Cook compatibe decoder, patch by Benjamin Larsson
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22 /**
23 * @file cook.c
24 * Cook compatible decoder.
25 * This decoder handles RealNetworks, RealAudio G2 data.
26 * Cook is identified by the codec name cook in RM files.
27 *
28 * To use this decoder, a calling application must supply the extradata
29 * bytes provided from the RM container; 8+ bytes for mono streams and
30 * 16+ for stereo streams (maybe more).
31 *
32 * Codec technicalities (all this assume a buffer length of 1024):
33 * Cook works with several different techniques to achieve its compression.
34 * In the timedomain the buffer is divided into 8 pieces and quantized. If
35 * two neighboring pieces have different quantization index a smooth
36 * quantization curve is used to get a smooth overlap between the different
37 * pieces.
38 * To get to the transformdomain Cook uses a modulated lapped transform.
39 * The transform domain has 50 subbands with 20 elements each. This
40 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
41 * available.
42 */
43
44 #include <math.h>
45 #include <stddef.h>
46 #include <stdio.h>
47
48 #define ALT_BITSTREAM_READER
49 #include "avcodec.h"
50 #include "bitstream.h"
51 #include "dsputil.h"
52
53 #include "cookdata.h"
54
55 /* the different Cook versions */
56 #define MONO_COOK1 0x1000001
57 #define MONO_COOK2 0x1000002
58 #define JOINT_STEREO 0x1000003
59 #define MC_COOK 0x2000000 //multichannel Cook, not supported
60
61 #define SUBBAND_SIZE 20
62 //#define COOKDEBUG
63
64 typedef struct {
65 int size;
66 int qidx_table1[8];
67 int qidx_table2[8];
68 } COOKgain;
69
70 typedef struct __attribute__((__packed__)){
71 /* codec data start */
72 uint32_t cookversion; //in network order, bigendian
73 uint16_t samples_per_frame; //amount of samples per frame per channel, bigendian
74 uint16_t subbands; //amount of bands used in the frequency domain, bigendian
75 /* Mono extradata ends here. */
76 uint32_t unused;
77 uint16_t js_subband_start; //bigendian
78 uint16_t js_vlc_bits; //bigendian
79 /* Stereo extradata ends here. */
80 } COOKextradata;
81
82
83 typedef struct {
84 GetBitContext gb;
85 /* stream data */
86 int nb_channels;
87 int joint_stereo;
88 int bit_rate;
89 int sample_rate;
90 int samples_per_channel;
91 int samples_per_frame;
92 int subbands;
93 int numvector_bits;
94 int numvector_size; //1 << numvector_bits;
95 int js_subband_start;
96 int total_subbands;
97 int num_vectors;
98 int bits_per_subpacket;
99 /* states */
100 int random_state;
101
102 /* transform data */
103 FFTContext fft_ctx;
104 FFTSample mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
105 float* mlt_window;
106 float* mlt_precos;
107 float* mlt_presin;
108 float* mlt_postcos;
109 int fft_size;
110 int fft_order;
111 int mlt_size; //modulated lapped transform size
112
113 /* gain buffers */
114 COOKgain* gain_now_ptr;
115 COOKgain* gain_previous_ptr;
116 COOKgain gain_copy;
117 COOKgain gain_current;
118 COOKgain gain_now;
119 COOKgain gain_previous;
120
121 /* VLC data */
122 int js_vlc_bits;
123 VLC envelope_quant_index[13];
124 VLC sqvh[7]; //scalar quantization
125 VLC ccpl; //channel coupling
126
127 /* generatable tables and related variables */
128 int gain_size_factor;
129 float gain_table[23];
130 float pow2tab[127];
131 float rootpow2tab[127];
132
133 /* data buffers */
134 uint8_t* frame_reorder_buffer;
135 int* frame_reorder_index;
136 int frame_reorder_counter;
137 int frame_reorder_complete;
138 int frame_reorder_index_size;
139
140 uint8_t* decoded_bytes_buffer;
141 float mono_mdct_output[2048] __attribute__((aligned(16)));
142 float* previous_buffer_ptr[2];
143 float mono_previous_buffer1[1024];
144 float mono_previous_buffer2[1024];
145 float* decode_buf_ptr[4];
146 float decode_buffer_1[1024];
147 float decode_buffer_2[1024];
148 float decode_buffer_3[1024];
149 float decode_buffer_4[1024];
150 } COOKContext;
151
152 /* debug functions */
153
154 #ifdef COOKDEBUG
155 static void dump_float_table(float* table, int size, int delimiter) {
156 int i=0;
157 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
158 for (i=0 ; i<size ; i++) {
159 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
160 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
161 }
162 }
163
164 static void dump_int_table(int* table, int size, int delimiter) {
165 int i=0;
166 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
167 for (i=0 ; i<size ; i++) {
168 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
169 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
170 }
171 }
172
173 static void dump_short_table(short* table, int size, int delimiter) {
174 int i=0;
175 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
176 for (i=0 ; i<size ; i++) {
177 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
178 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
179 }
180 }
181
182 #endif
183
184 /*************** init functions ***************/
185
186 /* table generator */
187 static void init_pow2table(COOKContext *q){
188 int i;
189 q->pow2tab[63] = 1.0;
190 for (i=1 ; i<64 ; i++){
191 q->pow2tab[63+i]=(float)pow(2.0,(double)i);
192 q->pow2tab[63-i]=1.0/(float)pow(2.0,(double)i);
193 }
194 }
195
196 /* table generator */
197 static void init_rootpow2table(COOKContext *q){
198 int i;
199 q->rootpow2tab[63] = 1.0;
200 for (i=1 ; i<64 ; i++){
201 q->rootpow2tab[63+i]=sqrt((float)powf(2.0,(float)i));
202 q->rootpow2tab[63-i]=sqrt(1.0/(float)powf(2.0,(float)i));
203 }
204 }
205
206 /* table generator */
207 static void init_gain_table(COOKContext *q) {
208 int i;
209 q->gain_size_factor = q->samples_per_channel/8;
210 for (i=0 ; i<23 ; i++) {
211 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
212 (1.0/(double)q->gain_size_factor));
213 }
214 memset(&q->gain_copy, 0, sizeof(COOKgain));
215 memset(&q->gain_current, 0, sizeof(COOKgain));
216 memset(&q->gain_now, 0, sizeof(COOKgain));
217 memset(&q->gain_previous, 0, sizeof(COOKgain));
218 }
219
220
221 static int init_cook_vlc_tables(COOKContext *q) {
222 int i, result;
223
224 result = 0;
225 for (i=0 ; i<13 ; i++) {
226 result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
227 envelope_quant_index_huffbits[i], 1, 1,
228 envelope_quant_index_huffcodes[i], 2, 2, 0);
229 }
230 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
231 for (i=0 ; i<7 ; i++) {
232 result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
233 cvh_huffbits[i], 1, 1,
234 cvh_huffcodes[i], 2, 2, 0);
235 }
236
237 if (q->nb_channels==2 && q->joint_stereo==1){
238 result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
239 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
240 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
241 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
242 }
243
244 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
245 return result;
246 }
247
248 static int init_cook_mlt(COOKContext *q) {
249 int j;
250 float alpha;
251
252 /* Allocate the buffers, could be replaced with a static [512]
253 array if needed. */
254 q->mlt_size = q->samples_per_channel;
255 q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
256 q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
257 q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
258 q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
259
260 /* Initialize the MLT window: simple sine window. */
261 alpha = M_PI / (2.0 * (float)q->mlt_size);
262 for(j=0 ; j<q->mlt_size ; j++) {
263 q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
264 }
265
266 /* pre/post twiddle factors */
267 for (j=0 ; j<q->mlt_size/2 ; j++){
268 q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
269 q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
270 q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
271 }
272
273 /* Initialize the FFT. */
274 ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
275 av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
276 av_log2(q->samples_per_channel)-1);
277
278 return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
279 }
280
281 /*************** init functions end ***********/
282
283 /**
284 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
285 * Why? No idea, some checksum/error detection method maybe.
286 * Nice way to waste CPU cycles.
287 *
288 * @param in pointer to 32bit array of indata
289 * @param bits amount of bits
290 * @param out pointer to 32bit array of outdata
291 */
292
293 static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
294 int i;
295 uint32_t* buf = (uint32_t*) inbuffer;
296 uint32_t* obuf = (uint32_t*) out;
297 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
298 * I'm too lazy though, should be something like
299 * for(i=0 ; i<bitamount/64 ; i++)
300 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
301 * Buffer alignment needs to be checked. */
302
303
304 for(i=0 ; i<bytes/4 ; i++){
305 #ifdef WORDS_BIGENDIAN
306 obuf[i] = 0x37c511f2^buf[i];
307 #else
308 obuf[i] = 0xf211c537^buf[i];
309 #endif
310 }
311 }
312
313 /**
314 * Cook uninit
315 */
316
317 static int cook_decode_close(AVCodecContext *avctx)
318 {
319 int i;
320 COOKContext *q = avctx->priv_data;
321 av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
322
323 /* Free allocated memory buffers. */
324 av_free(q->mlt_window);
325 av_free(q->mlt_precos);
326 av_free(q->mlt_presin);
327 av_free(q->mlt_postcos);
328 av_free(q->frame_reorder_index);
329 av_free(q->frame_reorder_buffer);
330 av_free(q->decoded_bytes_buffer);
331
332 /* Free the transform. */
333 ff_fft_end(&q->fft_ctx);
334
335 /* Free the VLC tables. */
336 for (i=0 ; i<13 ; i++) {
337 free_vlc(&q->envelope_quant_index[i]);
338 }
339 for (i=0 ; i<7 ; i++) {
340 free_vlc(&q->sqvh[i]);
341 }
342 if(q->nb_channels==2 && q->joint_stereo==1 ){
343 free_vlc(&q->ccpl);
344 }
345
346 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
347
348 return 0;
349 }
350
351 /**
352 * Fill the COOKgain structure for the timedomain quantization.
353 *
354 * @param q pointer to the COOKContext
355 * @param gaininfo pointer to the COOKgain
356 */
357
358 static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
359 int i;
360
361 while (get_bits1(gb)) {}
362
363 gaininfo->size = get_bits_count(gb) - 1; //amount of elements*2 to update
364
365 if (get_bits_count(gb) - 1 <= 0) return;
366
367 for (i=0 ; i<gaininfo->size ; i++){
368 gaininfo->qidx_table1[i] = get_bits(gb,3);
369 if (get_bits1(gb)) {
370 gaininfo->qidx_table2[i] = get_bits(gb,4) - 7; //convert to signed
371 } else {
372 gaininfo->qidx_table2[i] = -1;
373 }
374 }
375 }
376
377 /**
378 * Create the quant index table needed for the envelope.
379 *
380 * @param q pointer to the COOKContext
381 * @param quant_index_table pointer to the array
382 */
383
384 static void decode_envelope(COOKContext *q, int* quant_index_table) {
385 int i,j, vlc_index;
386 int bitbias;
387
388 bitbias = get_bits_count(&q->gb);
389 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
390
391 for (i=1 ; i < q->total_subbands ; i++){
392 vlc_index=i;
393 if (i >= q->js_subband_start * 2) {
394 vlc_index-=q->js_subband_start;
395 } else {
396 vlc_index/=2;
397 if(vlc_index < 1) vlc_index = 1;
398 }
399 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
400
401 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
402 q->envelope_quant_index[vlc_index-1].bits,2);
403 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
404 }
405 }
406
407 /**
408 * Create the quant value table.
409 *
410 * @param q pointer to the COOKContext
411 * @param quant_value_table pointer to the array
412 */
413
414 static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
415 float* quant_value_table){
416
417 int i;
418 for(i=0 ; i < q->total_subbands ; i++){
419 quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
420 }
421 }
422
423 /**
424 * Calculate the category and category_index vector.
425 *
426 * @param q pointer to the COOKContext
427 * @param quant_index_table pointer to the array
428 * @param category pointer to the category array
429 * @param category_index pointer to the category_index array
430 */
431
432 static void categorize(COOKContext *q, int* quant_index_table,
433 int* category, int* category_index){
434 int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
435 int exp_index2[102];
436 int exp_index1[102];
437
438 int tmp_categorize_array1[128];
439 int tmp_categorize_array1_idx=0;
440 int tmp_categorize_array2[128];
441 int tmp_categorize_array2_idx=0;
442 int category_index_size=0;
443
444 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
445
446 if(bits_left > q->samples_per_channel) {
447 bits_left = q->samples_per_channel +
448 ((bits_left - q->samples_per_channel)*5)/8;
449 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
450 }
451
452 memset(&exp_index1,0,102*sizeof(int));
453 memset(&exp_index2,0,102*sizeof(int));
454 memset(&tmp_categorize_array1,0,128*sizeof(int));
455 memset(&tmp_categorize_array2,0,128*sizeof(int));
456
457 bias=-32;
458
459 /* Estimate bias. */
460 for (i=32 ; i>0 ; i=i/2){
461 num_bits = 0;
462 index = 0;
463 for (j=q->total_subbands ; j>0 ; j--){
464 exp_idx = (i - quant_index_table[index] + bias) / 2;
465 if (exp_idx<0){
466 exp_idx=0;
467 } else if(exp_idx >7) {
468 exp_idx=7;
469 }
470 index++;
471 num_bits+=expbits_tab[exp_idx];
472 }
473 if(num_bits >= bits_left - 32){
474 bias+=i;
475 }
476 }
477
478 /* Calculate total number of bits. */
479 num_bits=0;
480 for (i=0 ; i<q->total_subbands ; i++) {
481 exp_idx = (bias - quant_index_table[i]) / 2;
482 if (exp_idx<0) {
483 exp_idx=0;
484 } else if(exp_idx >7) {
485 exp_idx=7;
486 }
487 num_bits += expbits_tab[exp_idx];
488 exp_index1[i] = exp_idx;
489 exp_index2[i] = exp_idx;
490 }
491 tmpbias = bias = num_bits;
492
493 for (j = 1 ; j < q->numvector_size ; j++) {
494 if (tmpbias + bias > 2*bits_left) { /* ---> */
495 int max = -999999;
496 index=-1;
497 for (i=0 ; i<q->total_subbands ; i++){
498 if (exp_index1[i] < 7) {
499 v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
500 if ( v >= max) {
501 max = v;
502 index = i;
503 }
504 }
505 }
506 if(index==-1)break;
507 tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
508 tmpbias -= expbits_tab[exp_index1[index]] -
509 expbits_tab[exp_index1[index]+1];
510 ++exp_index1[index];
511 } else { /* <--- */
512 int min = 999999;
513 index=-1;
514 for (i=0 ; i<q->total_subbands ; i++){
515 if(exp_index2[i] > 0){
516 v = (-2*exp_index2[i])-quant_index_table[i];
517 if ( v < min) {
518 min = v;
519 index = i;
520 }
521 }
522 }
523 if(index == -1)break;
524 tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
525 tmpbias -= expbits_tab[exp_index2[index]] -
526 expbits_tab[exp_index2[index]-1];
527 --exp_index2[index];
528 }
529 }
530
531 for(i=0 ; i<q->total_subbands ; i++)
532 category[i] = exp_index2[i];
533
534 /* Concatenate the two arrays. */
535 for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
536 category_index[category_index_size++] = tmp_categorize_array2[i];
537
538 for(i=0;i<tmp_categorize_array1_idx;i++)
539 category_index[category_index_size++ ] = tmp_categorize_array1[i];
540
541 /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
542 should fill the remaining bytes. */
543 for(i=category_index_size;i<q->numvector_size;i++)
544 category_index[i]=0;
545
546 }
547
548
549 /**
550 * Expand the category vector.
551 *
552 * @param q pointer to the COOKContext
553 * @param category pointer to the category array
554 * @param category_index pointer to the category_index array
555 */
556
557 static void inline expand_category(COOKContext *q, int* category,
558 int* category_index){
559 int i;
560 for(i=0 ; i<q->num_vectors ; i++){
561 ++category[category_index[i]];
562 }
563 }
564
565 /**
566 * The real requantization of the mltcoefs
567 *
568 * @param q pointer to the COOKContext
569 * @param index index
570 * @param band current subband
571 * @param quant_value_table pointer to the array
572 * @param subband_coef_index array of indexes to quant_centroid_tab
573 * @param subband_coef_noise use random noise instead of predetermined value
574 * @param mlt_buffer pointer to the mlt buffer
575 */
576
577
578 static void scalar_dequant(COOKContext *q, int index, int band,
579 float* quant_value_table, int* subband_coef_index,
580 int* subband_coef_noise, float* mlt_buffer){
581 int i;
582 float f1;
583
584 for(i=0 ; i<SUBBAND_SIZE ; i++) {
585 if (subband_coef_index[i]) {
586 if (subband_coef_noise[i]) {
587 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
588 } else {
589 f1 = quant_centroid_tab[index][subband_coef_index[i]];
590 }
591 } else {
592 /* noise coding if subband_coef_noise[i] == 0 */
593 q->random_state = q->random_state * 214013 + 2531011; //typical RNG numbers
594 f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
595 }
596 mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
597 }
598 }
599 /**
600 * Unpack the subband_coef_index and subband_coef_noise vectors.
601 *
602 * @param q pointer to the COOKContext
603 * @param category pointer to the category array
604 * @param subband_coef_index array of indexes to quant_centroid_tab
605 * @param subband_coef_noise use random noise instead of predetermined value
606 */
607
608 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
609 int* subband_coef_noise) {
610 int i,j;
611 int vlc, vd ,tmp, result;
612 int ub;
613 int cb;
614
615 vd = vd_tab[category];
616 result = 0;
617 for(i=0 ; i<vpr_tab[category] ; i++){
618 ub = get_bits_count(&q->gb);
619 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
620 cb = get_bits_count(&q->gb);
621 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
622 vlc = 0;
623 result = 1;
624 }
625 for(j=vd-1 ; j>=0 ; j--){
626 tmp = (vlc * invradix_tab[category])/0x100000;
627 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
628 vlc = tmp;
629 }
630 for(j=0 ; j<vd ; j++){
631 if (subband_coef_index[i*vd + j]) {
632 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
633 subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
634 } else {
635 result=1;
636 subband_coef_noise[i*vd+j]=0;
637 }
638 } else {
639 subband_coef_noise[i*vd+j]=0;
640 }
641 }
642 }
643 return result;
644 }
645
646
647 /**
648 * Fill the mlt_buffer with mlt coefficients.
649 *
650 * @param q pointer to the COOKContext
651 * @param category pointer to the category array
652 * @param quant_value_table pointer to the array
653 * @param mlt_buffer pointer to mlt coefficients
654 */
655
656
657 static void decode_vectors(COOKContext* q, int* category,
658 float* quant_value_table, float* mlt_buffer){
659 /* A zero in this table means that the subband coefficient is
660 random noise coded. */
661 int subband_coef_noise[SUBBAND_SIZE];
662 /* A zero in this table means that the subband coefficient is a
663 positive multiplicator. */
664 int subband_coef_index[SUBBAND_SIZE];
665 int band, j;
666 int index=0;
667
668 for(band=0 ; band<q->total_subbands ; band++){
669 index = category[band];
670 if(category[band] < 7){
671 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
672 index=7;
673 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
674 }
675 }
676 if(index==7) {
677 memset(subband_coef_index, 0, sizeof(subband_coef_index));
678 memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
679 }
680 scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
681 subband_coef_noise, mlt_buffer);
682 }
683
684 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
685 return;
686 }
687 }
688
689
690 /**
691 * function for decoding mono data
692 *
693 * @param q pointer to the COOKContext
694 * @param mlt_buffer1 pointer to left channel mlt coefficients
695 * @param mlt_buffer2 pointer to right channel mlt coefficients
696 */
697
698 static void mono_decode(COOKContext *q, float* mlt_buffer) {
699
700 int category_index[128];
701 float quant_value_table[102];
702 int quant_index_table[102];
703 int category[128];
704
705 memset(&category, 0, 128*sizeof(int));
706 memset(&quant_value_table, 0, 102*sizeof(int));
707 memset(&category_index, 0, 128*sizeof(int));
708
709 decode_envelope(q, quant_index_table);
710 q->num_vectors = get_bits(&q->gb,q->numvector_bits);
711 dequant_envelope(q, quant_index_table, quant_value_table);
712 categorize(q, quant_index_table, category, category_index);
713 expand_category(q, category, category_index);
714 decode_vectors(q, category, quant_value_table, mlt_buffer);
715 }
716
717
718 /**
719 * The modulated lapped transform, this takes transform coefficients
720 * and transforms them into timedomain samples. This is done through
721 * an FFT-based algorithm with pre- and postrotation steps.
722 * A window and reorder step is also included.
723 *
724 * @param q pointer to the COOKContext
725 * @param inbuffer pointer to the mltcoefficients
726 * @param outbuffer pointer to the timedomain buffer
727 * @param mlt_tmp pointer to temporary storage space
728 */
729
730 static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
731 float* mlt_tmp){
732 int i;
733
734 /* prerotation */
735 for(i=0 ; i<q->mlt_size ; i+=2){
736 outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
737 (q->mlt_precos[i/2] * inbuffer[i]);
738 outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
739 (q->mlt_presin[i/2] * inbuffer[i]);
740 }
741
742 /* FFT */
743 ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
744 ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
745
746 /* postrotation */
747 for(i=0 ; i<q->mlt_size ; i+=2){
748 mlt_tmp[i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
749 (q->mlt_postcos[i/2] * outbuffer[i]);
750 mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
751 (q->mlt_postcos[i/2] * outbuffer[i+1]);
752 }
753
754 /* window and reorder */
755 for(i=0 ; i<q->mlt_size/2 ; i++){
756 outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
757 outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
758 q->mlt_window[q->mlt_size-1-i];
759 outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
760 q->mlt_window[q->mlt_size-1-i];
761 outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
762 q->mlt_window[i]);
763 }
764 }
765
766
767 /**
768 * the actual requantization of the timedomain samples
769 *
770 * @param q pointer to the COOKContext
771 * @param buffer pointer to the timedomain buffer
772 * @param gain_index index for the block multiplier
773 * @param gain_index_next index for the next block multiplier
774 */
775
776 static void interpolate(COOKContext *q, float* buffer,
777 int gain_index, int gain_index_next){
778 int i;
779 float fc1, fc2;
780 fc1 = q->pow2tab[gain_index+63];
781
782 if(gain_index == gain_index_next){ //static gain
783 for(i=0 ; i<q->gain_size_factor ; i++){
784 buffer[i]*=fc1;
785 }
786 return;
787 } else { //smooth gain
788 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
789 for(i=0 ; i<q->gain_size_factor ; i++){
790 buffer[i]*=fc1;
791 fc1*=fc2;
792 }
793 return;
794 }
795 }
796
797 /**
798 * timedomain requantization of the timedomain samples
799 *
800 * @param q pointer to the COOKContext
801 * @param buffer pointer to the timedomain buffer
802 * @param gain_now current gain structure
803 * @param gain_previous previous gain structure
804 */
805
806 static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
807 COOKgain* gain_previous){
808 int i, index;
809 int gain_index[9];
810 int tmp_gain_index;
811
812 gain_index[8]=0;
813 index = gain_previous->size;
814 for (i=7 ; i>=0 ; i--) {
815 if(index && gain_previous->qidx_table1[index-1]==i) {
816 gain_index[i] = gain_previous->qidx_table2[index-1];
817 index--;
818 } else {
819 gain_index[i]=gain_index[i+1];
820 }
821 }
822 /* This is applied to the to be previous data buffer. */
823 for(i=0;i<8;i++){
824 interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
825 gain_index[i], gain_index[i+1]);
826 }
827
828 tmp_gain_index = gain_index[0];
829 index = gain_now->size;
830 for (i=7 ; i>=0 ; i--) {
831 if(index && gain_now->qidx_table1[index-1]==i) {
832 gain_index[i]= gain_now->qidx_table2[index-1];
833 index--;
834 } else {
835 gain_index[i]=gain_index[i+1];
836 }
837 }
838
839 /* This is applied to the to be current block. */
840 for(i=0;i<8;i++){
841 interpolate(q, &buffer[i*q->gain_size_factor],
842 tmp_gain_index+gain_index[i],
843 tmp_gain_index+gain_index[i+1]);
844 }
845 }
846
847
848 /**
849 * mlt overlapping and buffer management
850 *
851 * @param q pointer to the COOKContext
852 * @param buffer pointer to the timedomain buffer
853 * @param gain_now current gain structure
854 * @param gain_previous previous gain structure
855 * @param previous_buffer pointer to the previous buffer to be used for overlapping
856 *
857 */
858
859 static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
860 COOKgain* gain_previous, float* previous_buffer) {
861 int i;
862 if((gain_now->size || gain_previous->size)) {
863 gain_window(q, buffer, gain_now, gain_previous);
864 }
865
866 /* Overlap with the previous block. */
867 for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
868
869 /* Save away the current to be previous block. */
870 memcpy(previous_buffer, buffer+q->samples_per_channel,
871 sizeof(float)*q->samples_per_channel);
872 }
873
874
875 /**
876 * function for getting the jointstereo coupling information
877 *
878 * @param q pointer to the COOKContext
879 * @param decouple_tab decoupling array
880 *
881 */
882
883 static void decouple_info(COOKContext *q, int* decouple_tab){
884 int length, i;
885
886 if(get_bits1(&q->gb)) {
887 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
888
889 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
890 for (i=0 ; i<length ; i++) {
891 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
892 }
893 return;
894 }
895
896 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
897
898 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
899 for (i=0 ; i<length ; i++) {
900 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
901 }
902 return;
903 }
904
905
906 /**
907 * function for decoding joint stereo data
908 *
909 * @param q pointer to the COOKContext
910 * @param mlt_buffer1 pointer to left channel mlt coefficients
911 * @param mlt_buffer2 pointer to right channel mlt coefficients
912 */
913
914 static void joint_decode(COOKContext *q, float* mlt_buffer1,
915 float* mlt_buffer2) {
916 int i,j;
917 int decouple_tab[SUBBAND_SIZE];
918 float decode_buffer[2048]; //Only 1060 might be needed.
919 int idx, cpl_tmp,tmp_idx;
920 float f1,f2;
921 float* cplscale;
922
923 memset(decouple_tab, 0, sizeof(decouple_tab));
924 memset(decode_buffer, 0, sizeof(decode_buffer));
925
926 /* Make sure the buffers are zeroed out. */
927 memset(mlt_buffer1,0, 1024*sizeof(float));
928 memset(mlt_buffer2,0, 1024*sizeof(float));
929 decouple_info(q, decouple_tab);
930 mono_decode(q, decode_buffer);
931
932 /* The two channels are stored interleaved in decode_buffer. */
933 for (i=0 ; i<q->js_subband_start ; i++) {
934 for (j=0 ; j<SUBBAND_SIZE ; j++) {
935 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
936 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
937 }
938 }
939
940 /* When we reach js_subband_start (the higher frequencies)
941 the coefficients are stored in a coupling scheme. */
942 idx = (1 << q->js_vlc_bits) - 1;
943 if (q->js_subband_start < q->subbands) {
944 for (i=0 ; i<q->subbands ; i++) {
945 cpl_tmp = cplband[i + q->js_subband_start];
946 idx -=decouple_tab[cpl_tmp];
947 cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table
948 f1 = cplscale[decouple_tab[cpl_tmp]];
949 f2 = cplscale[idx-1];
950 for (j=0 ; j<SUBBAND_SIZE ; j++) {
951 tmp_idx = ((2*q->js_subband_start + i)*20)+j;
952 mlt_buffer1[20*(i+q->js_subband_start) + j] = f1 * decode_buffer[tmp_idx];
953 mlt_buffer2[20*(i+q->js_subband_start) + j] = f2 * decode_buffer[tmp_idx];
954 }
955 idx = (1 << q->js_vlc_bits) - 1;
956 }
957 }
958 }
959
960 /**
961 * Cook subpacket decoding. This function returns one decoded subpacket,
962 * usually 1024 samples per channel.
963 *
964 * @param q pointer to the COOKContext
965 * @param inbuffer pointer to the inbuffer
966 * @param sub_packet_size subpacket size
967 * @param outbuffer pointer to the outbuffer
968 * @param pos the subpacket number in the frame
969 */
970
971
972 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
973 int sub_packet_size, int16_t *outbuffer) {
974 int i,j;
975 int value;
976 float* tmp_ptr;
977
978 /* packet dump */
979 // for (i=0 ; i<sub_packet_size ; i++) {
980 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
981 // }
982 // av_log(NULL, AV_LOG_ERROR, "\n");
983
984 decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
985 init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
986 decode_gain_info(&q->gb, &q->gain_current);
987 memcpy(&q->gain_copy, &q->gain_current ,sizeof(COOKgain)); //This copy does not seem to be used. FIXME
988 //fprintf(stdout,"cu bits ds = %d\n",get_bits_count(&q->gb));
989 if(q->nb_channels==2 && q->joint_stereo==1){
990 joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
991
992 /* Swap buffer pointers. */
993 tmp_ptr = q->decode_buf_ptr[1];
994 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
995 q->decode_buf_ptr[0] = tmp_ptr;
996 tmp_ptr = q->decode_buf_ptr[3];
997 q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
998 q->decode_buf_ptr[2] = tmp_ptr;
999
1000 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1001 now/previous swap */
1002 q->gain_now_ptr = &q->gain_now;
1003 q->gain_previous_ptr = &q->gain_previous;
1004 for (i=0 ; i<q->nb_channels ; i++){
1005
1006 cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
1007 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1008 q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1009
1010 /* Swap out the previous buffer. */
1011 tmp_ptr = q->previous_buffer_ptr[0];
1012 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1013 q->previous_buffer_ptr[1] = tmp_ptr;
1014
1015 /* Clip and convert the floats to 16 bits. */
1016 for (j=0 ; j<q->samples_per_frame ; j++){
1017 value = lrintf(q->mono_mdct_output[j]);
1018 if(value < -32768) value = -32768;
1019 else if(value > 32767) value = 32767;
1020 outbuffer[2*j+i] = value;
1021 }
1022 }
1023
1024 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1025 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1026
1027 } else if (q->nb_channels==2 && q->joint_stereo==0) {
1028 for (i=0 ; i<q->nb_channels ; i++){
1029 mono_decode(q, q->decode_buf_ptr[0]);
1030
1031 av_log(NULL,AV_LOG_ERROR,"Non-joint-stereo files are not supported at the moment, do not report as a bug!\n");
1032 tmp_ptr = q->decode_buf_ptr[0];
1033 q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1034 q->decode_buf_ptr[1] = q->decode_buf_ptr[2];
1035 q->decode_buf_ptr[2] = q->decode_buf_ptr[3];
1036 q->decode_buf_ptr[3] = tmp_ptr;
1037
1038 q->gain_now_ptr = &q->gain_now;
1039 q->gain_previous_ptr = &q->gain_previous;
1040
1041 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1042 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1043 q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1044 /* Swap out the previous buffer. */
1045 tmp_ptr = q->previous_buffer_ptr[0];
1046 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1047 q->previous_buffer_ptr[1] = tmp_ptr;
1048
1049 for (j=0 ; j<q->samples_per_frame ; j++){
1050 value = lrintf(q->mono_mdct_output[j]);
1051 if(value < -32768) value = -32768;
1052 else if(value > 32767) value = 32767;
1053 outbuffer[2*j+i] = value;
1054 }
1055 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1056 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1057 }
1058 } else {
1059 mono_decode(q, q->decode_buf_ptr[0]);
1060
1061 /* Swap buffer pointers. */
1062 tmp_ptr = q->decode_buf_ptr[1];
1063 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1064 q->decode_buf_ptr[0] = tmp_ptr;
1065
1066 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1067 now/previous swap */
1068 q->gain_now_ptr = &q->gain_now;
1069 q->gain_previous_ptr = &q->gain_previous;
1070
1071 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1072 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1073 q->gain_previous_ptr, q->mono_previous_buffer1);
1074
1075 /* Clip and convert the floats to 16 bits */
1076 for (j=0 ; j<q->samples_per_frame ; j++){
1077 value = lrintf(q->mono_mdct_output[j]);
1078 if(value < -32768) value = -32768;
1079 else if(value > 32767) value = 32767;
1080 outbuffer[j] = value;
1081 }
1082 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1083 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1084 }
1085 /* FIXME: Shouldn't the total number of bytes be returned? */
1086 return /*q->nb_channels*/ q->samples_per_frame * sizeof(int16_t);
1087 }
1088
1089
1090 /**
1091 * Cook frame decoding
1092 *
1093 * @param avctx pointer to the AVCodecContext
1094 */
1095
1096 static int cook_decode_frame(AVCodecContext *avctx,
1097 void *data, int *data_size,
1098 uint8_t *buf, int buf_size) {
1099 /* This stuff is quite messy, the Cook packets are sent unordered
1100 * and need to be ordered before they are sent to the rest of the
1101 * decoder. The order can be found in the q->frame_reorder_index.
1102 * Currently decoding of the last packets is not handled at
1103 * all. FIXME */
1104
1105 COOKContext *q = avctx->priv_data;
1106
1107 if (buf_size < avctx->block_align)
1108 return buf_size;
1109
1110 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1111
1112 return avctx->block_align;
1113 }
1114 #ifdef COOKDEBUG
1115 static void dump_cook_context(COOKContext *q, COOKextradata *e)
1116 {
1117 //int i=0;
1118 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1119 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1120 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1121 if (e->cookversion > MONO_COOK2) {
1122 PRINT("js_subband_start",e->js_subband_start);
1123 PRINT("js_vlc_bits",e->js_vlc_bits);
1124 }
1125 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1126 PRINT("nb_channels",q->nb_channels);
1127 PRINT("bit_rate",q->bit_rate);
1128 PRINT("sample_rate",q->sample_rate);
1129 PRINT("samples_per_channel",q->samples_per_channel);
1130 PRINT("samples_per_frame",q->samples_per_frame);
1131 PRINT("subbands",q->subbands);
1132 PRINT("random_state",q->random_state);
1133 PRINT("mlt_size",q->mlt_size);
1134 PRINT("js_subband_start",q->js_subband_start);
1135 PRINT("numvector_bits",q->numvector_bits);
1136 PRINT("numvector_size",q->numvector_size);
1137 PRINT("total_subbands",q->total_subbands);
1138 PRINT("frame_reorder_counter",q->frame_reorder_counter);
1139 PRINT("frame_reorder_index_size",q->frame_reorder_index_size);
1140 }
1141 #endif
1142 /**
1143 * Cook initialization
1144 *
1145 * @param avctx pointer to the AVCodecContext
1146 */
1147
1148 static int cook_decode_init(AVCodecContext *avctx)
1149 {
1150 COOKextradata *e = avctx->extradata;
1151 COOKContext *q = avctx->priv_data;
1152
1153 /* Take care of the codec specific extradata. */
1154 if (avctx->extradata_size <= 0) {
1155 av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1156 return -1;
1157 } else {
1158 /* 8 for mono, 16 for stereo, ? for multichannel
1159 Swap to right endianness so we don't need to care later on. */
1160 av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1161 if (avctx->extradata_size >= 8){
1162 e->cookversion = be2me_32(e->cookversion);
1163 e->samples_per_frame = be2me_16(e->samples_per_frame);
1164 e->subbands = be2me_16(e->subbands);
1165 }
1166 if (avctx->extradata_size >= 16){
1167 e->js_subband_start = be2me_16(e->js_subband_start);
1168 e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1169 }
1170 }
1171
1172 /* Take data from the AVCodecContext (RM container). */
1173 q->sample_rate = avctx->sample_rate;
1174 q->nb_channels = avctx->channels;
1175 q->bit_rate = avctx->bit_rate;
1176
1177 /* Initialize state. */
1178 q->random_state = 1;
1179
1180 /* Initialize extradata related variables. */
1181 q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1182 q->samples_per_frame = e->samples_per_frame;
1183 q->subbands = e->subbands;
1184 q->bits_per_subpacket = avctx->block_align * 8;
1185
1186 /* Initialize default data states. */
1187 q->js_subband_start = 0;
1188 q->numvector_bits = 5;
1189 q->total_subbands = q->subbands;
1190
1191 /* Initialize version-dependent variables */
1192 av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1193 switch (e->cookversion) {
1194 case MONO_COOK1:
1195 if (q->nb_channels != 1) {
1196 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1197 return -1;
1198 }
1199 av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1200 break;
1201 case MONO_COOK2:
1202 if (q->nb_channels != 1) {
1203 q->joint_stereo = 0;
1204 av_log(NULL,AV_LOG_ERROR,"Non-joint-stereo files are not supported at the moment!\n");
1205 return -1;
1206 }
1207 av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1208 break;
1209 case JOINT_STEREO:
1210 if (q->nb_channels != 2) {
1211 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1212 return -1;
1213 }
1214 av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1215 if (avctx->extradata_size >= 16){
1216 q->total_subbands = q->subbands + e->js_subband_start;
1217 q->js_subband_start = e->js_subband_start;
1218 q->joint_stereo = 1;
1219 q->js_vlc_bits = e->js_vlc_bits;
1220 }
1221 if (q->samples_per_channel > 256) {
1222 q->numvector_bits++; // q->numvector_bits = 6
1223 }
1224 if (q->samples_per_channel > 512) {
1225 q->numvector_bits++; // q->numvector_bits = 7
1226 }
1227 break;
1228 case MC_COOK:
1229 av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1230 return -1;
1231 break;
1232 default:
1233 av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1234 return -1;
1235 break;
1236 }
1237
1238 /* Initialize variable relations */
1239 q->mlt_size = q->samples_per_channel;
1240 q->numvector_size = (1 << q->numvector_bits);
1241
1242 /* Generate tables */
1243 init_rootpow2table(q);
1244 init_pow2table(q);
1245 init_gain_table(q);
1246
1247 if (init_cook_vlc_tables(q) != 0)
1248 return -1;
1249
1250 /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1251 this is for the bitstreamreader. */
1252 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t))) == NULL)
1253 return -1;
1254
1255 q->decode_buf_ptr[0] = q->decode_buffer_1;
1256 q->decode_buf_ptr[1] = q->decode_buffer_2;
1257 q->decode_buf_ptr[2] = q->decode_buffer_3;
1258 q->decode_buf_ptr[3] = q->decode_buffer_4;
1259
1260 q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1261 q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1262
1263 memset(q->decode_buffer_1,0,1024*sizeof(float));
1264 memset(q->decode_buffer_2,0,1024*sizeof(float));
1265 memset(q->decode_buffer_3,0,1024*sizeof(float));
1266 memset(q->decode_buffer_4,0,1024*sizeof(float));
1267
1268 /* Initialize transform. */
1269 if ( init_cook_mlt(q) == 0 )
1270 return -1;
1271
1272 //dump_cook_context(q,e);
1273 return 0;
1274 }
1275
1276
1277 AVCodec cook_decoder =
1278 {
1279 .name = "cook",
1280 .type = CODEC_TYPE_AUDIO,
1281 .id = CODEC_ID_COOK,
1282 .priv_data_size = sizeof(COOKContext),
1283 .init = cook_decode_init,
1284 .close = cook_decode_close,
1285 .decode = cook_decode_frame,
1286 };