Use a custom radix sort implementation instead of qsort in dnxhd encoder.
[libav.git] / libavcodec / dnxhdenc.c
1 /*
2 * VC3/DNxHD encoder
3 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4 *
5 * VC-3 encoder funded by the British Broadcasting Corporation
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 //#define DEBUG
25 #define RC_VARIANCE 1 // use variance or ssd for fast rc
26
27 #include "avcodec.h"
28 #include "dsputil.h"
29 #include "mpegvideo.h"
30 #include "dnxhdenc.h"
31
32 int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
33
34 #define LAMBDA_FRAC_BITS 10
35
36 static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
37 {
38 int i;
39 for (i = 0; i < 4; i++) {
40 block[0] = pixels[0]; block[1] = pixels[1];
41 block[2] = pixels[2]; block[3] = pixels[3];
42 block[4] = pixels[4]; block[5] = pixels[5];
43 block[6] = pixels[6]; block[7] = pixels[7];
44 pixels += line_size;
45 block += 8;
46 }
47 memcpy(block , block- 8, sizeof(*block)*8);
48 memcpy(block+ 8, block-16, sizeof(*block)*8);
49 memcpy(block+16, block-24, sizeof(*block)*8);
50 memcpy(block+24, block-32, sizeof(*block)*8);
51 }
52
53 static int dnxhd_init_vlc(DNXHDEncContext *ctx)
54 {
55 int i, j, level, run;
56 int max_level = 1<<(ctx->cid_table->bit_depth+2);
57
58 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
59 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits , max_level*4*sizeof(*ctx->vlc_bits ), fail);
60 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2 , fail);
61 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits , 63 , fail);
62
63 ctx->vlc_codes += max_level*2;
64 ctx->vlc_bits += max_level*2;
65 for (level = -max_level; level < max_level; level++) {
66 for (run = 0; run < 2; run++) {
67 int index = (level<<1)|run;
68 int sign, offset = 0, alevel = level;
69
70 MASK_ABS(sign, alevel);
71 if (alevel > 64) {
72 offset = (alevel-1)>>6;
73 alevel -= offset<<6;
74 }
75 for (j = 0; j < 257; j++) {
76 if (ctx->cid_table->ac_level[j] == alevel &&
77 (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
78 (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
79 assert(!ctx->vlc_codes[index]);
80 if (alevel) {
81 ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
82 ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
83 } else {
84 ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
85 ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
86 }
87 break;
88 }
89 }
90 assert(!alevel || j < 257);
91 if (offset) {
92 ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
93 ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
94 }
95 }
96 }
97 for (i = 0; i < 62; i++) {
98 int run = ctx->cid_table->run[i];
99 assert(run < 63);
100 ctx->run_codes[run] = ctx->cid_table->run_codes[i];
101 ctx->run_bits [run] = ctx->cid_table->run_bits[i];
102 }
103 return 0;
104 fail:
105 return -1;
106 }
107
108 static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
109 {
110 // init first elem to 1 to avoid div by 0 in convert_matrix
111 uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
112 int qscale, i;
113
114 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
115 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
116 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
117 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
118
119 for (i = 1; i < 64; i++) {
120 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
121 weight_matrix[j] = ctx->cid_table->luma_weight[i];
122 }
123 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
124 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
125 for (i = 1; i < 64; i++) {
126 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
127 weight_matrix[j] = ctx->cid_table->chroma_weight[i];
128 }
129 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
130 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
131 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
132 for (i = 0; i < 64; i++) {
133 ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
134 ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
135 ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
136 }
137 }
138 return 0;
139 fail:
140 return -1;
141 }
142
143 static int dnxhd_init_rc(DNXHDEncContext *ctx)
144 {
145 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
146 if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
147 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
148
149 ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4) * 8;
150 ctx->qscale = 1;
151 ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
152 return 0;
153 fail:
154 return -1;
155 }
156
157 static int dnxhd_encode_init(AVCodecContext *avctx)
158 {
159 DNXHDEncContext *ctx = avctx->priv_data;
160 int i, index;
161
162 ctx->cid = ff_dnxhd_find_cid(avctx);
163 if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) {
164 av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
165 return -1;
166 }
167 av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
168
169 index = ff_dnxhd_get_cid_table(ctx->cid);
170 ctx->cid_table = &ff_dnxhd_cid_table[index];
171
172 ctx->m.avctx = avctx;
173 ctx->m.mb_intra = 1;
174 ctx->m.h263_aic = 1;
175
176 ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4;
177
178 dsputil_init(&ctx->m.dsp, avctx);
179 ff_dct_common_init(&ctx->m);
180 #if HAVE_MMX
181 ff_dnxhd_init_mmx(ctx);
182 #endif
183 if (!ctx->m.dct_quantize)
184 ctx->m.dct_quantize = dct_quantize_c;
185
186 ctx->m.mb_height = (avctx->height + 15) / 16;
187 ctx->m.mb_width = (avctx->width + 15) / 16;
188
189 if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
190 ctx->interlaced = 1;
191 ctx->m.mb_height /= 2;
192 }
193
194 ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
195
196 if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
197 ctx->m.intra_quant_bias = avctx->intra_quant_bias;
198 if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
199 return -1;
200
201 if (dnxhd_init_vlc(ctx) < 0)
202 return -1;
203 if (dnxhd_init_rc(ctx) < 0)
204 return -1;
205
206 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
207 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
208 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t) , fail);
209
210 ctx->frame.key_frame = 1;
211 ctx->frame.pict_type = FF_I_TYPE;
212 ctx->m.avctx->coded_frame = &ctx->frame;
213
214 if (avctx->thread_count > MAX_THREADS || (avctx->thread_count > ctx->m.mb_height)) {
215 av_log(avctx, AV_LOG_ERROR, "too many threads\n");
216 return -1;
217 }
218
219 ctx->thread[0] = ctx;
220 for (i = 1; i < avctx->thread_count; i++) {
221 ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
222 memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
223 }
224
225 for (i = 0; i < avctx->thread_count; i++) {
226 ctx->thread[i]->m.start_mb_y = (ctx->m.mb_height*(i ) + avctx->thread_count/2) / avctx->thread_count;
227 ctx->thread[i]->m.end_mb_y = (ctx->m.mb_height*(i+1) + avctx->thread_count/2) / avctx->thread_count;
228 }
229
230 return 0;
231 fail: //for FF_ALLOCZ_OR_GOTO
232 return -1;
233 }
234
235 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
236 {
237 DNXHDEncContext *ctx = avctx->priv_data;
238 const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
239
240 memset(buf, 0, 640);
241
242 memcpy(buf, header_prefix, 5);
243 buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
244 buf[6] = 0x80; // crc flag off
245 buf[7] = 0xa0; // reserved
246 AV_WB16(buf + 0x18, avctx->height); // ALPF
247 AV_WB16(buf + 0x1a, avctx->width); // SPL
248 AV_WB16(buf + 0x1d, avctx->height); // NAL
249
250 buf[0x21] = 0x38; // FIXME 8 bit per comp
251 buf[0x22] = 0x88 + (ctx->frame.interlaced_frame<<2);
252 AV_WB32(buf + 0x28, ctx->cid); // CID
253 buf[0x2c] = ctx->interlaced ? 0 : 0x80;
254
255 buf[0x5f] = 0x01; // UDL
256
257 buf[0x167] = 0x02; // reserved
258 AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
259 buf[0x16d] = ctx->m.mb_height; // Ns
260 buf[0x16f] = 0x10; // reserved
261
262 ctx->msip = buf + 0x170;
263 return 0;
264 }
265
266 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
267 {
268 int nbits;
269 if (diff < 0) {
270 nbits = av_log2_16bit(-2*diff);
271 diff--;
272 } else {
273 nbits = av_log2_16bit(2*diff);
274 }
275 put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
276 (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
277 }
278
279 static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
280 {
281 int last_non_zero = 0;
282 int slevel, i, j;
283
284 dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
285 ctx->m.last_dc[n] = block[0];
286
287 for (i = 1; i <= last_index; i++) {
288 j = ctx->m.intra_scantable.permutated[i];
289 slevel = block[j];
290 if (slevel) {
291 int run_level = i - last_non_zero - 1;
292 int rlevel = (slevel<<1)|!!run_level;
293 put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
294 if (run_level)
295 put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
296 last_non_zero = i;
297 }
298 }
299 put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
300 }
301
302 static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
303 {
304 const uint8_t *weight_matrix;
305 int level;
306 int i;
307
308 weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
309
310 for (i = 1; i <= last_index; i++) {
311 int j = ctx->m.intra_scantable.permutated[i];
312 level = block[j];
313 if (level) {
314 if (level < 0) {
315 level = (1-2*level) * qscale * weight_matrix[i];
316 if (weight_matrix[i] != 32)
317 level += 32;
318 level >>= 6;
319 level = -level;
320 } else {
321 level = (2*level+1) * qscale * weight_matrix[i];
322 if (weight_matrix[i] != 32)
323 level += 32;
324 level >>= 6;
325 }
326 block[j] = level;
327 }
328 }
329 }
330
331 static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
332 {
333 int score = 0;
334 int i;
335 for (i = 0; i < 64; i++)
336 score += (block[i]-qblock[i])*(block[i]-qblock[i]);
337 return score;
338 }
339
340 static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
341 {
342 int last_non_zero = 0;
343 int bits = 0;
344 int i, j, level;
345 for (i = 1; i <= last_index; i++) {
346 j = ctx->m.intra_scantable.permutated[i];
347 level = block[j];
348 if (level) {
349 int run_level = i - last_non_zero - 1;
350 bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
351 last_non_zero = i;
352 }
353 }
354 return bits;
355 }
356
357 static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
358 {
359 const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4);
360 const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
361 const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
362 DSPContext *dsp = &ctx->m.dsp;
363
364 dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize);
365 dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize);
366 dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize);
367 dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize);
368
369 if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
370 if (ctx->interlaced) {
371 ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
372 ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
373 ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
374 ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
375 } else {
376 dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]);
377 dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]);
378 }
379 } else {
380 dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
381 dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
382 dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
383 dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
384 }
385 }
386
387 static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
388 {
389 if (i&2) {
390 ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
391 ctx->m.q_intra_matrix = ctx->qmatrix_c;
392 return 1 + (i&1);
393 } else {
394 ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
395 ctx->m.q_intra_matrix = ctx->qmatrix_l;
396 return 0;
397 }
398 }
399
400 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg)
401 {
402 DNXHDEncContext *ctx = *(void**)arg;
403 int mb_y, mb_x;
404 int qscale = ctx->thread[0]->qscale;
405
406 for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
407 ctx->m.last_dc[0] =
408 ctx->m.last_dc[1] =
409 ctx->m.last_dc[2] = 1024;
410
411 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
412 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
413 int ssd = 0;
414 int ac_bits = 0;
415 int dc_bits = 0;
416 int i;
417
418 dnxhd_get_blocks(ctx, mb_x, mb_y);
419
420 for (i = 0; i < 8; i++) {
421 DECLARE_ALIGNED_16(DCTELEM, block[64]);
422 DCTELEM *src_block = ctx->blocks[i];
423 int overflow, nbits, diff, last_index;
424 int n = dnxhd_switch_matrix(ctx, i);
425
426 memcpy(block, src_block, sizeof(block));
427 last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
428 ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
429
430 diff = block[0] - ctx->m.last_dc[n];
431 if (diff < 0) nbits = av_log2_16bit(-2*diff);
432 else nbits = av_log2_16bit( 2*diff);
433 dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
434
435 ctx->m.last_dc[n] = block[0];
436
437 if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
438 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
439 ctx->m.dsp.idct(block);
440 ssd += dnxhd_ssd_block(block, src_block);
441 }
442 }
443 ctx->mb_rc[qscale][mb].ssd = ssd;
444 ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
445 }
446 }
447 return 0;
448 }
449
450 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg)
451 {
452 DNXHDEncContext *ctx = *(void**)arg;
453 int mb_y, mb_x;
454
455 for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
456 ctx->m.last_dc[0] =
457 ctx->m.last_dc[1] =
458 ctx->m.last_dc[2] = 1024;
459 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
460 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
461 int qscale = ctx->mb_qscale[mb];
462 int i;
463
464 put_bits(&ctx->m.pb, 12, qscale<<1);
465
466 dnxhd_get_blocks(ctx, mb_x, mb_y);
467
468 for (i = 0; i < 8; i++) {
469 DCTELEM *block = ctx->blocks[i];
470 int last_index, overflow;
471 int n = dnxhd_switch_matrix(ctx, i);
472 last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
473 //START_TIMER;
474 dnxhd_encode_block(ctx, block, last_index, n);
475 //STOP_TIMER("encode_block");
476 }
477 }
478 if (put_bits_count(&ctx->m.pb)&31)
479 put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
480 }
481 flush_put_bits(&ctx->m.pb);
482 return 0;
483 }
484
485 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx, uint8_t *buf)
486 {
487 int mb_y, mb_x;
488 int i, offset = 0;
489 for (i = 0; i < ctx->m.avctx->thread_count; i++) {
490 int thread_size = 0;
491 for (mb_y = ctx->thread[i]->m.start_mb_y; mb_y < ctx->thread[i]->m.end_mb_y; mb_y++) {
492 ctx->slice_size[mb_y] = 0;
493 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
494 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
495 ctx->slice_size[mb_y] += ctx->mb_bits[mb];
496 }
497 ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
498 ctx->slice_size[mb_y] >>= 3;
499 thread_size += ctx->slice_size[mb_y];
500 }
501 init_put_bits(&ctx->thread[i]->m.pb, buf + 640 + offset, thread_size);
502 offset += thread_size;
503 }
504 }
505
506 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg)
507 {
508 DNXHDEncContext *ctx = *(void**)arg;
509 int mb_y, mb_x;
510 for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
511 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
512 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
513 uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4);
514 int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
515 int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
516 ctx->mb_cmp[mb].value = varc;
517 ctx->mb_cmp[mb].mb = mb;
518 }
519 }
520 return 0;
521 }
522
523 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
524 {
525 int lambda, up_step, down_step;
526 int last_lower = INT_MAX, last_higher = 0;
527 int x, y, q;
528
529 for (q = 1; q < avctx->qmax; q++) {
530 ctx->qscale = q;
531 avctx->execute(avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
532 }
533 up_step = down_step = 2<<LAMBDA_FRAC_BITS;
534 lambda = ctx->lambda;
535
536 for (;;) {
537 int bits = 0;
538 int end = 0;
539 if (lambda == last_higher) {
540 lambda++;
541 end = 1; // need to set final qscales/bits
542 }
543 for (y = 0; y < ctx->m.mb_height; y++) {
544 for (x = 0; x < ctx->m.mb_width; x++) {
545 unsigned min = UINT_MAX;
546 int qscale = 1;
547 int mb = y*ctx->m.mb_width+x;
548 for (q = 1; q < avctx->qmax; q++) {
549 unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
550 if (score < min) {
551 min = score;
552 qscale = q;
553 }
554 }
555 bits += ctx->mb_rc[qscale][mb].bits;
556 ctx->mb_qscale[mb] = qscale;
557 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
558 }
559 bits = (bits+31)&~31; // padding
560 if (bits > ctx->frame_bits)
561 break;
562 }
563 //dprintf(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
564 // lambda, last_higher, last_lower, bits, ctx->frame_bits);
565 if (end) {
566 if (bits > ctx->frame_bits)
567 return -1;
568 break;
569 }
570 if (bits < ctx->frame_bits) {
571 last_lower = FFMIN(lambda, last_lower);
572 if (last_higher != 0)
573 lambda = (lambda+last_higher)>>1;
574 else
575 lambda -= down_step;
576 down_step *= 5; // XXX tune ?
577 up_step = 1<<LAMBDA_FRAC_BITS;
578 lambda = FFMAX(1, lambda);
579 if (lambda == last_lower)
580 break;
581 } else {
582 last_higher = FFMAX(lambda, last_higher);
583 if (last_lower != INT_MAX)
584 lambda = (lambda+last_lower)>>1;
585 else
586 lambda += up_step;
587 up_step *= 5;
588 down_step = 1<<LAMBDA_FRAC_BITS;
589 }
590 }
591 //dprintf(ctx->m.avctx, "out lambda %d\n", lambda);
592 ctx->lambda = lambda;
593 return 0;
594 }
595
596 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
597 {
598 int bits = 0;
599 int up_step = 1;
600 int down_step = 1;
601 int last_higher = 0;
602 int last_lower = INT_MAX;
603 int qscale;
604 int x, y;
605
606 qscale = ctx->qscale;
607 for (;;) {
608 bits = 0;
609 ctx->qscale = qscale;
610 // XXX avoid recalculating bits
611 ctx->m.avctx->execute(ctx->m.avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, ctx->m.avctx->thread_count, sizeof(void*));
612 for (y = 0; y < ctx->m.mb_height; y++) {
613 for (x = 0; x < ctx->m.mb_width; x++)
614 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
615 bits = (bits+31)&~31; // padding
616 if (bits > ctx->frame_bits)
617 break;
618 }
619 //dprintf(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
620 // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
621 if (bits < ctx->frame_bits) {
622 if (qscale == 1)
623 return 1;
624 if (last_higher == qscale - 1) {
625 qscale = last_higher;
626 break;
627 }
628 last_lower = FFMIN(qscale, last_lower);
629 if (last_higher != 0)
630 qscale = (qscale+last_higher)>>1;
631 else
632 qscale -= down_step++;
633 if (qscale < 1)
634 qscale = 1;
635 up_step = 1;
636 } else {
637 if (last_lower == qscale + 1)
638 break;
639 last_higher = FFMAX(qscale, last_higher);
640 if (last_lower != INT_MAX)
641 qscale = (qscale+last_lower)>>1;
642 else
643 qscale += up_step++;
644 down_step = 1;
645 if (qscale >= ctx->m.avctx->qmax)
646 return -1;
647 }
648 }
649 //dprintf(ctx->m.avctx, "out qscale %d\n", qscale);
650 ctx->qscale = qscale;
651 return 0;
652 }
653
654 #define BUCKET_BITS 8
655 #define RADIX_PASSES 4
656 #define NBUCKETS (1 << BUCKET_BITS)
657
658 static inline int get_bucket(int value, int shift)
659 {
660 value >>= shift;
661 value &= NBUCKETS - 1;
662 return NBUCKETS - 1 - value;
663 }
664
665 static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
666 {
667 int i, j;
668 memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
669 for (i = 0; i < size; i++) {
670 int v = data[i].value;
671 for (j = 0; j < RADIX_PASSES; j++) {
672 buckets[j][get_bucket(v, 0)]++;
673 v >>= BUCKET_BITS;
674 }
675 assert(!v);
676 }
677 for (j = 0; j < RADIX_PASSES; j++) {
678 int offset = size;
679 for (i = NBUCKETS - 1; i >= 0; i--)
680 buckets[j][i] = offset -= buckets[j][i];
681 assert(!buckets[j][0]);
682 }
683 }
684
685 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
686 {
687 int shift = pass * BUCKET_BITS;
688 int i;
689 for (i = 0; i < size; i++) {
690 int v = get_bucket(data[i].value, shift);
691 int pos = buckets[v]++;
692 dst[pos] = data[i];
693 }
694 }
695
696 static void radix_sort(RCCMPEntry *data, int size)
697 {
698 int buckets[RADIX_PASSES][NBUCKETS];
699 RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
700 radix_count(data, size, buckets);
701 radix_sort_pass(tmp, data, size, buckets[0], 0);
702 radix_sort_pass(data, tmp, size, buckets[1], 1);
703 if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
704 radix_sort_pass(tmp, data, size, buckets[2], 2);
705 radix_sort_pass(data, tmp, size, buckets[3], 3);
706 }
707 av_free(tmp);
708 }
709
710 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
711 {
712 int max_bits = 0;
713 int ret, x, y;
714 if ((ret = dnxhd_find_qscale(ctx)) < 0)
715 return -1;
716 for (y = 0; y < ctx->m.mb_height; y++) {
717 for (x = 0; x < ctx->m.mb_width; x++) {
718 int mb = y*ctx->m.mb_width+x;
719 int delta_bits;
720 ctx->mb_qscale[mb] = ctx->qscale;
721 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
722 max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
723 if (!RC_VARIANCE) {
724 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
725 ctx->mb_cmp[mb].mb = mb;
726 ctx->mb_cmp[mb].value = delta_bits ?
727 ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
728 : INT_MIN; //avoid increasing qscale
729 }
730 }
731 max_bits += 31; //worst padding
732 }
733 if (!ret) {
734 if (RC_VARIANCE)
735 avctx->execute(avctx, dnxhd_mb_var_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
736 radix_sort(ctx->mb_cmp, ctx->m.mb_num);
737 for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
738 int mb = ctx->mb_cmp[x].mb;
739 max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
740 ctx->mb_qscale[mb] = ctx->qscale+1;
741 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
742 }
743 }
744 return 0;
745 }
746
747 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
748 {
749 int i;
750
751 for (i = 0; i < 3; i++) {
752 ctx->frame.data[i] = frame->data[i];
753 ctx->frame.linesize[i] = frame->linesize[i];
754 }
755
756 for (i = 0; i < ctx->m.avctx->thread_count; i++) {
757 ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
758 ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
759 ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
760 ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
761 }
762
763 ctx->frame.interlaced_frame = frame->interlaced_frame;
764 ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
765 }
766
767 static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
768 {
769 DNXHDEncContext *ctx = avctx->priv_data;
770 int first_field = 1;
771 int offset, i, ret;
772
773 if (buf_size < ctx->cid_table->frame_size) {
774 av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
775 return -1;
776 }
777
778 dnxhd_load_picture(ctx, data);
779
780 encode_coding_unit:
781 for (i = 0; i < 3; i++) {
782 ctx->src[i] = ctx->frame.data[i];
783 if (ctx->interlaced && ctx->cur_field)
784 ctx->src[i] += ctx->frame.linesize[i];
785 }
786
787 dnxhd_write_header(avctx, buf);
788
789 if (avctx->mb_decision == FF_MB_DECISION_RD)
790 ret = dnxhd_encode_rdo(avctx, ctx);
791 else
792 ret = dnxhd_encode_fast(avctx, ctx);
793 if (ret < 0) {
794 av_log(avctx, AV_LOG_ERROR, "picture could not fit ratecontrol constraints\n");
795 return -1;
796 }
797
798 dnxhd_setup_threads_slices(ctx, buf);
799
800 offset = 0;
801 for (i = 0; i < ctx->m.mb_height; i++) {
802 AV_WB32(ctx->msip + i * 4, offset);
803 offset += ctx->slice_size[i];
804 assert(!(ctx->slice_size[i] & 3));
805 }
806
807 avctx->execute(avctx, dnxhd_encode_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
808
809 assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
810 memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
811
812 AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
813
814 if (ctx->interlaced && first_field) {
815 first_field = 0;
816 ctx->cur_field ^= 1;
817 buf += ctx->cid_table->coding_unit_size;
818 buf_size -= ctx->cid_table->coding_unit_size;
819 goto encode_coding_unit;
820 }
821
822 ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
823
824 return ctx->cid_table->frame_size;
825 }
826
827 static int dnxhd_encode_end(AVCodecContext *avctx)
828 {
829 DNXHDEncContext *ctx = avctx->priv_data;
830 int max_level = 1<<(ctx->cid_table->bit_depth+2);
831 int i;
832
833 av_free(ctx->vlc_codes-max_level*2);
834 av_free(ctx->vlc_bits -max_level*2);
835 av_freep(&ctx->run_codes);
836 av_freep(&ctx->run_bits);
837
838 av_freep(&ctx->mb_bits);
839 av_freep(&ctx->mb_qscale);
840 av_freep(&ctx->mb_rc);
841 av_freep(&ctx->mb_cmp);
842 av_freep(&ctx->slice_size);
843
844 av_freep(&ctx->qmatrix_c);
845 av_freep(&ctx->qmatrix_l);
846 av_freep(&ctx->qmatrix_c16);
847 av_freep(&ctx->qmatrix_l16);
848
849 for (i = 1; i < avctx->thread_count; i++)
850 av_freep(&ctx->thread[i]);
851
852 return 0;
853 }
854
855 AVCodec dnxhd_encoder = {
856 "dnxhd",
857 CODEC_TYPE_VIDEO,
858 CODEC_ID_DNXHD,
859 sizeof(DNXHDEncContext),
860 dnxhd_encode_init,
861 dnxhd_encode_picture,
862 dnxhd_encode_end,
863 .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE},
864 .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
865 };