }
787
788 /**
789 * timedomain requantization of the timedomain samples
790 *
791 * @param q pointer to the COOKContext
792 * @param buffer pointer to the timedomain buffer
793 * @param gain_now current gain structure
794 * @param gain_previous previous gain structure
795 */
796
797 static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
798 COOKgain* gain_previous){
799 int i, index;
800 int gain_index[9];
801 int tmp_gain_index;
802
803 gain_index[8]=0;
804 index = gain_previous->size;
805 for (i=7 ; i>=0 ; i--) {
806 if(index && gain_previous->qidx_table1[index-1]==i) {
807 gain_index[i] = gain_previous->qidx_table2[index-1];
808 index--;
809 } else {
810 gain_index[i]=gain_index[i+1];
811 }
812 }
813 /* This is applied to the to be previous data buffer. */
814 for(i=0;i<8;i++){
815 interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
816 gain_index[i], gain_index[i+1]);
817 }
818
819 tmp_gain_index = gain_index[0];
820 index = gain_now->size;
821 for (i=7 ; i>=0 ; i--) {
822 if(index && gain_now->qidx_table1[index-1]==i) {
823 gain_index[i]= gain_now->qidx_table2[index-1];
824 index--;
825 } else {
826 gain_index[i]=gain_index[i+1];
827 }
828 }
829
830 /* This is applied to the to be current block. */
831 for(i=0;i<8;i++){
832 interpolate(q, &buffer[i*q->gain_size_factor],
833 tmp_gain_index+gain_index[i],
834 tmp_gain_index+gain_index[i+1]);
835 }
836 }
837
838
839 /**
840 * mlt overlapping and buffer management
841 *
842 * @param q pointer to the COOKContext
843 * @param buffer pointer to the timedomain buffer
844 * @param gain_now current gain structure
845 * @param gain_previous previous gain structure
846 * @param previous_buffer pointer to the previous buffer to be used for overlapping
847 *
848 */
849
850 static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
851 COOKgain* gain_previous, float* previous_buffer) {
852 int i;
853 if((gain_now->size || gain_previous->size)) {
854 gain_window(q, buffer, gain_now, gain_previous);
855 }
856
857 /* Overlap with the previous block. */
858 for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
859
860 /* Save away the current to be previous block. */
861 memcpy(previous_buffer, buffer+q->samples_per_channel,
862 sizeof(float)*q->samples_per_channel);
863 }
864
865
866 /**
867 * function for getting the jointstereo coupling information
868 *
869 * @param q pointer to the COOKContext
870 * @param decouple_tab decoupling array
871 *
872 */
873
874 static void decouple_info(COOKContext *q, int* decouple_tab){
875 int length, i;
876
877 if(get_bits1(&q->gb)) {
878 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
879
880 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
881 for (i=0 ; i<length ; i++) {
882 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
883 }
884 return;
885 }
886
887 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
888
889 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
890 for (i=0 ; i<length ; i++) {
891 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
892 }
893 return;
894 }
895
896
897 /**
898 * function for decoding joint stereo data
899 *
900 * @param q pointer to the COOKContext
901 * @param mlt_buffer1 pointer to left channel mlt coefficients
902 * @param mlt_buffer2 pointer to right channel mlt coefficients
903 */
904
905 static void joint_decode(COOKContext *q, float* mlt_buffer1,
906 float* mlt_buffer2) {
907 int i,j;
908 int decouple_tab[SUBBAND_SIZE];
909 float decode_buffer[1060];
910 int idx, cpl_tmp,tmp_idx;
911 float f1,f2;
912 float* cplscale;
913
914 memset(decouple_tab, 0, sizeof(decouple_tab));
915 memset(decode_buffer, 0, sizeof(decode_buffer));
916
917 /* Make sure the buffers are zeroed out. */
918 memset(mlt_buffer1,0, 1024*sizeof(float));
919 memset(mlt_buffer2,0, 1024*sizeof(float));
920 decouple_info(q, decouple_tab);
921 mono_decode(q, decode_buffer);
922
923 /* The two channels are stored interleaved in decode_buffer. */
924 for (i=0 ; i<q->js_subband_start ; i++) {
925 for (j=0 ; j<SUBBAND_SIZE ; j++) {
926 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
927 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
928 }
929 }
930
931 /* When we reach js_subband_start (the higher frequencies)
932 the coefficients are stored in a coupling scheme. */
933 idx = (1 << q->js_vlc_bits) - 1;
934 for (i=q->js_subband_start ; i<q->subbands ; i++) {
935 cpl_tmp = cplband[i];
936 idx -=decouple_tab[cpl_tmp];
937 cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table
938 f1 = cplscale[decouple_tab[cpl_tmp]];
939 f2 = cplscale[idx-1];
940 for (j=0 ; j<SUBBAND_SIZE ; j++) {
941 tmp_idx = ((q->js_subband_start + i)*20)+j;
942 mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
943 mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
944 }
945 idx = (1 << q->js_vlc_bits) - 1;
946 }
947 }
948
949 /**
950 * Cook subpacket decoding. This function returns one decoded subpacket,
951 * usually 1024 samples per channel.
952 *
953 * @param q pointer to the COOKContext
954 * @param inbuffer pointer to the inbuffer
955 * @param sub_packet_size subpacket size
956 * @param outbuffer pointer to the outbuffer
957 */
958
959
960 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
961 int sub_packet_size, int16_t *outbuffer) {
962 int i,j;
963 int value;
964 float* tmp_ptr;
965
966 /* packet dump */
967 // for (i=0 ; i<sub_packet_size ; i++) {
968 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
969 // }
970 // av_log(NULL, AV_LOG_ERROR, "\n");
971
972 decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
973 init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
974 decode_gain_info(&q->gb, &q->gain_current);
975
976 if(q->nb_channels==2 && q->joint_stereo==1){
977 joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
978
979 /* Swap buffer pointers. */
980 tmp_ptr = q->decode_buf_ptr[1];
981 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
982 q->decode_buf_ptr[0] = tmp_ptr;
983 tmp_ptr = q->decode_buf_ptr[3];
984 q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
985 q->decode_buf_ptr[2] = tmp_ptr;
986
987 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
988 now/previous swap */
989 q->gain_now_ptr = &q->gain_now;
990 q->gain_previous_ptr = &q->gain_previous;
991 for (i=0 ; i<q->nb_channels ; i++){
992
993 cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
994 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
995 q->gain_previous_ptr, q->previous_buffer_ptr[0]);
996
997 /* Swap out the previous buffer. */
998 tmp_ptr = q->previous_buffer_ptr[0];
999 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1000 q->previous_buffer_ptr[1] = tmp_ptr;
1001
1002 /* Clip and convert the floats to 16 bits. */
1003 for (j=0 ; j<q->samples_per_frame ; j++){
1004 value = lrintf(q->mono_mdct_output[j]);
1005 if(value < -32768) value = -32768;
1006 else if(value > 32767) value = 32767;
1007 outbuffer[2*j+i] = value;
1008 }
1009 }
1010
1011 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1012 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1013
1014 } else if (q->nb_channels==2 && q->joint_stereo==0) {
1015 /* channel 0 */
1016 mono_decode(q, q->decode_buf_ptr2[0]);
1017
1018 tmp_ptr = q->decode_buf_ptr2[0];
1019 q->decode_buf_ptr2[0] = q->decode_buf_ptr2[1];
1020 q->decode_buf_ptr2[1] = tmp_ptr;
1021
1022 memcpy(&q->gain_channel1[0], &q->gain_current ,sizeof(COOKgain));
1023 q->gain_now_ptr = &q->gain_channel1[0];
1024 q->gain_previous_ptr = &q->gain_channel1[1];
1025
1026 cook_imlt(q, q->decode_buf_ptr2[0], q->mono_mdct_output,q->mlt_tmp);
1027 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1028 q->gain_previous_ptr, q->mono_previous_buffer1);
1029
1030 memcpy(&q->gain_channel1[1], &q->gain_channel1[0],sizeof(COOKgain));
1031
1032
1033 for (j=0 ; j<q->samples_per_frame ; j++){
1034 value = lrintf(q->mono_mdct_output[j]);
1035 if(value < -32768) value = -32768;
1036 else if(value > 32767) value = 32767;
1037 outbuffer[2*j+1] = value;
1038 }
1039
1040 /* channel 1 */
1041 //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1042 init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
1043
1044 q->gain_now_ptr = &q->gain_channel2[0];
1045 q->gain_previous_ptr = &q->gain_channel2[1];
1046
1047 decode_gain_info(&q->gb, &q->gain_channel2[0]);
1048 mono_decode(q, q->decode_buf_ptr[0]);
1049
1050 tmp_ptr = q->decode_buf_ptr[0];
1051 q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1052 q->decode_buf_ptr[1] = tmp_ptr;
1053
1054 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1055 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1056 q->gain_previous_ptr, q->mono_previous_buffer2);
1057
1058 /* Swap out the previous buffer. */
1059 tmp_ptr = q->previous_buffer_ptr[0];
1060 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1061 q->previous_buffer_ptr[1] = tmp_ptr;
1062
1063 memcpy(&q->gain_channel2[1], &q->gain_channel2[0] ,sizeof(COOKgain));
1064
1065 for (j=0 ; j<q->samples_per_frame ; j++){
1066 value = lrintf(q->mono_mdct_output[j]);
1067 if(value < -32768) value = -32768;
1068 else if(value > 32767) value = 32767;
1069 outbuffer[2*j] = value;
1070 }
1071
1072 } else {
1073 mono_decode(q, q->decode_buf_ptr[0]);
1074
1075 /* Swap buffer pointers. */
1076 tmp_ptr = q->decode_buf_ptr[1];
1077 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1078 q->decode_buf_ptr[0] = tmp_ptr;
1079
1080 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1081 now/previous swap */
1082 q->gain_now_ptr = &q->gain_now;
1083 q->gain_previous_ptr = &q->gain_previous;
1084
1085 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1086 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1087 q->gain_previous_ptr, q->mono_previous_buffer1);
1088
1089 /* Clip and convert the floats to 16 bits */
1090 for (j=0 ; j<q->samples_per_frame ; j++){
1091 value = lrintf(q->mono_mdct_output[j]);
1092 if(value < -32768) value = -32768;
1093 else if(value > 32767) value = 32767;
1094 outbuffer[j] = value;
1095 }
1096 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1097 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1098 }
1099 return q->samples_per_frame * sizeof(int16_t);
1100 }
1101
1102
1103 /**
1104 * Cook frame decoding
1105 *
1106 * @param avctx pointer to the AVCodecContext
1107 */
1108
1109 static int cook_decode_frame(AVCodecContext *avctx,
1110 void *data, int *data_size,
1111 uint8_t *buf, int buf_size) {
1112 COOKContext *q = avctx->priv_data;
1113
1114 if (buf_size < avctx->block_align)
1115 return buf_size;
1116
1117 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1118
1119 return avctx->block_align;
1120 }
1121
1122 #ifdef COOKDEBUG
1123 static void dump_cook_context(COOKContext *q, COOKextradata *e)
1124 {
1125 //int i=0;
1126 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1127 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1128 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1129 if (e->cookversion > MONO_COOK2) {
1130 PRINT("js_subband_start",e->js_subband_start);
1131 PRINT("js_vlc_bits",e->js_vlc_bits);
1132 }
1133 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1134 PRINT("nb_channels",q->nb_channels);
1135 PRINT("bit_rate",q->bit_rate);
1136 PRINT("sample_rate",q->sample_rate);
1137 PRINT("samples_per_channel",q->samples_per_channel);
1138 PRINT("samples_per_frame",q->samples_per_frame);
1139 PRINT("subbands",q->subbands);
1140 PRINT("random_state",q->random_state);
1141 PRINT("mlt_size",q->mlt_size);
1142 PRINT("js_subband_start",q->js_subband_start);
1143 PRINT("log2_numvector_size",q->log2_numvector_size);
1144 PRINT("numvector_size",q->numvector_size);
1145 PRINT("total_subbands",q->total_subbands);
1146 }
1147 #endif
1148
1149 /**
1150 * Cook initialization
1151 *
1152 * @param avctx pointer to the AVCodecContext
1153 */
1154
1155 static int cook_decode_init(AVCodecContext *avctx)
1156 {
1157 COOKextradata *e = avctx->extradata;
1158 COOKContext *q = avctx->priv_data;
1159
1160 /* Take care of the codec specific extradata. */
1161 if (avctx->extradata_size <= 0) {
1162 av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1163 return -1;
1164 } else {
1165 /* 8 for mono, 16 for stereo, ? for multichannel
1166 Swap to right endianness so we don't need to care later on. */
1167 av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1168 if (avctx->extradata_size >= 8){
1169 e->cookversion = be2me_32(e->cookversion);
1170 e->samples_per_frame = be2me_16(e->samples_per_frame);
1171 e->subbands = be2me_16(e->subbands);
1172 }
1173 if (avctx->extradata_size >= 16){
1174 e->js_subband_start = be2me_16(e->js_subband_start);
1175 e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1176 }
1177 }
1178
1179 /* Take data from the AVCodecContext (RM container). */
1180 q->sample_rate = avctx->sample_rate;
1181 q->nb_channels = avctx->channels;
1182 q->bit_rate = avctx->bit_rate;
1183
1184 /* Initialize state. */
1185 q->random_state = 1;
1186
1187 /* Initialize extradata related variables. */
1188 q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1189 q->samples_per_frame = e->samples_per_frame;
1190 q->subbands = e->subbands;
1191 q->bits_per_subpacket = avctx->block_align * 8;
1192
1193 /* Initialize default data states. */
1194 q->js_subband_start = 0;
1195 q->log2_numvector_size = 5;
1196 q->total_subbands = q->subbands;
1197
1198 /* Initialize version-dependent variables */
1199 av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1200 switch (e->cookversion) {
1201 case MONO_COOK1:
1202 if (q->nb_channels != 1) {
1203 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1204 return -1;
1205 }
1206 av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1207 break;
1208 case MONO_COOK2:
1209 if (q->nb_channels != 1) {
1210 q->joint_stereo = 0;
1211 q->bits_per_subpacket = q->bits_per_subpacket/2;
1212 }
1213 av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1214 break;
1215 case JOINT_STEREO:
1216 if (q->nb_channels != 2) {
1217 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1218 return -1;
1219 }
1220 av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1221 if (avctx->extradata_size >= 16){
1222 q->total_subbands = q->subbands + e->js_subband_start;
1223 q->js_subband_start = e->js_subband_start;
1224 q->joint_stereo = 1;
1225 q->js_vlc_bits = e->js_vlc_bits;
1226 }
1227 if (q->samples_per_channel > 256) {
1228 q->log2_numvector_size = 6;
1229 }
1230 if (q->samples_per_channel > 512) {
1231 q->log2_numvector_size = 7;
1232 }
1233 break;
1234 case MC_COOK:
1235 av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1236 return -1;
1237 break;
1238 default:
1239 av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1240 return -1;
1241 break;
1242 }
1243
1244 /* Initialize variable relations */
1245 q->mlt_size = q->samples_per_channel;
1246 q->numvector_size = (1 << q->log2_numvector_size);
1247
1248 /* Generate tables */
1249 init_rootpow2table(q);
1250 init_pow2table(q);
1251 init_gain_table(q);
1252
1253 if (init_cook_vlc_tables(q) != 0)
1254 return -1;
1255
1256 /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1257 this is for the bitstreamreader. */
1258 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t))) == NULL)
1259 return -1;
1260
1261 q->decode_buf_ptr[0] = q->decode_buffer_1;
1262 q->decode_buf_ptr[1] = q->decode_buffer_2;
1263 q->decode_buf_ptr[2] = q->decode_buffer_3;
1264 q->decode_buf_ptr[3] = q->decode_buffer_4;
1265
1266 q->decode_buf_ptr2[0] = q->decode_buffer_3;
1267 q->decode_buf_ptr2[1] = q->decode_buffer_4;
1268
1269 q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1270 q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1271
1272 /* Initialize transform. */
1273 if ( init_cook_mlt(q) == 0 )
1274 return -1;
1275
1276 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1277 if (q->total_subbands > 53) {
1278 av_log(NULL,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1279 return -1;
1280 }
1281 if (q->subbands > 50) {
1282 av_log(NULL,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1283 return -1;
1284 }
1285 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1286 } else {
1287 av_log(NULL,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1288 return -1;
1289 }
1290
1291 #ifdef COOKDEBUG
1292 dump_cook_context(q,e);
1293 #endif
1294 return 0;
1295 }
1296
1297
1298 AVCodec cook_decoder =
1299 {
1300 .name = "cook",
1301 .type = CODEC_TYPE_AUDIO,
1302 .id = CODEC_ID_COOK,
1303 .priv_data_size = sizeof(COOKContext),
1304 .init = cook_decode_init,
1305 .close = cook_decode_close,
1306 .decode = cook_decode_frame,
1307 };