huffman: use a named identifer for the bits constant
[libav.git] / libavcodec / fraps.c
1 /*
2 * Fraps FPS1 decoder
3 * Copyright (c) 2005 Roine Gustafsson
4 * Copyright (c) 2006 Konstantin Shishkov
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Lossless Fraps 'FPS1' decoder
26 * @author Roine Gustafsson (roine at users sf net)
27 * @author Konstantin Shishkov
28 *
29 * Codec algorithm for version 0 is taken from Transcode <www.transcoding.org>
30 *
31 * Version 2 files support by Konstantin Shishkov
32 */
33
34 #include "avcodec.h"
35 #include "get_bits.h"
36 #include "huffman.h"
37 #include "bytestream.h"
38 #include "bswapdsp.h"
39 #include "internal.h"
40
41 #define FPS_TAG MKTAG('F', 'P', 'S', 'x')
42
43 /**
44 * local variable storage
45 */
46 typedef struct FrapsContext {
47 AVCodecContext *avctx;
48 BswapDSPContext bdsp;
49 AVFrame *frame;
50 uint8_t *tmpbuf;
51 int tmpbuf_size;
52 } FrapsContext;
53
54
55 /**
56 * initializes decoder
57 * @param avctx codec context
58 * @return 0 on success or negative if fails
59 */
60 static av_cold int decode_init(AVCodecContext *avctx)
61 {
62 FrapsContext * const s = avctx->priv_data;
63
64 avctx->pix_fmt = AV_PIX_FMT_NONE; /* set in decode_frame */
65
66 s->avctx = avctx;
67 s->tmpbuf = NULL;
68
69 s->frame = av_frame_alloc();
70 if (!s->frame)
71 return AVERROR(ENOMEM);
72
73 ff_bswapdsp_init(&s->bdsp);
74
75 return 0;
76 }
77
78 /**
79 * Comparator - our nodes should ascend by count
80 * but with preserved symbol order
81 */
82 static int huff_cmp(const void *va, const void *vb)
83 {
84 const Node *a = va, *b = vb;
85 return (a->count - b->count)*256 + a->sym - b->sym;
86 }
87
88 /**
89 * decode Fraps v2 packed plane
90 */
91 static int fraps2_decode_plane(FrapsContext *s, uint8_t *dst, int stride, int w,
92 int h, const uint8_t *src, int size, int Uoff,
93 const int step)
94 {
95 int i, j, ret;
96 GetBitContext gb;
97 VLC vlc;
98 Node nodes[512];
99
100 for (i = 0; i < 256; i++)
101 nodes[i].count = bytestream_get_le32(&src);
102 size -= 1024;
103 if ((ret = ff_huff_build_tree(s->avctx, &vlc, 256, nodes, huff_cmp,
104 FF_HUFFMAN_FLAG_ZERO_COUNT)) < 0)
105 return ret;
106 /* we have built Huffman table and are ready to decode plane */
107
108 /* convert bits so they may be used by standard bitreader */
109 s->bdsp.bswap_buf((uint32_t *) s->tmpbuf,
110 (const uint32_t *) src, size >> 2);
111
112 init_get_bits(&gb, s->tmpbuf, size * 8);
113 for (j = 0; j < h; j++) {
114 for (i = 0; i < w*step; i += step) {
115 dst[i] = get_vlc2(&gb, vlc.table, FF_HUFFMAN_BITS, 3);
116 /* lines are stored as deltas between previous lines
117 * and we need to add 0x80 to the first lines of chroma planes
118 */
119 if (j)
120 dst[i] += dst[i - stride];
121 else if (Uoff)
122 dst[i] += 0x80;
123 if (get_bits_left(&gb) < 0) {
124 ff_free_vlc(&vlc);
125 return AVERROR_INVALIDDATA;
126 }
127 }
128 dst += stride;
129 }
130 ff_free_vlc(&vlc);
131 return 0;
132 }
133
134 static int decode_frame(AVCodecContext *avctx,
135 void *data, int *got_frame,
136 AVPacket *avpkt)
137 {
138 FrapsContext * const s = avctx->priv_data;
139 const uint8_t *buf = avpkt->data;
140 int buf_size = avpkt->size;
141 AVFrame *frame = data;
142 AVFrame * const f = s->frame;
143 uint32_t header;
144 unsigned int version,header_size;
145 unsigned int x, y;
146 const uint32_t *buf32;
147 uint32_t *luma1,*luma2,*cb,*cr;
148 uint32_t offs[4];
149 int i, j, ret, is_chroma, planes;
150 enum AVPixelFormat pix_fmt;
151 int prev_pic_bit, expected_size;
152
153 if (buf_size < 4) {
154 av_log(avctx, AV_LOG_ERROR, "Packet is too short\n");
155 return AVERROR_INVALIDDATA;
156 }
157
158 header = AV_RL32(buf);
159 version = header & 0xff;
160 header_size = (header & (1<<30))? 8 : 4; /* bit 30 means pad to 8 bytes */
161 prev_pic_bit = header & (1U << 31); /* bit 31 means same as previous pic */
162
163 if (version > 5) {
164 av_log(avctx, AV_LOG_ERROR,
165 "This file is encoded with Fraps version %d. " \
166 "This codec can only decode versions <= 5.\n", version);
167 return AVERROR_PATCHWELCOME;
168 }
169
170 buf += 4;
171 if (header_size == 8)
172 buf += 4;
173
174 pix_fmt = version & 1 ? AV_PIX_FMT_BGR24 : AV_PIX_FMT_YUVJ420P;
175 if (avctx->pix_fmt != pix_fmt && f->data[0]) {
176 av_frame_unref(f);
177 }
178 avctx->pix_fmt = pix_fmt;
179 avctx->color_range = version & 1 ? AVCOL_RANGE_UNSPECIFIED
180 : AVCOL_RANGE_JPEG;
181
182 expected_size = header_size;
183
184 switch (version) {
185 case 0:
186 default:
187 /* Fraps v0 is a reordered YUV420 */
188 if (!prev_pic_bit)
189 expected_size += avctx->width * avctx->height * 3 / 2;
190 if (buf_size != expected_size) {
191 av_log(avctx, AV_LOG_ERROR,
192 "Invalid frame length %d (should be %d)\n",
193 buf_size, expected_size);
194 return AVERROR_INVALIDDATA;
195 }
196
197 if (((avctx->width % 8) != 0) || ((avctx->height % 2) != 0)) {
198 av_log(avctx, AV_LOG_ERROR, "Invalid frame size %dx%d\n",
199 avctx->width, avctx->height);
200 return AVERROR_INVALIDDATA;
201 }
202
203 if ((ret = ff_reget_buffer(avctx, f)) < 0) {
204 av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
205 return ret;
206 }
207 f->pict_type = prev_pic_bit ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
208 f->key_frame = f->pict_type == AV_PICTURE_TYPE_I;
209
210 if (f->pict_type == AV_PICTURE_TYPE_I) {
211 buf32 = (const uint32_t*)buf;
212 for (y = 0; y < avctx->height / 2; y++) {
213 luma1 = (uint32_t*)&f->data[0][ y * 2 * f->linesize[0]];
214 luma2 = (uint32_t*)&f->data[0][(y * 2 + 1) * f->linesize[0]];
215 cr = (uint32_t*)&f->data[1][ y * f->linesize[1]];
216 cb = (uint32_t*)&f->data[2][ y * f->linesize[2]];
217 for (x = 0; x < avctx->width; x += 8) {
218 *(luma1++) = *(buf32++);
219 *(luma1++) = *(buf32++);
220 *(luma2++) = *(buf32++);
221 *(luma2++) = *(buf32++);
222 *(cr++) = *(buf32++);
223 *(cb++) = *(buf32++);
224 }
225 }
226 }
227 break;
228
229 case 1:
230 /* Fraps v1 is an upside-down BGR24 */
231 if (!prev_pic_bit)
232 expected_size += avctx->width * avctx->height * 3;
233 if (buf_size != expected_size) {
234 av_log(avctx, AV_LOG_ERROR,
235 "Invalid frame length %d (should be %d)\n",
236 buf_size, expected_size);
237 return AVERROR_INVALIDDATA;
238 }
239
240 if ((ret = ff_reget_buffer(avctx, f)) < 0) {
241 av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
242 return ret;
243 }
244 f->pict_type = prev_pic_bit ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
245 f->key_frame = f->pict_type == AV_PICTURE_TYPE_I;
246
247 if (f->pict_type == AV_PICTURE_TYPE_I) {
248 for (y = 0; y<avctx->height; y++)
249 memcpy(&f->data[0][(avctx->height - y - 1) * f->linesize[0]],
250 &buf[y * avctx->width * 3],
251 3 * avctx->width);
252 }
253 break;
254
255 case 2:
256 case 4:
257 /**
258 * Fraps v2 is Huffman-coded YUV420 planes
259 * Fraps v4 is virtually the same
260 */
261 planes = 3;
262 if ((ret = ff_reget_buffer(avctx, f)) < 0) {
263 av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
264 return ret;
265 }
266 /* skip frame */
267 if (buf_size == 8) {
268 f->pict_type = AV_PICTURE_TYPE_P;
269 f->key_frame = 0;
270 break;
271 }
272 f->pict_type = AV_PICTURE_TYPE_I;
273 f->key_frame = 1;
274 if ((AV_RL32(buf) != FPS_TAG) || (buf_size < (planes * 1024 + 24))) {
275 av_log(avctx, AV_LOG_ERROR, "Fraps: error in data stream\n");
276 return AVERROR_INVALIDDATA;
277 }
278 for (i = 0; i < planes; i++) {
279 offs[i] = AV_RL32(buf + 4 + i * 4);
280 if (offs[i] >= buf_size || (i && offs[i] <= offs[i - 1] + 1024)) {
281 av_log(avctx, AV_LOG_ERROR, "Fraps: plane %i offset is out of bounds\n", i);
282 return AVERROR_INVALIDDATA;
283 }
284 }
285 offs[planes] = buf_size;
286 for (i = 0; i < planes; i++) {
287 is_chroma = !!i;
288 av_fast_padded_malloc(&s->tmpbuf, &s->tmpbuf_size,
289 offs[i + 1] - offs[i] - 1024);
290 if (!s->tmpbuf)
291 return AVERROR(ENOMEM);
292 if ((ret = fraps2_decode_plane(s, f->data[i], f->linesize[i],
293 avctx->width >> is_chroma,
294 avctx->height >> is_chroma,
295 buf + offs[i], offs[i + 1] - offs[i],
296 is_chroma, 1)) < 0) {
297 av_log(avctx, AV_LOG_ERROR, "Error decoding plane %i\n", i);
298 return ret;
299 }
300 }
301 break;
302 case 3:
303 case 5:
304 /* Virtually the same as version 4, but is for RGB24 */
305 planes = 3;
306 if ((ret = ff_reget_buffer(avctx, f)) < 0) {
307 av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
308 return ret;
309 }
310 /* skip frame */
311 if (buf_size == 8) {
312 f->pict_type = AV_PICTURE_TYPE_P;
313 f->key_frame = 0;
314 break;
315 }
316 f->pict_type = AV_PICTURE_TYPE_I;
317 f->key_frame = 1;
318 if ((AV_RL32(buf) != FPS_TAG)||(buf_size < (planes*1024 + 24))) {
319 av_log(avctx, AV_LOG_ERROR, "Fraps: error in data stream\n");
320 return AVERROR_INVALIDDATA;
321 }
322 for (i = 0; i < planes; i++) {
323 offs[i] = AV_RL32(buf + 4 + i * 4);
324 if (offs[i] >= buf_size || (i && offs[i] <= offs[i - 1] + 1024)) {
325 av_log(avctx, AV_LOG_ERROR, "Fraps: plane %i offset is out of bounds\n", i);
326 return AVERROR_INVALIDDATA;
327 }
328 }
329 offs[planes] = buf_size;
330 for (i = 0; i < planes; i++) {
331 av_fast_padded_malloc(&s->tmpbuf, &s->tmpbuf_size,
332 offs[i + 1] - offs[i] - 1024);
333 if (!s->tmpbuf)
334 return AVERROR(ENOMEM);
335 if ((ret = fraps2_decode_plane(s, f->data[0] + i + (f->linesize[0] * (avctx->height - 1)),
336 -f->linesize[0], avctx->width, avctx->height,
337 buf + offs[i], offs[i + 1] - offs[i], 0, 3)) < 0) {
338 av_log(avctx, AV_LOG_ERROR, "Error decoding plane %i\n", i);
339 return ret;
340 }
341 }
342 // convert pseudo-YUV into real RGB
343 for (j = 0; j < avctx->height; j++) {
344 for (i = 0; i < avctx->width; i++) {
345 f->data[0][0 + i*3 + j*f->linesize[0]] += f->data[0][1 + i*3 + j*f->linesize[0]];
346 f->data[0][2 + i*3 + j*f->linesize[0]] += f->data[0][1 + i*3 + j*f->linesize[0]];
347 }
348 }
349 break;
350 }
351
352 if ((ret = av_frame_ref(frame, f)) < 0)
353 return ret;
354 *got_frame = 1;
355
356 return buf_size;
357 }
358
359
360 /**
361 * closes decoder
362 * @param avctx codec context
363 * @return 0 on success or negative if fails
364 */
365 static av_cold int decode_end(AVCodecContext *avctx)
366 {
367 FrapsContext *s = (FrapsContext*)avctx->priv_data;
368
369 av_frame_free(&s->frame);
370
371 av_freep(&s->tmpbuf);
372 return 0;
373 }
374
375
376 AVCodec ff_fraps_decoder = {
377 .name = "fraps",
378 .long_name = NULL_IF_CONFIG_SMALL("Fraps"),
379 .type = AVMEDIA_TYPE_VIDEO,
380 .id = AV_CODEC_ID_FRAPS,
381 .priv_data_size = sizeof(FrapsContext),
382 .init = decode_init,
383 .close = decode_end,
384 .decode = decode_frame,
385 .capabilities = AV_CODEC_CAP_DR1,
386 };