2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * @file libavcodec/h264.c
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
31 #include "mpegvideo.h"
34 #include "h264_parser.h"
37 #include "rectangle.h"
38 #include "vdpau_internal.h"
42 #include "x86/h264_i386.h"
49 * Value of Picture.reference when Picture is not a reference picture, but
50 * is held for delayed output.
52 #define DELAYED_PIC_REF 4
54 static VLC coeff_token_vlc
[4];
55 static VLC_TYPE coeff_token_vlc_tables
[520+332+280+256][2];
56 static const int coeff_token_vlc_tables_size
[4]={520,332,280,256};
58 static VLC chroma_dc_coeff_token_vlc
;
59 static VLC_TYPE chroma_dc_coeff_token_vlc_table
[256][2];
60 static const int chroma_dc_coeff_token_vlc_table_size
= 256;
62 static VLC total_zeros_vlc
[15];
63 static VLC_TYPE total_zeros_vlc_tables
[15][512][2];
64 static const int total_zeros_vlc_tables_size
= 512;
66 static VLC chroma_dc_total_zeros_vlc
[3];
67 static VLC_TYPE chroma_dc_total_zeros_vlc_tables
[3][8][2];
68 static const int chroma_dc_total_zeros_vlc_tables_size
= 8;
70 static VLC run_vlc
[6];
71 static VLC_TYPE run_vlc_tables
[6][8][2];
72 static const int run_vlc_tables_size
= 8;
75 static VLC_TYPE run7_vlc_table
[96][2];
76 static const int run7_vlc_table_size
= 96;
78 static void svq3_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
);
79 static void svq3_add_idct_c(uint8_t *dst
, DCTELEM
*block
, int stride
, int qp
, int dc
);
80 static void filter_mb( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
81 static void filter_mb_fast( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
82 static Picture
* remove_long(H264Context
*h
, int i
, int ref_mask
);
84 static av_always_inline
uint32_t pack16to32(int a
, int b
){
85 #ifdef WORDS_BIGENDIAN
86 return (b
&0xFFFF) + (a
<<16);
88 return (a
&0xFFFF) + (b
<<16);
92 static const uint8_t rem6
[52]={
93 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
96 static const uint8_t div6
[52]={
97 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
100 static const uint8_t left_block_options
[4][8]={
107 #define LEVEL_TAB_BITS 8
108 static int8_t cavlc_level_tab
[7][1<<LEVEL_TAB_BITS
][2];
110 static void fill_caches(H264Context
*h
, int mb_type
, int for_deblock
){
111 MpegEncContext
* const s
= &h
->s
;
112 const int mb_xy
= h
->mb_xy
;
113 int topleft_xy
, top_xy
, topright_xy
, left_xy
[2];
114 int topleft_type
, top_type
, topright_type
, left_type
[2];
115 const uint8_t * left_block
;
116 int topleft_partition
= -1;
119 top_xy
= mb_xy
- (s
->mb_stride
<< FIELD_PICTURE
);
121 //FIXME deblocking could skip the intra and nnz parts.
122 if(for_deblock
&& (h
->slice_num
== 1 || h
->slice_table
[mb_xy
] == h
->slice_table
[top_xy
]) && !FRAME_MBAFF
)
125 /* Wow, what a mess, why didn't they simplify the interlacing & intra
126 * stuff, I can't imagine that these complex rules are worth it. */
128 topleft_xy
= top_xy
- 1;
129 topright_xy
= top_xy
+ 1;
130 left_xy
[1] = left_xy
[0] = mb_xy
-1;
131 left_block
= left_block_options
[0];
133 const int pair_xy
= s
->mb_x
+ (s
->mb_y
& ~1)*s
->mb_stride
;
134 const int top_pair_xy
= pair_xy
- s
->mb_stride
;
135 const int topleft_pair_xy
= top_pair_xy
- 1;
136 const int topright_pair_xy
= top_pair_xy
+ 1;
137 const int topleft_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[topleft_pair_xy
]);
138 const int top_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[top_pair_xy
]);
139 const int topright_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[topright_pair_xy
]);
140 const int left_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[pair_xy
-1]);
141 const int curr_mb_field_flag
= IS_INTERLACED(mb_type
);
142 const int bottom
= (s
->mb_y
& 1);
143 tprintf(s
->avctx
, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag
, left_mb_field_flag
, topleft_mb_field_flag
, top_mb_field_flag
, topright_mb_field_flag
);
145 if (curr_mb_field_flag
&& (bottom
|| top_mb_field_flag
)){
146 top_xy
-= s
->mb_stride
;
148 if (curr_mb_field_flag
&& (bottom
|| topleft_mb_field_flag
)){
149 topleft_xy
-= s
->mb_stride
;
150 } else if(bottom
&& !curr_mb_field_flag
&& left_mb_field_flag
) {
151 topleft_xy
+= s
->mb_stride
;
152 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
153 topleft_partition
= 0;
155 if (curr_mb_field_flag
&& (bottom
|| topright_mb_field_flag
)){
156 topright_xy
-= s
->mb_stride
;
158 if (left_mb_field_flag
!= curr_mb_field_flag
) {
159 left_xy
[1] = left_xy
[0] = pair_xy
- 1;
160 if (curr_mb_field_flag
) {
161 left_xy
[1] += s
->mb_stride
;
162 left_block
= left_block_options
[3];
164 left_block
= left_block_options
[2 - bottom
];
169 h
->top_mb_xy
= top_xy
;
170 h
->left_mb_xy
[0] = left_xy
[0];
171 h
->left_mb_xy
[1] = left_xy
[1];
175 top_type
= h
->slice_table
[top_xy
] < 0xFFFF ? s
->current_picture
.mb_type
[top_xy
] : 0;
176 left_type
[0] = h
->slice_table
[left_xy
[0] ] < 0xFFFF ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
177 left_type
[1] = h
->slice_table
[left_xy
[1] ] < 0xFFFF ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
179 if(MB_MBAFF
&& !IS_INTRA(mb_type
)){
181 for(list
=0; list
<h
->list_count
; list
++){
182 //These values where changed for ease of performing MC, we need to change them back
183 //FIXME maybe we can make MC and loop filter use the same values or prevent
184 //the MC code from changing ref_cache and rather use a temporary array.
185 if(USES_LIST(mb_type
,list
)){
186 int8_t *ref
= &s
->current_picture
.ref_index
[list
][h
->mb2b8_xy
[mb_xy
]];
187 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 0]] =
188 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 2]] = (pack16to32(ref
[0],ref
[1])&0x00FF00FF)*0x0101;
190 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 8]] =
191 *(uint32_t*)&h
->ref_cache
[list
][scan8
[10]] = (pack16to32(ref
[0],ref
[1])&0x00FF00FF)*0x0101;
196 topleft_type
= h
->slice_table
[topleft_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topleft_xy
] : 0;
197 top_type
= h
->slice_table
[top_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[top_xy
] : 0;
198 topright_type
= h
->slice_table
[topright_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topright_xy
]: 0;
199 left_type
[0] = h
->slice_table
[left_xy
[0] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
200 left_type
[1] = h
->slice_table
[left_xy
[1] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
202 if(IS_INTRA(mb_type
)){
203 int type_mask
= h
->pps
.constrained_intra_pred ?
IS_INTRA(-1) : -1;
204 h
->topleft_samples_available
=
205 h
->top_samples_available
=
206 h
->left_samples_available
= 0xFFFF;
207 h
->topright_samples_available
= 0xEEEA;
209 if(!(top_type
& type_mask
)){
210 h
->topleft_samples_available
= 0xB3FF;
211 h
->top_samples_available
= 0x33FF;
212 h
->topright_samples_available
= 0x26EA;
214 if(IS_INTERLACED(mb_type
) != IS_INTERLACED(left_type
[0])){
215 if(IS_INTERLACED(mb_type
)){
216 if(!(left_type
[0] & type_mask
)){
217 h
->topleft_samples_available
&= 0xDFFF;
218 h
->left_samples_available
&= 0x5FFF;
220 if(!(left_type
[1] & type_mask
)){
221 h
->topleft_samples_available
&= 0xFF5F;
222 h
->left_samples_available
&= 0xFF5F;
225 int left_typei
= h
->slice_table
[left_xy
[0] + s
->mb_stride
] == h
->slice_num
226 ? s
->current_picture
.mb_type
[left_xy
[0] + s
->mb_stride
] : 0;
227 assert(left_xy
[0] == left_xy
[1]);
228 if(!((left_typei
& type_mask
) && (left_type
[0] & type_mask
))){
229 h
->topleft_samples_available
&= 0xDF5F;
230 h
->left_samples_available
&= 0x5F5F;
234 if(!(left_type
[0] & type_mask
)){
235 h
->topleft_samples_available
&= 0xDF5F;
236 h
->left_samples_available
&= 0x5F5F;
240 if(!(topleft_type
& type_mask
))
241 h
->topleft_samples_available
&= 0x7FFF;
243 if(!(topright_type
& type_mask
))
244 h
->topright_samples_available
&= 0xFBFF;
246 if(IS_INTRA4x4(mb_type
)){
247 if(IS_INTRA4x4(top_type
)){
248 h
->intra4x4_pred_mode_cache
[4+8*0]= h
->intra4x4_pred_mode
[top_xy
][4];
249 h
->intra4x4_pred_mode_cache
[5+8*0]= h
->intra4x4_pred_mode
[top_xy
][5];
250 h
->intra4x4_pred_mode_cache
[6+8*0]= h
->intra4x4_pred_mode
[top_xy
][6];
251 h
->intra4x4_pred_mode_cache
[7+8*0]= h
->intra4x4_pred_mode
[top_xy
][3];
254 if(!(top_type
& type_mask
))
259 h
->intra4x4_pred_mode_cache
[4+8*0]=
260 h
->intra4x4_pred_mode_cache
[5+8*0]=
261 h
->intra4x4_pred_mode_cache
[6+8*0]=
262 h
->intra4x4_pred_mode_cache
[7+8*0]= pred
;
265 if(IS_INTRA4x4(left_type
[i
])){
266 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[0+2*i
]];
267 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[1+2*i
]];
270 if(!(left_type
[i
] & type_mask
))
275 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]=
276 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= pred
;
292 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
294 h
->non_zero_count_cache
[4+8*0]= h
->non_zero_count
[top_xy
][4];
295 h
->non_zero_count_cache
[5+8*0]= h
->non_zero_count
[top_xy
][5];
296 h
->non_zero_count_cache
[6+8*0]= h
->non_zero_count
[top_xy
][6];
297 h
->non_zero_count_cache
[7+8*0]= h
->non_zero_count
[top_xy
][3];
299 h
->non_zero_count_cache
[1+8*0]= h
->non_zero_count
[top_xy
][9];
300 h
->non_zero_count_cache
[2+8*0]= h
->non_zero_count
[top_xy
][8];
302 h
->non_zero_count_cache
[1+8*3]= h
->non_zero_count
[top_xy
][12];
303 h
->non_zero_count_cache
[2+8*3]= h
->non_zero_count
[top_xy
][11];
306 h
->non_zero_count_cache
[4+8*0]=
307 h
->non_zero_count_cache
[5+8*0]=
308 h
->non_zero_count_cache
[6+8*0]=
309 h
->non_zero_count_cache
[7+8*0]=
311 h
->non_zero_count_cache
[1+8*0]=
312 h
->non_zero_count_cache
[2+8*0]=
314 h
->non_zero_count_cache
[1+8*3]=
315 h
->non_zero_count_cache
[2+8*3]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
319 for (i
=0; i
<2; i
++) {
321 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[0+2*i
]];
322 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[1+2*i
]];
323 h
->non_zero_count_cache
[0+8*1 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[4+2*i
]];
324 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[5+2*i
]];
326 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]=
327 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]=
328 h
->non_zero_count_cache
[0+8*1 + 8*i
]=
329 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
336 h
->top_cbp
= h
->cbp_table
[top_xy
];
337 } else if(IS_INTRA(mb_type
)) {
344 h
->left_cbp
= h
->cbp_table
[left_xy
[0]] & 0x1f0;
345 } else if(IS_INTRA(mb_type
)) {
351 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[0]]>>((left_block
[0]&(~1))+1))&0x1) << 1;
354 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[1]]>>((left_block
[2]&(~1))+1))&0x1) << 3;
359 if(IS_INTER(mb_type
) || IS_DIRECT(mb_type
)){
361 for(list
=0; list
<h
->list_count
; list
++){
362 if(!USES_LIST(mb_type
, list
) && !IS_DIRECT(mb_type
) && !h
->deblocking_filter
){
363 /*if(!h->mv_cache_clean[list]){
364 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
365 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
366 h->mv_cache_clean[list]= 1;
370 h
->mv_cache_clean
[list
]= 0;
372 if(USES_LIST(top_type
, list
)){
373 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
374 const int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
375 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0];
376 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 1];
377 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2];
378 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 3];
379 h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]=
380 h
->ref_cache
[list
][scan8
[0] + 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 0];
381 h
->ref_cache
[list
][scan8
[0] + 2 - 1*8]=
382 h
->ref_cache
[list
][scan8
[0] + 3 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 1];
384 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]=
385 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]=
386 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]=
387 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
388 *(uint32_t*)&h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
)&0xFF)*0x01010101;
392 int cache_idx
= scan8
[0] - 1 + i
*2*8;
393 if(USES_LIST(left_type
[i
], list
)){
394 const int b_xy
= h
->mb2b_xy
[left_xy
[i
]] + 3;
395 const int b8_xy
= h
->mb2b8_xy
[left_xy
[i
]] + 1;
396 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[0+i
*2]];
397 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[1+i
*2]];
398 h
->ref_cache
[list
][cache_idx
]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[0+i
*2]>>1)];
399 h
->ref_cache
[list
][cache_idx
+8]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[1+i
*2]>>1)];
401 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]=
402 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= 0;
403 h
->ref_cache
[list
][cache_idx
]=
404 h
->ref_cache
[list
][cache_idx
+8]= left_type
[i
] ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
408 if(for_deblock
|| ((IS_DIRECT(mb_type
) && !h
->direct_spatial_mv_pred
) && !FRAME_MBAFF
))
411 if(USES_LIST(topleft_type
, list
)){
412 const int b_xy
= h
->mb2b_xy
[topleft_xy
] + 3 + h
->b_stride
+ (topleft_partition
& 2*h
->b_stride
);
413 const int b8_xy
= h
->mb2b8_xy
[topleft_xy
] + 1 + (topleft_partition
& h
->b8_stride
);
414 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
415 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
417 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= 0;
418 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
421 if(USES_LIST(topright_type
, list
)){
422 const int b_xy
= h
->mb2b_xy
[topright_xy
] + 3*h
->b_stride
;
423 const int b8_xy
= h
->mb2b8_xy
[topright_xy
] + h
->b8_stride
;
424 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
425 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
427 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= 0;
428 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
431 if((IS_SKIP(mb_type
) || IS_DIRECT(mb_type
)) && !FRAME_MBAFF
)
434 h
->ref_cache
[list
][scan8
[5 ]+1] =
435 h
->ref_cache
[list
][scan8
[7 ]+1] =
436 h
->ref_cache
[list
][scan8
[13]+1] = //FIXME remove past 3 (init somewhere else)
437 h
->ref_cache
[list
][scan8
[4 ]] =
438 h
->ref_cache
[list
][scan8
[12]] = PART_NOT_AVAILABLE
;
439 *(uint32_t*)h
->mv_cache
[list
][scan8
[5 ]+1]=
440 *(uint32_t*)h
->mv_cache
[list
][scan8
[7 ]+1]=
441 *(uint32_t*)h
->mv_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
442 *(uint32_t*)h
->mv_cache
[list
][scan8
[4 ]]=
443 *(uint32_t*)h
->mv_cache
[list
][scan8
[12]]= 0;
446 /* XXX beurk, Load mvd */
447 if(USES_LIST(top_type
, list
)){
448 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
449 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 0];
450 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 1];
451 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 2];
452 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 3];
454 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]=
455 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]=
456 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]=
457 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
459 if(USES_LIST(left_type
[0], list
)){
460 const int b_xy
= h
->mb2b_xy
[left_xy
[0]] + 3;
461 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[0]];
462 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[1]];
464 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]=
465 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= 0;
467 if(USES_LIST(left_type
[1], list
)){
468 const int b_xy
= h
->mb2b_xy
[left_xy
[1]] + 3;
469 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[2]];
470 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[3]];
472 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]=
473 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= 0;
475 *(uint32_t*)h
->mvd_cache
[list
][scan8
[5 ]+1]=
476 *(uint32_t*)h
->mvd_cache
[list
][scan8
[7 ]+1]=
477 *(uint32_t*)h
->mvd_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
478 *(uint32_t*)h
->mvd_cache
[list
][scan8
[4 ]]=
479 *(uint32_t*)h
->mvd_cache
[list
][scan8
[12]]= 0;
481 if(h
->slice_type_nos
== FF_B_TYPE
){
482 fill_rectangle(&h
->direct_cache
[scan8
[0]], 4, 4, 8, 0, 1);
484 if(IS_DIRECT(top_type
)){
485 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0x01010101;
486 }else if(IS_8X8(top_type
)){
487 int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
488 h
->direct_cache
[scan8
[0] + 0 - 1*8]= h
->direct_table
[b8_xy
];
489 h
->direct_cache
[scan8
[0] + 2 - 1*8]= h
->direct_table
[b8_xy
+ 1];
491 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0;
494 if(IS_DIRECT(left_type
[0]))
495 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 1;
496 else if(IS_8X8(left_type
[0]))
497 h
->direct_cache
[scan8
[0] - 1 + 0*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[0]] + 1 + h
->b8_stride
*(left_block
[0]>>1)];
499 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 0;
501 if(IS_DIRECT(left_type
[1]))
502 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 1;
503 else if(IS_8X8(left_type
[1]))
504 h
->direct_cache
[scan8
[0] - 1 + 2*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[1]] + 1 + h
->b8_stride
*(left_block
[2]>>1)];
506 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 0;
512 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
513 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
514 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
515 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
516 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
517 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
518 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
519 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
520 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
521 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
523 #define MAP_F2F(idx, mb_type)\
524 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
525 h->ref_cache[list][idx] <<= 1;\
526 h->mv_cache[list][idx][1] /= 2;\
527 h->mvd_cache[list][idx][1] /= 2;\
532 #define MAP_F2F(idx, mb_type)\
533 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
534 h->ref_cache[list][idx] >>= 1;\
535 h->mv_cache[list][idx][1] <<= 1;\
536 h->mvd_cache[list][idx][1] <<= 1;\
546 h
->neighbor_transform_size
= !!IS_8x8DCT(top_type
) + !!IS_8x8DCT(left_type
[0]);
549 static inline void write_back_intra_pred_mode(H264Context
*h
){
550 const int mb_xy
= h
->mb_xy
;
552 h
->intra4x4_pred_mode
[mb_xy
][0]= h
->intra4x4_pred_mode_cache
[7+8*1];
553 h
->intra4x4_pred_mode
[mb_xy
][1]= h
->intra4x4_pred_mode_cache
[7+8*2];
554 h
->intra4x4_pred_mode
[mb_xy
][2]= h
->intra4x4_pred_mode_cache
[7+8*3];
555 h
->intra4x4_pred_mode
[mb_xy
][3]= h
->intra4x4_pred_mode_cache
[7+8*4];
556 h
->intra4x4_pred_mode
[mb_xy
][4]= h
->intra4x4_pred_mode_cache
[4+8*4];
557 h
->intra4x4_pred_mode
[mb_xy
][5]= h
->intra4x4_pred_mode_cache
[5+8*4];
558 h
->intra4x4_pred_mode
[mb_xy
][6]= h
->intra4x4_pred_mode_cache
[6+8*4];
562 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
564 static inline int check_intra4x4_pred_mode(H264Context
*h
){
565 MpegEncContext
* const s
= &h
->s
;
566 static const int8_t top
[12]= {-1, 0,LEFT_DC_PRED
,-1,-1,-1,-1,-1, 0};
567 static const int8_t left
[12]= { 0,-1, TOP_DC_PRED
, 0,-1,-1,-1, 0,-1,DC_128_PRED
};
570 if(!(h
->top_samples_available
&0x8000)){
572 int status
= top
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + i
] ];
574 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
577 h
->intra4x4_pred_mode_cache
[scan8
[0] + i
]= status
;
582 if((h
->left_samples_available
&0x8888)!=0x8888){
583 static const int mask
[4]={0x8000,0x2000,0x80,0x20};
585 if(!(h
->left_samples_available
&mask
[i
])){
586 int status
= left
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
] ];
588 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
591 h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
]= status
;
598 } //FIXME cleanup like next
601 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
603 static inline int check_intra_pred_mode(H264Context
*h
, int mode
){
604 MpegEncContext
* const s
= &h
->s
;
605 static const int8_t top
[7]= {LEFT_DC_PRED8x8
, 1,-1,-1};
606 static const int8_t left
[7]= { TOP_DC_PRED8x8
,-1, 2,-1,DC_128_PRED8x8
};
609 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "out of range intra chroma pred mode at %d %d\n", s
->mb_x
, s
->mb_y
);
613 if(!(h
->top_samples_available
&0x8000)){
616 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
621 if((h
->left_samples_available
&0x8080) != 0x8080){
623 if(h
->left_samples_available
&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
624 mode
= ALZHEIMER_DC_L0T_PRED8x8
+ (!(h
->left_samples_available
&0x8000)) + 2*(mode
== DC_128_PRED8x8
);
627 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
636 * gets the predicted intra4x4 prediction mode.
638 static inline int pred_intra_mode(H264Context
*h
, int n
){
639 const int index8
= scan8
[n
];
640 const int left
= h
->intra4x4_pred_mode_cache
[index8
- 1];
641 const int top
= h
->intra4x4_pred_mode_cache
[index8
- 8];
642 const int min
= FFMIN(left
, top
);
644 tprintf(h
->s
.avctx
, "mode:%d %d min:%d\n", left
,top
, min
);
646 if(min
<0) return DC_PRED
;
650 static inline void write_back_non_zero_count(H264Context
*h
){
651 const int mb_xy
= h
->mb_xy
;
653 h
->non_zero_count
[mb_xy
][0]= h
->non_zero_count_cache
[7+8*1];
654 h
->non_zero_count
[mb_xy
][1]= h
->non_zero_count_cache
[7+8*2];
655 h
->non_zero_count
[mb_xy
][2]= h
->non_zero_count_cache
[7+8*3];
656 h
->non_zero_count
[mb_xy
][3]= h
->non_zero_count_cache
[7+8*4];
657 h
->non_zero_count
[mb_xy
][4]= h
->non_zero_count_cache
[4+8*4];
658 h
->non_zero_count
[mb_xy
][5]= h
->non_zero_count_cache
[5+8*4];
659 h
->non_zero_count
[mb_xy
][6]= h
->non_zero_count_cache
[6+8*4];
661 h
->non_zero_count
[mb_xy
][9]= h
->non_zero_count_cache
[1+8*2];
662 h
->non_zero_count
[mb_xy
][8]= h
->non_zero_count_cache
[2+8*2];
663 h
->non_zero_count
[mb_xy
][7]= h
->non_zero_count_cache
[2+8*1];
665 h
->non_zero_count
[mb_xy
][12]=h
->non_zero_count_cache
[1+8*5];
666 h
->non_zero_count
[mb_xy
][11]=h
->non_zero_count_cache
[2+8*5];
667 h
->non_zero_count
[mb_xy
][10]=h
->non_zero_count_cache
[2+8*4];
671 * gets the predicted number of non-zero coefficients.
672 * @param n block index
674 static inline int pred_non_zero_count(H264Context
*h
, int n
){
675 const int index8
= scan8
[n
];
676 const int left
= h
->non_zero_count_cache
[index8
- 1];
677 const int top
= h
->non_zero_count_cache
[index8
- 8];
680 if(i
<64) i
= (i
+1)>>1;
682 tprintf(h
->s
.avctx
, "pred_nnz L%X T%X n%d s%d P%X\n", left
, top
, n
, scan8
[n
], i
&31);
687 static inline int fetch_diagonal_mv(H264Context
*h
, const int16_t **C
, int i
, int list
, int part_width
){
688 const int topright_ref
= h
->ref_cache
[list
][ i
- 8 + part_width
];
689 MpegEncContext
*s
= &h
->s
;
691 /* there is no consistent mapping of mvs to neighboring locations that will
692 * make mbaff happy, so we can't move all this logic to fill_caches */
694 const uint32_t *mb_types
= s
->current_picture_ptr
->mb_type
;
696 *(uint32_t*)h
->mv_cache
[list
][scan8
[0]-2] = 0;
697 *C
= h
->mv_cache
[list
][scan8
[0]-2];
700 && (s
->mb_y
&1) && i
< scan8
[0]+8 && topright_ref
!= PART_NOT_AVAILABLE
){
701 int topright_xy
= s
->mb_x
+ (s
->mb_y
-1)*s
->mb_stride
+ (i
== scan8
[0]+3);
702 if(IS_INTERLACED(mb_types
[topright_xy
])){
703 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
704 const int x4 = X4, y4 = Y4;\
705 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
706 if(!USES_LIST(mb_type,list))\
707 return LIST_NOT_USED;\
708 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
709 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
710 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
711 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
713 SET_DIAG_MV(*2, >>1, s
->mb_x
*4+(i
&7)-4+part_width
, s
->mb_y
*4-1);
716 if(topright_ref
== PART_NOT_AVAILABLE
717 && ((s
->mb_y
&1) || i
>= scan8
[0]+8) && (i
&7)==4
718 && h
->ref_cache
[list
][scan8
[0]-1] != PART_NOT_AVAILABLE
){
720 && IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])){
721 SET_DIAG_MV(*2, >>1, s
->mb_x
*4-1, (s
->mb_y
|1)*4+(s
->mb_y
&1)*2+(i
>>4)-1);
724 && !IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])
726 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
727 SET_DIAG_MV(/2, <<1, s
->mb_x
*4-1, (s
->mb_y
&~1)*4 - 1 + ((i
-scan8
[0])>>3)*2);
733 if(topright_ref
!= PART_NOT_AVAILABLE
){
734 *C
= h
->mv_cache
[list
][ i
- 8 + part_width
];
737 tprintf(s
->avctx
, "topright MV not available\n");
739 *C
= h
->mv_cache
[list
][ i
- 8 - 1 ];
740 return h
->ref_cache
[list
][ i
- 8 - 1 ];
745 * gets the predicted MV.
746 * @param n the block index
747 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
748 * @param mx the x component of the predicted motion vector
749 * @param my the y component of the predicted motion vector
751 static inline void pred_motion(H264Context
* const h
, int n
, int part_width
, int list
, int ref
, int * const mx
, int * const my
){
752 const int index8
= scan8
[n
];
753 const int top_ref
= h
->ref_cache
[list
][ index8
- 8 ];
754 const int left_ref
= h
->ref_cache
[list
][ index8
- 1 ];
755 const int16_t * const A
= h
->mv_cache
[list
][ index8
- 1 ];
756 const int16_t * const B
= h
->mv_cache
[list
][ index8
- 8 ];
758 int diagonal_ref
, match_count
;
760 assert(part_width
==1 || part_width
==2 || part_width
==4);
770 diagonal_ref
= fetch_diagonal_mv(h
, &C
, index8
, list
, part_width
);
771 match_count
= (diagonal_ref
==ref
) + (top_ref
==ref
) + (left_ref
==ref
);
772 tprintf(h
->s
.avctx
, "pred_motion match_count=%d\n", match_count
);
773 if(match_count
> 1){ //most common
774 *mx
= mid_pred(A
[0], B
[0], C
[0]);
775 *my
= mid_pred(A
[1], B
[1], C
[1]);
776 }else if(match_count
==1){
780 }else if(top_ref
==ref
){
788 if(top_ref
== PART_NOT_AVAILABLE
&& diagonal_ref
== PART_NOT_AVAILABLE
&& left_ref
!= PART_NOT_AVAILABLE
){
792 *mx
= mid_pred(A
[0], B
[0], C
[0]);
793 *my
= mid_pred(A
[1], B
[1], C
[1]);
797 tprintf(h
->s
.avctx
, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], diagonal_ref
, C
[0], C
[1], left_ref
, A
[0], A
[1], ref
, *mx
, *my
, h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
801 * gets the directionally predicted 16x8 MV.
802 * @param n the block index
803 * @param mx the x component of the predicted motion vector
804 * @param my the y component of the predicted motion vector
806 static inline void pred_16x8_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
808 const int top_ref
= h
->ref_cache
[list
][ scan8
[0] - 8 ];
809 const int16_t * const B
= h
->mv_cache
[list
][ scan8
[0] - 8 ];
811 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
819 const int left_ref
= h
->ref_cache
[list
][ scan8
[8] - 1 ];
820 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[8] - 1 ];
822 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
832 pred_motion(h
, n
, 4, list
, ref
, mx
, my
);
836 * gets the directionally predicted 8x16 MV.
837 * @param n the block index
838 * @param mx the x component of the predicted motion vector
839 * @param my the y component of the predicted motion vector
841 static inline void pred_8x16_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
843 const int left_ref
= h
->ref_cache
[list
][ scan8
[0] - 1 ];
844 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[0] - 1 ];
846 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
857 diagonal_ref
= fetch_diagonal_mv(h
, &C
, scan8
[4], list
, 2);
859 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref
, C
[0], C
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
861 if(diagonal_ref
== ref
){
869 pred_motion(h
, n
, 2, list
, ref
, mx
, my
);
872 static inline void pred_pskip_motion(H264Context
* const h
, int * const mx
, int * const my
){
873 const int top_ref
= h
->ref_cache
[0][ scan8
[0] - 8 ];
874 const int left_ref
= h
->ref_cache
[0][ scan8
[0] - 1 ];
876 tprintf(h
->s
.avctx
, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref
, left_ref
, h
->s
.mb_x
, h
->s
.mb_y
);
878 if(top_ref
== PART_NOT_AVAILABLE
|| left_ref
== PART_NOT_AVAILABLE
879 || !( top_ref
| *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 8 ])
880 || !(left_ref
| *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 1 ])){
886 pred_motion(h
, 0, 4, 0, 0, mx
, my
);
891 static int get_scale_factor(H264Context
* const h
, int poc
, int poc1
, int i
){
892 int poc0
= h
->ref_list
[0][i
].poc
;
893 int td
= av_clip(poc1
- poc0
, -128, 127);
894 if(td
== 0 || h
->ref_list
[0][i
].long_ref
){
897 int tb
= av_clip(poc
- poc0
, -128, 127);
898 int tx
= (16384 + (FFABS(td
) >> 1)) / td
;
899 return av_clip((tb
*tx
+ 32) >> 6, -1024, 1023);
903 static inline void direct_dist_scale_factor(H264Context
* const h
){
904 MpegEncContext
* const s
= &h
->s
;
905 const int poc
= h
->s
.current_picture_ptr
->field_poc
[ s
->picture_structure
== PICT_BOTTOM_FIELD
];
906 const int poc1
= h
->ref_list
[1][0].poc
;
908 for(field
=0; field
<2; field
++){
909 const int poc
= h
->s
.current_picture_ptr
->field_poc
[field
];
910 const int poc1
= h
->ref_list
[1][0].field_poc
[field
];
911 for(i
=0; i
< 2*h
->ref_count
[0]; i
++)
912 h
->dist_scale_factor_field
[field
][i
^field
] = get_scale_factor(h
, poc
, poc1
, i
+16);
915 for(i
=0; i
<h
->ref_count
[0]; i
++){
916 h
->dist_scale_factor
[i
] = get_scale_factor(h
, poc
, poc1
, i
);
920 static void fill_colmap(H264Context
*h
, int map
[2][16+32], int list
, int field
, int colfield
, int mbafi
){
921 MpegEncContext
* const s
= &h
->s
;
922 Picture
* const ref1
= &h
->ref_list
[1][0];
923 int j
, old_ref
, rfield
;
924 int start
= mbafi ?
16 : 0;
925 int end
= mbafi ?
16+2*h
->ref_count
[list
] : h
->ref_count
[list
];
926 int interl
= mbafi
|| s
->picture_structure
!= PICT_FRAME
;
928 /* bogus; fills in for missing frames */
929 memset(map
[list
], 0, sizeof(map
[list
]));
931 for(rfield
=0; rfield
<2; rfield
++){
932 for(old_ref
=0; old_ref
<ref1
->ref_count
[colfield
][list
]; old_ref
++){
933 int poc
= ref1
->ref_poc
[colfield
][list
][old_ref
];
937 else if( interl
&& (poc
&3) == 3) //FIXME store all MBAFF references so this isnt needed
938 poc
= (poc
&~3) + rfield
+ 1;
940 for(j
=start
; j
<end
; j
++){
941 if(4*h
->ref_list
[list
][j
].frame_num
+ (h
->ref_list
[list
][j
].reference
&3) == poc
){
942 int cur_ref
= mbafi ?
(j
-16)^field
: j
;
943 map
[list
][2*old_ref
+ (rfield
^field
) + 16] = cur_ref
;
945 map
[list
][old_ref
] = cur_ref
;
953 static inline void direct_ref_list_init(H264Context
* const h
){
954 MpegEncContext
* const s
= &h
->s
;
955 Picture
* const ref1
= &h
->ref_list
[1][0];
956 Picture
* const cur
= s
->current_picture_ptr
;
958 int sidx
= (s
->picture_structure
&1)^1;
959 int ref1sidx
= (ref1
->reference
&1)^1;
961 for(list
=0; list
<2; list
++){
962 cur
->ref_count
[sidx
][list
] = h
->ref_count
[list
];
963 for(j
=0; j
<h
->ref_count
[list
]; j
++)
964 cur
->ref_poc
[sidx
][list
][j
] = 4*h
->ref_list
[list
][j
].frame_num
+ (h
->ref_list
[list
][j
].reference
&3);
967 if(s
->picture_structure
== PICT_FRAME
){
968 memcpy(cur
->ref_count
[1], cur
->ref_count
[0], sizeof(cur
->ref_count
[0]));
969 memcpy(cur
->ref_poc
[1], cur
->ref_poc
[0], sizeof(cur
->ref_poc
[0]));
972 cur
->mbaff
= FRAME_MBAFF
;
974 if(cur
->pict_type
!= FF_B_TYPE
|| h
->direct_spatial_mv_pred
)
977 for(list
=0; list
<2; list
++){
978 fill_colmap(h
, h
->map_col_to_list0
, list
, sidx
, ref1sidx
, 0);
979 for(field
=0; field
<2; field
++)
980 fill_colmap(h
, h
->map_col_to_list0_field
[field
], list
, field
, field
, 1);
984 static inline void pred_direct_motion(H264Context
* const h
, int *mb_type
){
985 MpegEncContext
* const s
= &h
->s
;
986 int b8_stride
= h
->b8_stride
;
987 int b4_stride
= h
->b_stride
;
988 int mb_xy
= h
->mb_xy
;
990 const int16_t (*l1mv0
)[2], (*l1mv1
)[2];
991 const int8_t *l1ref0
, *l1ref1
;
992 const int is_b8x8
= IS_8X8(*mb_type
);
993 unsigned int sub_mb_type
;
996 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
998 if(IS_INTERLACED(h
->ref_list
[1][0].mb_type
[mb_xy
])){ // AFL/AFR/FR/FL -> AFL/FL
999 if(!IS_INTERLACED(*mb_type
)){ // AFR/FR -> AFL/FL
1000 int cur_poc
= s
->current_picture_ptr
->poc
;
1001 int *col_poc
= h
->ref_list
[1]->field_poc
;
1002 int col_parity
= FFABS(col_poc
[0] - cur_poc
) >= FFABS(col_poc
[1] - cur_poc
);
1003 mb_xy
= s
->mb_x
+ ((s
->mb_y
&~1) + col_parity
)*s
->mb_stride
;
1005 }else if(!(s
->picture_structure
& h
->ref_list
[1][0].reference
) && !h
->ref_list
[1][0].mbaff
){// FL -> FL & differ parity
1006 int fieldoff
= 2*(h
->ref_list
[1][0].reference
)-3;
1007 mb_xy
+= s
->mb_stride
*fieldoff
;
1010 }else{ // AFL/AFR/FR/FL -> AFR/FR
1011 if(IS_INTERLACED(*mb_type
)){ // AFL /FL -> AFR/FR
1012 mb_xy
= s
->mb_x
+ (s
->mb_y
&~1)*s
->mb_stride
;
1013 mb_type_col
[0] = h
->ref_list
[1][0].mb_type
[mb_xy
];
1014 mb_type_col
[1] = h
->ref_list
[1][0].mb_type
[mb_xy
+ s
->mb_stride
];
1017 //FIXME IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag
1018 if( (mb_type_col
[0] & MB_TYPE_16x16_OR_INTRA
)
1019 && (mb_type_col
[1] & MB_TYPE_16x16_OR_INTRA
)
1021 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1022 *mb_type
|= MB_TYPE_16x8
|MB_TYPE_L0L1
|MB_TYPE_DIRECT2
; /* B_16x8 */
1024 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1025 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1027 }else{ // AFR/FR -> AFR/FR
1030 mb_type_col
[1] = h
->ref_list
[1][0].mb_type
[mb_xy
];
1031 if(IS_8X8(mb_type_col
[0]) && !h
->sps
.direct_8x8_inference_flag
){
1032 /* FIXME save sub mb types from previous frames (or derive from MVs)
1033 * so we know exactly what block size to use */
1034 sub_mb_type
= MB_TYPE_8x8
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_4x4 */
1035 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1036 }else if(!is_b8x8
&& (mb_type_col
[0] & MB_TYPE_16x16_OR_INTRA
)){
1037 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1038 *mb_type
|= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_16x16 */
1040 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1041 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1046 l1mv0
= &h
->ref_list
[1][0].motion_val
[0][h
->mb2b_xy
[mb_xy
]];
1047 l1mv1
= &h
->ref_list
[1][0].motion_val
[1][h
->mb2b_xy
[mb_xy
]];
1048 l1ref0
= &h
->ref_list
[1][0].ref_index
[0][h
->mb2b8_xy
[mb_xy
]];
1049 l1ref1
= &h
->ref_list
[1][0].ref_index
[1][h
->mb2b8_xy
[mb_xy
]];
1052 l1ref0
+= h
->b8_stride
;
1053 l1ref1
+= h
->b8_stride
;
1054 l1mv0
+= 2*b4_stride
;
1055 l1mv1
+= 2*b4_stride
;
1059 if(h
->direct_spatial_mv_pred
){
1064 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1066 /* ref = min(neighbors) */
1067 for(list
=0; list
<2; list
++){
1068 int refa
= h
->ref_cache
[list
][scan8
[0] - 1];
1069 int refb
= h
->ref_cache
[list
][scan8
[0] - 8];
1070 int refc
= h
->ref_cache
[list
][scan8
[0] - 8 + 4];
1071 if(refc
== PART_NOT_AVAILABLE
)
1072 refc
= h
->ref_cache
[list
][scan8
[0] - 8 - 1];
1073 ref
[list
] = FFMIN3((unsigned)refa
, (unsigned)refb
, (unsigned)refc
);
1078 if(ref
[0] < 0 && ref
[1] < 0){
1079 ref
[0] = ref
[1] = 0;
1080 mv
[0][0] = mv
[0][1] =
1081 mv
[1][0] = mv
[1][1] = 0;
1083 for(list
=0; list
<2; list
++){
1085 pred_motion(h
, 0, 4, list
, ref
[list
], &mv
[list
][0], &mv
[list
][1]);
1087 mv
[list
][0] = mv
[list
][1] = 0;
1093 *mb_type
&= ~MB_TYPE_L1
;
1094 sub_mb_type
&= ~MB_TYPE_L1
;
1095 }else if(ref
[0] < 0){
1097 *mb_type
&= ~MB_TYPE_L0
;
1098 sub_mb_type
&= ~MB_TYPE_L0
;
1101 if(IS_INTERLACED(*mb_type
) != IS_INTERLACED(mb_type_col
[0])){
1102 for(i8
=0; i8
<4; i8
++){
1105 int xy8
= x8
+y8
*b8_stride
;
1106 int xy4
= 3*x8
+y8
*b4_stride
;
1109 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1111 h
->sub_mb_type
[i8
] = sub_mb_type
;
1113 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[0], 1);
1114 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[1], 1);
1115 if(!IS_INTRA(mb_type_col
[y8
])
1116 && ( (l1ref0
[xy8
] == 0 && FFABS(l1mv0
[xy4
][0]) <= 1 && FFABS(l1mv0
[xy4
][1]) <= 1)
1117 || (l1ref0
[xy8
] < 0 && l1ref1
[xy8
] == 0 && FFABS(l1mv1
[xy4
][0]) <= 1 && FFABS(l1mv1
[xy4
][1]) <= 1))){
1119 a
= pack16to32(mv
[0][0],mv
[0][1]);
1121 b
= pack16to32(mv
[1][0],mv
[1][1]);
1123 a
= pack16to32(mv
[0][0],mv
[0][1]);
1124 b
= pack16to32(mv
[1][0],mv
[1][1]);
1126 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, a
, 4);
1127 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, b
, 4);
1129 }else if(IS_16X16(*mb_type
)){
1132 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, (uint8_t)ref
[0], 1);
1133 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, (uint8_t)ref
[1], 1);
1134 if(!IS_INTRA(mb_type_col
[0])
1135 && ( (l1ref0
[0] == 0 && FFABS(l1mv0
[0][0]) <= 1 && FFABS(l1mv0
[0][1]) <= 1)
1136 || (l1ref0
[0] < 0 && l1ref1
[0] == 0 && FFABS(l1mv1
[0][0]) <= 1 && FFABS(l1mv1
[0][1]) <= 1
1137 && (h
->x264_build
>33 || !h
->x264_build
)))){
1139 a
= pack16to32(mv
[0][0],mv
[0][1]);
1141 b
= pack16to32(mv
[1][0],mv
[1][1]);
1143 a
= pack16to32(mv
[0][0],mv
[0][1]);
1144 b
= pack16to32(mv
[1][0],mv
[1][1]);
1146 fill_rectangle(&h
->mv_cache
[0][scan8
[0]], 4, 4, 8, a
, 4);
1147 fill_rectangle(&h
->mv_cache
[1][scan8
[0]], 4, 4, 8, b
, 4);
1149 for(i8
=0; i8
<4; i8
++){
1150 const int x8
= i8
&1;
1151 const int y8
= i8
>>1;
1153 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1155 h
->sub_mb_type
[i8
] = sub_mb_type
;
1157 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[0][0],mv
[0][1]), 4);
1158 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[1][0],mv
[1][1]), 4);
1159 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[0], 1);
1160 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[1], 1);
1163 if(!IS_INTRA(mb_type_col
[0]) && ( l1ref0
[x8
+ y8
*b8_stride
] == 0
1164 || (l1ref0
[x8
+ y8
*b8_stride
] < 0 && l1ref1
[x8
+ y8
*b8_stride
] == 0
1165 && (h
->x264_build
>33 || !h
->x264_build
)))){
1166 const int16_t (*l1mv
)[2]= l1ref0
[x8
+ y8
*b8_stride
] == 0 ? l1mv0
: l1mv1
;
1167 if(IS_SUB_8X8(sub_mb_type
)){
1168 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*b4_stride
];
1169 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1171 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1173 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1176 for(i4
=0; i4
<4; i4
++){
1177 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*b4_stride
];
1178 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1180 *(uint32_t*)h
->mv_cache
[0][scan8
[i8
*4+i4
]] = 0;
1182 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] = 0;
1188 }else{ /* direct temporal mv pred */
1189 const int *map_col_to_list0
[2] = {h
->map_col_to_list0
[0], h
->map_col_to_list0
[1]};
1190 const int *dist_scale_factor
= h
->dist_scale_factor
;
1193 if(FRAME_MBAFF
&& IS_INTERLACED(*mb_type
)){
1194 map_col_to_list0
[0] = h
->map_col_to_list0_field
[s
->mb_y
&1][0];
1195 map_col_to_list0
[1] = h
->map_col_to_list0_field
[s
->mb_y
&1][1];
1196 dist_scale_factor
=h
->dist_scale_factor_field
[s
->mb_y
&1];
1198 if(h
->ref_list
[1][0].mbaff
&& IS_INTERLACED(mb_type_col
[0]))
1201 if(IS_INTERLACED(*mb_type
) != IS_INTERLACED(mb_type_col
[0])){
1202 /* FIXME assumes direct_8x8_inference == 1 */
1203 int y_shift
= 2*!IS_INTERLACED(*mb_type
);
1205 for(i8
=0; i8
<4; i8
++){
1206 const int x8
= i8
&1;
1207 const int y8
= i8
>>1;
1209 const int16_t (*l1mv
)[2]= l1mv0
;
1211 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1213 h
->sub_mb_type
[i8
] = sub_mb_type
;
1215 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1216 if(IS_INTRA(mb_type_col
[y8
])){
1217 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1218 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1219 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1223 ref0
= l1ref0
[x8
+ y8
*b8_stride
];
1225 ref0
= map_col_to_list0
[0][ref0
+ ref_offset
];
1227 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ y8
*b8_stride
] + ref_offset
];
1230 scale
= dist_scale_factor
[ref0
];
1231 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1234 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*b4_stride
];
1235 int my_col
= (mv_col
[1]<<y_shift
)/2;
1236 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1237 int my
= (scale
* my_col
+ 128) >> 8;
1238 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1239 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-my_col
), 4);
1245 /* one-to-one mv scaling */
1247 if(IS_16X16(*mb_type
)){
1250 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, 0, 1);
1251 if(IS_INTRA(mb_type_col
[0])){
1254 const int ref0
= l1ref0
[0] >= 0 ? map_col_to_list0
[0][l1ref0
[0] + ref_offset
]
1255 : map_col_to_list0
[1][l1ref1
[0] + ref_offset
];
1256 const int scale
= dist_scale_factor
[ref0
];
1257 const int16_t *mv_col
= l1ref0
[0] >= 0 ? l1mv0
[0] : l1mv1
[0];
1259 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1260 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1262 mv0
= pack16to32(mv_l0
[0],mv_l0
[1]);
1263 mv1
= pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1265 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, ref
, 1);
1266 fill_rectangle(&h
-> mv_cache
[0][scan8
[0]], 4, 4, 8, mv0
, 4);
1267 fill_rectangle(&h
-> mv_cache
[1][scan8
[0]], 4, 4, 8, mv1
, 4);
1269 for(i8
=0; i8
<4; i8
++){
1270 const int x8
= i8
&1;
1271 const int y8
= i8
>>1;
1273 const int16_t (*l1mv
)[2]= l1mv0
;
1275 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1277 h
->sub_mb_type
[i8
] = sub_mb_type
;
1278 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1279 if(IS_INTRA(mb_type_col
[0])){
1280 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1281 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1282 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1286 ref0
= l1ref0
[x8
+ y8
*b8_stride
] + ref_offset
;
1288 ref0
= map_col_to_list0
[0][ref0
];
1290 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ y8
*b8_stride
] + ref_offset
];
1293 scale
= dist_scale_factor
[ref0
];
1295 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1296 if(IS_SUB_8X8(sub_mb_type
)){
1297 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*b4_stride
];
1298 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1299 int my
= (scale
* mv_col
[1] + 128) >> 8;
1300 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1301 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-mv_col
[1]), 4);
1303 for(i4
=0; i4
<4; i4
++){
1304 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*b4_stride
];
1305 int16_t *mv_l0
= h
->mv_cache
[0][scan8
[i8
*4+i4
]];
1306 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1307 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1308 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] =
1309 pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1316 static inline void write_back_motion(H264Context
*h
, int mb_type
){
1317 MpegEncContext
* const s
= &h
->s
;
1318 const int b_xy
= 4*s
->mb_x
+ 4*s
->mb_y
*h
->b_stride
;
1319 const int b8_xy
= 2*s
->mb_x
+ 2*s
->mb_y
*h
->b8_stride
;
1322 if(!USES_LIST(mb_type
, 0))
1323 fill_rectangle(&s
->current_picture
.ref_index
[0][b8_xy
], 2, 2, h
->b8_stride
, (uint8_t)LIST_NOT_USED
, 1);
1325 for(list
=0; list
<h
->list_count
; list
++){
1327 if(!USES_LIST(mb_type
, list
))
1331 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+0 + 8*y
];
1332 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+2 + 8*y
];
1334 if( h
->pps
.cabac
) {
1335 if(IS_SKIP(mb_type
))
1336 fill_rectangle(h
->mvd_table
[list
][b_xy
], 4, 4, h
->b_stride
, 0, 4);
1339 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+0 + 8*y
];
1340 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+2 + 8*y
];
1345 int8_t *ref_index
= &s
->current_picture
.ref_index
[list
][b8_xy
];
1346 ref_index
[0+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[0]];
1347 ref_index
[1+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[4]];
1348 ref_index
[0+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[8]];
1349 ref_index
[1+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[12]];
1353 if(h
->slice_type_nos
== FF_B_TYPE
&& h
->pps
.cabac
){
1354 if(IS_8X8(mb_type
)){
1355 uint8_t *direct_table
= &h
->direct_table
[b8_xy
];
1356 direct_table
[1+0*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[1]) ?
1 : 0;
1357 direct_table
[0+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[2]) ?
1 : 0;
1358 direct_table
[1+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[3]) ?
1 : 0;
1363 const uint8_t *ff_h264_decode_nal(H264Context
*h
, const uint8_t *src
, int *dst_length
, int *consumed
, int length
){
1368 // src[0]&0x80; //forbidden bit
1369 h
->nal_ref_idc
= src
[0]>>5;
1370 h
->nal_unit_type
= src
[0]&0x1F;
1374 for(i
=0; i
<length
; i
++)
1375 printf("%2X ", src
[i
]);
1378 #if HAVE_FAST_UNALIGNED
1379 # if HAVE_FAST_64BIT
1381 for(i
=0; i
+1<length
; i
+=9){
1382 if(!((~*(const uint64_t*)(src
+i
) & (*(const uint64_t*)(src
+i
) - 0x0100010001000101ULL
)) & 0x8000800080008080ULL
))
1385 for(i
=0; i
+1<length
; i
+=5){
1386 if(!((~*(const uint32_t*)(src
+i
) & (*(const uint32_t*)(src
+i
) - 0x01000101U
)) & 0x80008080U
))
1389 if(i
>0 && !src
[i
]) i
--;
1393 for(i
=0; i
+1<length
; i
+=2){
1394 if(src
[i
]) continue;
1395 if(i
>0 && src
[i
-1]==0) i
--;
1397 if(i
+2<length
&& src
[i
+1]==0 && src
[i
+2]<=3){
1399 /* startcode, so we must be past the end */
1407 if(i
>=length
-1){ //no escaped 0
1408 *dst_length
= length
;
1409 *consumed
= length
+1; //+1 for the header
1413 bufidx
= h
->nal_unit_type
== NAL_DPC ?
1 : 0; // use second escape buffer for inter data
1414 h
->rbsp_buffer
[bufidx
]= av_fast_realloc(h
->rbsp_buffer
[bufidx
], &h
->rbsp_buffer_size
[bufidx
], length
+FF_INPUT_BUFFER_PADDING_SIZE
);
1415 dst
= h
->rbsp_buffer
[bufidx
];
1421 //printf("decoding esc\n");
1422 memcpy(dst
, src
, i
);
1425 //remove escapes (very rare 1:2^22)
1427 dst
[di
++]= src
[si
++];
1428 dst
[di
++]= src
[si
++];
1429 }else if(src
[si
]==0 && src
[si
+1]==0){
1430 if(src
[si
+2]==3){ //escape
1435 }else //next start code
1439 dst
[di
++]= src
[si
++];
1442 dst
[di
++]= src
[si
++];
1445 memset(dst
+di
, 0, FF_INPUT_BUFFER_PADDING_SIZE
);
1448 *consumed
= si
+ 1;//+1 for the header
1449 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1453 int ff_h264_decode_rbsp_trailing(H264Context
*h
, const uint8_t *src
){
1457 tprintf(h
->s
.avctx
, "rbsp trailing %X\n", v
);
1467 * IDCT transforms the 16 dc values and dequantizes them.
1468 * @param qp quantization parameter
1470 static void h264_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1473 int temp
[16]; //FIXME check if this is a good idea
1474 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1475 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1477 //memset(block, 64, 2*256);
1480 const int offset
= y_offset
[i
];
1481 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1482 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1483 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1484 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1493 const int offset
= x_offset
[i
];
1494 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1495 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1496 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1497 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1499 block
[stride
*0 +offset
]= ((((z0
+ z3
)*qmul
+ 128 ) >> 8)); //FIXME think about merging this into decode_residual
1500 block
[stride
*2 +offset
]= ((((z1
+ z2
)*qmul
+ 128 ) >> 8));
1501 block
[stride
*8 +offset
]= ((((z1
- z2
)*qmul
+ 128 ) >> 8));
1502 block
[stride
*10+offset
]= ((((z0
- z3
)*qmul
+ 128 ) >> 8));
1508 * DCT transforms the 16 dc values.
1509 * @param qp quantization parameter ??? FIXME
1511 static void h264_luma_dc_dct_c(DCTELEM
*block
/*, int qp*/){
1512 // const int qmul= dequant_coeff[qp][0];
1514 int temp
[16]; //FIXME check if this is a good idea
1515 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1516 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1519 const int offset
= y_offset
[i
];
1520 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1521 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1522 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1523 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1532 const int offset
= x_offset
[i
];
1533 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1534 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1535 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1536 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1538 block
[stride
*0 +offset
]= (z0
+ z3
)>>1;
1539 block
[stride
*2 +offset
]= (z1
+ z2
)>>1;
1540 block
[stride
*8 +offset
]= (z1
- z2
)>>1;
1541 block
[stride
*10+offset
]= (z0
- z3
)>>1;
1549 static void chroma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1550 const int stride
= 16*2;
1551 const int xStride
= 16;
1554 a
= block
[stride
*0 + xStride
*0];
1555 b
= block
[stride
*0 + xStride
*1];
1556 c
= block
[stride
*1 + xStride
*0];
1557 d
= block
[stride
*1 + xStride
*1];
1564 block
[stride
*0 + xStride
*0]= ((a
+c
)*qmul
) >> 7;
1565 block
[stride
*0 + xStride
*1]= ((e
+b
)*qmul
) >> 7;
1566 block
[stride
*1 + xStride
*0]= ((a
-c
)*qmul
) >> 7;
1567 block
[stride
*1 + xStride
*1]= ((e
-b
)*qmul
) >> 7;
1571 static void chroma_dc_dct_c(DCTELEM
*block
){
1572 const int stride
= 16*2;
1573 const int xStride
= 16;
1576 a
= block
[stride
*0 + xStride
*0];
1577 b
= block
[stride
*0 + xStride
*1];
1578 c
= block
[stride
*1 + xStride
*0];
1579 d
= block
[stride
*1 + xStride
*1];
1586 block
[stride
*0 + xStride
*0]= (a
+c
);
1587 block
[stride
*0 + xStride
*1]= (e
+b
);
1588 block
[stride
*1 + xStride
*0]= (a
-c
);
1589 block
[stride
*1 + xStride
*1]= (e
-b
);
1594 * gets the chroma qp.
1596 static inline int get_chroma_qp(H264Context
*h
, int t
, int qscale
){
1597 return h
->pps
.chroma_qp_table
[t
][qscale
];
1600 static inline void mc_dir_part(H264Context
*h
, Picture
*pic
, int n
, int square
, int chroma_height
, int delta
, int list
,
1601 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1602 int src_x_offset
, int src_y_offset
,
1603 qpel_mc_func
*qpix_op
, h264_chroma_mc_func chroma_op
){
1604 MpegEncContext
* const s
= &h
->s
;
1605 const int mx
= h
->mv_cache
[list
][ scan8
[n
] ][0] + src_x_offset
*8;
1606 int my
= h
->mv_cache
[list
][ scan8
[n
] ][1] + src_y_offset
*8;
1607 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
1608 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->mb_linesize
;
1609 uint8_t * src_cb
, * src_cr
;
1610 int extra_width
= h
->emu_edge_width
;
1611 int extra_height
= h
->emu_edge_height
;
1613 const int full_mx
= mx
>>2;
1614 const int full_my
= my
>>2;
1615 const int pic_width
= 16*s
->mb_width
;
1616 const int pic_height
= 16*s
->mb_height
>> MB_FIELD
;
1618 if(mx
&7) extra_width
-= 3;
1619 if(my
&7) extra_height
-= 3;
1621 if( full_mx
< 0-extra_width
1622 || full_my
< 0-extra_height
1623 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
1624 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
1625 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->mb_linesize
, h
->mb_linesize
, 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
1626 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->mb_linesize
;
1630 qpix_op
[luma_xy
](dest_y
, src_y
, h
->mb_linesize
); //FIXME try variable height perhaps?
1632 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->mb_linesize
);
1635 if(CONFIG_GRAY
&& s
->flags
&CODEC_FLAG_GRAY
) return;
1638 // chroma offset when predicting from a field of opposite parity
1639 my
+= 2 * ((s
->mb_y
& 1) - (pic
->reference
- 1));
1640 emu
|= (my
>>3) < 0 || (my
>>3) + 8 >= (pic_height
>>1);
1642 src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1643 src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1646 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1647 src_cb
= s
->edge_emu_buffer
;
1649 chroma_op(dest_cb
, src_cb
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1652 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1653 src_cr
= s
->edge_emu_buffer
;
1655 chroma_op(dest_cr
, src_cr
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1658 static inline void mc_part_std(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1659 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1660 int x_offset
, int y_offset
,
1661 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1662 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1663 int list0
, int list1
){
1664 MpegEncContext
* const s
= &h
->s
;
1665 qpel_mc_func
*qpix_op
= qpix_put
;
1666 h264_chroma_mc_func chroma_op
= chroma_put
;
1668 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1669 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1670 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1671 x_offset
+= 8*s
->mb_x
;
1672 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1675 Picture
*ref
= &h
->ref_list
[0][ h
->ref_cache
[0][ scan8
[n
] ] ];
1676 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 0,
1677 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1678 qpix_op
, chroma_op
);
1681 chroma_op
= chroma_avg
;
1685 Picture
*ref
= &h
->ref_list
[1][ h
->ref_cache
[1][ scan8
[n
] ] ];
1686 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 1,
1687 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1688 qpix_op
, chroma_op
);
1692 static inline void mc_part_weighted(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1693 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1694 int x_offset
, int y_offset
,
1695 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1696 h264_weight_func luma_weight_op
, h264_weight_func chroma_weight_op
,
1697 h264_biweight_func luma_weight_avg
, h264_biweight_func chroma_weight_avg
,
1698 int list0
, int list1
){
1699 MpegEncContext
* const s
= &h
->s
;
1701 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1702 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1703 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1704 x_offset
+= 8*s
->mb_x
;
1705 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1708 /* don't optimize for luma-only case, since B-frames usually
1709 * use implicit weights => chroma too. */
1710 uint8_t *tmp_cb
= s
->obmc_scratchpad
;
1711 uint8_t *tmp_cr
= s
->obmc_scratchpad
+ 8;
1712 uint8_t *tmp_y
= s
->obmc_scratchpad
+ 8*h
->mb_uvlinesize
;
1713 int refn0
= h
->ref_cache
[0][ scan8
[n
] ];
1714 int refn1
= h
->ref_cache
[1][ scan8
[n
] ];
1716 mc_dir_part(h
, &h
->ref_list
[0][refn0
], n
, square
, chroma_height
, delta
, 0,
1717 dest_y
, dest_cb
, dest_cr
,
1718 x_offset
, y_offset
, qpix_put
, chroma_put
);
1719 mc_dir_part(h
, &h
->ref_list
[1][refn1
], n
, square
, chroma_height
, delta
, 1,
1720 tmp_y
, tmp_cb
, tmp_cr
,
1721 x_offset
, y_offset
, qpix_put
, chroma_put
);
1723 if(h
->use_weight
== 2){
1724 int weight0
= h
->implicit_weight
[refn0
][refn1
];
1725 int weight1
= 64 - weight0
;
1726 luma_weight_avg( dest_y
, tmp_y
, h
-> mb_linesize
, 5, weight0
, weight1
, 0);
1727 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1728 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1730 luma_weight_avg(dest_y
, tmp_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1731 h
->luma_weight
[0][refn0
], h
->luma_weight
[1][refn1
],
1732 h
->luma_offset
[0][refn0
] + h
->luma_offset
[1][refn1
]);
1733 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1734 h
->chroma_weight
[0][refn0
][0], h
->chroma_weight
[1][refn1
][0],
1735 h
->chroma_offset
[0][refn0
][0] + h
->chroma_offset
[1][refn1
][0]);
1736 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1737 h
->chroma_weight
[0][refn0
][1], h
->chroma_weight
[1][refn1
][1],
1738 h
->chroma_offset
[0][refn0
][1] + h
->chroma_offset
[1][refn1
][1]);
1741 int list
= list1 ?
1 : 0;
1742 int refn
= h
->ref_cache
[list
][ scan8
[n
] ];
1743 Picture
*ref
= &h
->ref_list
[list
][refn
];
1744 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, list
,
1745 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1746 qpix_put
, chroma_put
);
1748 luma_weight_op(dest_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1749 h
->luma_weight
[list
][refn
], h
->luma_offset
[list
][refn
]);
1750 if(h
->use_weight_chroma
){
1751 chroma_weight_op(dest_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1752 h
->chroma_weight
[list
][refn
][0], h
->chroma_offset
[list
][refn
][0]);
1753 chroma_weight_op(dest_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1754 h
->chroma_weight
[list
][refn
][1], h
->chroma_offset
[list
][refn
][1]);
1759 static inline void mc_part(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1760 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1761 int x_offset
, int y_offset
,
1762 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1763 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1764 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
,
1765 int list0
, int list1
){
1766 if((h
->use_weight
==2 && list0
&& list1
1767 && (h
->implicit_weight
[ h
->ref_cache
[0][scan8
[n
]] ][ h
->ref_cache
[1][scan8
[n
]] ] != 32))
1768 || h
->use_weight
==1)
1769 mc_part_weighted(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1770 x_offset
, y_offset
, qpix_put
, chroma_put
,
1771 weight_op
[0], weight_op
[3], weight_avg
[0], weight_avg
[3], list0
, list1
);
1773 mc_part_std(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1774 x_offset
, y_offset
, qpix_put
, chroma_put
, qpix_avg
, chroma_avg
, list0
, list1
);
1777 static inline void prefetch_motion(H264Context
*h
, int list
){
1778 /* fetch pixels for estimated mv 4 macroblocks ahead
1779 * optimized for 64byte cache lines */
1780 MpegEncContext
* const s
= &h
->s
;
1781 const int refn
= h
->ref_cache
[list
][scan8
[0]];
1783 const int mx
= (h
->mv_cache
[list
][scan8
[0]][0]>>2) + 16*s
->mb_x
+ 8;
1784 const int my
= (h
->mv_cache
[list
][scan8
[0]][1]>>2) + 16*s
->mb_y
;
1785 uint8_t **src
= h
->ref_list
[list
][refn
].data
;
1786 int off
= mx
+ (my
+ (s
->mb_x
&3)*4)*h
->mb_linesize
+ 64;
1787 s
->dsp
.prefetch(src
[0]+off
, s
->linesize
, 4);
1788 off
= (mx
>>1) + ((my
>>1) + (s
->mb_x
&7))*s
->uvlinesize
+ 64;
1789 s
->dsp
.prefetch(src
[1]+off
, src
[2]-src
[1], 2);
1793 static void hl_motion(H264Context
*h
, uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1794 qpel_mc_func (*qpix_put
)[16], h264_chroma_mc_func (*chroma_put
),
1795 qpel_mc_func (*qpix_avg
)[16], h264_chroma_mc_func (*chroma_avg
),
1796 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
){
1797 MpegEncContext
* const s
= &h
->s
;
1798 const int mb_xy
= h
->mb_xy
;
1799 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
1801 assert(IS_INTER(mb_type
));
1803 prefetch_motion(h
, 0);
1805 if(IS_16X16(mb_type
)){
1806 mc_part(h
, 0, 1, 8, 0, dest_y
, dest_cb
, dest_cr
, 0, 0,
1807 qpix_put
[0], chroma_put
[0], qpix_avg
[0], chroma_avg
[0],
1808 &weight_op
[0], &weight_avg
[0],
1809 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1810 }else if(IS_16X8(mb_type
)){
1811 mc_part(h
, 0, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 0,
1812 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1813 &weight_op
[1], &weight_avg
[1],
1814 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1815 mc_part(h
, 8, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 4,
1816 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1817 &weight_op
[1], &weight_avg
[1],
1818 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1819 }else if(IS_8X16(mb_type
)){
1820 mc_part(h
, 0, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 0, 0,
1821 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1822 &weight_op
[2], &weight_avg
[2],
1823 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1824 mc_part(h
, 4, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 4, 0,
1825 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1826 &weight_op
[2], &weight_avg
[2],
1827 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1831 assert(IS_8X8(mb_type
));
1834 const int sub_mb_type
= h
->sub_mb_type
[i
];
1836 int x_offset
= (i
&1)<<2;
1837 int y_offset
= (i
&2)<<1;
1839 if(IS_SUB_8X8(sub_mb_type
)){
1840 mc_part(h
, n
, 1, 4, 0, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1841 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1842 &weight_op
[3], &weight_avg
[3],
1843 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1844 }else if(IS_SUB_8X4(sub_mb_type
)){
1845 mc_part(h
, n
, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1846 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1847 &weight_op
[4], &weight_avg
[4],
1848 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1849 mc_part(h
, n
+2, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
+2,
1850 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1851 &weight_op
[4], &weight_avg
[4],
1852 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1853 }else if(IS_SUB_4X8(sub_mb_type
)){
1854 mc_part(h
, n
, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1855 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1856 &weight_op
[5], &weight_avg
[5],
1857 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1858 mc_part(h
, n
+1, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
+2, y_offset
,
1859 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1860 &weight_op
[5], &weight_avg
[5],
1861 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1864 assert(IS_SUB_4X4(sub_mb_type
));
1866 int sub_x_offset
= x_offset
+ 2*(j
&1);
1867 int sub_y_offset
= y_offset
+ (j
&2);
1868 mc_part(h
, n
+j
, 1, 2, 0, dest_y
, dest_cb
, dest_cr
, sub_x_offset
, sub_y_offset
,
1869 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1870 &weight_op
[6], &weight_avg
[6],
1871 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1877 prefetch_motion(h
, 1);
1880 static av_cold
void init_cavlc_level_tab(void){
1881 int suffix_length
, mask
;
1884 for(suffix_length
=0; suffix_length
<7; suffix_length
++){
1885 for(i
=0; i
<(1<<LEVEL_TAB_BITS
); i
++){
1886 int prefix
= LEVEL_TAB_BITS
- av_log2(2*i
);
1887 int level_code
= (prefix
<<suffix_length
) + (i
>>(LEVEL_TAB_BITS
-prefix
-1-suffix_length
)) - (1<<suffix_length
);
1889 mask
= -(level_code
&1);
1890 level_code
= (((2+level_code
)>>1) ^ mask
) - mask
;
1891 if(prefix
+ 1 + suffix_length
<= LEVEL_TAB_BITS
){
1892 cavlc_level_tab
[suffix_length
][i
][0]= level_code
;
1893 cavlc_level_tab
[suffix_length
][i
][1]= prefix
+ 1 + suffix_length
;
1894 }else if(prefix
+ 1 <= LEVEL_TAB_BITS
){
1895 cavlc_level_tab
[suffix_length
][i
][0]= prefix
+100;
1896 cavlc_level_tab
[suffix_length
][i
][1]= prefix
+ 1;
1898 cavlc_level_tab
[suffix_length
][i
][0]= LEVEL_TAB_BITS
+100;
1899 cavlc_level_tab
[suffix_length
][i
][1]= LEVEL_TAB_BITS
;
1905 static av_cold
void decode_init_vlc(void){
1906 static int done
= 0;
1913 chroma_dc_coeff_token_vlc
.table
= chroma_dc_coeff_token_vlc_table
;
1914 chroma_dc_coeff_token_vlc
.table_allocated
= chroma_dc_coeff_token_vlc_table_size
;
1915 init_vlc(&chroma_dc_coeff_token_vlc
, CHROMA_DC_COEFF_TOKEN_VLC_BITS
, 4*5,
1916 &chroma_dc_coeff_token_len
[0], 1, 1,
1917 &chroma_dc_coeff_token_bits
[0], 1, 1,
1918 INIT_VLC_USE_NEW_STATIC
);
1922 coeff_token_vlc
[i
].table
= coeff_token_vlc_tables
+offset
;
1923 coeff_token_vlc
[i
].table_allocated
= coeff_token_vlc_tables_size
[i
];
1924 init_vlc(&coeff_token_vlc
[i
], COEFF_TOKEN_VLC_BITS
, 4*17,
1925 &coeff_token_len
[i
][0], 1, 1,
1926 &coeff_token_bits
[i
][0], 1, 1,
1927 INIT_VLC_USE_NEW_STATIC
);
1928 offset
+= coeff_token_vlc_tables_size
[i
];
1931 * This is a one time safety check to make sure that
1932 * the packed static coeff_token_vlc table sizes
1933 * were initialized correctly.
1935 assert(offset
== FF_ARRAY_ELEMS(coeff_token_vlc_tables
));
1938 chroma_dc_total_zeros_vlc
[i
].table
= chroma_dc_total_zeros_vlc_tables
[i
];
1939 chroma_dc_total_zeros_vlc
[i
].table_allocated
= chroma_dc_total_zeros_vlc_tables_size
;
1940 init_vlc(&chroma_dc_total_zeros_vlc
[i
],
1941 CHROMA_DC_TOTAL_ZEROS_VLC_BITS
, 4,
1942 &chroma_dc_total_zeros_len
[i
][0], 1, 1,
1943 &chroma_dc_total_zeros_bits
[i
][0], 1, 1,
1944 INIT_VLC_USE_NEW_STATIC
);
1946 for(i
=0; i
<15; i
++){
1947 total_zeros_vlc
[i
].table
= total_zeros_vlc_tables
[i
];
1948 total_zeros_vlc
[i
].table_allocated
= total_zeros_vlc_tables_size
;
1949 init_vlc(&total_zeros_vlc
[i
],
1950 TOTAL_ZEROS_VLC_BITS
, 16,
1951 &total_zeros_len
[i
][0], 1, 1,
1952 &total_zeros_bits
[i
][0], 1, 1,
1953 INIT_VLC_USE_NEW_STATIC
);
1957 run_vlc
[i
].table
= run_vlc_tables
[i
];
1958 run_vlc
[i
].table_allocated
= run_vlc_tables_size
;
1959 init_vlc(&run_vlc
[i
],
1961 &run_len
[i
][0], 1, 1,
1962 &run_bits
[i
][0], 1, 1,
1963 INIT_VLC_USE_NEW_STATIC
);
1965 run7_vlc
.table
= run7_vlc_table
,
1966 run7_vlc
.table_allocated
= run7_vlc_table_size
;
1967 init_vlc(&run7_vlc
, RUN7_VLC_BITS
, 16,
1968 &run_len
[6][0], 1, 1,
1969 &run_bits
[6][0], 1, 1,
1970 INIT_VLC_USE_NEW_STATIC
);
1972 init_cavlc_level_tab();
1976 static void free_tables(H264Context
*h
){
1979 av_freep(&h
->intra4x4_pred_mode
);
1980 av_freep(&h
->chroma_pred_mode_table
);
1981 av_freep(&h
->cbp_table
);
1982 av_freep(&h
->mvd_table
[0]);
1983 av_freep(&h
->mvd_table
[1]);
1984 av_freep(&h
->direct_table
);
1985 av_freep(&h
->non_zero_count
);
1986 av_freep(&h
->slice_table_base
);
1987 h
->slice_table
= NULL
;
1989 av_freep(&h
->mb2b_xy
);
1990 av_freep(&h
->mb2b8_xy
);
1992 for(i
= 0; i
< h
->s
.avctx
->thread_count
; i
++) {
1993 hx
= h
->thread_context
[i
];
1995 av_freep(&hx
->top_borders
[1]);
1996 av_freep(&hx
->top_borders
[0]);
1997 av_freep(&hx
->s
.obmc_scratchpad
);
2001 static void init_dequant8_coeff_table(H264Context
*h
){
2003 const int transpose
= (h
->s
.dsp
.h264_idct8_add
!= ff_h264_idct8_add_c
); //FIXME ugly
2004 h
->dequant8_coeff
[0] = h
->dequant8_buffer
[0];
2005 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[1];
2007 for(i
=0; i
<2; i
++ ){
2008 if(i
&& !memcmp(h
->pps
.scaling_matrix8
[0], h
->pps
.scaling_matrix8
[1], 64*sizeof(uint8_t))){
2009 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[0];
2013 for(q
=0; q
<52; q
++){
2014 int shift
= div6
[q
];
2017 h
->dequant8_coeff
[i
][q
][transpose ?
(x
>>3)|((x
&7)<<3) : x
] =
2018 ((uint32_t)dequant8_coeff_init
[idx
][ dequant8_coeff_init_scan
[((x
>>1)&12) | (x
&3)] ] *
2019 h
->pps
.scaling_matrix8
[i
][x
]) << shift
;
2024 static void init_dequant4_coeff_table(H264Context
*h
){
2026 const int transpose
= (h
->s
.dsp
.h264_idct_add
!= ff_h264_idct_add_c
); //FIXME ugly
2027 for(i
=0; i
<6; i
++ ){
2028 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[i
];
2030 if(!memcmp(h
->pps
.scaling_matrix4
[j
], h
->pps
.scaling_matrix4
[i
], 16*sizeof(uint8_t))){
2031 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[j
];
2038 for(q
=0; q
<52; q
++){
2039 int shift
= div6
[q
] + 2;
2042 h
->dequant4_coeff
[i
][q
][transpose ?
(x
>>2)|((x
<<2)&0xF) : x
] =
2043 ((uint32_t)dequant4_coeff_init
[idx
][(x
&1) + ((x
>>2)&1)] *
2044 h
->pps
.scaling_matrix4
[i
][x
]) << shift
;
2049 static void init_dequant_tables(H264Context
*h
){
2051 init_dequant4_coeff_table(h
);
2052 if(h
->pps
.transform_8x8_mode
)
2053 init_dequant8_coeff_table(h
);
2054 if(h
->sps
.transform_bypass
){
2057 h
->dequant4_coeff
[i
][0][x
] = 1<<6;
2058 if(h
->pps
.transform_8x8_mode
)
2061 h
->dequant8_coeff
[i
][0][x
] = 1<<6;
2068 * needs width/height
2070 static int alloc_tables(H264Context
*h
){
2071 MpegEncContext
* const s
= &h
->s
;
2072 const int big_mb_num
= s
->mb_stride
* (s
->mb_height
+1);
2075 CHECKED_ALLOCZ(h
->intra4x4_pred_mode
, big_mb_num
* 8 * sizeof(uint8_t))
2077 CHECKED_ALLOCZ(h
->non_zero_count
, big_mb_num
* 16 * sizeof(uint8_t))
2078 CHECKED_ALLOCZ(h
->slice_table_base
, (big_mb_num
+s
->mb_stride
) * sizeof(*h
->slice_table_base
))
2079 CHECKED_ALLOCZ(h
->cbp_table
, big_mb_num
* sizeof(uint16_t))
2081 CHECKED_ALLOCZ(h
->chroma_pred_mode_table
, big_mb_num
* sizeof(uint8_t))
2082 CHECKED_ALLOCZ(h
->mvd_table
[0], 32*big_mb_num
* sizeof(uint16_t));
2083 CHECKED_ALLOCZ(h
->mvd_table
[1], 32*big_mb_num
* sizeof(uint16_t));
2084 CHECKED_ALLOCZ(h
->direct_table
, 32*big_mb_num
* sizeof(uint8_t));
2086 memset(h
->slice_table_base
, -1, (big_mb_num
+s
->mb_stride
) * sizeof(*h
->slice_table_base
));
2087 h
->slice_table
= h
->slice_table_base
+ s
->mb_stride
*2 + 1;
2089 CHECKED_ALLOCZ(h
->mb2b_xy
, big_mb_num
* sizeof(uint32_t));
2090 CHECKED_ALLOCZ(h
->mb2b8_xy
, big_mb_num
* sizeof(uint32_t));
2091 for(y
=0; y
<s
->mb_height
; y
++){
2092 for(x
=0; x
<s
->mb_width
; x
++){
2093 const int mb_xy
= x
+ y
*s
->mb_stride
;
2094 const int b_xy
= 4*x
+ 4*y
*h
->b_stride
;
2095 const int b8_xy
= 2*x
+ 2*y
*h
->b8_stride
;
2097 h
->mb2b_xy
[mb_xy
]= b_xy
;
2098 h
->mb2b8_xy
[mb_xy
]= b8_xy
;
2102 s
->obmc_scratchpad
= NULL
;
2104 if(!h
->dequant4_coeff
[0])
2105 init_dequant_tables(h
);
2114 * Mimic alloc_tables(), but for every context thread.
2116 static void clone_tables(H264Context
*dst
, H264Context
*src
){
2117 dst
->intra4x4_pred_mode
= src
->intra4x4_pred_mode
;
2118 dst
->non_zero_count
= src
->non_zero_count
;
2119 dst
->slice_table
= src
->slice_table
;
2120 dst
->cbp_table
= src
->cbp_table
;
2121 dst
->mb2b_xy
= src
->mb2b_xy
;
2122 dst
->mb2b8_xy
= src
->mb2b8_xy
;
2123 dst
->chroma_pred_mode_table
= src
->chroma_pred_mode_table
;
2124 dst
->mvd_table
[0] = src
->mvd_table
[0];
2125 dst
->mvd_table
[1] = src
->mvd_table
[1];
2126 dst
->direct_table
= src
->direct_table
;
2128 dst
->s
.obmc_scratchpad
= NULL
;
2129 ff_h264_pred_init(&dst
->hpc
, src
->s
.codec_id
);
2134 * Allocate buffers which are not shared amongst multiple threads.
2136 static int context_init(H264Context
*h
){
2137 CHECKED_ALLOCZ(h
->top_borders
[0], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2138 CHECKED_ALLOCZ(h
->top_borders
[1], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2142 return -1; // free_tables will clean up for us
2145 static av_cold
void common_init(H264Context
*h
){
2146 MpegEncContext
* const s
= &h
->s
;
2148 s
->width
= s
->avctx
->width
;
2149 s
->height
= s
->avctx
->height
;
2150 s
->codec_id
= s
->avctx
->codec
->id
;
2152 ff_h264_pred_init(&h
->hpc
, s
->codec_id
);
2154 h
->dequant_coeff_pps
= -1;
2155 s
->unrestricted_mv
=1;
2156 s
->decode
=1; //FIXME
2158 dsputil_init(&s
->dsp
, s
->avctx
); // needed so that idct permutation is known early
2160 memset(h
->pps
.scaling_matrix4
, 16, 6*16*sizeof(uint8_t));
2161 memset(h
->pps
.scaling_matrix8
, 16, 2*64*sizeof(uint8_t));
2164 static av_cold
int decode_init(AVCodecContext
*avctx
){
2165 H264Context
*h
= avctx
->priv_data
;
2166 MpegEncContext
* const s
= &h
->s
;
2168 MPV_decode_defaults(s
);
2173 s
->out_format
= FMT_H264
;
2174 s
->workaround_bugs
= avctx
->workaround_bugs
;
2177 // s->decode_mb= ff_h263_decode_mb;
2178 s
->quarter_sample
= 1;
2181 if(s
->avctx
->codec
->capabilities
&CODEC_CAP_HWACCEL_VDPAU
)
2182 avctx
->pix_fmt
= PIX_FMT_VDPAU_H264
;
2184 avctx
->pix_fmt
= avctx
->get_format(avctx
, avctx
->codec
->pix_fmts
);
2185 avctx
->hwaccel
= ff_find_hwaccel(avctx
->codec
->id
, avctx
->pix_fmt
);
2189 if(avctx
->extradata_size
> 0 && avctx
->extradata
&&
2190 *(char *)avctx
->extradata
== 1){
2197 h
->thread_context
[0] = h
;
2198 h
->outputed_poc
= INT_MIN
;
2199 h
->prev_poc_msb
= 1<<16;
2200 h
->sei_recovery_frame_cnt
= -1;
2201 h
->sei_dpb_output_delay
= 0;
2202 h
->sei_cpb_removal_delay
= -1;
2203 h
->sei_buffering_period_present
= 0;
2204 avctx
->ticks_per_frame
= 2;
2208 static int frame_start(H264Context
*h
){
2209 MpegEncContext
* const s
= &h
->s
;
2212 if(MPV_frame_start(s
, s
->avctx
) < 0)
2214 ff_er_frame_start(s
);
2216 * MPV_frame_start uses pict_type to derive key_frame.
2217 * This is incorrect for H.264; IDR markings must be used.
2218 * Zero here; IDR markings per slice in frame or fields are ORed in later.
2219 * See decode_nal_units().
2221 s
->current_picture_ptr
->key_frame
= 0;
2223 assert(s
->linesize
&& s
->uvlinesize
);
2225 for(i
=0; i
<16; i
++){
2226 h
->block_offset
[i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2227 h
->block_offset
[24+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2230 h
->block_offset
[16+i
]=
2231 h
->block_offset
[20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2232 h
->block_offset
[24+16+i
]=
2233 h
->block_offset
[24+20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2236 /* can't be in alloc_tables because linesize isn't known there.
2237 * FIXME: redo bipred weight to not require extra buffer? */
2238 for(i
= 0; i
< s
->avctx
->thread_count
; i
++)
2239 if(!h
->thread_context
[i
]->s
.obmc_scratchpad
)
2240 h
->thread_context
[i
]->s
.obmc_scratchpad
= av_malloc(16*2*s
->linesize
+ 8*2*s
->uvlinesize
);
2242 /* some macroblocks will be accessed before they're available */
2243 if(FRAME_MBAFF
|| s
->avctx
->thread_count
> 1)
2244 memset(h
->slice_table
, -1, (s
->mb_height
*s
->mb_stride
-1) * sizeof(*h
->slice_table
));
2246 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2248 // We mark the current picture as non-reference after allocating it, so
2249 // that if we break out due to an error it can be released automatically
2250 // in the next MPV_frame_start().
2251 // SVQ3 as well as most other codecs have only last/next/current and thus
2252 // get released even with set reference, besides SVQ3 and others do not
2253 // mark frames as reference later "naturally".
2254 if(s
->codec_id
!= CODEC_ID_SVQ3
)
2255 s
->current_picture_ptr
->reference
= 0;
2257 s
->current_picture_ptr
->field_poc
[0]=
2258 s
->current_picture_ptr
->field_poc
[1]= INT_MAX
;
2259 assert(s
->current_picture_ptr
->long_ref
==0);
2264 static inline void backup_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int simple
){
2265 MpegEncContext
* const s
= &h
->s
;
2274 src_cb
-= uvlinesize
;
2275 src_cr
-= uvlinesize
;
2277 if(!simple
&& FRAME_MBAFF
){
2279 offset
= MB_MBAFF ?
1 : 17;
2280 uvoffset
= MB_MBAFF ?
1 : 9;
2282 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+ 0)= *(uint64_t*)(src_y
+ 15*linesize
);
2283 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+ 8)= *(uint64_t*)(src_y
+8+15*linesize
);
2284 if(simple
|| !CONFIG_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2285 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+7*uvlinesize
);
2286 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+7*uvlinesize
);
2291 h
->left_border
[0]= h
->top_borders
[0][s
->mb_x
][15];
2292 if(simple
|| !CONFIG_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2293 h
->left_border
[34 ]= h
->top_borders
[0][s
->mb_x
][16+7 ];
2294 h
->left_border
[34+18]= h
->top_borders
[0][s
->mb_x
][16+8+7];
2300 top_idx
= MB_MBAFF ?
0 : 1;
2302 step
= MB_MBAFF ?
2 : 1;
2305 // There are two lines saved, the line above the the top macroblock of a pair,
2306 // and the line above the bottom macroblock
2307 h
->left_border
[offset
]= h
->top_borders
[top_idx
][s
->mb_x
][15];
2308 for(i
=1; i
<17 - skiplast
; i
++){
2309 h
->left_border
[offset
+i
*step
]= src_y
[15+i
* linesize
];
2312 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+0)= *(uint64_t*)(src_y
+ 16*linesize
);
2313 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+8)= *(uint64_t*)(src_y
+8+16*linesize
);
2315 if(simple
|| !CONFIG_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2316 h
->left_border
[uvoffset
+34 ]= h
->top_borders
[top_idx
][s
->mb_x
][16+7];
2317 h
->left_border
[uvoffset
+34+18]= h
->top_borders
[top_idx
][s
->mb_x
][24+7];
2318 for(i
=1; i
<9 - skiplast
; i
++){
2319 h
->left_border
[uvoffset
+34 +i
*step
]= src_cb
[7+i
*uvlinesize
];
2320 h
->left_border
[uvoffset
+34+18+i
*step
]= src_cr
[7+i
*uvlinesize
];
2322 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+8*uvlinesize
);
2323 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+8*uvlinesize
);
2327 static inline void xchg_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int xchg
, int simple
){
2328 MpegEncContext
* const s
= &h
->s
;
2339 if(!simple
&& FRAME_MBAFF
){
2341 offset
= MB_MBAFF ?
1 : 17;
2342 uvoffset
= MB_MBAFF ?
1 : 9;
2346 top_idx
= MB_MBAFF ?
0 : 1;
2348 step
= MB_MBAFF ?
2 : 1;
2351 if(h
->deblocking_filter
== 2) {
2353 deblock_left
= h
->slice_table
[mb_xy
] == h
->slice_table
[mb_xy
- 1];
2354 deblock_top
= h
->slice_table
[mb_xy
] == h
->slice_table
[h
->top_mb_xy
];
2356 deblock_left
= (s
->mb_x
> 0);
2357 deblock_top
= (s
->mb_y
> !!MB_FIELD
);
2360 src_y
-= linesize
+ 1;
2361 src_cb
-= uvlinesize
+ 1;
2362 src_cr
-= uvlinesize
+ 1;
2364 #define XCHG(a,b,t,xchg)\
2371 for(i
= !deblock_top
; i
<16; i
++){
2372 XCHG(h
->left_border
[offset
+i
*step
], src_y
[i
* linesize
], temp8
, xchg
);
2374 XCHG(h
->left_border
[offset
+i
*step
], src_y
[i
* linesize
], temp8
, 1);
2378 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+0), *(uint64_t*)(src_y
+1), temp64
, xchg
);
2379 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+8), *(uint64_t*)(src_y
+9), temp64
, 1);
2380 if(s
->mb_x
+1 < s
->mb_width
){
2381 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
+1]), *(uint64_t*)(src_y
+17), temp64
, 1);
2385 if(simple
|| !CONFIG_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2387 for(i
= !deblock_top
; i
<8; i
++){
2388 XCHG(h
->left_border
[uvoffset
+34 +i
*step
], src_cb
[i
*uvlinesize
], temp8
, xchg
);
2389 XCHG(h
->left_border
[uvoffset
+34+18+i
*step
], src_cr
[i
*uvlinesize
], temp8
, xchg
);
2391 XCHG(h
->left_border
[uvoffset
+34 +i
*step
], src_cb
[i
*uvlinesize
], temp8
, 1);
2392 XCHG(h
->left_border
[uvoffset
+34+18+i
*step
], src_cr
[i
*uvlinesize
], temp8
, 1);
2395 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+16), *(uint64_t*)(src_cb
+1), temp64
, 1);
2396 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+24), *(uint64_t*)(src_cr
+1), temp64
, 1);
2401 static av_always_inline
void hl_decode_mb_internal(H264Context
*h
, int simple
){
2402 MpegEncContext
* const s
= &h
->s
;
2403 const int mb_x
= s
->mb_x
;
2404 const int mb_y
= s
->mb_y
;
2405 const int mb_xy
= h
->mb_xy
;
2406 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
2407 uint8_t *dest_y
, *dest_cb
, *dest_cr
;
2408 int linesize
, uvlinesize
/*dct_offset*/;
2410 int *block_offset
= &h
->block_offset
[0];
2411 const int transform_bypass
= !simple
&& (s
->qscale
== 0 && h
->sps
.transform_bypass
);
2412 /* is_h264 should always be true if SVQ3 is disabled. */
2413 const int is_h264
= !CONFIG_SVQ3_DECODER
|| simple
|| s
->codec_id
== CODEC_ID_H264
;
2414 void (*idct_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2415 void (*idct_dc_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2417 dest_y
= s
->current_picture
.data
[0] + (mb_x
+ mb_y
* s
->linesize
) * 16;
2418 dest_cb
= s
->current_picture
.data
[1] + (mb_x
+ mb_y
* s
->uvlinesize
) * 8;
2419 dest_cr
= s
->current_picture
.data
[2] + (mb_x
+ mb_y
* s
->uvlinesize
) * 8;
2421 s
->dsp
.prefetch(dest_y
+ (s
->mb_x
&3)*4*s
->linesize
+ 64, s
->linesize
, 4);
2422 s
->dsp
.prefetch(dest_cb
+ (s
->mb_x
&7)*s
->uvlinesize
+ 64, dest_cr
- dest_cb
, 2);
2424 if (!simple
&& MB_FIELD
) {
2425 linesize
= h
->mb_linesize
= s
->linesize
* 2;
2426 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
* 2;
2427 block_offset
= &h
->block_offset
[24];
2428 if(mb_y
&1){ //FIXME move out of this function?
2429 dest_y
-= s
->linesize
*15;
2430 dest_cb
-= s
->uvlinesize
*7;
2431 dest_cr
-= s
->uvlinesize
*7;
2435 for(list
=0; list
<h
->list_count
; list
++){
2436 if(!USES_LIST(mb_type
, list
))
2438 if(IS_16X16(mb_type
)){
2439 int8_t *ref
= &h
->ref_cache
[list
][scan8
[0]];
2440 fill_rectangle(ref
, 4, 4, 8, (16+*ref
)^(s
->mb_y
&1), 1);
2442 for(i
=0; i
<16; i
+=4){
2443 int ref
= h
->ref_cache
[list
][scan8
[i
]];
2445 fill_rectangle(&h
->ref_cache
[list
][scan8
[i
]], 2, 2, 8, (16+ref
)^(s
->mb_y
&1), 1);
2451 linesize
= h
->mb_linesize
= s
->linesize
;
2452 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
;
2453 // dct_offset = s->linesize * 16;
2456 if (!simple
&& IS_INTRA_PCM(mb_type
)) {
2457 for (i
=0; i
<16; i
++) {
2458 memcpy(dest_y
+ i
* linesize
, h
->mb
+ i
*8, 16);
2460 for (i
=0; i
<8; i
++) {
2461 memcpy(dest_cb
+ i
*uvlinesize
, h
->mb
+ 128 + i
*4, 8);
2462 memcpy(dest_cr
+ i
*uvlinesize
, h
->mb
+ 160 + i
*4, 8);
2465 if(IS_INTRA(mb_type
)){
2466 if(h
->deblocking_filter
)
2467 xchg_mb_border(h
, dest_y
, dest_cb
, dest_cr
, linesize
, uvlinesize
, 1, simple
);
2469 if(simple
|| !CONFIG_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2470 h
->hpc
.pred8x8
[ h
->chroma_pred_mode
](dest_cb
, uvlinesize
);
2471 h
->hpc
.pred8x8
[ h
->chroma_pred_mode
](dest_cr
, uvlinesize
);
2474 if(IS_INTRA4x4(mb_type
)){
2475 if(simple
|| !s
->encoding
){
2476 if(IS_8x8DCT(mb_type
)){
2477 if(transform_bypass
){
2479 idct_add
= s
->dsp
.add_pixels8
;
2481 idct_dc_add
= s
->dsp
.h264_idct8_dc_add
;
2482 idct_add
= s
->dsp
.h264_idct8_add
;
2484 for(i
=0; i
<16; i
+=4){
2485 uint8_t * const ptr
= dest_y
+ block_offset
[i
];
2486 const int dir
= h
->intra4x4_pred_mode_cache
[ scan8
[i
] ];
2487 if(transform_bypass
&& h
->sps
.profile_idc
==244 && dir
<=1){
2488 h
->hpc
.pred8x8l_add
[dir
](ptr
, h
->mb
+ i
*16, linesize
);
2490 const int nnz
= h
->non_zero_count_cache
[ scan8
[i
] ];
2491 h
->hpc
.pred8x8l
[ dir
](ptr
, (h
->topleft_samples_available
<<i
)&0x8000,
2492 (h
->topright_samples_available
<<i
)&0x4000, linesize
);
2494 if(nnz
== 1 && h
->mb
[i
*16])
2495 idct_dc_add(ptr
, h
->mb
+ i
*16, linesize
);
2497 idct_add (ptr
, h
->mb
+ i
*16, linesize
);
2502 if(transform_bypass
){
2504 idct_add
= s
->dsp
.add_pixels4
;
2506 idct_dc_add
= s
->dsp
.h264_idct_dc_add
;
2507 idct_add
= s
->dsp
.h264_idct_add
;
2509 for(i
=0; i
<16; i
++){
2510 uint8_t * const ptr
= dest_y
+ block_offset
[i
];
2511 const int dir
= h
->intra4x4_pred_mode_cache
[ scan8
[i
] ];
2513 if(transform_bypass
&& h
->sps
.profile_idc
==244 && dir
<=1){
2514 h
->hpc
.pred4x4_add
[dir
](ptr
, h
->mb
+ i
*16, linesize
);
2518 if(dir
== DIAG_DOWN_LEFT_PRED
|| dir
== VERT_LEFT_PRED
){
2519 const int topright_avail
= (h
->topright_samples_available
<<i
)&0x8000;
2520 assert(mb_y
|| linesize
<= block_offset
[i
]);
2521 if(!topright_avail
){
2522 tr
= ptr
[3 - linesize
]*0x01010101;
2523 topright
= (uint8_t*) &tr
;
2525 topright
= ptr
+ 4 - linesize
;
2529 h
->hpc
.pred4x4
[ dir
](ptr
, topright
, linesize
);
2530 nnz
= h
->non_zero_count_cache
[ scan8
[i
] ];
2533 if(nnz
== 1 && h
->mb
[i
*16])
2534 idct_dc_add(ptr
, h
->mb
+ i
*16, linesize
);
2536 idct_add (ptr
, h
->mb
+ i
*16, linesize
);
2538 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
, s
->qscale
, 0);