3 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4 * Copyright (c) 2011 MirriAd Ltd
6 * VC-3 encoder funded by the British Broadcasting Corporation
7 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
9 * This file is part of Libav.
11 * Libav is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
16 * Libav is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with Libav; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/timer.h"
35 #include "mpegvideo.h"
36 #include "pixblockdsp.h"
39 // The largest value that will not lead to overflow for 10bit samples.
40 #define DNX10BIT_QMAT_SHIFT 18
41 #define RC_VARIANCE 1 // use variance or ssd for fast rc
42 #define LAMBDA_FRAC_BITS 10
44 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
45 static const AVOption options
[] = {
46 { "nitris_compat", "encode with Avid Nitris compatibility",
47 offsetof(DNXHDEncContext
, nitris_compat
), AV_OPT_TYPE_INT
, { .i64
= 0 }, 0, 1, VE
},
51 static const AVClass
class = {
58 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block
,
59 const uint8_t *pixels
,
63 for (i
= 0; i
< 4; i
++) {
75 memcpy(block
, block
- 8, sizeof(*block
) * 8);
76 memcpy(block
+ 8, block
- 16, sizeof(*block
) * 8);
77 memcpy(block
+ 16, block
- 24, sizeof(*block
) * 8);
78 memcpy(block
+ 24, block
- 32, sizeof(*block
) * 8);
81 static av_always_inline
82 void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block
,
83 const uint8_t *pixels
,
90 for (i
= 0; i
< 4; i
++) {
91 memcpy(block
+ i
* 8, pixels
+ i
* line_size
, 8 * sizeof(*block
));
92 memcpy(block
- (i
+ 1) * 8, pixels
+ i
* line_size
, 8 * sizeof(*block
));
96 static int dnxhd_10bit_dct_quantize(MpegEncContext
*ctx
, int16_t *block
,
97 int n
, int qscale
, int *overflow
)
99 const uint8_t *scantable
= ctx
->intra_scantable
.scantable
;
100 const int *qmat
= ctx
->q_intra_matrix
[qscale
];
101 int last_non_zero
= 0;
104 ctx
->fdsp
.fdct(block
);
106 // Divide by 4 with rounding, to compensate scaling of DCT coefficients
107 block
[0] = (block
[0] + 2) >> 2;
109 for (i
= 1; i
< 64; ++i
) {
110 int j
= scantable
[i
];
111 int sign
= FF_SIGNBIT(block
[j
]);
112 int level
= (block
[j
] ^ sign
) - sign
;
113 level
= level
* qmat
[j
] >> DNX10BIT_QMAT_SHIFT
;
114 block
[j
] = (level
^ sign
) - sign
;
119 return last_non_zero
;
122 static av_cold
int dnxhd_init_vlc(DNXHDEncContext
*ctx
)
124 int i
, j
, level
, run
;
125 int max_level
= 1 << (ctx
->cid_table
->bit_depth
+ 2);
127 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->vlc_codes
,
128 max_level
* 4 * sizeof(*ctx
->vlc_codes
), fail
);
129 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->vlc_bits
,
130 max_level
* 4 * sizeof(*ctx
->vlc_bits
), fail
);
131 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->run_codes
,
133 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->run_bits
,
136 ctx
->vlc_codes
+= max_level
* 2;
137 ctx
->vlc_bits
+= max_level
* 2;
138 for (level
= -max_level
; level
< max_level
; level
++) {
139 for (run
= 0; run
< 2; run
++) {
140 int index
= (level
<< 1) | run
;
141 int sign
, offset
= 0, alevel
= level
;
143 MASK_ABS(sign
, alevel
);
145 offset
= (alevel
- 1) >> 6;
146 alevel
-= offset
<< 6;
148 for (j
= 0; j
< 257; j
++) {
149 if (ctx
->cid_table
->ac_level
[j
] == alevel
&&
150 (!offset
|| (ctx
->cid_table
->ac_index_flag
[j
] && offset
)) &&
151 (!run
|| (ctx
->cid_table
->ac_run_flag
[j
] && run
))) {
152 assert(!ctx
->vlc_codes
[index
]);
154 ctx
->vlc_codes
[index
] =
155 (ctx
->cid_table
->ac_codes
[j
] << 1) | (sign
& 1);
156 ctx
->vlc_bits
[index
] = ctx
->cid_table
->ac_bits
[j
] + 1;
158 ctx
->vlc_codes
[index
] = ctx
->cid_table
->ac_codes
[j
];
159 ctx
->vlc_bits
[index
] = ctx
->cid_table
->ac_bits
[j
];
164 assert(!alevel
|| j
< 257);
166 ctx
->vlc_codes
[index
] =
167 (ctx
->vlc_codes
[index
] << ctx
->cid_table
->index_bits
) | offset
;
168 ctx
->vlc_bits
[index
] += ctx
->cid_table
->index_bits
;
172 for (i
= 0; i
< 62; i
++) {
173 int run
= ctx
->cid_table
->run
[i
];
175 ctx
->run_codes
[run
] = ctx
->cid_table
->run_codes
[i
];
176 ctx
->run_bits
[run
] = ctx
->cid_table
->run_bits
[i
];
180 return AVERROR(ENOMEM
);
183 static av_cold
int dnxhd_init_qmat(DNXHDEncContext
*ctx
, int lbias
, int cbias
)
185 // init first elem to 1 to avoid div by 0 in convert_matrix
186 uint16_t weight_matrix
[64] = { 1, }; // convert_matrix needs uint16_t*
188 const uint8_t *luma_weight_table
= ctx
->cid_table
->luma_weight
;
189 const uint8_t *chroma_weight_table
= ctx
->cid_table
->chroma_weight
;
191 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->qmatrix_l
,
192 (ctx
->m
.avctx
->qmax
+ 1) * 64 * sizeof(int), fail
);
193 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->qmatrix_c
,
194 (ctx
->m
.avctx
->qmax
+ 1) * 64 * sizeof(int), fail
);
195 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->qmatrix_l16
,
196 (ctx
->m
.avctx
->qmax
+ 1) * 64 * 2 * sizeof(uint16_t),
198 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->qmatrix_c16
,
199 (ctx
->m
.avctx
->qmax
+ 1) * 64 * 2 * sizeof(uint16_t),
202 if (ctx
->cid_table
->bit_depth
== 8) {
203 for (i
= 1; i
< 64; i
++) {
204 int j
= ctx
->m
.idsp
.idct_permutation
[ff_zigzag_direct
[i
]];
205 weight_matrix
[j
] = ctx
->cid_table
->luma_weight
[i
];
207 ff_convert_matrix(&ctx
->m
, ctx
->qmatrix_l
, ctx
->qmatrix_l16
,
208 weight_matrix
, ctx
->m
.intra_quant_bias
, 1,
209 ctx
->m
.avctx
->qmax
, 1);
210 for (i
= 1; i
< 64; i
++) {
211 int j
= ctx
->m
.idsp
.idct_permutation
[ff_zigzag_direct
[i
]];
212 weight_matrix
[j
] = ctx
->cid_table
->chroma_weight
[i
];
214 ff_convert_matrix(&ctx
->m
, ctx
->qmatrix_c
, ctx
->qmatrix_c16
,
215 weight_matrix
, ctx
->m
.intra_quant_bias
, 1,
216 ctx
->m
.avctx
->qmax
, 1);
218 for (qscale
= 1; qscale
<= ctx
->m
.avctx
->qmax
; qscale
++) {
219 for (i
= 0; i
< 64; i
++) {
220 ctx
->qmatrix_l
[qscale
][i
] <<= 2;
221 ctx
->qmatrix_c
[qscale
][i
] <<= 2;
222 ctx
->qmatrix_l16
[qscale
][0][i
] <<= 2;
223 ctx
->qmatrix_l16
[qscale
][1][i
] <<= 2;
224 ctx
->qmatrix_c16
[qscale
][0][i
] <<= 2;
225 ctx
->qmatrix_c16
[qscale
][1][i
] <<= 2;
230 for (qscale
= 1; qscale
<= ctx
->m
.avctx
->qmax
; qscale
++) {
231 for (i
= 1; i
< 64; i
++) {
232 int j
= ctx
->m
.idsp
.idct_permutation
[ff_zigzag_direct
[i
]];
234 /* The quantization formula from the VC-3 standard is:
235 * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
236 * (qscale * weight_table[i]))
237 * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
238 * The s factor compensates scaling of DCT coefficients done by
239 * the DCT routines, and therefore is not present in standard.
240 * It's 8 for 8-bit samples and 4 for 10-bit ones.
241 * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
242 * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
243 * (qscale * weight_table[i])
244 * For 10-bit samples, p / s == 2 */
245 ctx
->qmatrix_l
[qscale
][j
] = (1 << (DNX10BIT_QMAT_SHIFT
+ 1)) /
246 (qscale
* luma_weight_table
[i
]);
247 ctx
->qmatrix_c
[qscale
][j
] = (1 << (DNX10BIT_QMAT_SHIFT
+ 1)) /
248 (qscale
* chroma_weight_table
[i
]);
255 return AVERROR(ENOMEM
);
258 static av_cold
int dnxhd_init_rc(DNXHDEncContext
*ctx
)
260 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->mb_rc
,
261 8160 * ctx
->m
.avctx
->qmax
* sizeof(RCEntry
), fail
);
262 if (ctx
->m
.avctx
->mb_decision
!= FF_MB_DECISION_RD
)
263 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->mb_cmp
,
264 ctx
->m
.mb_num
* sizeof(RCCMPEntry
), fail
);
266 ctx
->frame_bits
= (ctx
->cid_table
->coding_unit_size
-
267 640 - 4 - ctx
->min_padding
) * 8;
269 ctx
->lambda
= 2 << LAMBDA_FRAC_BITS
; // qscale 2
272 return AVERROR(ENOMEM
);
275 static av_cold
int dnxhd_encode_init(AVCodecContext
*avctx
)
277 DNXHDEncContext
*ctx
= avctx
->priv_data
;
278 int i
, index
, bit_depth
, ret
;
280 switch (avctx
->pix_fmt
) {
281 case AV_PIX_FMT_YUV422P
:
284 case AV_PIX_FMT_YUV422P10
:
288 av_log(avctx
, AV_LOG_ERROR
,
289 "pixel format is incompatible with DNxHD\n");
290 return AVERROR(EINVAL
);
293 ctx
->cid
= ff_dnxhd_find_cid(avctx
, bit_depth
);
295 av_log(avctx
, AV_LOG_ERROR
,
296 "video parameters incompatible with DNxHD\n");
297 return AVERROR(EINVAL
);
299 av_log(avctx
, AV_LOG_DEBUG
, "cid %d\n", ctx
->cid
);
301 index
= ff_dnxhd_get_cid_table(ctx
->cid
);
304 ctx
->cid_table
= &ff_dnxhd_cid_table
[index
];
306 ctx
->m
.avctx
= avctx
;
310 avctx
->bits_per_raw_sample
= ctx
->cid_table
->bit_depth
;
312 ff_blockdsp_init(&ctx
->bdsp
, avctx
);
313 ff_fdctdsp_init(&ctx
->m
.fdsp
, avctx
);
314 ff_mpv_idct_init(&ctx
->m
);
315 ff_mpegvideoencdsp_init(&ctx
->m
.mpvencdsp
, avctx
);
316 ff_pixblockdsp_init(&ctx
->m
.pdsp
, avctx
);
317 if (!ctx
->m
.dct_quantize
)
318 ctx
->m
.dct_quantize
= ff_dct_quantize_c
;
320 if (ctx
->cid_table
->bit_depth
== 10) {
321 ctx
->m
.dct_quantize
= dnxhd_10bit_dct_quantize
;
322 ctx
->get_pixels_8x4_sym
= dnxhd_10bit_get_pixels_8x4_sym
;
323 ctx
->block_width_l2
= 4;
325 ctx
->get_pixels_8x4_sym
= dnxhd_8bit_get_pixels_8x4_sym
;
326 ctx
->block_width_l2
= 3;
330 ff_dnxhdenc_init_x86(ctx
);
332 ctx
->m
.mb_height
= (avctx
->height
+ 15) / 16;
333 ctx
->m
.mb_width
= (avctx
->width
+ 15) / 16;
335 if (avctx
->flags
& CODEC_FLAG_INTERLACED_DCT
) {
337 ctx
->m
.mb_height
/= 2;
340 ctx
->m
.mb_num
= ctx
->m
.mb_height
* ctx
->m
.mb_width
;
342 if (avctx
->intra_quant_bias
!= FF_DEFAULT_QUANT_BIAS
)
343 ctx
->m
.intra_quant_bias
= avctx
->intra_quant_bias
;
344 // XXX tune lbias/cbias
345 if ((ret
= dnxhd_init_qmat(ctx
, ctx
->m
.intra_quant_bias
, 0)) < 0)
348 /* Avid Nitris hardware decoder requires a minimum amount of padding
349 * in the coding unit payload */
350 if (ctx
->nitris_compat
)
351 ctx
->min_padding
= 1600;
353 if ((ret
= dnxhd_init_vlc(ctx
)) < 0)
355 if ((ret
= dnxhd_init_rc(ctx
)) < 0)
358 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->slice_size
,
359 ctx
->m
.mb_height
* sizeof(uint32_t), fail
);
360 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->slice_offs
,
361 ctx
->m
.mb_height
* sizeof(uint32_t), fail
);
362 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->mb_bits
,
363 ctx
->m
.mb_num
* sizeof(uint16_t), fail
);
364 FF_ALLOCZ_OR_GOTO(ctx
->m
.avctx
, ctx
->mb_qscale
,
365 ctx
->m
.mb_num
* sizeof(uint8_t), fail
);
367 avctx
->coded_frame
= av_frame_alloc();
368 if (!avctx
->coded_frame
)
369 return AVERROR(ENOMEM
);
371 avctx
->coded_frame
->key_frame
= 1;
372 avctx
->coded_frame
->pict_type
= AV_PICTURE_TYPE_I
;
374 if (avctx
->thread_count
> MAX_THREADS
) {
375 av_log(avctx
, AV_LOG_ERROR
, "too many threads\n");
376 return AVERROR(EINVAL
);
379 ctx
->thread
[0] = ctx
;
380 for (i
= 1; i
< avctx
->thread_count
; i
++) {
381 ctx
->thread
[i
] = av_malloc(sizeof(DNXHDEncContext
));
382 memcpy(ctx
->thread
[i
], ctx
, sizeof(DNXHDEncContext
));
386 fail
: // for FF_ALLOCZ_OR_GOTO
387 return AVERROR(ENOMEM
);
390 static int dnxhd_write_header(AVCodecContext
*avctx
, uint8_t *buf
)
392 DNXHDEncContext
*ctx
= avctx
->priv_data
;
393 const uint8_t header_prefix
[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
397 memcpy(buf
, header_prefix
, 5);
398 buf
[5] = ctx
->interlaced ? ctx
->cur_field
+ 2 : 0x01;
399 buf
[6] = 0x80; // crc flag off
400 buf
[7] = 0xa0; // reserved
401 AV_WB16(buf
+ 0x18, avctx
->height
>> ctx
->interlaced
); // ALPF
402 AV_WB16(buf
+ 0x1a, avctx
->width
); // SPL
403 AV_WB16(buf
+ 0x1d, avctx
->height
>> ctx
->interlaced
); // NAL
405 buf
[0x21] = ctx
->cid_table
->bit_depth
== 10 ?
0x58 : 0x38;
406 buf
[0x22] = 0x88 + (ctx
->interlaced
<< 2);
407 AV_WB32(buf
+ 0x28, ctx
->cid
); // CID
408 buf
[0x2c] = ctx
->interlaced ?
0 : 0x80;
410 buf
[0x5f] = 0x01; // UDL
412 buf
[0x167] = 0x02; // reserved
413 AV_WB16(buf
+ 0x16a, ctx
->m
.mb_height
* 4 + 4); // MSIPS
414 buf
[0x16d] = ctx
->m
.mb_height
; // Ns
415 buf
[0x16f] = 0x10; // reserved
417 ctx
->msip
= buf
+ 0x170;
421 static av_always_inline
void dnxhd_encode_dc(DNXHDEncContext
*ctx
, int diff
)
425 nbits
= av_log2_16bit(-2 * diff
);
428 nbits
= av_log2_16bit(2 * diff
);
430 put_bits(&ctx
->m
.pb
, ctx
->cid_table
->dc_bits
[nbits
] + nbits
,
431 (ctx
->cid_table
->dc_codes
[nbits
] << nbits
) +
432 (diff
& ((1 << nbits
) - 1)));
435 static av_always_inline
436 void dnxhd_encode_block(DNXHDEncContext
*ctx
, int16_t *block
,
437 int last_index
, int n
)
439 int last_non_zero
= 0;
442 dnxhd_encode_dc(ctx
, block
[0] - ctx
->m
.last_dc
[n
]);
443 ctx
->m
.last_dc
[n
] = block
[0];
445 for (i
= 1; i
<= last_index
; i
++) {
446 j
= ctx
->m
.intra_scantable
.permutated
[i
];
449 int run_level
= i
- last_non_zero
- 1;
450 int rlevel
= (slevel
<< 1) | !!run_level
;
451 put_bits(&ctx
->m
.pb
, ctx
->vlc_bits
[rlevel
], ctx
->vlc_codes
[rlevel
]);
453 put_bits(&ctx
->m
.pb
, ctx
->run_bits
[run_level
],
454 ctx
->run_codes
[run_level
]);
458 put_bits(&ctx
->m
.pb
, ctx
->vlc_bits
[0], ctx
->vlc_codes
[0]); // EOB
461 static av_always_inline
462 void dnxhd_unquantize_c(DNXHDEncContext
*ctx
, int16_t *block
, int n
,
463 int qscale
, int last_index
)
465 const uint8_t *weight_matrix
;
469 weight_matrix
= (n
& 2) ? ctx
->cid_table
->chroma_weight
470 : ctx
->cid_table
->luma_weight
;
472 for (i
= 1; i
<= last_index
; i
++) {
473 int j
= ctx
->m
.intra_scantable
.permutated
[i
];
477 level
= (1 - 2 * level
) * qscale
* weight_matrix
[i
];
478 if (ctx
->cid_table
->bit_depth
== 10) {
479 if (weight_matrix
[i
] != 8)
483 if (weight_matrix
[i
] != 32)
489 level
= (2 * level
+ 1) * qscale
* weight_matrix
[i
];
490 if (ctx
->cid_table
->bit_depth
== 10) {
491 if (weight_matrix
[i
] != 8)
495 if (weight_matrix
[i
] != 32)
505 static av_always_inline
int dnxhd_ssd_block(int16_t *qblock
, int16_t *block
)
509 for (i
= 0; i
< 64; i
++)
510 score
+= (block
[i
] - qblock
[i
]) * (block
[i
] - qblock
[i
]);
514 static av_always_inline
515 int dnxhd_calc_ac_bits(DNXHDEncContext
*ctx
, int16_t *block
, int last_index
)
517 int last_non_zero
= 0;
520 for (i
= 1; i
<= last_index
; i
++) {
521 j
= ctx
->m
.intra_scantable
.permutated
[i
];
524 int run_level
= i
- last_non_zero
- 1;
525 bits
+= ctx
->vlc_bits
[(level
<< 1) |
526 !!run_level
] + ctx
->run_bits
[run_level
];
533 static av_always_inline
534 void dnxhd_get_blocks(DNXHDEncContext
*ctx
, int mb_x
, int mb_y
)
536 const int bs
= ctx
->block_width_l2
;
537 const int bw
= 1 << bs
;
538 const uint8_t *ptr_y
= ctx
->thread
[0]->src
[0] +
539 ((mb_y
<< 4) * ctx
->m
.linesize
) + (mb_x
<< bs
+ 1);
540 const uint8_t *ptr_u
= ctx
->thread
[0]->src
[1] +
541 ((mb_y
<< 4) * ctx
->m
.uvlinesize
) + (mb_x
<< bs
);
542 const uint8_t *ptr_v
= ctx
->thread
[0]->src
[2] +
543 ((mb_y
<< 4) * ctx
->m
.uvlinesize
) + (mb_x
<< bs
);
544 PixblockDSPContext
*pdsp
= &ctx
->m
.pdsp
;
546 pdsp
->get_pixels(ctx
->blocks
[0], ptr_y
, ctx
->m
.linesize
);
547 pdsp
->get_pixels(ctx
->blocks
[1], ptr_y
+ bw
, ctx
->m
.linesize
);
548 pdsp
->get_pixels(ctx
->blocks
[2], ptr_u
, ctx
->m
.uvlinesize
);
549 pdsp
->get_pixels(ctx
->blocks
[3], ptr_v
, ctx
->m
.uvlinesize
);
551 if (mb_y
+ 1 == ctx
->m
.mb_height
&& ctx
->m
.avctx
->height
== 1080) {
552 if (ctx
->interlaced
) {
553 ctx
->get_pixels_8x4_sym(ctx
->blocks
[4],
554 ptr_y
+ ctx
->dct_y_offset
,
556 ctx
->get_pixels_8x4_sym(ctx
->blocks
[5],
557 ptr_y
+ ctx
->dct_y_offset
+ bw
,
559 ctx
->get_pixels_8x4_sym(ctx
->blocks
[6],
560 ptr_u
+ ctx
->dct_uv_offset
,
562 ctx
->get_pixels_8x4_sym(ctx
->blocks
[7],
563 ptr_v
+ ctx
->dct_uv_offset
,
566 ctx
->bdsp
.clear_block(ctx
->blocks
[4]);
567 ctx
->bdsp
.clear_block(ctx
->blocks
[5]);
568 ctx
->bdsp
.clear_block(ctx
->blocks
[6]);
569 ctx
->bdsp
.clear_block(ctx
->blocks
[7]);
572 pdsp
->get_pixels(ctx
->blocks
[4],
573 ptr_y
+ ctx
->dct_y_offset
, ctx
->m
.linesize
);
574 pdsp
->get_pixels(ctx
->blocks
[5],
575 ptr_y
+ ctx
->dct_y_offset
+ bw
, ctx
->m
.linesize
);
576 pdsp
->get_pixels(ctx
->blocks
[6],
577 ptr_u
+ ctx
->dct_uv_offset
, ctx
->m
.uvlinesize
);
578 pdsp
->get_pixels(ctx
->blocks
[7],
579 ptr_v
+ ctx
->dct_uv_offset
, ctx
->m
.uvlinesize
);
583 static av_always_inline
584 int dnxhd_switch_matrix(DNXHDEncContext
*ctx
, int i
)
587 ctx
->m
.q_intra_matrix16
= ctx
->qmatrix_c16
;
588 ctx
->m
.q_intra_matrix
= ctx
->qmatrix_c
;
591 ctx
->m
.q_intra_matrix16
= ctx
->qmatrix_l16
;
592 ctx
->m
.q_intra_matrix
= ctx
->qmatrix_l
;
597 static int dnxhd_calc_bits_thread(AVCodecContext
*avctx
, void *arg
,
598 int jobnr
, int threadnr
)
600 DNXHDEncContext
*ctx
= avctx
->priv_data
;
601 int mb_y
= jobnr
, mb_x
;
602 int qscale
= ctx
->qscale
;
603 LOCAL_ALIGNED_16(int16_t, block
, [64]);
604 ctx
= ctx
->thread
[threadnr
];
608 ctx
->m
.last_dc
[2] = 1 << (ctx
->cid_table
->bit_depth
+ 2);
610 for (mb_x
= 0; mb_x
< ctx
->m
.mb_width
; mb_x
++) {
611 unsigned mb
= mb_y
* ctx
->m
.mb_width
+ mb_x
;
617 dnxhd_get_blocks(ctx
, mb_x
, mb_y
);
619 for (i
= 0; i
< 8; i
++) {
620 int16_t *src_block
= ctx
->blocks
[i
];
621 int overflow
, nbits
, diff
, last_index
;
622 int n
= dnxhd_switch_matrix(ctx
, i
);
624 memcpy(block
, src_block
, 64 * sizeof(*block
));
625 last_index
= ctx
->m
.dct_quantize(&ctx
->m
, block
, i
,
627 ac_bits
+= dnxhd_calc_ac_bits(ctx
, block
, last_index
);
629 diff
= block
[0] - ctx
->m
.last_dc
[n
];
631 nbits
= av_log2_16bit(-2 * diff
);
633 nbits
= av_log2_16bit(2 * diff
);
635 assert(nbits
< ctx
->cid_table
->bit_depth
+ 4);
636 dc_bits
+= ctx
->cid_table
->dc_bits
[nbits
] + nbits
;
638 ctx
->m
.last_dc
[n
] = block
[0];
640 if (avctx
->mb_decision
== FF_MB_DECISION_RD
|| !RC_VARIANCE
) {
641 dnxhd_unquantize_c(ctx
, block
, i
, qscale
, last_index
);
642 ctx
->m
.idsp
.idct(block
);
643 ssd
+= dnxhd_ssd_block(block
, src_block
);
646 ctx
->mb_rc
[qscale
][mb
].ssd
= ssd
;
647 ctx
->mb_rc
[qscale
][mb
].bits
= ac_bits
+ dc_bits
+ 12 +
648 8 * ctx
->vlc_bits
[0];
653 static int dnxhd_encode_thread(AVCodecContext
*avctx
, void *arg
,
654 int jobnr
, int threadnr
)
656 DNXHDEncContext
*ctx
= avctx
->priv_data
;
657 int mb_y
= jobnr
, mb_x
;
658 ctx
= ctx
->thread
[threadnr
];
659 init_put_bits(&ctx
->m
.pb
, (uint8_t *)arg
+ 640 + ctx
->slice_offs
[jobnr
],
660 ctx
->slice_size
[jobnr
]);
664 ctx
->m
.last_dc
[2] = 1 << (ctx
->cid_table
->bit_depth
+ 2);
665 for (mb_x
= 0; mb_x
< ctx
->m
.mb_width
; mb_x
++) {
666 unsigned mb
= mb_y
* ctx
->m
.mb_width
+ mb_x
;
667 int qscale
= ctx
->mb_qscale
[mb
];
670 put_bits(&ctx
->m
.pb
, 12, qscale
<< 1);
672 dnxhd_get_blocks(ctx
, mb_x
, mb_y
);
674 for (i
= 0; i
< 8; i
++) {
675 int16_t *block
= ctx
->blocks
[i
];
676 int overflow
, n
= dnxhd_switch_matrix(ctx
, i
);
677 int last_index
= ctx
->m
.dct_quantize(&ctx
->m
, block
, i
,
680 dnxhd_encode_block(ctx
, block
, last_index
, n
);
681 // STOP_TIMER("encode_block");
684 if (put_bits_count(&ctx
->m
.pb
) & 31)
685 put_bits(&ctx
->m
.pb
, 32 - (put_bits_count(&ctx
->m
.pb
) & 31), 0);
686 flush_put_bits(&ctx
->m
.pb
);
690 static void dnxhd_setup_threads_slices(DNXHDEncContext
*ctx
)
694 for (mb_y
= 0; mb_y
< ctx
->m
.mb_height
; mb_y
++) {
696 ctx
->slice_offs
[mb_y
] = offset
;
697 ctx
->slice_size
[mb_y
] = 0;
698 for (mb_x
= 0; mb_x
< ctx
->m
.mb_width
; mb_x
++) {
699 unsigned mb
= mb_y
* ctx
->m
.mb_width
+ mb_x
;
700 ctx
->slice_size
[mb_y
] += ctx
->mb_bits
[mb
];
702 ctx
->slice_size
[mb_y
] = (ctx
->slice_size
[mb_y
] + 31) & ~31;
703 ctx
->slice_size
[mb_y
] >>= 3;
704 thread_size
= ctx
->slice_size
[mb_y
];
705 offset
+= thread_size
;
709 static int dnxhd_mb_var_thread(AVCodecContext
*avctx
, void *arg
,
710 int jobnr
, int threadnr
)
712 DNXHDEncContext
*ctx
= avctx
->priv_data
;
713 int mb_y
= jobnr
, mb_x
, x
, y
;
714 int partial_last_row
= (mb_y
== ctx
->m
.mb_height
- 1) &&
715 ((avctx
->height
>> ctx
->interlaced
) & 0xF);
717 ctx
= ctx
->thread
[threadnr
];
718 if (ctx
->cid_table
->bit_depth
== 8) {
719 uint8_t *pix
= ctx
->thread
[0]->src
[0] + ((mb_y
<< 4) * ctx
->m
.linesize
);
720 for (mb_x
= 0; mb_x
< ctx
->m
.mb_width
; ++mb_x
, pix
+= 16) {
721 unsigned mb
= mb_y
* ctx
->m
.mb_width
+ mb_x
;
725 if (!partial_last_row
&& mb_x
* 16 <= avctx
->width
- 16) {
726 sum
= ctx
->m
.mpvencdsp
.pix_sum(pix
, ctx
->m
.linesize
);
727 varc
= ctx
->m
.mpvencdsp
.pix_norm1(pix
, ctx
->m
.linesize
);
729 int bw
= FFMIN(avctx
->width
- 16 * mb_x
, 16);
730 int bh
= FFMIN((avctx
->height
>> ctx
->interlaced
) - 16 * mb_y
, 16);
732 for (y
= 0; y
< bh
; y
++) {
733 for (x
= 0; x
< bw
; x
++) {
734 uint8_t val
= pix
[x
+ y
* ctx
->m
.linesize
];
740 varc
= (varc
- (((unsigned) sum
* sum
) >> 8) + 128) >> 8;
742 ctx
->mb_cmp
[mb
].value
= varc
;
743 ctx
->mb_cmp
[mb
].mb
= mb
;
746 int const linesize
= ctx
->m
.linesize
>> 1;
747 for (mb_x
= 0; mb_x
< ctx
->m
.mb_width
; ++mb_x
) {
748 uint16_t *pix
= (uint16_t *)ctx
->thread
[0]->src
[0] +
749 ((mb_y
<< 4) * linesize
) + (mb_x
<< 4);
750 unsigned mb
= mb_y
* ctx
->m
.mb_width
+ mb_x
;
755 // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
756 for (i
= 0; i
< 16; ++i
) {
757 for (j
= 0; j
< 16; ++j
) {
758 // Turn 16-bit pixels into 10-bit ones.
759 int const sample
= (unsigned) pix
[j
] >> 6;
761 sqsum
+= sample
* sample
;
762 // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
766 mean
= sum
>> 8; // 16*16 == 2^8
768 ctx
->mb_cmp
[mb
].value
= sqmean
- mean
* mean
;
769 ctx
->mb_cmp
[mb
].mb
= mb
;
775 static int dnxhd_encode_rdo(AVCodecContext
*avctx
, DNXHDEncContext
*ctx
)
777 int lambda
, up_step
, down_step
;
778 int last_lower
= INT_MAX
, last_higher
= 0;
781 for (q
= 1; q
< avctx
->qmax
; q
++) {
783 avctx
->execute2(avctx
, dnxhd_calc_bits_thread
,
784 NULL
, NULL
, ctx
->m
.mb_height
);
786 up_step
= down_step
= 2 << LAMBDA_FRAC_BITS
;
787 lambda
= ctx
->lambda
;
792 if (lambda
== last_higher
) {
794 end
= 1; // need to set final qscales/bits
796 for (y
= 0; y
< ctx
->m
.mb_height
; y
++) {
797 for (x
= 0; x
< ctx
->m
.mb_width
; x
++) {
798 unsigned min
= UINT_MAX
;
800 int mb
= y
* ctx
->m
.mb_width
+ x
;
801 for (q
= 1; q
< avctx
->qmax
; q
++) {
802 unsigned score
= ctx
->mb_rc
[q
][mb
].bits
* lambda
+
803 ((unsigned) ctx
->mb_rc
[q
][mb
].ssd
<< LAMBDA_FRAC_BITS
);
809 bits
+= ctx
->mb_rc
[qscale
][mb
].bits
;
810 ctx
->mb_qscale
[mb
] = qscale
;
811 ctx
->mb_bits
[mb
] = ctx
->mb_rc
[qscale
][mb
].bits
;
813 bits
= (bits
+ 31) & ~31; // padding
814 if (bits
> ctx
->frame_bits
)
817 // ff_dlog(ctx->m.avctx,
818 // "lambda %d, up %u, down %u, bits %d, frame %d\n",
819 // lambda, last_higher, last_lower, bits, ctx->frame_bits);
821 if (bits
> ctx
->frame_bits
)
822 return AVERROR(EINVAL
);
825 if (bits
< ctx
->frame_bits
) {
826 last_lower
= FFMIN(lambda
, last_lower
);
827 if (last_higher
!= 0)
828 lambda
= (lambda
+last_higher
)>>1;
831 down_step
= FFMIN((int64_t)down_step
*5, INT_MAX
);
832 up_step
= 1<<LAMBDA_FRAC_BITS
;
833 lambda
= FFMAX(1, lambda
);
834 if (lambda
== last_lower
)
837 last_higher
= FFMAX(lambda
, last_higher
);
838 if (last_lower
!= INT_MAX
)
839 lambda
= (lambda
+last_lower
)>>1;
840 else if ((int64_t)lambda
+ up_step
> INT_MAX
)
841 return AVERROR(EINVAL
);
844 up_step
= FFMIN((int64_t)up_step
*5, INT_MAX
);
845 down_step
= 1<<LAMBDA_FRAC_BITS
;
848 //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
849 ctx
->lambda
= lambda
;
853 static int dnxhd_find_qscale(DNXHDEncContext
*ctx
)
859 int last_lower
= INT_MAX
;
863 qscale
= ctx
->qscale
;
866 ctx
->qscale
= qscale
;
867 // XXX avoid recalculating bits
868 ctx
->m
.avctx
->execute2(ctx
->m
.avctx
, dnxhd_calc_bits_thread
,
869 NULL
, NULL
, ctx
->m
.mb_height
);
870 for (y
= 0; y
< ctx
->m
.mb_height
; y
++) {
871 for (x
= 0; x
< ctx
->m
.mb_width
; x
++)
872 bits
+= ctx
->mb_rc
[qscale
][y
*ctx
->m
.mb_width
+x
].bits
;
873 bits
= (bits
+31)&~31; // padding
874 if (bits
> ctx
->frame_bits
)
877 // ff_dlog(ctx->m.avctx,
878 // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
879 // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
880 // last_higher, last_lower);
881 if (bits
< ctx
->frame_bits
) {
884 if (last_higher
== qscale
- 1) {
885 qscale
= last_higher
;
888 last_lower
= FFMIN(qscale
, last_lower
);
889 if (last_higher
!= 0)
890 qscale
= (qscale
+ last_higher
) >> 1;
892 qscale
-= down_step
++;
897 if (last_lower
== qscale
+ 1)
899 last_higher
= FFMAX(qscale
, last_higher
);
900 if (last_lower
!= INT_MAX
)
901 qscale
= (qscale
+ last_lower
) >> 1;
905 if (qscale
>= ctx
->m
.avctx
->qmax
)
906 return AVERROR(EINVAL
);
909 //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
910 ctx
->qscale
= qscale
;
914 #define BUCKET_BITS 8
915 #define RADIX_PASSES 4
916 #define NBUCKETS (1 << BUCKET_BITS)
918 static inline int get_bucket(int value
, int shift
)
921 value
&= NBUCKETS
- 1;
922 return NBUCKETS
- 1 - value
;
925 static void radix_count(const RCCMPEntry
*data
, int size
,
926 int buckets
[RADIX_PASSES
][NBUCKETS
])
929 memset(buckets
, 0, sizeof(buckets
[0][0]) * RADIX_PASSES
* NBUCKETS
);
930 for (i
= 0; i
< size
; i
++) {
931 int v
= data
[i
].value
;
932 for (j
= 0; j
< RADIX_PASSES
; j
++) {
933 buckets
[j
][get_bucket(v
, 0)]++;
938 for (j
= 0; j
< RADIX_PASSES
; j
++) {
940 for (i
= NBUCKETS
- 1; i
>= 0; i
--)
941 buckets
[j
][i
] = offset
-= buckets
[j
][i
];
942 assert(!buckets
[j
][0]);
946 static void radix_sort_pass(RCCMPEntry
*dst
, const RCCMPEntry
*data
,
947 int size
, int buckets
[NBUCKETS
], int pass
)
949 int shift
= pass
* BUCKET_BITS
;
951 for (i
= 0; i
< size
; i
++) {
952 int v
= get_bucket(data
[i
].value
, shift
);
953 int pos
= buckets
[v
]++;
958 static void radix_sort(RCCMPEntry
*data
, int size
)
960 int buckets
[RADIX_PASSES
][NBUCKETS
];
961 RCCMPEntry
*tmp
= av_malloc(sizeof(*tmp
) * size
);
962 radix_count(data
, size
, buckets
);
963 radix_sort_pass(tmp
, data
, size
, buckets
[0], 0);
964 radix_sort_pass(data
, tmp
, size
, buckets
[1], 1);
965 if (buckets
[2][NBUCKETS
- 1] || buckets
[3][NBUCKETS
- 1]) {
966 radix_sort_pass(tmp
, data
, size
, buckets
[2], 2);
967 radix_sort_pass(data
, tmp
, size
, buckets
[3], 3);
972 static int dnxhd_encode_fast(AVCodecContext
*avctx
, DNXHDEncContext
*ctx
)
976 if ((ret
= dnxhd_find_qscale(ctx
)) < 0)
978 for (y
= 0; y
< ctx
->m
.mb_height
; y
++) {
979 for (x
= 0; x
< ctx
->m
.mb_width
; x
++) {
980 int mb
= y
* ctx
->m
.mb_width
+ x
;
982 ctx
->mb_qscale
[mb
] = ctx
->qscale
;
983 ctx
->mb_bits
[mb
] = ctx
->mb_rc
[ctx
->qscale
][mb
].bits
;
984 max_bits
+= ctx
->mb_rc
[ctx
->qscale
][mb
].bits
;
986 delta_bits
= ctx
->mb_rc
[ctx
->qscale
][mb
].bits
-
987 ctx
->mb_rc
[ctx
->qscale
+ 1][mb
].bits
;
988 ctx
->mb_cmp
[mb
].mb
= mb
;
989 ctx
->mb_cmp
[mb
].value
=
990 delta_bits ?
((ctx
->mb_rc
[ctx
->qscale
][mb
].ssd
-
991 ctx
->mb_rc
[ctx
->qscale
+ 1][mb
].ssd
) * 100) /
993 : INT_MIN
; // avoid increasing qscale
996 max_bits
+= 31; // worst padding
1000 avctx
->execute2(avctx
, dnxhd_mb_var_thread
,
1001 NULL
, NULL
, ctx
->m
.mb_height
);
1002 radix_sort(ctx
->mb_cmp
, ctx
->m
.mb_num
);
1003 for (x
= 0; x
< ctx
->m
.mb_num
&& max_bits
> ctx
->frame_bits
; x
++) {
1004 int mb
= ctx
->mb_cmp
[x
].mb
;
1005 max_bits
-= ctx
->mb_rc
[ctx
->qscale
][mb
].bits
-
1006 ctx
->mb_rc
[ctx
->qscale
+ 1][mb
].bits
;
1007 ctx
->mb_qscale
[mb
] = ctx
->qscale
+ 1;
1008 ctx
->mb_bits
[mb
] = ctx
->mb_rc
[ctx
->qscale
+ 1][mb
].bits
;
1014 static void dnxhd_load_picture(DNXHDEncContext
*ctx
, const AVFrame
*frame
)
1018 for (i
= 0; i
< ctx
->m
.avctx
->thread_count
; i
++) {
1019 ctx
->thread
[i
]->m
.linesize
= frame
->linesize
[0] << ctx
->interlaced
;
1020 ctx
->thread
[i
]->m
.uvlinesize
= frame
->linesize
[1] << ctx
->interlaced
;
1021 ctx
->thread
[i
]->dct_y_offset
= ctx
->m
.linesize
*8;
1022 ctx
->thread
[i
]->dct_uv_offset
= ctx
->m
.uvlinesize
*8;
1025 ctx
->m
.avctx
->coded_frame
->interlaced_frame
= frame
->interlaced_frame
;
1026 ctx
->cur_field
= frame
->interlaced_frame
&& !frame
->top_field_first
;
1029 static int dnxhd_encode_picture(AVCodecContext
*avctx
, AVPacket
*pkt
,
1030 const AVFrame
*frame
, int *got_packet
)
1032 DNXHDEncContext
*ctx
= avctx
->priv_data
;
1033 int first_field
= 1;
1037 if ((ret
= ff_alloc_packet(pkt
, ctx
->cid_table
->frame_size
)) < 0) {
1038 av_log(avctx
, AV_LOG_ERROR
,
1039 "output buffer is too small to compress picture\n");
1044 dnxhd_load_picture(ctx
, frame
);
1047 for (i
= 0; i
< 3; i
++) {
1048 ctx
->src
[i
] = frame
->data
[i
];
1049 if (ctx
->interlaced
&& ctx
->cur_field
)
1050 ctx
->src
[i
] += frame
->linesize
[i
];
1053 dnxhd_write_header(avctx
, buf
);
1055 if (avctx
->mb_decision
== FF_MB_DECISION_RD
)
1056 ret
= dnxhd_encode_rdo(avctx
, ctx
);
1058 ret
= dnxhd_encode_fast(avctx
, ctx
);
1060 av_log(avctx
, AV_LOG_ERROR
,
1061 "picture could not fit ratecontrol constraints, increase qmax\n");
1065 dnxhd_setup_threads_slices(ctx
);
1068 for (i
= 0; i
< ctx
->m
.mb_height
; i
++) {
1069 AV_WB32(ctx
->msip
+ i
* 4, offset
);
1070 offset
+= ctx
->slice_size
[i
];
1071 assert(!(ctx
->slice_size
[i
] & 3));
1074 avctx
->execute2(avctx
, dnxhd_encode_thread
, buf
, NULL
, ctx
->m
.mb_height
);
1076 assert(640 + offset
+ 4 <= ctx
->cid_table
->coding_unit_size
);
1077 memset(buf
+ 640 + offset
, 0,
1078 ctx
->cid_table
->coding_unit_size
- 4 - offset
- 640);
1080 AV_WB32(buf
+ ctx
->cid_table
->coding_unit_size
- 4, 0x600DC0DE); // EOF
1082 if (ctx
->interlaced
&& first_field
) {
1084 ctx
->cur_field
^= 1;
1085 buf
+= ctx
->cid_table
->coding_unit_size
;
1086 goto encode_coding_unit
;
1089 avctx
->coded_frame
->quality
= ctx
->qscale
* FF_QP2LAMBDA
;
1091 pkt
->flags
|= AV_PKT_FLAG_KEY
;
1096 static av_cold
int dnxhd_encode_end(AVCodecContext
*avctx
)
1098 DNXHDEncContext
*ctx
= avctx
->priv_data
;
1099 int max_level
= 1 << (ctx
->cid_table
->bit_depth
+ 2);
1102 av_free(ctx
->vlc_codes
- max_level
* 2);
1103 av_free(ctx
->vlc_bits
- max_level
* 2);
1104 av_freep(&ctx
->run_codes
);
1105 av_freep(&ctx
->run_bits
);
1107 av_freep(&ctx
->mb_bits
);
1108 av_freep(&ctx
->mb_qscale
);
1109 av_freep(&ctx
->mb_rc
);
1110 av_freep(&ctx
->mb_cmp
);
1111 av_freep(&ctx
->slice_size
);
1112 av_freep(&ctx
->slice_offs
);
1114 av_freep(&ctx
->qmatrix_c
);
1115 av_freep(&ctx
->qmatrix_l
);
1116 av_freep(&ctx
->qmatrix_c16
);
1117 av_freep(&ctx
->qmatrix_l16
);
1119 for (i
= 1; i
< avctx
->thread_count
; i
++)
1120 av_freep(&ctx
->thread
[i
]);
1122 av_frame_free(&avctx
->coded_frame
);
1127 AVCodec ff_dnxhd_encoder
= {
1129 .long_name
= NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1130 .type
= AVMEDIA_TYPE_VIDEO
,
1131 .id
= AV_CODEC_ID_DNXHD
,
1132 .priv_data_size
= sizeof(DNXHDEncContext
),
1133 .init
= dnxhd_encode_init
,
1134 .encode2
= dnxhd_encode_picture
,
1135 .close
= dnxhd_encode_end
,
1136 .capabilities
= CODEC_CAP_SLICE_THREADS
,
1137 .pix_fmts
= (const enum AVPixelFormat
[]) {
1139 AV_PIX_FMT_YUV422P10
,
1142 .priv_class
= &class,