Use avpriv_report_missing_feature() where appropriate
[libav.git] / libavcodec / g2meet.c
1 /*
2 * Go2Webinar / Go2Meeting decoder
3 * Copyright (c) 2012 Konstantin Shishkov
4 * Copyright (c) 2013 Maxim Poliakovski
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Go2Webinar / Go2Meeting decoder
26 */
27
28 #include <inttypes.h>
29 #include <zlib.h>
30
31 #include "libavutil/intreadwrite.h"
32
33 #include "avcodec.h"
34 #include "blockdsp.h"
35 #include "bytestream.h"
36 #include "elsdec.h"
37 #include "get_bits.h"
38 #include "idctdsp.h"
39 #include "internal.h"
40 #include "jpegtables.h"
41 #include "mjpeg.h"
42
43 #define EPIC_PIX_STACK_SIZE 1024
44 #define EPIC_PIX_STACK_MAX (EPIC_PIX_STACK_SIZE - 1)
45
46 enum ChunkType {
47 DISPLAY_INFO = 0xC8,
48 TILE_DATA,
49 CURSOR_POS,
50 CURSOR_SHAPE,
51 CHUNK_CC,
52 CHUNK_CD
53 };
54
55 enum Compression {
56 COMPR_EPIC_J_B = 2,
57 COMPR_KEMPF_J_B,
58 };
59
60 static const uint8_t luma_quant[64] = {
61 8, 6, 5, 8, 12, 20, 26, 31,
62 6, 6, 7, 10, 13, 29, 30, 28,
63 7, 7, 8, 12, 20, 29, 35, 28,
64 7, 9, 11, 15, 26, 44, 40, 31,
65 9, 11, 19, 28, 34, 55, 52, 39,
66 12, 18, 28, 32, 41, 52, 57, 46,
67 25, 32, 39, 44, 52, 61, 60, 51,
68 36, 46, 48, 49, 56, 50, 52, 50
69 };
70
71 static const uint8_t chroma_quant[64] = {
72 9, 9, 12, 24, 50, 50, 50, 50,
73 9, 11, 13, 33, 50, 50, 50, 50,
74 12, 13, 28, 50, 50, 50, 50, 50,
75 24, 33, 50, 50, 50, 50, 50, 50,
76 50, 50, 50, 50, 50, 50, 50, 50,
77 50, 50, 50, 50, 50, 50, 50, 50,
78 50, 50, 50, 50, 50, 50, 50, 50,
79 50, 50, 50, 50, 50, 50, 50, 50,
80 };
81
82 typedef struct ePICPixListElem {
83 struct ePICPixListElem *next;
84 uint32_t pixel;
85 uint8_t rung;
86 } ePICPixListElem;
87
88 typedef struct ePICPixHashElem {
89 uint32_t pix_id;
90 struct ePICPixListElem *list;
91 } ePICPixHashElem;
92
93 #define EPIC_HASH_SIZE 256
94 typedef struct ePICPixHash {
95 ePICPixHashElem *bucket[EPIC_HASH_SIZE];
96 int bucket_size[EPIC_HASH_SIZE];
97 int bucket_fill[EPIC_HASH_SIZE];
98 } ePICPixHash;
99
100 typedef struct ePICContext {
101 ElsDecCtx els_ctx;
102 int next_run_pos;
103 ElsUnsignedRung unsigned_rung;
104 uint8_t W_flag_rung;
105 uint8_t N_flag_rung;
106 uint8_t W_ctx_rung[256];
107 uint8_t N_ctx_rung[512];
108 uint8_t nw_pred_rung[256];
109 uint8_t ne_pred_rung[256];
110 uint8_t prev_row_rung[14];
111 uint8_t runlen_zeroes[14];
112 uint8_t runlen_one;
113 int stack_pos;
114 uint32_t stack[EPIC_PIX_STACK_SIZE];
115 ePICPixHash hash;
116 } ePICContext;
117
118 typedef struct JPGContext {
119 BlockDSPContext bdsp;
120 IDCTDSPContext idsp;
121 ScanTable scantable;
122
123 VLC dc_vlc[2], ac_vlc[2];
124 int prev_dc[3];
125 DECLARE_ALIGNED(16, int16_t, block)[6][64];
126
127 uint8_t *buf;
128 } JPGContext;
129
130 typedef struct G2MContext {
131 ePICContext ec;
132 JPGContext jc;
133
134 int version;
135
136 int compression;
137 int width, height, bpp;
138 int orig_width, orig_height;
139 int tile_width, tile_height;
140 int tiles_x, tiles_y, tile_x, tile_y;
141
142 int got_header;
143
144 uint8_t *framebuf;
145 int framebuf_stride, old_width, old_height;
146
147 uint8_t *synth_tile, *jpeg_tile, *epic_buf, *epic_buf_base;
148 int tile_stride, epic_buf_stride, old_tile_w, old_tile_h;
149 int swapuv;
150
151 uint8_t *kempf_buf, *kempf_flags;
152
153 uint8_t *cursor;
154 int cursor_stride;
155 int cursor_fmt;
156 int cursor_w, cursor_h, cursor_x, cursor_y;
157 int cursor_hot_x, cursor_hot_y;
158 } G2MContext;
159
160 static av_cold int build_vlc(VLC *vlc, const uint8_t *bits_table,
161 const uint8_t *val_table, int nb_codes,
162 int is_ac)
163 {
164 uint8_t huff_size[256] = { 0 };
165 uint16_t huff_code[256];
166 uint16_t huff_sym[256];
167 int i;
168
169 ff_mjpeg_build_huffman_codes(huff_size, huff_code, bits_table, val_table);
170
171 for (i = 0; i < 256; i++)
172 huff_sym[i] = i + 16 * is_ac;
173
174 if (is_ac)
175 huff_sym[0] = 16 * 256;
176
177 return ff_init_vlc_sparse(vlc, 9, nb_codes, huff_size, 1, 1,
178 huff_code, 2, 2, huff_sym, 2, 2, 0);
179 }
180
181 static av_cold int jpg_init(AVCodecContext *avctx, JPGContext *c)
182 {
183 int ret;
184
185 ret = build_vlc(&c->dc_vlc[0], avpriv_mjpeg_bits_dc_luminance,
186 avpriv_mjpeg_val_dc, 12, 0);
187 if (ret)
188 return ret;
189 ret = build_vlc(&c->dc_vlc[1], avpriv_mjpeg_bits_dc_chrominance,
190 avpriv_mjpeg_val_dc, 12, 0);
191 if (ret)
192 return ret;
193 ret = build_vlc(&c->ac_vlc[0], avpriv_mjpeg_bits_ac_luminance,
194 avpriv_mjpeg_val_ac_luminance, 251, 1);
195 if (ret)
196 return ret;
197 ret = build_vlc(&c->ac_vlc[1], avpriv_mjpeg_bits_ac_chrominance,
198 avpriv_mjpeg_val_ac_chrominance, 251, 1);
199 if (ret)
200 return ret;
201
202 ff_blockdsp_init(&c->bdsp, avctx);
203 ff_idctdsp_init(&c->idsp, avctx);
204 ff_init_scantable(c->idsp.idct_permutation, &c->scantable,
205 ff_zigzag_direct);
206
207 return 0;
208 }
209
210 static av_cold void jpg_free_context(JPGContext *ctx)
211 {
212 int i;
213
214 for (i = 0; i < 2; i++) {
215 ff_free_vlc(&ctx->dc_vlc[i]);
216 ff_free_vlc(&ctx->ac_vlc[i]);
217 }
218
219 av_freep(&ctx->buf);
220 }
221
222 static void jpg_unescape(const uint8_t *src, int src_size,
223 uint8_t *dst, int *dst_size)
224 {
225 const uint8_t *src_end = src + src_size;
226 uint8_t *dst_start = dst;
227
228 while (src < src_end) {
229 uint8_t x = *src++;
230
231 *dst++ = x;
232
233 if (x == 0xFF && !*src)
234 src++;
235 }
236 *dst_size = dst - dst_start;
237 }
238
239 static int jpg_decode_block(JPGContext *c, GetBitContext *gb,
240 int plane, int16_t *block)
241 {
242 int dc, val, pos;
243 const int is_chroma = !!plane;
244 const uint8_t *qmat = is_chroma ? chroma_quant : luma_quant;
245
246 c->bdsp.clear_block(block);
247 dc = get_vlc2(gb, c->dc_vlc[is_chroma].table, 9, 3);
248 if (dc < 0)
249 return AVERROR_INVALIDDATA;
250 if (dc)
251 dc = get_xbits(gb, dc);
252 dc = dc * qmat[0] + c->prev_dc[plane];
253 block[0] = dc;
254 c->prev_dc[plane] = dc;
255
256 pos = 0;
257 while (pos < 63) {
258 val = get_vlc2(gb, c->ac_vlc[is_chroma].table, 9, 3);
259 if (val < 0)
260 return AVERROR_INVALIDDATA;
261 pos += val >> 4;
262 val &= 0xF;
263 if (pos > 63)
264 return val ? AVERROR_INVALIDDATA : 0;
265 if (val) {
266 int nbits = val;
267
268 val = get_xbits(gb, nbits);
269 val *= qmat[ff_zigzag_direct[pos]];
270 block[c->scantable.permutated[pos]] = val;
271 }
272 }
273 return 0;
274 }
275
276 static inline void yuv2rgb(uint8_t *out, int ridx, int Y, int U, int V)
277 {
278 out[ridx] = av_clip_uint8(Y + (91881 * V + 32768 >> 16));
279 out[1] = av_clip_uint8(Y + (-22554 * U - 46802 * V + 32768 >> 16));
280 out[2 - ridx] = av_clip_uint8(Y + (116130 * U + 32768 >> 16));
281 }
282
283 static int jpg_decode_data(JPGContext *c, int width, int height,
284 const uint8_t *src, int src_size,
285 uint8_t *dst, int dst_stride,
286 const uint8_t *mask, int mask_stride, int num_mbs,
287 int swapuv)
288 {
289 GetBitContext gb;
290 int mb_w, mb_h, mb_x, mb_y, i, j;
291 int bx, by;
292 int unesc_size;
293 int ret;
294 const int ridx = swapuv ? 2 : 0;
295
296 if ((ret = av_reallocp(&c->buf,
297 src_size + AV_INPUT_BUFFER_PADDING_SIZE)) < 0)
298 return ret;
299 jpg_unescape(src, src_size, c->buf, &unesc_size);
300 memset(c->buf + unesc_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
301 init_get_bits(&gb, c->buf, unesc_size * 8);
302
303 width = FFALIGN(width, 16);
304 mb_w = width >> 4;
305 mb_h = (height + 15) >> 4;
306
307 if (!num_mbs)
308 num_mbs = mb_w * mb_h * 4;
309
310 for (i = 0; i < 3; i++)
311 c->prev_dc[i] = 1024;
312 bx =
313 by = 0;
314 c->bdsp.clear_blocks(c->block[0]);
315 for (mb_y = 0; mb_y < mb_h; mb_y++) {
316 for (mb_x = 0; mb_x < mb_w; mb_x++) {
317 if (mask && !mask[mb_x * 2] && !mask[mb_x * 2 + 1] &&
318 !mask[mb_x * 2 + mask_stride] &&
319 !mask[mb_x * 2 + 1 + mask_stride]) {
320 bx += 16;
321 continue;
322 }
323 for (j = 0; j < 2; j++) {
324 for (i = 0; i < 2; i++) {
325 if (mask && !mask[mb_x * 2 + i + j * mask_stride])
326 continue;
327 num_mbs--;
328 if ((ret = jpg_decode_block(c, &gb, 0,
329 c->block[i + j * 2])) != 0)
330 return ret;
331 c->idsp.idct(c->block[i + j * 2]);
332 }
333 }
334 for (i = 1; i < 3; i++) {
335 if ((ret = jpg_decode_block(c, &gb, i, c->block[i + 3])) != 0)
336 return ret;
337 c->idsp.idct(c->block[i + 3]);
338 }
339
340 for (j = 0; j < 16; j++) {
341 uint8_t *out = dst + bx * 3 + (by + j) * dst_stride;
342 for (i = 0; i < 16; i++) {
343 int Y, U, V;
344
345 Y = c->block[(j >> 3) * 2 + (i >> 3)][(i & 7) + (j & 7) * 8];
346 U = c->block[4][(i >> 1) + (j >> 1) * 8] - 128;
347 V = c->block[5][(i >> 1) + (j >> 1) * 8] - 128;
348 yuv2rgb(out + i * 3, ridx, Y, U, V);
349 }
350 }
351
352 if (!num_mbs)
353 return 0;
354 bx += 16;
355 }
356 bx = 0;
357 by += 16;
358 if (mask)
359 mask += mask_stride * 2;
360 }
361
362 return 0;
363 }
364
365 #define LOAD_NEIGHBOURS(x) \
366 W = curr_row[(x) - 1]; \
367 N = above_row[(x)]; \
368 WW = curr_row[(x) - 2]; \
369 NW = above_row[(x) - 1]; \
370 NE = above_row[(x) + 1]; \
371 NN = above2_row[(x)]; \
372 NNW = above2_row[(x) - 1]; \
373 NWW = above_row[(x) - 2]; \
374 NNE = above2_row[(x) + 1]
375
376 #define UPDATE_NEIGHBOURS(x) \
377 NNW = NN; \
378 NN = NNE; \
379 NWW = NW; \
380 NW = N; \
381 N = NE; \
382 NE = above_row[(x) + 1]; \
383 NNE = above2_row[(x) + 1]
384
385 #define R_shift 16
386 #define G_shift 8
387 #define B_shift 0
388
389 /* improved djb2 hash from http://www.cse.yorku.ca/~oz/hash.html */
390 static int djb2_hash(uint32_t key)
391 {
392 uint32_t h = 5381;
393
394 h = (h * 33) ^ ((key >> 24) & 0xFF); // xxx: probably not needed at all
395 h = (h * 33) ^ ((key >> 16) & 0xFF);
396 h = (h * 33) ^ ((key >> 8) & 0xFF);
397 h = (h * 33) ^ (key & 0xFF);
398
399 return h & (EPIC_HASH_SIZE - 1);
400 }
401
402 static void epic_hash_init(ePICPixHash *hash)
403 {
404 memset(hash, 0, sizeof(*hash));
405 }
406
407 static ePICPixHashElem *epic_hash_find(const ePICPixHash *hash, uint32_t key)
408 {
409 int i, idx = djb2_hash(key);
410 ePICPixHashElem *bucket = hash->bucket[idx];
411
412 for (i = 0; i < hash->bucket_fill[idx]; i++)
413 if (bucket[i].pix_id == key)
414 return &bucket[i];
415
416 return NULL;
417 }
418
419 static ePICPixHashElem *epic_hash_add(ePICPixHash *hash, uint32_t key)
420 {
421 ePICPixHashElem *bucket, *ret;
422 int idx = djb2_hash(key);
423
424 if (hash->bucket_size[idx] > INT_MAX / sizeof(**hash->bucket))
425 return NULL;
426
427 if (!(hash->bucket_fill[idx] < hash->bucket_size[idx])) {
428 int new_size = hash->bucket_size[idx] + 16;
429 bucket = av_realloc(hash->bucket[idx], new_size * sizeof(*bucket));
430 if (!bucket)
431 return NULL;
432 hash->bucket[idx] = bucket;
433 hash->bucket_size[idx] = new_size;
434 }
435
436 ret = &hash->bucket[idx][hash->bucket_fill[idx]++];
437 memset(ret, 0, sizeof(*ret));
438 ret->pix_id = key;
439 return ret;
440 }
441
442 static int epic_add_pixel_to_cache(ePICPixHash *hash, uint32_t key, uint32_t pix)
443 {
444 ePICPixListElem *new_elem;
445 ePICPixHashElem *hash_elem = epic_hash_find(hash, key);
446
447 if (!hash_elem) {
448 if (!(hash_elem = epic_hash_add(hash, key)))
449 return AVERROR(ENOMEM);
450 }
451
452 new_elem = av_mallocz(sizeof(*new_elem));
453 if (!new_elem)
454 return AVERROR(ENOMEM);
455
456 new_elem->pixel = pix;
457 new_elem->next = hash_elem->list;
458 hash_elem->list = new_elem;
459
460 return 0;
461 }
462
463 static inline int epic_cache_entries_for_pixel(const ePICPixHash *hash,
464 uint32_t pix)
465 {
466 ePICPixHashElem *hash_elem = epic_hash_find(hash, pix);
467
468 if (hash_elem != NULL && hash_elem->list != NULL)
469 return 1;
470
471 return 0;
472 }
473
474 static void epic_free_pixel_cache(ePICPixHash *hash)
475 {
476 int i, j;
477
478 for (i = 0; i < EPIC_HASH_SIZE; i++) {
479 for (j = 0; j < hash->bucket_fill[i]; j++) {
480 ePICPixListElem *list_elem = hash->bucket[i][j].list;
481 while (list_elem) {
482 ePICPixListElem *tmp = list_elem->next;
483 av_free(list_elem);
484 list_elem = tmp;
485 }
486 }
487 av_freep(&hash->bucket[i]);
488 hash->bucket_size[i] =
489 hash->bucket_fill[i] = 0;
490 }
491 }
492
493 static inline int is_pixel_on_stack(const ePICContext *dc, uint32_t pix)
494 {
495 int i;
496
497 for (i = 0; i < dc->stack_pos; i++)
498 if (dc->stack[i] == pix)
499 break;
500
501 return i != dc->stack_pos;
502 }
503
504 #define TOSIGNED(val) (((val) >> 1) ^ -((val) & 1))
505
506 static inline int epic_decode_component_pred(ePICContext *dc,
507 int N, int W, int NW)
508 {
509 unsigned delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
510 return mid_pred(N, N + W - NW, W) - TOSIGNED(delta);
511 }
512
513 static uint32_t epic_decode_pixel_pred(ePICContext *dc, int x, int y,
514 const uint32_t *curr_row,
515 const uint32_t *above_row)
516 {
517 uint32_t N, W, NW, pred;
518 unsigned delta;
519 int GN, GW, GNW, R, G, B;
520
521 if (x && y) {
522 W = curr_row[x - 1];
523 N = above_row[x];
524 NW = above_row[x - 1];
525
526 GN = (N >> G_shift) & 0xFF;
527 GW = (W >> G_shift) & 0xFF;
528 GNW = (NW >> G_shift) & 0xFF;
529
530 G = epic_decode_component_pred(dc, GN, GW, GNW);
531
532 R = G + epic_decode_component_pred(dc,
533 ((N >> R_shift) & 0xFF) - GN,
534 ((W >> R_shift) & 0xFF) - GW,
535 ((NW >> R_shift) & 0xFF) - GNW);
536
537 B = G + epic_decode_component_pred(dc,
538 ((N >> B_shift) & 0xFF) - GN,
539 ((W >> B_shift) & 0xFF) - GW,
540 ((NW >> B_shift) & 0xFF) - GNW);
541 } else {
542 if (x)
543 pred = curr_row[x - 1];
544 else
545 pred = above_row[x];
546
547 delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
548 R = ((pred >> R_shift) & 0xFF) - TOSIGNED(delta);
549
550 delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
551 G = ((pred >> G_shift) & 0xFF) - TOSIGNED(delta);
552
553 delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
554 B = ((pred >> B_shift) & 0xFF) - TOSIGNED(delta);
555 }
556
557 return (R << R_shift) | (G << G_shift) | (B << B_shift);
558 }
559
560 static int epic_predict_pixel(ePICContext *dc, uint8_t *rung,
561 uint32_t *pPix, uint32_t pix)
562 {
563 if (!ff_els_decode_bit(&dc->els_ctx, rung)) {
564 *pPix = pix;
565 return 1;
566 }
567 dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = pix;
568 return 0;
569 }
570
571 static int epic_handle_edges(ePICContext *dc, int x, int y,
572 const uint32_t *curr_row,
573 const uint32_t *above_row, uint32_t *pPix)
574 {
575 uint32_t pix;
576
577 if (!x && !y) { /* special case: top-left pixel */
578 /* the top-left pixel is coded independently with 3 unsigned numbers */
579 *pPix = (ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung) << R_shift) |
580 (ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung) << G_shift) |
581 (ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung) << B_shift);
582 return 1;
583 }
584
585 if (x) { /* predict from W first */
586 pix = curr_row[x - 1];
587 if (epic_predict_pixel(dc, &dc->W_flag_rung, pPix, pix))
588 return 1;
589 }
590
591 if (y) { /* then try to predict from N */
592 pix = above_row[x];
593 if (!dc->stack_pos || dc->stack[0] != pix) {
594 if (epic_predict_pixel(dc, &dc->N_flag_rung, pPix, pix))
595 return 1;
596 }
597 }
598
599 return 0;
600 }
601
602 static int epic_decode_run_length(ePICContext *dc, int x, int y, int tile_width,
603 const uint32_t *curr_row,
604 const uint32_t *above_row,
605 const uint32_t *above2_row,
606 uint32_t *pPix, int *pRun)
607 {
608 int idx, got_pixel = 0, WWneW, old_WWneW = 0;
609 uint32_t W, WW, N, NN, NW, NE, NWW, NNW, NNE;
610
611 *pRun = 0;
612
613 LOAD_NEIGHBOURS(x);
614
615 if (dc->next_run_pos == x) {
616 /* can't reuse W for the new pixel in this case */
617 WWneW = 1;
618 } else {
619 idx = (WW != W) << 7 |
620 (NW != W) << 6 |
621 (N != NE) << 5 |
622 (NW != N) << 4 |
623 (NWW != NW) << 3 |
624 (NNE != NE) << 2 |
625 (NN != N) << 1 |
626 (NNW != NW);
627 WWneW = ff_els_decode_bit(&dc->els_ctx, &dc->W_ctx_rung[idx]);
628 }
629
630 if (WWneW)
631 dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = W;
632 else {
633 *pPix = W;
634 got_pixel = 1;
635 }
636
637 do {
638 int NWneW = 1;
639 if (got_pixel) // pixel value already known (derived from either W or N)
640 NWneW = *pPix != N;
641 else { // pixel value is unknown and will be decoded later
642 NWneW = *pRun ? NWneW : NW != W;
643
644 /* TODO: RFC this mess! */
645 switch (((NW != N) << 2) | (NWneW << 1) | WWneW) {
646 case 0:
647 break; // do nothing here
648 case 3:
649 case 5:
650 case 6:
651 case 7:
652 if (!is_pixel_on_stack(dc, N)) {
653 idx = WWneW << 8 |
654 (*pRun ? old_WWneW : WW != W) << 7 |
655 NWneW << 6 |
656 (N != NE) << 5 |
657 (NW != N) << 4 |
658 (NWW != NW) << 3 |
659 (NNE != NE) << 2 |
660 (NN != N) << 1 |
661 (NNW != NW);
662 if (!ff_els_decode_bit(&dc->els_ctx, &dc->N_ctx_rung[idx])) {
663 NWneW = 0;
664 *pPix = N;
665 got_pixel = 1;
666 break;
667 }
668 }
669 /* fall through */
670 default:
671 NWneW = 1;
672 old_WWneW = WWneW;
673 if (!is_pixel_on_stack(dc, N))
674 dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = N;
675 }
676 }
677
678 (*pRun)++;
679 if (x + *pRun >= tile_width - 1)
680 break;
681
682 UPDATE_NEIGHBOURS(x + *pRun);
683
684 if (!NWneW && NW == N && N == NE) {
685 int pos, run, rle;
686 int start_pos = x + *pRun;
687
688 /* scan for a run of pix in the line above */
689 uint32_t pix = above_row[start_pos + 1];
690 for (pos = start_pos + 2; pos < tile_width; pos++)
691 if (!(above_row[pos] == pix))
692 break;
693 run = pos - start_pos - 1;
694 idx = av_ceil_log2(run);
695 if (ff_els_decode_bit(&dc->els_ctx, &dc->prev_row_rung[idx]))
696 *pRun += run;
697 else {
698 int flag;
699 /* run-length is coded as plain binary number of idx - 1 bits */
700 for (pos = idx - 1, rle = 0, flag = 0; pos >= 0; pos--) {
701 if ((1 << pos) + rle < run &&
702 ff_els_decode_bit(&dc->els_ctx,
703 flag ? &dc->runlen_one
704 : &dc->runlen_zeroes[pos])) {
705 flag = 1;
706 rle |= 1 << pos;
707 }
708 }
709 *pRun += rle;
710 break; // return immediately
711 }
712 if (x + *pRun >= tile_width - 1)
713 break;
714
715 LOAD_NEIGHBOURS(x + *pRun);
716 WWneW = 0;
717 NWneW = 0;
718 }
719
720 idx = WWneW << 7 |
721 NWneW << 6 |
722 (N != NE) << 5 |
723 (NW != N) << 4 |
724 (NWW != NW) << 3 |
725 (NNE != NE) << 2 |
726 (NN != N) << 1 |
727 (NNW != NW);
728 WWneW = ff_els_decode_bit(&dc->els_ctx, &dc->W_ctx_rung[idx]);
729 } while (!WWneW);
730
731 dc->next_run_pos = x + *pRun;
732 return got_pixel;
733 }
734
735 static int epic_predict_pixel2(ePICContext *dc, uint8_t *rung,
736 uint32_t *pPix, uint32_t pix)
737 {
738 if (ff_els_decode_bit(&dc->els_ctx, rung)) {
739 *pPix = pix;
740 return 1;
741 }
742 dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = pix;
743 return 0;
744 }
745
746 static int epic_predict_from_NW_NE(ePICContext *dc, int x, int y, int run,
747 int tile_width, const uint32_t *curr_row,
748 const uint32_t *above_row, uint32_t *pPix)
749 {
750 int pos;
751
752 /* try to reuse the NW pixel first */
753 if (x && y) {
754 uint32_t NW = above_row[x - 1];
755 if (NW != curr_row[x - 1] && NW != above_row[x] && !is_pixel_on_stack(dc, NW)) {
756 if (epic_predict_pixel2(dc, &dc->nw_pred_rung[NW & 0xFF], pPix, NW))
757 return 1;
758 }
759 }
760
761 /* try to reuse the NE[x + run, y] pixel */
762 pos = x + run - 1;
763 if (pos < tile_width - 1 && y) {
764 uint32_t NE = above_row[pos + 1];
765 if (NE != above_row[pos] && !is_pixel_on_stack(dc, NE)) {
766 if (epic_predict_pixel2(dc, &dc->ne_pred_rung[NE & 0xFF], pPix, NE))
767 return 1;
768 }
769 }
770
771 return 0;
772 }
773
774 static int epic_decode_from_cache(ePICContext *dc, uint32_t W, uint32_t *pPix)
775 {
776 ePICPixListElem *list, *prev = NULL;
777 ePICPixHashElem *hash_elem = epic_hash_find(&dc->hash, W);
778
779 if (!hash_elem || !hash_elem->list)
780 return 0;
781
782 list = hash_elem->list;
783 while (list) {
784 if (!is_pixel_on_stack(dc, list->pixel)) {
785 if (ff_els_decode_bit(&dc->els_ctx, &list->rung)) {
786 *pPix = list->pixel;
787 if (list != hash_elem->list) {
788 prev->next = list->next;
789 list->next = hash_elem->list;
790 hash_elem->list = list;
791 }
792 return 1;
793 }
794 dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = list->pixel;
795 }
796 prev = list;
797 list = list->next;
798 }
799
800 return 0;
801 }
802
803 static int epic_decode_tile(ePICContext *dc, uint8_t *out, int tile_height,
804 int tile_width, int stride)
805 {
806 int x, y;
807 uint32_t pix;
808 uint32_t *curr_row = NULL, *above_row = NULL, *above2_row;
809
810 for (y = 0; y < tile_height; y++, out += stride) {
811 above2_row = above_row;
812 above_row = curr_row;
813 curr_row = (uint32_t *) out;
814
815 for (x = 0, dc->next_run_pos = 0; x < tile_width;) {
816 if (dc->els_ctx.err)
817 return AVERROR_INVALIDDATA; // bail out in the case of ELS overflow
818
819 pix = curr_row[x - 1]; // get W pixel
820
821 if (y >= 1 && x >= 2 &&
822 pix != curr_row[x - 2] && pix != above_row[x - 1] &&
823 pix != above_row[x - 2] && pix != above_row[x] &&
824 !epic_cache_entries_for_pixel(&dc->hash, pix)) {
825 curr_row[x] = epic_decode_pixel_pred(dc, x, y, curr_row, above_row);
826 x++;
827 } else {
828 int got_pixel, run;
829 dc->stack_pos = 0; // empty stack
830
831 if (y < 2 || x < 2 || x == tile_width - 1) {
832 run = 1;
833 got_pixel = epic_handle_edges(dc, x, y, curr_row, above_row, &pix);
834 } else
835 got_pixel = epic_decode_run_length(dc, x, y, tile_width,
836 curr_row, above_row,
837 above2_row, &pix, &run);
838
839 if (!got_pixel && !epic_predict_from_NW_NE(dc, x, y, run,
840 tile_width, curr_row,
841 above_row, &pix)) {
842 uint32_t ref_pix = curr_row[x - 1];
843 if (!x || !epic_decode_from_cache(dc, ref_pix, &pix)) {
844 pix = epic_decode_pixel_pred(dc, x, y, curr_row, above_row);
845 if (x) {
846 int ret = epic_add_pixel_to_cache(&dc->hash,
847 ref_pix,
848 pix);
849 if (ret)
850 return ret;
851 }
852 }
853 }
854 for (; run > 0; x++, run--)
855 curr_row[x] = pix;
856 }
857 }
858 }
859
860 return 0;
861 }
862
863 static int epic_jb_decode_tile(G2MContext *c, int tile_x, int tile_y,
864 const uint8_t *src, size_t src_size,
865 AVCodecContext *avctx)
866 {
867 uint8_t prefix, mask = 0x80;
868 int extrabytes, tile_width, tile_height, awidth, aheight;
869 size_t els_dsize;
870 uint8_t *dst;
871
872 if (!src_size)
873 return 0;
874
875 /* get data size of the ELS partition as unsigned variable-length integer */
876 prefix = *src++;
877 src_size--;
878 for (extrabytes = 0; (prefix & mask) && (extrabytes < 7); extrabytes++)
879 mask >>= 1;
880 if (extrabytes > 3 || src_size < extrabytes) {
881 av_log(avctx, AV_LOG_ERROR, "ePIC: invalid data size VLI\n");
882 return AVERROR_INVALIDDATA;
883 }
884
885 els_dsize = prefix & ((0x80 >> extrabytes) - 1); // mask out the length prefix
886 while (extrabytes-- > 0) {
887 els_dsize = (els_dsize << 8) | *src++;
888 src_size--;
889 }
890
891 if (src_size < els_dsize) {
892 av_log(avctx, AV_LOG_ERROR, "ePIC: data too short, needed %zu, got %zu\n",
893 els_dsize, src_size);
894 return AVERROR_INVALIDDATA;
895 }
896
897 tile_width = FFMIN(c->width - tile_x * c->tile_width, c->tile_width);
898 tile_height = FFMIN(c->height - tile_y * c->tile_height, c->tile_height);
899 awidth = FFALIGN(tile_width, 16);
900 aheight = FFALIGN(tile_height, 16);
901
902 if (els_dsize) {
903 int ret, i, j, k;
904 uint8_t tr_r, tr_g, tr_b, *buf;
905 uint32_t *in;
906 /* ELS decoder initializations */
907 memset(&c->ec, 0, sizeof(c->ec));
908 ff_els_decoder_init(&c->ec.els_ctx, src, els_dsize);
909 epic_hash_init(&c->ec.hash);
910
911 /* decode transparent pixel value */
912 tr_r = ff_els_decode_unsigned(&c->ec.els_ctx, &c->ec.unsigned_rung);
913 tr_g = ff_els_decode_unsigned(&c->ec.els_ctx, &c->ec.unsigned_rung);
914 tr_b = ff_els_decode_unsigned(&c->ec.els_ctx, &c->ec.unsigned_rung);
915 if (c->ec.els_ctx.err != 0) {
916 av_log(avctx, AV_LOG_ERROR,
917 "ePIC: couldn't decode transparency pixel!\n");
918 return AVERROR_INVALIDDATA;
919 }
920
921 ret = epic_decode_tile(&c->ec, c->epic_buf, tile_height, tile_width,
922 c->epic_buf_stride);
923
924 epic_free_pixel_cache(&c->ec.hash);
925 ff_els_decoder_uninit(&c->ec.unsigned_rung);
926
927 if (ret) {
928 av_log(avctx, AV_LOG_ERROR,
929 "ePIC: tile decoding failed, frame=%d, tile_x=%d, tile_y=%d\n",
930 avctx->frame_number, tile_x, tile_y);
931 return AVERROR_INVALIDDATA;
932 }
933
934 buf = c->epic_buf;
935 dst = c->framebuf + tile_x * c->tile_width * 3 +
936 tile_y * c->tile_height * c->framebuf_stride;
937
938 for (j = 0; j < tile_height; j++) {
939 uint8_t *out = dst;
940 in = (uint32_t *) buf;
941 for (i = 0; i < tile_width; i++) {
942 out[0] = (in[i] >> R_shift) & 0xFF;
943 out[1] = (in[i] >> G_shift) & 0xFF;
944 out[2] = (in[i] >> B_shift) & 0xFF;
945 out += 3;
946 }
947 buf += c->epic_buf_stride;
948 dst += c->framebuf_stride;
949 }
950
951 if (src_size > els_dsize) {
952 uint8_t *jpg;
953 uint32_t tr;
954 int bstride = FFALIGN(tile_width, 16) >> 3;
955 int nblocks = 0;
956 int estride = c->epic_buf_stride >> 2;
957
958 src += els_dsize;
959 src_size -= els_dsize;
960
961 in = (uint32_t *) c->epic_buf;
962 tr = (tr_r << R_shift) | (tr_g << G_shift) | (tr_b << B_shift);
963
964 memset(c->kempf_flags, 0,
965 (aheight >> 3) * bstride * sizeof(*c->kempf_flags));
966 for (j = 0; j < tile_height; j += 8) {
967 for (i = 0; i < tile_width; i += 8) {
968 c->kempf_flags[(i >> 3) + (j >> 3) * bstride] = 0;
969 for (k = 0; k < 8 * 8; k++) {
970 if (in[i + (k & 7) + (k >> 3) * estride] == tr) {
971 c->kempf_flags[(i >> 3) + (j >> 3) * bstride] = 1;
972 nblocks++;
973 break;
974 }
975 }
976 }
977 in += 8 * estride;
978 }
979
980 memset(c->jpeg_tile, 0, c->tile_stride * aheight);
981 jpg_decode_data(&c->jc, awidth, aheight, src, src_size,
982 c->jpeg_tile, c->tile_stride,
983 c->kempf_flags, bstride, nblocks, c->swapuv);
984
985 in = (uint32_t *) c->epic_buf;
986 dst = c->framebuf + tile_x * c->tile_width * 3 +
987 tile_y * c->tile_height * c->framebuf_stride;
988 jpg = c->jpeg_tile;
989 for (j = 0; j < tile_height; j++) {
990 for (i = 0; i < tile_width; i++)
991 if (in[i] == tr)
992 memcpy(dst + i * 3, jpg + i * 3, 3);
993 in += c->epic_buf_stride >> 2;
994 dst += c->framebuf_stride;
995 jpg += c->tile_stride;
996 }
997 }
998 } else {
999 dst = c->framebuf + tile_x * c->tile_width * 3 +
1000 tile_y * c->tile_height * c->framebuf_stride;
1001 return jpg_decode_data(&c->jc, tile_width, tile_height, src, src_size,
1002 dst, c->framebuf_stride, NULL, 0, 0, c->swapuv);
1003 }
1004
1005 return 0;
1006 }
1007
1008 static void kempf_restore_buf(const uint8_t *src, int len,
1009 uint8_t *dst, int stride,
1010 const uint8_t *jpeg_tile, int tile_stride,
1011 int width, int height,
1012 const uint8_t *pal, int npal, int tidx)
1013 {
1014 GetBitContext gb;
1015 int i, j, nb, col;
1016 int align_width = FFALIGN(width, 16);
1017
1018 init_get_bits(&gb, src, len * 8);
1019
1020 if (npal <= 2) nb = 1;
1021 else if (npal <= 4) nb = 2;
1022 else if (npal <= 16) nb = 4;
1023 else nb = 8;
1024
1025 for (j = 0; j < height; j++, dst += stride, jpeg_tile += tile_stride) {
1026 if (get_bits(&gb, 8))
1027 continue;
1028 for (i = 0; i < width; i++) {
1029 col = get_bits(&gb, nb);
1030 if (col != tidx)
1031 memcpy(dst + i * 3, pal + col * 3, 3);
1032 else
1033 memcpy(dst + i * 3, jpeg_tile + i * 3, 3);
1034 }
1035 skip_bits_long(&gb, nb * (align_width - width));
1036 }
1037 }
1038
1039 static int kempf_decode_tile(G2MContext *c, int tile_x, int tile_y,
1040 const uint8_t *src, int src_size)
1041 {
1042 int width, height;
1043 int hdr, zsize, npal, tidx = -1, ret;
1044 int i, j;
1045 const uint8_t *src_end = src + src_size;
1046 uint8_t pal[768], transp[3];
1047 uLongf dlen = (c->tile_width + 1) * c->tile_height;
1048 int sub_type;
1049 int nblocks, cblocks, bstride;
1050 int bits, bitbuf, coded;
1051 uint8_t *dst = c->framebuf + tile_x * c->tile_width * 3 +
1052 tile_y * c->tile_height * c->framebuf_stride;
1053
1054 if (src_size < 2)
1055 return AVERROR_INVALIDDATA;
1056
1057 width = FFMIN(c->width - tile_x * c->tile_width, c->tile_width);
1058 height = FFMIN(c->height - tile_y * c->tile_height, c->tile_height);
1059
1060 hdr = *src++;
1061 sub_type = hdr >> 5;
1062 if (sub_type == 0) {
1063 int j;
1064 memcpy(transp, src, 3);
1065 src += 3;
1066 for (j = 0; j < height; j++, dst += c->framebuf_stride)
1067 for (i = 0; i < width; i++)
1068 memcpy(dst + i * 3, transp, 3);
1069 return 0;
1070 } else if (sub_type == 1) {
1071 return jpg_decode_data(&c->jc, width, height, src, src_end - src,
1072 dst, c->framebuf_stride, NULL, 0, 0, 0);
1073 }
1074
1075 if (sub_type != 2) {
1076 memcpy(transp, src, 3);
1077 src += 3;
1078 }
1079 npal = *src++ + 1;
1080 memcpy(pal, src, npal * 3);
1081 src += npal * 3;
1082 if (sub_type != 2) {
1083 for (i = 0; i < npal; i++) {
1084 if (!memcmp(pal + i * 3, transp, 3)) {
1085 tidx = i;
1086 break;
1087 }
1088 }
1089 }
1090
1091 if (src_end - src < 2)
1092 return 0;
1093 zsize = (src[0] << 8) | src[1];
1094 src += 2;
1095
1096 if (src_end - src < zsize)
1097 return AVERROR_INVALIDDATA;
1098
1099 ret = uncompress(c->kempf_buf, &dlen, src, zsize);
1100 if (ret)
1101 return AVERROR_INVALIDDATA;
1102 src += zsize;
1103
1104 if (sub_type == 2) {
1105 kempf_restore_buf(c->kempf_buf, dlen, dst, c->framebuf_stride,
1106 NULL, 0, width, height, pal, npal, tidx);
1107 return 0;
1108 }
1109
1110 nblocks = *src++ + 1;
1111 cblocks = 0;
1112 bstride = FFALIGN(width, 16) >> 3;
1113 // blocks are coded LSB and we need normal bitreader for JPEG data
1114 bits = 0;
1115 for (i = 0; i < (FFALIGN(height, 16) >> 4); i++) {
1116 for (j = 0; j < (FFALIGN(width, 16) >> 4); j++) {
1117 if (!bits) {
1118 bitbuf = *src++;
1119 bits = 8;
1120 }
1121 coded = bitbuf & 1;
1122 bits--;
1123 bitbuf >>= 1;
1124 cblocks += coded;
1125 if (cblocks > nblocks)
1126 return AVERROR_INVALIDDATA;
1127 c->kempf_flags[j * 2 + i * 2 * bstride] =
1128 c->kempf_flags[j * 2 + 1 + i * 2 * bstride] =
1129 c->kempf_flags[j * 2 + (i * 2 + 1) * bstride] =
1130 c->kempf_flags[j * 2 + 1 + (i * 2 + 1) * bstride] = coded;
1131 }
1132 }
1133
1134 memset(c->jpeg_tile, 0, c->tile_stride * height);
1135 jpg_decode_data(&c->jc, width, height, src, src_end - src,
1136 c->jpeg_tile, c->tile_stride,
1137 c->kempf_flags, bstride, nblocks * 4, 0);
1138
1139 kempf_restore_buf(c->kempf_buf, dlen, dst, c->framebuf_stride,
1140 c->jpeg_tile, c->tile_stride,
1141 width, height, pal, npal, tidx);
1142
1143 return 0;
1144 }
1145
1146 static int g2m_init_buffers(G2MContext *c)
1147 {
1148 int aligned_height;
1149
1150 if (!c->framebuf || c->old_width < c->width || c->old_height < c->height) {
1151 c->framebuf_stride = FFALIGN(c->width * 3, 16);
1152 aligned_height = FFALIGN(c->height, 16);
1153 av_free(c->framebuf);
1154 c->framebuf = av_mallocz(c->framebuf_stride * aligned_height);
1155 if (!c->framebuf)
1156 return AVERROR(ENOMEM);
1157 }
1158 if (!c->synth_tile || !c->jpeg_tile ||
1159 (c->compression == 2 && !c->epic_buf_base) ||
1160 c->old_tile_w < c->tile_width ||
1161 c->old_tile_h < c->tile_height) {
1162 c->tile_stride = FFALIGN(c->tile_width * 3, 16);
1163 c->epic_buf_stride = FFALIGN(c->tile_width * 4, 16);
1164 aligned_height = FFALIGN(c->tile_height, 16);
1165 av_free(c->synth_tile);
1166 av_free(c->jpeg_tile);
1167 av_free(c->kempf_buf);
1168 av_free(c->kempf_flags);
1169 av_free(c->epic_buf_base);
1170 c->synth_tile = av_mallocz(c->tile_stride * aligned_height);
1171 c->jpeg_tile = av_mallocz(c->tile_stride * aligned_height);
1172 c->kempf_buf = av_mallocz((c->tile_width + 1) * aligned_height +
1173 AV_INPUT_BUFFER_PADDING_SIZE);
1174 c->kempf_flags = av_mallocz(c->tile_width * aligned_height);
1175 if (!c->synth_tile || !c->jpeg_tile ||
1176 !c->kempf_buf || !c->kempf_flags)
1177 return AVERROR(ENOMEM);
1178 if (c->compression == 2) {
1179 c->epic_buf_base = av_mallocz(c->epic_buf_stride * aligned_height + 4);
1180 if (!c->epic_buf_base)
1181 return AVERROR(ENOMEM);
1182 c->epic_buf = c->epic_buf_base + 4;
1183 }
1184 }
1185
1186 return 0;
1187 }
1188
1189 static int g2m_load_cursor(AVCodecContext *avctx, G2MContext *c,
1190 GetByteContext *gb)
1191 {
1192 int i, j, k;
1193 uint8_t *dst;
1194 uint32_t bits;
1195 uint32_t cur_size, cursor_w, cursor_h, cursor_stride;
1196 uint32_t cursor_hot_x, cursor_hot_y;
1197 int cursor_fmt, err;
1198
1199 cur_size = bytestream2_get_be32(gb);
1200 cursor_w = bytestream2_get_byte(gb);
1201 cursor_h = bytestream2_get_byte(gb);
1202 cursor_hot_x = bytestream2_get_byte(gb);
1203 cursor_hot_y = bytestream2_get_byte(gb);
1204 cursor_fmt = bytestream2_get_byte(gb);
1205
1206 cursor_stride = FFALIGN(cursor_w, 32) * 4;
1207
1208 if (cursor_w < 1 || cursor_w > 256 ||
1209 cursor_h < 1 || cursor_h > 256) {
1210 av_log(avctx, AV_LOG_ERROR, "Invalid cursor dimensions %"PRIu32"x%"PRIu32"\n",
1211 cursor_w, cursor_h);
1212 return AVERROR_INVALIDDATA;
1213 }
1214 if (cursor_hot_x > cursor_w || cursor_hot_y > cursor_h) {
1215 av_log(avctx, AV_LOG_WARNING, "Invalid hotspot position %"PRIu32",%"PRIu32"\n",
1216 cursor_hot_x, cursor_hot_y);
1217 cursor_hot_x = FFMIN(cursor_hot_x, cursor_w - 1);
1218 cursor_hot_y = FFMIN(cursor_hot_y, cursor_h - 1);
1219 }
1220 if (cur_size - 9 > bytestream2_get_bytes_left(gb) ||
1221 c->cursor_w * c->cursor_h / 4 > cur_size) {
1222 av_log(avctx, AV_LOG_ERROR, "Invalid cursor data size %"PRIu32"/%u\n",
1223 cur_size, bytestream2_get_bytes_left(gb));
1224 return AVERROR_INVALIDDATA;
1225 }
1226 if (cursor_fmt != 1 && cursor_fmt != 32) {
1227 avpriv_report_missing_feature(avctx, "Cursor format %d",
1228 cursor_fmt);
1229 return AVERROR_PATCHWELCOME;
1230 }
1231
1232 if ((err = av_reallocp(&c->cursor, cursor_stride * cursor_h)) < 0) {
1233 av_log(avctx, AV_LOG_ERROR, "Cannot allocate cursor buffer\n");
1234 return err;
1235 }
1236
1237 c->cursor_w = cursor_w;
1238 c->cursor_h = cursor_h;
1239 c->cursor_hot_x = cursor_hot_x;
1240 c->cursor_hot_y = cursor_hot_y;
1241 c->cursor_fmt = cursor_fmt;
1242 c->cursor_stride = cursor_stride;
1243
1244 dst = c->cursor;
1245 switch (c->cursor_fmt) {
1246 case 1: // old monochrome
1247 for (j = 0; j < c->cursor_h; j++) {
1248 for (i = 0; i < c->cursor_w; i += 32) {
1249 bits = bytestream2_get_be32(gb);
1250 for (k = 0; k < 32; k++) {
1251 dst[0] = !!(bits & 0x80000000);
1252 dst += 4;
1253 bits <<= 1;
1254 }
1255 }
1256 dst += c->cursor_stride - c->cursor_w * 4;
1257 }
1258
1259 dst = c->cursor;
1260 for (j = 0; j < c->cursor_h; j++) {
1261 for (i = 0; i < c->cursor_w; i += 32) {
1262 bits = bytestream2_get_be32(gb);
1263 for (k = 0; k < 32; k++) {
1264 int mask_bit = !!(bits & 0x80000000);
1265 switch (dst[0] * 2 + mask_bit) {
1266 case 0:
1267 dst[0] = 0xFF;
1268 dst[1] = 0x00;
1269 dst[2] = 0x00;
1270 dst[3] = 0x00;
1271 break;
1272 case 1:
1273 dst[0] = 0xFF;
1274 dst[1] = 0xFF;
1275 dst[2] = 0xFF;
1276 dst[3] = 0xFF;
1277 break;
1278 default:
1279 dst[0] = 0x00;
1280 dst[1] = 0x00;
1281 dst[2] = 0x00;
1282 dst[3] = 0x00;
1283 }
1284 dst += 4;
1285 bits <<= 1;
1286 }
1287 }
1288 dst += c->cursor_stride - c->cursor_w * 4;
1289 }
1290 break;
1291 case 32: // full colour
1292 /* skip monochrome version of the cursor and decode RGBA instead */
1293 bytestream2_skip(gb, c->cursor_h * (FFALIGN(c->cursor_w, 32) >> 3));
1294 for (j = 0; j < c->cursor_h; j++) {
1295 for (i = 0; i < c->cursor_w; i++) {
1296 int val = bytestream2_get_be32(gb);
1297 *dst++ = val >> 0;
1298 *dst++ = val >> 8;
1299 *dst++ = val >> 16;
1300 *dst++ = val >> 24;
1301 }
1302 dst += c->cursor_stride - c->cursor_w * 4;
1303 }
1304 break;
1305 default:
1306 return AVERROR_PATCHWELCOME;
1307 }
1308 return 0;
1309 }
1310
1311 #define APPLY_ALPHA(src, new, alpha) \
1312 src = (src * (256 - alpha) + new * alpha) >> 8
1313
1314 static void g2m_paint_cursor(G2MContext *c, uint8_t *dst, int stride)
1315 {
1316 int i, j;
1317 int x, y, w, h;
1318 const uint8_t *cursor;
1319
1320 if (!c->cursor)
1321 return;
1322
1323 x = c->cursor_x - c->cursor_hot_x;
1324 y = c->cursor_y - c->cursor_hot_y;
1325
1326 cursor = c->cursor;
1327 w = c->cursor_w;
1328 h = c->cursor_h;
1329
1330 if (x + w > c->width)
1331 w = c->width - x;
1332 if (y + h > c->height)
1333 h = c->height - y;
1334 if (x < 0) {
1335 w += x;
1336 cursor += -x * 4;
1337 } else {
1338 dst += x * 3;
1339 }
1340 if (y < 0) {
1341 h += y;
1342 cursor += -y * c->cursor_stride;
1343 } else {
1344 dst += y * stride;
1345 }
1346 if (w < 0 || h < 0)
1347 return;
1348
1349 for (j = 0; j < h; j++) {
1350 for (i = 0; i < w; i++) {
1351 uint8_t alpha = cursor[i * 4];
1352 APPLY_ALPHA(dst[i * 3 + 0], cursor[i * 4 + 1], alpha);
1353 APPLY_ALPHA(dst[i * 3 + 1], cursor[i * 4 + 2], alpha);
1354 APPLY_ALPHA(dst[i * 3 + 2], cursor[i * 4 + 3], alpha);
1355 }
1356 dst += stride;
1357 cursor += c->cursor_stride;
1358 }
1359 }
1360
1361 static int g2m_decode_frame(AVCodecContext *avctx, void *data,
1362 int *got_picture_ptr, AVPacket *avpkt)
1363 {
1364 const uint8_t *buf = avpkt->data;
1365 int buf_size = avpkt->size;
1366 G2MContext *c = avctx->priv_data;
1367 AVFrame *pic = data;
1368 GetByteContext bc, tbc;
1369 int magic;
1370 int got_header = 0;
1371 uint32_t chunk_size, r_mask, g_mask, b_mask;
1372 int chunk_type, chunk_start;
1373 int i;
1374 int ret;
1375
1376 if (buf_size < 12) {
1377 av_log(avctx, AV_LOG_ERROR,
1378 "Frame should have at least 12 bytes, got %d instead\n",
1379 buf_size);
1380 return AVERROR_INVALIDDATA;
1381 }
1382
1383 bytestream2_init(&bc, buf, buf_size);
1384
1385 magic = bytestream2_get_be32(&bc);
1386 if ((magic & ~0xF) != MKBETAG('G', '2', 'M', '0') ||
1387 (magic & 0xF) < 2 || (magic & 0xF) > 5) {
1388 av_log(avctx, AV_LOG_ERROR, "Wrong magic %08X\n", magic);
1389 return AVERROR_INVALIDDATA;
1390 }
1391
1392 c->swapuv = magic == MKBETAG('G', '2', 'M', '2');
1393
1394 while (bytestream2_get_bytes_left(&bc) > 5) {
1395 chunk_size = bytestream2_get_le32(&bc) - 1;
1396 chunk_type = bytestream2_get_byte(&bc);
1397 chunk_start = bytestream2_tell(&bc);
1398 if (chunk_size > bytestream2_get_bytes_left(&bc)) {
1399 av_log(avctx, AV_LOG_ERROR, "Invalid chunk size %"PRIu32" type %02X\n",
1400 chunk_size, chunk_type);
1401 break;
1402 }
1403 switch (chunk_type) {
1404 case DISPLAY_INFO:
1405 c->got_header = 0;
1406 if (chunk_size < 21) {
1407 av_log(avctx, AV_LOG_ERROR, "Invalid display info size %"PRIu32"\n",
1408 chunk_size);
1409 break;
1410 }
1411 c->width = bytestream2_get_be32(&bc);
1412 c->height = bytestream2_get_be32(&bc);
1413 if (c->width < 16 || c->height < 16) {
1414 av_log(avctx, AV_LOG_ERROR,
1415 "Invalid frame dimensions %dx%d\n",
1416 c->width, c->height);
1417 ret = AVERROR_INVALIDDATA;
1418 goto header_fail;
1419 }
1420 if (c->width != avctx->width || c->height != avctx->height) {
1421 ret = ff_set_dimensions(avctx, c->width, c->height);
1422 if (ret < 0)
1423 return ret;
1424 }
1425 c->compression = bytestream2_get_be32(&bc);
1426 if (c->compression != 2 && c->compression != 3) {
1427 avpriv_report_missing_feature(avctx, "Compression method %d",
1428 c->compression);
1429 return AVERROR_PATCHWELCOME;
1430 }
1431 c->tile_width = bytestream2_get_be32(&bc);
1432 c->tile_height = bytestream2_get_be32(&bc);
1433 if (!c->tile_width || !c->tile_height ||
1434 ((c->tile_width | c->tile_height) & 0xF)) {
1435 av_log(avctx, AV_LOG_ERROR,
1436 "Invalid tile dimensions %dx%d\n",
1437 c->tile_width, c->tile_height);
1438 ret = AVERROR_INVALIDDATA;
1439 goto header_fail;
1440 }
1441 c->tiles_x = (c->width + c->tile_width - 1) / c->tile_width;
1442 c->tiles_y = (c->height + c->tile_height - 1) / c->tile_height;
1443 c->bpp = bytestream2_get_byte(&bc);
1444 if (c->bpp == 32) {
1445 if (bytestream2_get_bytes_left(&bc) < 16 ||
1446 (chunk_size - 21) < 16) {
1447 av_log(avctx, AV_LOG_ERROR,
1448 "Display info: missing bitmasks!\n");
1449 return AVERROR_INVALIDDATA;
1450 }
1451 r_mask = bytestream2_get_be32(&bc);
1452 g_mask = bytestream2_get_be32(&bc);
1453 b_mask = bytestream2_get_be32(&bc);
1454 if (r_mask != 0xFF0000 || g_mask != 0xFF00 || b_mask != 0xFF) {
1455 avpriv_report_missing_feature(avctx,
1456 "Bitmasks: R=%"PRIX32", G=%"PRIX32", B=%"PRIX32,
1457 r_mask, g_mask, b_mask);
1458 return AVERROR_PATCHWELCOME;
1459 }
1460 } else {
1461 avpriv_request_sample(avctx, "bpp=%d", c->bpp);
1462 return AVERROR_PATCHWELCOME;
1463 }
1464 if (g2m_init_buffers(c)) {
1465 ret = AVERROR(ENOMEM);
1466 goto header_fail;
1467 }
1468 got_header = 1;
1469 break;
1470 case TILE_DATA:
1471 if (!c->tiles_x || !c->tiles_y) {
1472 av_log(avctx, AV_LOG_WARNING,
1473 "No display info - skipping tile\n");
1474 break;
1475 }
1476 if (chunk_size < 2) {
1477 av_log(avctx, AV_LOG_ERROR, "Invalid tile data size %"PRIu32"\n",
1478 chunk_size);
1479 break;
1480 }
1481 c->tile_x = bytestream2_get_byte(&bc);
1482 c->tile_y = bytestream2_get_byte(&bc);
1483 if (c->tile_x >= c->tiles_x || c->tile_y >= c->tiles_y) {
1484 av_log(avctx, AV_LOG_ERROR,
1485 "Invalid tile pos %d,%d (in %dx%d grid)\n",
1486 c->tile_x, c->tile_y, c->tiles_x, c->tiles_y);
1487 break;
1488 }
1489 ret = 0;
1490 switch (c->compression) {
1491 case COMPR_EPIC_J_B:
1492 ret = epic_jb_decode_tile(c, c->tile_x, c->tile_y,
1493 buf + bytestream2_tell(&bc),
1494 chunk_size - 2, avctx);
1495 break;
1496 case COMPR_KEMPF_J_B:
1497 ret = kempf_decode_tile(c, c->tile_x, c->tile_y,
1498 buf + bytestream2_tell(&bc),
1499 chunk_size - 2);
1500 break;
1501 }
1502 if (ret && c->framebuf)
1503 av_log(avctx, AV_LOG_ERROR, "Error decoding tile %d,%d\n",
1504 c->tile_x, c->tile_y);
1505 break;
1506 case CURSOR_POS:
1507 if (chunk_size < 5) {
1508 av_log(avctx, AV_LOG_ERROR, "Invalid cursor pos size %"PRIu32"\n",
1509 chunk_size);
1510 break;
1511 }
1512 c->cursor_x = bytestream2_get_be16(&bc);
1513 c->cursor_y = bytestream2_get_be16(&bc);
1514 break;
1515 case CURSOR_SHAPE:
1516 if (chunk_size < 8) {
1517 av_log(avctx, AV_LOG_ERROR, "Invalid cursor data size %"PRIu32"\n",
1518 chunk_size);
1519 break;
1520 }
1521 bytestream2_init(&tbc, buf + bytestream2_tell(&bc),
1522 chunk_size - 4);
1523 g2m_load_cursor(avctx, c, &tbc);
1524 break;
1525 case CHUNK_CC:
1526 case CHUNK_CD:
1527 break;
1528 default:
1529 av_log(avctx, AV_LOG_WARNING, "Skipping chunk type %02d\n",
1530 chunk_type);
1531 }
1532
1533 /* navigate to next chunk */
1534 bytestream2_skip(&bc, chunk_start + chunk_size - bytestream2_tell(&bc));
1535 }
1536 if (got_header)
1537 c->got_header = 1;
1538
1539 if (c->width && c->height) {
1540 if ((ret = ff_get_buffer(avctx, pic, 0)) < 0) {
1541 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1542 return ret;
1543 }
1544
1545 pic->key_frame = got_header;
1546 pic->pict_type = got_header ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1547
1548 for (i = 0; i < avctx->height; i++)
1549 memcpy(pic->data[0] + i * pic->linesize[0],
1550 c->framebuf + i * c->framebuf_stride,
1551 c->width * 3);
1552 g2m_paint_cursor(c, pic->data[0], pic->linesize[0]);
1553
1554 *got_picture_ptr = 1;
1555 }
1556
1557 return buf_size;
1558
1559 header_fail:
1560 c->width =
1561 c->height = 0;
1562 c->tiles_x =
1563 c->tiles_y = 0;
1564 return ret;
1565 }
1566
1567 static av_cold int g2m_decode_init(AVCodecContext *avctx)
1568 {
1569 G2MContext *const c = avctx->priv_data;
1570 int ret;
1571
1572 if ((ret = jpg_init(avctx, &c->jc)) != 0) {
1573 av_log(avctx, AV_LOG_ERROR, "Cannot initialise VLCs\n");
1574 jpg_free_context(&c->jc);
1575 return AVERROR(ENOMEM);
1576 }
1577
1578 avctx->pix_fmt = AV_PIX_FMT_RGB24;
1579
1580 // store original sizes and check against those if resize happens
1581 c->orig_width = avctx->width;
1582 c->orig_height = avctx->height;
1583
1584 return 0;
1585 }
1586
1587 static av_cold int g2m_decode_end(AVCodecContext *avctx)
1588 {
1589 G2MContext *const c = avctx->priv_data;
1590
1591 jpg_free_context(&c->jc);
1592
1593 av_freep(&c->epic_buf_base);
1594 av_freep(&c->kempf_buf);
1595 av_freep(&c->kempf_flags);
1596 av_freep(&c->synth_tile);
1597 av_freep(&c->jpeg_tile);
1598 av_freep(&c->cursor);
1599 av_freep(&c->framebuf);
1600
1601 return 0;
1602 }
1603
1604 AVCodec ff_g2m_decoder = {
1605 .name = "g2m",
1606 .long_name = NULL_IF_CONFIG_SMALL("Go2Meeting"),
1607 .type = AVMEDIA_TYPE_VIDEO,
1608 .id = AV_CODEC_ID_G2M,
1609 .priv_data_size = sizeof(G2MContext),
1610 .init = g2m_decode_init,
1611 .close = g2m_decode_end,
1612 .decode = g2m_decode_frame,
1613 .capabilities = AV_CODEC_CAP_DR1,
1614 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
1615 };