Separate DWT from snow and dsputil
[libav.git] / libavcodec / dsputil.h
1 /*
2 * DSP utils
3 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file libavcodec/dsputil.h
25 * DSP utils.
26 * note, many functions in here may use MMX which trashes the FPU state, it is
27 * absolutely necessary to call emms_c() between dsp & float/double code
28 */
29
30 #ifndef AVCODEC_DSPUTIL_H
31 #define AVCODEC_DSPUTIL_H
32
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35
36
37 //#define DEBUG
38 /* dct code */
39 typedef short DCTELEM;
40
41 void fdct_ifast (DCTELEM *data);
42 void fdct_ifast248 (DCTELEM *data);
43 void ff_jpeg_fdct_islow (DCTELEM *data);
44 void ff_fdct248_islow (DCTELEM *data);
45
46 void j_rev_dct (DCTELEM *data);
47 void j_rev_dct4 (DCTELEM *data);
48 void j_rev_dct2 (DCTELEM *data);
49 void j_rev_dct1 (DCTELEM *data);
50 void ff_wmv2_idct_c(DCTELEM *data);
51
52 void ff_fdct_mmx(DCTELEM *block);
53 void ff_fdct_mmx2(DCTELEM *block);
54 void ff_fdct_sse2(DCTELEM *block);
55
56 void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
57 void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
58 void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
59 void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
60 void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
61 void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
62 void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
63 void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
64 void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
65 void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
66
67 void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
68 const float *win, float add_bias, int len);
69 void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
70 void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
71
72 /* encoding scans */
73 extern const uint8_t ff_alternate_horizontal_scan[64];
74 extern const uint8_t ff_alternate_vertical_scan[64];
75 extern const uint8_t ff_zigzag_direct[64];
76 extern const uint8_t ff_zigzag248_direct[64];
77
78 /* pixel operations */
79 #define MAX_NEG_CROP 1024
80
81 /* temporary */
82 extern uint32_t ff_squareTbl[512];
83 extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
84
85 /* VP3 DSP functions */
86 void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
87 void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
88 void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
89
90 void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
91 void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
92
93 /* VP6 DSP functions */
94 void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
95 const int16_t *h_weights, const int16_t *v_weights);
96
97 /* Bink functions */
98 void ff_bink_idct_c (DCTELEM *block);
99 void ff_bink_idct_add_c(uint8_t *dest, int linesize, DCTELEM *block);
100 void ff_bink_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block);
101
102 /* CAVS functions */
103 void ff_put_cavs_qpel8_mc00_c(uint8_t *dst, uint8_t *src, int stride);
104 void ff_avg_cavs_qpel8_mc00_c(uint8_t *dst, uint8_t *src, int stride);
105 void ff_put_cavs_qpel16_mc00_c(uint8_t *dst, uint8_t *src, int stride);
106 void ff_avg_cavs_qpel16_mc00_c(uint8_t *dst, uint8_t *src, int stride);
107
108 /* VC1 functions */
109 void ff_put_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd);
110 void ff_avg_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd);
111
112 /* EA functions */
113 void ff_ea_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block);
114
115 /* 1/2^n downscaling functions from imgconvert.c */
116 void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
117 void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
118 void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
119 void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
120
121 void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
122 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
123
124 /* minimum alignment rules ;)
125 If you notice errors in the align stuff, need more alignment for some ASM code
126 for some CPU or need to use a function with less aligned data then send a mail
127 to the ffmpeg-devel mailing list, ...
128
129 !warning These alignments might not match reality, (missing attribute((align))
130 stuff somewhere possible).
131 I (Michael) did not check them, these are just the alignments which I think
132 could be reached easily ...
133
134 !future video codecs might need functions with less strict alignment
135 */
136
137 /*
138 void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
139 void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
140 void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
141 void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
142 void clear_blocks_c(DCTELEM *blocks);
143 */
144
145 /* add and put pixel (decoding) */
146 // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
147 //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
148 typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
149 typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
150 typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
151 typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
152 typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
153 typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
154
155 typedef void (*op_fill_func)(uint8_t *block/*align width (8 or 16)*/, uint8_t value, int line_size, int h);
156
157 #define DEF_OLD_QPEL(name)\
158 void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
159 void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
160 void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
161
162 DEF_OLD_QPEL(qpel16_mc11_old_c)
163 DEF_OLD_QPEL(qpel16_mc31_old_c)
164 DEF_OLD_QPEL(qpel16_mc12_old_c)
165 DEF_OLD_QPEL(qpel16_mc32_old_c)
166 DEF_OLD_QPEL(qpel16_mc13_old_c)
167 DEF_OLD_QPEL(qpel16_mc33_old_c)
168 DEF_OLD_QPEL(qpel8_mc11_old_c)
169 DEF_OLD_QPEL(qpel8_mc31_old_c)
170 DEF_OLD_QPEL(qpel8_mc12_old_c)
171 DEF_OLD_QPEL(qpel8_mc32_old_c)
172 DEF_OLD_QPEL(qpel8_mc13_old_c)
173 DEF_OLD_QPEL(qpel8_mc33_old_c)
174
175 #define CALL_2X_PIXELS(a, b, n)\
176 static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
177 b(block , pixels , line_size, h);\
178 b(block+n, pixels+n, line_size, h);\
179 }
180
181 /* motion estimation */
182 // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
183 // although currently h<4 is not used as functions with width <8 are neither used nor implemented
184 typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
185
186 /**
187 * Scantable.
188 */
189 typedef struct ScanTable{
190 const uint8_t *scantable;
191 uint8_t permutated[64];
192 uint8_t raster_end[64];
193 #if ARCH_PPC
194 /** Used by dct_quantize_altivec to find last-non-zero */
195 DECLARE_ALIGNED(16, uint8_t, inverse)[64];
196 #endif
197 } ScanTable;
198
199 void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
200
201 void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
202 int block_w, int block_h,
203 int src_x, int src_y, int w, int h);
204
205 /**
206 * DSPContext.
207 */
208 typedef struct DSPContext {
209 /* pixel ops : interface with DCT */
210 void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
211 void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
212 void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
213 void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
214 void (*put_pixels_nonclamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
215 void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
216 void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
217 void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
218 int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
219 /**
220 * translational global motion compensation.
221 */
222 void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
223 /**
224 * global motion compensation.
225 */
226 void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
227 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
228 void (*clear_block)(DCTELEM *block/*align 16*/);
229 void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
230 int (*pix_sum)(uint8_t * pix, int line_size);
231 int (*pix_norm1)(uint8_t * pix, int line_size);
232 // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
233
234 me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
235 me_cmp_func sse[6];
236 me_cmp_func hadamard8_diff[6];
237 me_cmp_func dct_sad[6];
238 me_cmp_func quant_psnr[6];
239 me_cmp_func bit[6];
240 me_cmp_func rd[6];
241 me_cmp_func vsad[6];
242 me_cmp_func vsse[6];
243 me_cmp_func nsse[6];
244 me_cmp_func w53[6];
245 me_cmp_func w97[6];
246 me_cmp_func dct_max[6];
247 me_cmp_func dct264_sad[6];
248
249 me_cmp_func me_pre_cmp[6];
250 me_cmp_func me_cmp[6];
251 me_cmp_func me_sub_cmp[6];
252 me_cmp_func mb_cmp[6];
253 me_cmp_func ildct_cmp[6]; //only width 16 used
254 me_cmp_func frame_skip_cmp[6]; //only width 8 used
255
256 int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
257 int size);
258
259 /**
260 * Halfpel motion compensation with rounding (a+b+1)>>1.
261 * this is an array[4][4] of motion compensation functions for 4
262 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
263 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
264 * @param block destination where the result is stored
265 * @param pixels source
266 * @param line_size number of bytes in a horizontal line of block
267 * @param h height
268 */
269 op_pixels_func put_pixels_tab[4][4];
270
271 /**
272 * Halfpel motion compensation with rounding (a+b+1)>>1.
273 * This is an array[4][4] of motion compensation functions for 4
274 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
275 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
276 * @param block destination into which the result is averaged (a+b+1)>>1
277 * @param pixels source
278 * @param line_size number of bytes in a horizontal line of block
279 * @param h height
280 */
281 op_pixels_func avg_pixels_tab[4][4];
282
283 /**
284 * Halfpel motion compensation with no rounding (a+b)>>1.
285 * this is an array[2][4] of motion compensation functions for 2
286 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
287 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
288 * @param block destination where the result is stored
289 * @param pixels source
290 * @param line_size number of bytes in a horizontal line of block
291 * @param h height
292 */
293 op_pixels_func put_no_rnd_pixels_tab[4][4];
294
295 /**
296 * Halfpel motion compensation with no rounding (a+b)>>1.
297 * this is an array[2][4] of motion compensation functions for 2
298 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
299 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
300 * @param block destination into which the result is averaged (a+b)>>1
301 * @param pixels source
302 * @param line_size number of bytes in a horizontal line of block
303 * @param h height
304 */
305 op_pixels_func avg_no_rnd_pixels_tab[4][4];
306
307 void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
308
309 /**
310 * Thirdpel motion compensation with rounding (a+b+1)>>1.
311 * this is an array[12] of motion compensation functions for the 9 thirdpe
312 * positions<br>
313 * *pixels_tab[ xthirdpel + 4*ythirdpel ]
314 * @param block destination where the result is stored
315 * @param pixels source
316 * @param line_size number of bytes in a horizontal line of block
317 * @param h height
318 */
319 tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
320 tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
321
322 qpel_mc_func put_qpel_pixels_tab[2][16];
323 qpel_mc_func avg_qpel_pixels_tab[2][16];
324 qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
325 qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
326 qpel_mc_func put_mspel_pixels_tab[8];
327
328 /**
329 * h264 Chroma MC
330 */
331 h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
332 h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
333 /* This is really one func used in VC-1 decoding */
334 h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
335 h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
336
337 qpel_mc_func put_h264_qpel_pixels_tab[4][16];
338 qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
339
340 qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
341 qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
342
343 h264_weight_func weight_h264_pixels_tab[10];
344 h264_biweight_func biweight_h264_pixels_tab[10];
345
346 /* AVS specific */
347 qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
348 qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
349 void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
350 void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
351 void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
352 void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
353 void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
354
355 me_cmp_func pix_abs[2][4];
356
357 /* huffyuv specific */
358 void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
359 void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
360 void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
361 /**
362 * subtract huffyuv's variant of median prediction
363 * note, this might read from src1[-1], src2[-1]
364 */
365 void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top);
366 void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top);
367 int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left);
368 void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha);
369 /* this might write to dst[w] */
370 void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
371 void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
372
373 void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
374 void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
375 /* v/h_loop_filter_luma_intra: align 16 */
376 void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
377 void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
378 void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
379 void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
380 void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
381 void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
382 // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
383 void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
384 int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
385
386 void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
387 void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
388
389 void (*h261_loop_filter)(uint8_t *src, int stride);
390
391 void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
392 void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
393
394 void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
395 void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
396
397 void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
398 const int16_t *h_weights,const int16_t *v_weights);
399
400 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
401 void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
402 void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
403 /* no alignment needed */
404 void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
405 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
406 void (*vector_fmul)(float *dst, const float *src, int len);
407 void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
408 /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
409 void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
410 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
411 void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
412 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
413 void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
414 void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
415 /**
416 * Multiply a vector of floats by a scalar float. Source and
417 * destination vectors must overlap exactly or not at all.
418 * @param dst result vector, 16-byte aligned
419 * @param src input vector, 16-byte aligned
420 * @param mul scalar value
421 * @param len length of vector, multiple of 4
422 */
423 void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
424 int len);
425 /**
426 * Multiply a vector of floats by concatenated short vectors of
427 * floats and by a scalar float. Source and destination vectors
428 * must overlap exactly or not at all.
429 * [0]: short vectors of length 2, 8-byte aligned
430 * [1]: short vectors of length 4, 16-byte aligned
431 * @param dst output vector, 16-byte aligned
432 * @param src input vector, 16-byte aligned
433 * @param sv array of pointers to short vectors
434 * @param mul scalar value
435 * @param len number of elements in src and dst, multiple of 4
436 */
437 void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
438 const float **sv, float mul, int len);
439 /**
440 * Multiply short vectors of floats by a scalar float, store
441 * concatenated result.
442 * [0]: short vectors of length 2, 8-byte aligned
443 * [1]: short vectors of length 4, 16-byte aligned
444 * @param dst output vector, 16-byte aligned
445 * @param sv array of pointers to short vectors
446 * @param mul scalar value
447 * @param len number of output elements, multiple of 4
448 */
449 void (*sv_fmul_scalar[2])(float *dst, const float **sv,
450 float mul, int len);
451 /**
452 * Calculate the scalar product of two vectors of floats.
453 * @param v1 first vector, 16-byte aligned
454 * @param v2 second vector, 16-byte aligned
455 * @param len length of vectors, multiple of 4
456 */
457 float (*scalarproduct_float)(const float *v1, const float *v2, int len);
458 /**
459 * Calculate the sum and difference of two vectors of floats.
460 * @param v1 first input vector, sum output, 16-byte aligned
461 * @param v2 second input vector, difference output, 16-byte aligned
462 * @param len length of vectors, multiple of 4
463 */
464 void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
465
466 /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
467 * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
468 void (*float_to_int16)(int16_t *dst, const float *src, long len);
469 void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
470
471 /* (I)DCT */
472 void (*fdct)(DCTELEM *block/* align 16*/);
473 void (*fdct248)(DCTELEM *block/* align 16*/);
474
475 /* IDCT really*/
476 void (*idct)(DCTELEM *block/* align 16*/);
477
478 /**
479 * block -> idct -> clip to unsigned 8 bit -> dest.
480 * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
481 * @param line_size size in bytes of a horizontal line of dest
482 */
483 void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
484
485 /**
486 * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
487 * @param line_size size in bytes of a horizontal line of dest
488 */
489 void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
490
491 /**
492 * idct input permutation.
493 * several optimized IDCTs need a permutated input (relative to the normal order of the reference
494 * IDCT)
495 * this permutation must be performed before the idct_put/add, note, normally this can be merged
496 * with the zigzag/alternate scan<br>
497 * an example to avoid confusion:
498 * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
499 * - (x -> referece dct -> reference idct -> x)
500 * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
501 * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
502 */
503 uint8_t idct_permutation[64];
504 int idct_permutation_type;
505 #define FF_NO_IDCT_PERM 1
506 #define FF_LIBMPEG2_IDCT_PERM 2
507 #define FF_SIMPLE_IDCT_PERM 3
508 #define FF_TRANSPOSE_IDCT_PERM 4
509 #define FF_PARTTRANS_IDCT_PERM 5
510 #define FF_SSE2_IDCT_PERM 6
511
512 int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
513 void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
514 #define BASIS_SHIFT 16
515 #define RECON_SHIFT 6
516
517 void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
518 #define EDGE_WIDTH 16
519
520 /* h264 functions */
521 /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
522 NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
523 The reason for above, is that no 2 out of one list may use a different permutation.
524 */
525 void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
526 void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
527 void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
528 void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
529 void (*h264_dct)(DCTELEM block[4][4]);
530 void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
531 void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
532 void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
533 void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
534
535 void (*prefetch)(void *mem, int stride, int h);
536
537 void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
538
539 /* mlp/truehd functions */
540 void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
541 int firorder, int iirorder,
542 unsigned int filter_shift, int32_t mask, int blocksize,
543 int32_t *sample_buffer);
544
545 /* vc1 functions */
546 void (*vc1_inv_trans_8x8)(DCTELEM *b);
547 void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
548 void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
549 void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
550 void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
551 void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
552 void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
553 void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
554 void (*vc1_v_overlap)(uint8_t* src, int stride);
555 void (*vc1_h_overlap)(uint8_t* src, int stride);
556 void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
557 void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
558 void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
559 void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
560 void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
561 void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
562 /* put 8x8 block with bicubic interpolation and quarterpel precision
563 * last argument is actually round value instead of height
564 */
565 op_pixels_func put_vc1_mspel_pixels_tab[16];
566 op_pixels_func avg_vc1_mspel_pixels_tab[16];
567
568 /* intrax8 functions */
569 void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
570 void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
571 int * range, int * sum, int edges);
572
573 /**
574 * Calculate scalar product of two vectors.
575 * @param len length of vectors, should be multiple of 16
576 * @param shift number of bits to discard from product
577 */
578 int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
579 /* ape functions */
580 /**
581 * Calculate scalar product of v1 and v2,
582 * and v1[i] += v3[i] * mul
583 * @param len length of vectors, should be multiple of 16
584 */
585 int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, int16_t *v2, int16_t *v3, int len, int mul);
586
587 /* rv30 functions */
588 qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
589 qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
590
591 /* rv40 functions */
592 qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
593 qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
594 h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
595 h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
596
597 /* bink functions */
598 op_fill_func fill_block_tab[2];
599 void (*scale_block)(const uint8_t src[64]/*align 8*/, uint8_t *dst/*align 8*/, int linesize);
600 } DSPContext;
601
602 void dsputil_static_init(void);
603 void dsputil_init(DSPContext* p, AVCodecContext *avctx);
604
605 int ff_check_alignment(void);
606
607 /**
608 * permute block according to permuatation.
609 * @param last last non zero element in scantable order
610 */
611 void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
612
613 void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
614
615 #define BYTE_VEC32(c) ((c)*0x01010101UL)
616
617 static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
618 {
619 return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
620 }
621
622 static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
623 {
624 return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
625 }
626
627 static inline int get_penalty_factor(int lambda, int lambda2, int type){
628 switch(type&0xFF){
629 default:
630 case FF_CMP_SAD:
631 return lambda>>FF_LAMBDA_SHIFT;
632 case FF_CMP_DCT:
633 return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
634 case FF_CMP_W53:
635 return (4*lambda)>>(FF_LAMBDA_SHIFT);
636 case FF_CMP_W97:
637 return (2*lambda)>>(FF_LAMBDA_SHIFT);
638 case FF_CMP_SATD:
639 case FF_CMP_DCT264:
640 return (2*lambda)>>FF_LAMBDA_SHIFT;
641 case FF_CMP_RD:
642 case FF_CMP_PSNR:
643 case FF_CMP_SSE:
644 case FF_CMP_NSSE:
645 return lambda2>>FF_LAMBDA_SHIFT;
646 case FF_CMP_BIT:
647 return 1;
648 }
649 }
650
651 /**
652 * Empty mmx state.
653 * this must be called between any dsp function and float/double code.
654 * for example sin(); dsp->idct_put(); emms_c(); cos()
655 */
656 #define emms_c()
657
658 /* should be defined by architectures supporting
659 one or more MultiMedia extension */
660 int mm_support(void);
661 extern int mm_flags;
662
663 void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
664 void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
665 void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
666 void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
667 void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
668 void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
669 void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
670 void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
671 void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
672
673 void ff_dsputil_init_dwt(DSPContext *c);
674 void ff_cavsdsp_init(DSPContext* c, AVCodecContext *avctx);
675 void ff_rv30dsp_init(DSPContext* c, AVCodecContext *avctx);
676 void ff_rv40dsp_init(DSPContext* c, AVCodecContext *avctx);
677 void ff_vc1dsp_init(DSPContext* c, AVCodecContext *avctx);
678 void ff_intrax8dsp_init(DSPContext* c, AVCodecContext *avctx);
679 void ff_mlp_init(DSPContext* c, AVCodecContext *avctx);
680 void ff_mlp_init_x86(DSPContext* c, AVCodecContext *avctx);
681
682 #if HAVE_MMX
683
684 #undef emms_c
685
686 static inline void emms(void)
687 {
688 __asm__ volatile ("emms;":::"memory");
689 }
690
691
692 #define emms_c() \
693 {\
694 if (mm_flags & FF_MM_MMX)\
695 emms();\
696 }
697
698 #elif ARCH_ARM
699
700 #if HAVE_NEON
701 # define STRIDE_ALIGN 16
702 #endif
703
704 #elif ARCH_PPC
705
706 #define STRIDE_ALIGN 16
707
708 #elif HAVE_MMI
709
710 #define STRIDE_ALIGN 16
711
712 #else
713
714 #define mm_flags 0
715 #define mm_support() 0
716
717 #endif
718
719 #ifndef STRIDE_ALIGN
720 # define STRIDE_ALIGN 8
721 #endif
722
723 #define LOCAL_ALIGNED(a, t, v, s, ...) \
724 uint8_t la_##v[sizeof(t s __VA_ARGS__) + (a)]; \
725 t (*v) __VA_ARGS__ = (void *)FFALIGN((uintptr_t)la_##v, a)
726
727 #if HAVE_LOCAL_ALIGNED_8
728 # define LOCAL_ALIGNED_8(t, v, s, ...) DECLARE_ALIGNED(8, t, v) s __VA_ARGS__
729 #else
730 # define LOCAL_ALIGNED_8(t, v, s, ...) LOCAL_ALIGNED(8, t, v, s, __VA_ARGS__)
731 #endif
732
733 #if HAVE_LOCAL_ALIGNED_16
734 # define LOCAL_ALIGNED_16(t, v, s, ...) DECLARE_ALIGNED(16, t, v) s __VA_ARGS__
735 #else
736 # define LOCAL_ALIGNED_16(t, v, s, ...) LOCAL_ALIGNED(16, t, v, s, __VA_ARGS__)
737 #endif
738
739 /* PSNR */
740 void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
741 int orig_linesize[3], int coded_linesize,
742 AVCodecContext *avctx);
743
744 #define WRAPPER8_16(name8, name16)\
745 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
746 return name8(s, dst , src , stride, h)\
747 +name8(s, dst+8 , src+8 , stride, h);\
748 }
749
750 #define WRAPPER8_16_SQ(name8, name16)\
751 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
752 int score=0;\
753 score +=name8(s, dst , src , stride, 8);\
754 score +=name8(s, dst+8 , src+8 , stride, 8);\
755 if(h==16){\
756 dst += 8*stride;\
757 src += 8*stride;\
758 score +=name8(s, dst , src , stride, 8);\
759 score +=name8(s, dst+8 , src+8 , stride, 8);\
760 }\
761 return score;\
762 }
763
764
765 static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
766 {
767 int i;
768 for(i=0; i<h; i++)
769 {
770 AV_WN16(dst , AV_RN16(src ));
771 dst+=dstStride;
772 src+=srcStride;
773 }
774 }
775
776 static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
777 {
778 int i;
779 for(i=0; i<h; i++)
780 {
781 AV_WN32(dst , AV_RN32(src ));
782 dst+=dstStride;
783 src+=srcStride;
784 }
785 }
786
787 static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
788 {
789 int i;
790 for(i=0; i<h; i++)
791 {
792 AV_WN32(dst , AV_RN32(src ));
793 AV_WN32(dst+4 , AV_RN32(src+4 ));
794 dst+=dstStride;
795 src+=srcStride;
796 }
797 }
798
799 static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
800 {
801 int i;
802 for(i=0; i<h; i++)
803 {
804 AV_WN32(dst , AV_RN32(src ));
805 AV_WN32(dst+4 , AV_RN32(src+4 ));
806 dst[8]= src[8];
807 dst+=dstStride;
808 src+=srcStride;
809 }
810 }
811
812 static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
813 {
814 int i;
815 for(i=0; i<h; i++)
816 {
817 AV_WN32(dst , AV_RN32(src ));
818 AV_WN32(dst+4 , AV_RN32(src+4 ));
819 AV_WN32(dst+8 , AV_RN32(src+8 ));
820 AV_WN32(dst+12, AV_RN32(src+12));
821 dst+=dstStride;
822 src+=srcStride;
823 }
824 }
825
826 static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
827 {
828 int i;
829 for(i=0; i<h; i++)
830 {
831 AV_WN32(dst , AV_RN32(src ));
832 AV_WN32(dst+4 , AV_RN32(src+4 ));
833 AV_WN32(dst+8 , AV_RN32(src+8 ));
834 AV_WN32(dst+12, AV_RN32(src+12));
835 dst[16]= src[16];
836 dst+=dstStride;
837 src+=srcStride;
838 }
839 }
840
841 #endif /* AVCODEC_DSPUTIL_H */