40ba4eb955b954159743c5e84d466b20c643be77
[libav.git] / libavcodec / h264.c
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file libavcodec/h264.c
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28 #include "internal.h"
29 #include "dsputil.h"
30 #include "avcodec.h"
31 #include "mpegvideo.h"
32 #include "h264.h"
33 #include "h264data.h"
34 #include "h264_parser.h"
35 #include "golomb.h"
36 #include "mathops.h"
37 #include "rectangle.h"
38 #include "vdpau_internal.h"
39
40 #include "cabac.h"
41 #if ARCH_X86
42 #include "x86/h264_i386.h"
43 #endif
44
45 //#undef NDEBUG
46 #include <assert.h>
47
48 /**
49 * Value of Picture.reference when Picture is not a reference picture, but
50 * is held for delayed output.
51 */
52 #define DELAYED_PIC_REF 4
53
54 static VLC coeff_token_vlc[4];
55 static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
56 static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
57
58 static VLC chroma_dc_coeff_token_vlc;
59 static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
60 static const int chroma_dc_coeff_token_vlc_table_size = 256;
61
62 static VLC total_zeros_vlc[15];
63 static VLC_TYPE total_zeros_vlc_tables[15][512][2];
64 static const int total_zeros_vlc_tables_size = 512;
65
66 static VLC chroma_dc_total_zeros_vlc[3];
67 static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
68 static const int chroma_dc_total_zeros_vlc_tables_size = 8;
69
70 static VLC run_vlc[6];
71 static VLC_TYPE run_vlc_tables[6][8][2];
72 static const int run_vlc_tables_size = 8;
73
74 static VLC run7_vlc;
75 static VLC_TYPE run7_vlc_table[96][2];
76 static const int run7_vlc_table_size = 96;
77
78 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
79 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
80 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
81 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
82 static Picture * remove_long(H264Context *h, int i, int ref_mask);
83
84 static av_always_inline uint32_t pack16to32(int a, int b){
85 #ifdef WORDS_BIGENDIAN
86 return (b&0xFFFF) + (a<<16);
87 #else
88 return (a&0xFFFF) + (b<<16);
89 #endif
90 }
91
92 static const uint8_t rem6[52]={
93 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
94 };
95
96 static const uint8_t div6[52]={
97 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
98 };
99
100 static const uint8_t left_block_options[4][8]={
101 {0,1,2,3,7,10,8,11},
102 {2,2,3,3,8,11,8,11},
103 {0,0,1,1,7,10,7,10},
104 {0,2,0,2,7,10,7,10}
105 };
106
107 #define LEVEL_TAB_BITS 8
108 static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
109
110 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
111 MpegEncContext * const s = &h->s;
112 const int mb_xy= h->mb_xy;
113 int topleft_xy, top_xy, topright_xy, left_xy[2];
114 int topleft_type, top_type, topright_type, left_type[2];
115 const uint8_t * left_block;
116 int topleft_partition= -1;
117 int i;
118
119 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
120
121 //FIXME deblocking could skip the intra and nnz parts.
122 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
123 return;
124
125 /* Wow, what a mess, why didn't they simplify the interlacing & intra
126 * stuff, I can't imagine that these complex rules are worth it. */
127
128 topleft_xy = top_xy - 1;
129 topright_xy= top_xy + 1;
130 left_xy[1] = left_xy[0] = mb_xy-1;
131 left_block = left_block_options[0];
132 if(FRAME_MBAFF){
133 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
134 const int top_pair_xy = pair_xy - s->mb_stride;
135 const int topleft_pair_xy = top_pair_xy - 1;
136 const int topright_pair_xy = top_pair_xy + 1;
137 const int topleft_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
138 const int top_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
139 const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
140 const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
141 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
142 const int bottom = (s->mb_y & 1);
143 tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
144
145 if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
146 top_xy -= s->mb_stride;
147 }
148 if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
149 topleft_xy -= s->mb_stride;
150 } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
151 topleft_xy += s->mb_stride;
152 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
153 topleft_partition = 0;
154 }
155 if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
156 topright_xy -= s->mb_stride;
157 }
158 if (left_mb_field_flag != curr_mb_field_flag) {
159 left_xy[1] = left_xy[0] = pair_xy - 1;
160 if (curr_mb_field_flag) {
161 left_xy[1] += s->mb_stride;
162 left_block = left_block_options[3];
163 } else {
164 left_block= left_block_options[2 - bottom];
165 }
166 }
167 }
168
169 h->top_mb_xy = top_xy;
170 h->left_mb_xy[0] = left_xy[0];
171 h->left_mb_xy[1] = left_xy[1];
172 if(for_deblock){
173 topleft_type = 0;
174 topright_type = 0;
175 top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
176 left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
177 left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
178
179 if(MB_MBAFF && !IS_INTRA(mb_type)){
180 int list;
181 for(list=0; list<h->list_count; list++){
182 //These values where changed for ease of performing MC, we need to change them back
183 //FIXME maybe we can make MC and loop filter use the same values or prevent
184 //the MC code from changing ref_cache and rather use a temporary array.
185 if(USES_LIST(mb_type,list)){
186 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
187 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
188 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
189 ref += h->b8_stride;
190 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
191 *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
192 }
193 }
194 }
195 }else{
196 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
197 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
198 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
199 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
200 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
201
202 if(IS_INTRA(mb_type)){
203 int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
204 h->topleft_samples_available=
205 h->top_samples_available=
206 h->left_samples_available= 0xFFFF;
207 h->topright_samples_available= 0xEEEA;
208
209 if(!(top_type & type_mask)){
210 h->topleft_samples_available= 0xB3FF;
211 h->top_samples_available= 0x33FF;
212 h->topright_samples_available= 0x26EA;
213 }
214 if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
215 if(IS_INTERLACED(mb_type)){
216 if(!(left_type[0] & type_mask)){
217 h->topleft_samples_available&= 0xDFFF;
218 h->left_samples_available&= 0x5FFF;
219 }
220 if(!(left_type[1] & type_mask)){
221 h->topleft_samples_available&= 0xFF5F;
222 h->left_samples_available&= 0xFF5F;
223 }
224 }else{
225 int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
226 ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
227 assert(left_xy[0] == left_xy[1]);
228 if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
229 h->topleft_samples_available&= 0xDF5F;
230 h->left_samples_available&= 0x5F5F;
231 }
232 }
233 }else{
234 if(!(left_type[0] & type_mask)){
235 h->topleft_samples_available&= 0xDF5F;
236 h->left_samples_available&= 0x5F5F;
237 }
238 }
239
240 if(!(topleft_type & type_mask))
241 h->topleft_samples_available&= 0x7FFF;
242
243 if(!(topright_type & type_mask))
244 h->topright_samples_available&= 0xFBFF;
245
246 if(IS_INTRA4x4(mb_type)){
247 if(IS_INTRA4x4(top_type)){
248 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
249 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
250 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
251 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
252 }else{
253 int pred;
254 if(!(top_type & type_mask))
255 pred= -1;
256 else{
257 pred= 2;
258 }
259 h->intra4x4_pred_mode_cache[4+8*0]=
260 h->intra4x4_pred_mode_cache[5+8*0]=
261 h->intra4x4_pred_mode_cache[6+8*0]=
262 h->intra4x4_pred_mode_cache[7+8*0]= pred;
263 }
264 for(i=0; i<2; i++){
265 if(IS_INTRA4x4(left_type[i])){
266 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
267 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
268 }else{
269 int pred;
270 if(!(left_type[i] & type_mask))
271 pred= -1;
272 else{
273 pred= 2;
274 }
275 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
276 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
277 }
278 }
279 }
280 }
281 }
282
283
284 /*
285 0 . T T. T T T T
286 1 L . .L . . . .
287 2 L . .L . . . .
288 3 . T TL . . . .
289 4 L . .L . . . .
290 5 L . .. . . . .
291 */
292 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
293 if(top_type){
294 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
295 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
296 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
297 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
298
299 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
300 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
301
302 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
303 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
304
305 }else{
306 h->non_zero_count_cache[4+8*0]=
307 h->non_zero_count_cache[5+8*0]=
308 h->non_zero_count_cache[6+8*0]=
309 h->non_zero_count_cache[7+8*0]=
310
311 h->non_zero_count_cache[1+8*0]=
312 h->non_zero_count_cache[2+8*0]=
313
314 h->non_zero_count_cache[1+8*3]=
315 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
316
317 }
318
319 for (i=0; i<2; i++) {
320 if(left_type[i]){
321 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
322 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
323 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
324 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
325 }else{
326 h->non_zero_count_cache[3+8*1 + 2*8*i]=
327 h->non_zero_count_cache[3+8*2 + 2*8*i]=
328 h->non_zero_count_cache[0+8*1 + 8*i]=
329 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
330 }
331 }
332
333 if( h->pps.cabac ) {
334 // top_cbp
335 if(top_type) {
336 h->top_cbp = h->cbp_table[top_xy];
337 } else if(IS_INTRA(mb_type)) {
338 h->top_cbp = 0x1C0;
339 } else {
340 h->top_cbp = 0;
341 }
342 // left_cbp
343 if (left_type[0]) {
344 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
345 } else if(IS_INTRA(mb_type)) {
346 h->left_cbp = 0x1C0;
347 } else {
348 h->left_cbp = 0;
349 }
350 if (left_type[0]) {
351 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
352 }
353 if (left_type[1]) {
354 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
355 }
356 }
357
358 #if 1
359 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
360 int list;
361 for(list=0; list<h->list_count; list++){
362 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
363 /*if(!h->mv_cache_clean[list]){
364 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
365 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
366 h->mv_cache_clean[list]= 1;
367 }*/
368 continue;
369 }
370 h->mv_cache_clean[list]= 0;
371
372 if(USES_LIST(top_type, list)){
373 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
374 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
375 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
376 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
377 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
378 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
379 h->ref_cache[list][scan8[0] + 0 - 1*8]=
380 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
381 h->ref_cache[list][scan8[0] + 2 - 1*8]=
382 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
383 }else{
384 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
385 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
386 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
387 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
388 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
389 }
390
391 for(i=0; i<2; i++){
392 int cache_idx = scan8[0] - 1 + i*2*8;
393 if(USES_LIST(left_type[i], list)){
394 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
395 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
396 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
397 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
398 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
399 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
400 }else{
401 *(uint32_t*)h->mv_cache [list][cache_idx ]=
402 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
403 h->ref_cache[list][cache_idx ]=
404 h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
405 }
406 }
407
408 if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
409 continue;
410
411 if(USES_LIST(topleft_type, list)){
412 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
413 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
414 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
415 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
416 }else{
417 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
418 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
419 }
420
421 if(USES_LIST(topright_type, list)){
422 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
423 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
424 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
425 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
426 }else{
427 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
428 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
429 }
430
431 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
432 continue;
433
434 h->ref_cache[list][scan8[5 ]+1] =
435 h->ref_cache[list][scan8[7 ]+1] =
436 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
437 h->ref_cache[list][scan8[4 ]] =
438 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
439 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
440 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
441 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
442 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
443 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
444
445 if( h->pps.cabac ) {
446 /* XXX beurk, Load mvd */
447 if(USES_LIST(top_type, list)){
448 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
449 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
450 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
451 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
452 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
453 }else{
454 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
455 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
456 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
457 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
458 }
459 if(USES_LIST(left_type[0], list)){
460 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
461 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
462 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
463 }else{
464 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
465 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
466 }
467 if(USES_LIST(left_type[1], list)){
468 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
469 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
470 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
471 }else{
472 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
473 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
474 }
475 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
476 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
477 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
478 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
479 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
480
481 if(h->slice_type_nos == FF_B_TYPE){
482 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
483
484 if(IS_DIRECT(top_type)){
485 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
486 }else if(IS_8X8(top_type)){
487 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
488 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
489 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
490 }else{
491 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
492 }
493
494 if(IS_DIRECT(left_type[0]))
495 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
496 else if(IS_8X8(left_type[0]))
497 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
498 else
499 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
500
501 if(IS_DIRECT(left_type[1]))
502 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
503 else if(IS_8X8(left_type[1]))
504 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
505 else
506 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
507 }
508 }
509
510 if(FRAME_MBAFF){
511 #define MAP_MVS\
512 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
513 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
514 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
515 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
516 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
517 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
518 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
519 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
520 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
521 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
522 if(MB_FIELD){
523 #define MAP_F2F(idx, mb_type)\
524 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
525 h->ref_cache[list][idx] <<= 1;\
526 h->mv_cache[list][idx][1] /= 2;\
527 h->mvd_cache[list][idx][1] /= 2;\
528 }
529 MAP_MVS
530 #undef MAP_F2F
531 }else{
532 #define MAP_F2F(idx, mb_type)\
533 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
534 h->ref_cache[list][idx] >>= 1;\
535 h->mv_cache[list][idx][1] <<= 1;\
536 h->mvd_cache[list][idx][1] <<= 1;\
537 }
538 MAP_MVS
539 #undef MAP_F2F
540 }
541 }
542 }
543 }
544 #endif
545
546 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
547 }
548
549 static inline void write_back_intra_pred_mode(H264Context *h){
550 const int mb_xy= h->mb_xy;
551
552 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
553 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
554 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
555 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
556 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
557 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
558 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
559 }
560
561 /**
562 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
563 */
564 static inline int check_intra4x4_pred_mode(H264Context *h){
565 MpegEncContext * const s = &h->s;
566 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
567 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
568 int i;
569
570 if(!(h->top_samples_available&0x8000)){
571 for(i=0; i<4; i++){
572 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
573 if(status<0){
574 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
575 return -1;
576 } else if(status){
577 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
578 }
579 }
580 }
581
582 if((h->left_samples_available&0x8888)!=0x8888){
583 static const int mask[4]={0x8000,0x2000,0x80,0x20};
584 for(i=0; i<4; i++){
585 if(!(h->left_samples_available&mask[i])){
586 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
587 if(status<0){
588 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
589 return -1;
590 } else if(status){
591 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
592 }
593 }
594 }
595 }
596
597 return 0;
598 } //FIXME cleanup like next
599
600 /**
601 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
602 */
603 static inline int check_intra_pred_mode(H264Context *h, int mode){
604 MpegEncContext * const s = &h->s;
605 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
606 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
607
608 if(mode > 6U) {
609 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
610 return -1;
611 }
612
613 if(!(h->top_samples_available&0x8000)){
614 mode= top[ mode ];
615 if(mode<0){
616 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
617 return -1;
618 }
619 }
620
621 if((h->left_samples_available&0x8080) != 0x8080){
622 mode= left[ mode ];
623 if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
624 mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
625 }
626 if(mode<0){
627 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
628 return -1;
629 }
630 }
631
632 return mode;
633 }
634
635 /**
636 * gets the predicted intra4x4 prediction mode.
637 */
638 static inline int pred_intra_mode(H264Context *h, int n){
639 const int index8= scan8[n];
640 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
641 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
642 const int min= FFMIN(left, top);
643
644 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
645
646 if(min<0) return DC_PRED;
647 else return min;
648 }
649
650 static inline void write_back_non_zero_count(H264Context *h){
651 const int mb_xy= h->mb_xy;
652
653 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
654 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
655 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
656 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
657 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
658 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
659 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
660
661 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
662 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
663 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
664
665 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
666 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
667 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
668 }
669
670 /**
671 * gets the predicted number of non-zero coefficients.
672 * @param n block index
673 */
674 static inline int pred_non_zero_count(H264Context *h, int n){
675 const int index8= scan8[n];
676 const int left= h->non_zero_count_cache[index8 - 1];
677 const int top = h->non_zero_count_cache[index8 - 8];
678 int i= left + top;
679
680 if(i<64) i= (i+1)>>1;
681
682 tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
683
684 return i&31;
685 }
686
687 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
688 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
689 MpegEncContext *s = &h->s;
690
691 /* there is no consistent mapping of mvs to neighboring locations that will
692 * make mbaff happy, so we can't move all this logic to fill_caches */
693 if(FRAME_MBAFF){
694 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
695 const int16_t *mv;
696 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
697 *C = h->mv_cache[list][scan8[0]-2];
698
699 if(!MB_FIELD
700 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
701 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
702 if(IS_INTERLACED(mb_types[topright_xy])){
703 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
704 const int x4 = X4, y4 = Y4;\
705 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
706 if(!USES_LIST(mb_type,list))\
707 return LIST_NOT_USED;\
708 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
709 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
710 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
711 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
712
713 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
714 }
715 }
716 if(topright_ref == PART_NOT_AVAILABLE
717 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
718 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
719 if(!MB_FIELD
720 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
721 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
722 }
723 if(MB_FIELD
724 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
725 && i >= scan8[0]+8){
726 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
727 SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
728 }
729 }
730 #undef SET_DIAG_MV
731 }
732
733 if(topright_ref != PART_NOT_AVAILABLE){
734 *C= h->mv_cache[list][ i - 8 + part_width ];
735 return topright_ref;
736 }else{
737 tprintf(s->avctx, "topright MV not available\n");
738
739 *C= h->mv_cache[list][ i - 8 - 1 ];
740 return h->ref_cache[list][ i - 8 - 1 ];
741 }
742 }
743
744 /**
745 * gets the predicted MV.
746 * @param n the block index
747 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
748 * @param mx the x component of the predicted motion vector
749 * @param my the y component of the predicted motion vector
750 */
751 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
752 const int index8= scan8[n];
753 const int top_ref= h->ref_cache[list][ index8 - 8 ];
754 const int left_ref= h->ref_cache[list][ index8 - 1 ];
755 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
756 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
757 const int16_t * C;
758 int diagonal_ref, match_count;
759
760 assert(part_width==1 || part_width==2 || part_width==4);
761
762 /* mv_cache
763 B . . A T T T T
764 U . . L . . , .
765 U . . L . . . .
766 U . . L . . , .
767 . . . L . . . .
768 */
769
770 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
771 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
772 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
773 if(match_count > 1){ //most common
774 *mx= mid_pred(A[0], B[0], C[0]);
775 *my= mid_pred(A[1], B[1], C[1]);
776 }else if(match_count==1){
777 if(left_ref==ref){
778 *mx= A[0];
779 *my= A[1];
780 }else if(top_ref==ref){
781 *mx= B[0];
782 *my= B[1];
783 }else{
784 *mx= C[0];
785 *my= C[1];
786 }
787 }else{
788 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
789 *mx= A[0];
790 *my= A[1];
791 }else{
792 *mx= mid_pred(A[0], B[0], C[0]);
793 *my= mid_pred(A[1], B[1], C[1]);
794 }
795 }
796
797 tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
798 }
799
800 /**
801 * gets the directionally predicted 16x8 MV.
802 * @param n the block index
803 * @param mx the x component of the predicted motion vector
804 * @param my the y component of the predicted motion vector
805 */
806 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
807 if(n==0){
808 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
809 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
810
811 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
812
813 if(top_ref == ref){
814 *mx= B[0];
815 *my= B[1];
816 return;
817 }
818 }else{
819 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
820 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
821
822 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
823
824 if(left_ref == ref){
825 *mx= A[0];
826 *my= A[1];
827 return;
828 }
829 }
830
831 //RARE
832 pred_motion(h, n, 4, list, ref, mx, my);
833 }
834
835 /**
836 * gets the directionally predicted 8x16 MV.
837 * @param n the block index
838 * @param mx the x component of the predicted motion vector
839 * @param my the y component of the predicted motion vector
840 */
841 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
842 if(n==0){
843 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
844 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
845
846 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
847
848 if(left_ref == ref){
849 *mx= A[0];
850 *my= A[1];
851 return;
852 }
853 }else{
854 const int16_t * C;
855 int diagonal_ref;
856
857 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
858
859 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
860
861 if(diagonal_ref == ref){
862 *mx= C[0];
863 *my= C[1];
864 return;
865 }
866 }
867
868 //RARE
869 pred_motion(h, n, 2, list, ref, mx, my);
870 }
871
872 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
873 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
874 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
875
876 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
877
878 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
879 || !( top_ref | *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ])
880 || !(left_ref | *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ])){
881
882 *mx = *my = 0;
883 return;
884 }
885
886 pred_motion(h, 0, 4, 0, 0, mx, my);
887
888 return;
889 }
890
891 static int get_scale_factor(H264Context * const h, int poc, int poc1, int i){
892 int poc0 = h->ref_list[0][i].poc;
893 int td = av_clip(poc1 - poc0, -128, 127);
894 if(td == 0 || h->ref_list[0][i].long_ref){
895 return 256;
896 }else{
897 int tb = av_clip(poc - poc0, -128, 127);
898 int tx = (16384 + (FFABS(td) >> 1)) / td;
899 return av_clip((tb*tx + 32) >> 6, -1024, 1023);
900 }
901 }
902
903 static inline void direct_dist_scale_factor(H264Context * const h){
904 MpegEncContext * const s = &h->s;
905 const int poc = h->s.current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
906 const int poc1 = h->ref_list[1][0].poc;
907 int i, field;
908 for(field=0; field<2; field++){
909 const int poc = h->s.current_picture_ptr->field_poc[field];
910 const int poc1 = h->ref_list[1][0].field_poc[field];
911 for(i=0; i < 2*h->ref_count[0]; i++)
912 h->dist_scale_factor_field[field][i^field] = get_scale_factor(h, poc, poc1, i+16);
913 }
914
915 for(i=0; i<h->ref_count[0]; i++){
916 h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i);
917 }
918 }
919
920 static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi){
921 MpegEncContext * const s = &h->s;
922 Picture * const ref1 = &h->ref_list[1][0];
923 int j, old_ref, rfield;
924 int start= mbafi ? 16 : 0;
925 int end = mbafi ? 16+2*h->ref_count[list] : h->ref_count[list];
926 int interl= mbafi || s->picture_structure != PICT_FRAME;
927
928 /* bogus; fills in for missing frames */
929 memset(map[list], 0, sizeof(map[list]));
930
931 for(rfield=0; rfield<2; rfield++){
932 for(old_ref=0; old_ref<ref1->ref_count[colfield][list]; old_ref++){
933 int poc = ref1->ref_poc[colfield][list][old_ref];
934
935 if (!interl)
936 poc |= 3;
937 else if( interl && (poc&3) == 3) //FIXME store all MBAFF references so this isnt needed
938 poc= (poc&~3) + rfield + 1;
939
940 for(j=start; j<end; j++){
941 if(4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3) == poc){
942 int cur_ref= mbafi ? (j-16)^field : j;
943 map[list][2*old_ref + (rfield^field) + 16] = cur_ref;
944 if(rfield == field)
945 map[list][old_ref] = cur_ref;
946 break;
947 }
948 }
949 }
950 }
951 }
952
953 static inline void direct_ref_list_init(H264Context * const h){
954 MpegEncContext * const s = &h->s;
955 Picture * const ref1 = &h->ref_list[1][0];
956 Picture * const cur = s->current_picture_ptr;
957 int list, j, field;
958 int sidx= (s->picture_structure&1)^1;
959 int ref1sidx= (ref1->reference&1)^1;
960
961 for(list=0; list<2; list++){
962 cur->ref_count[sidx][list] = h->ref_count[list];
963 for(j=0; j<h->ref_count[list]; j++)
964 cur->ref_poc[sidx][list][j] = 4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3);
965 }
966
967 if(s->picture_structure == PICT_FRAME){
968 memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
969 memcpy(cur->ref_poc [1], cur->ref_poc [0], sizeof(cur->ref_poc [0]));
970 }
971
972 cur->mbaff= FRAME_MBAFF;
973
974 if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
975 return;
976
977 for(list=0; list<2; list++){
978 fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0);
979 for(field=0; field<2; field++)
980 fill_colmap(h, h->map_col_to_list0_field[field], list, field, field, 1);
981 }
982 }
983
984 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
985 MpegEncContext * const s = &h->s;
986 int b8_stride = h->b8_stride;
987 int b4_stride = h->b_stride;
988 int mb_xy = h->mb_xy;
989 int mb_type_col[2];
990 const int16_t (*l1mv0)[2], (*l1mv1)[2];
991 const int8_t *l1ref0, *l1ref1;
992 const int is_b8x8 = IS_8X8(*mb_type);
993 unsigned int sub_mb_type;
994 int i8, i4;
995
996 assert(h->ref_list[1][0].reference&3);
997
998 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
999
1000 if(IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])){ // AFL/AFR/FR/FL -> AFL/FL
1001 if(!IS_INTERLACED(*mb_type)){ // AFR/FR -> AFL/FL
1002 int cur_poc = s->current_picture_ptr->poc;
1003 int *col_poc = h->ref_list[1]->field_poc;
1004 int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
1005 mb_xy= s->mb_x + ((s->mb_y&~1) + col_parity)*s->mb_stride;
1006 b8_stride = 0;
1007 }else if(!(s->picture_structure & h->ref_list[1][0].reference) && !h->ref_list[1][0].mbaff){// FL -> FL & differ parity
1008 int fieldoff= 2*(h->ref_list[1][0].reference)-3;
1009 mb_xy += s->mb_stride*fieldoff;
1010 }
1011 goto single_col;
1012 }else{ // AFL/AFR/FR/FL -> AFR/FR
1013 if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
1014 mb_xy= s->mb_x + (s->mb_y&~1)*s->mb_stride;
1015 mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
1016 mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + s->mb_stride];
1017 b8_stride *= 3;
1018 b4_stride *= 6;
1019 //FIXME IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag
1020 if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
1021 && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
1022 && !is_b8x8){
1023 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1024 *mb_type |= MB_TYPE_16x8 |MB_TYPE_L0L1|MB_TYPE_DIRECT2; /* B_16x8 */
1025 }else{
1026 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1027 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1028 }
1029 }else{ // AFR/FR -> AFR/FR
1030 single_col:
1031 mb_type_col[0] =
1032 mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
1033 if(IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag){
1034 /* FIXME save sub mb types from previous frames (or derive from MVs)
1035 * so we know exactly what block size to use */
1036 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1037 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1038 }else if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
1039 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1040 *mb_type |= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1041 }else{
1042 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1043 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1044 }
1045 }
1046 }
1047
1048 l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
1049 l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
1050 l1ref0 = &h->ref_list[1][0].ref_index [0][h->mb2b8_xy[mb_xy]];
1051 l1ref1 = &h->ref_list[1][0].ref_index [1][h->mb2b8_xy[mb_xy]];
1052 if(!b8_stride){
1053 if(s->mb_y&1){
1054 l1ref0 += h->b8_stride;
1055 l1ref1 += h->b8_stride;
1056 l1mv0 += 2*b4_stride;
1057 l1mv1 += 2*b4_stride;
1058 }
1059 }
1060
1061 if(h->direct_spatial_mv_pred){
1062 int ref[2];
1063 int mv[2][2];
1064 int list;
1065
1066 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1067
1068 /* ref = min(neighbors) */
1069 for(list=0; list<2; list++){
1070 int refa = h->ref_cache[list][scan8[0] - 1];
1071 int refb = h->ref_cache[list][scan8[0] - 8];
1072 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1073 if(refc == PART_NOT_AVAILABLE)
1074 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1075 ref[list] = FFMIN3((unsigned)refa, (unsigned)refb, (unsigned)refc);
1076 if(ref[list] < 0)
1077 ref[list] = -1;
1078 }
1079
1080 if(ref[0] < 0 && ref[1] < 0){
1081 ref[0] = ref[1] = 0;
1082 mv[0][0] = mv[0][1] =
1083 mv[1][0] = mv[1][1] = 0;
1084 }else{
1085 for(list=0; list<2; list++){
1086 if(ref[list] >= 0)
1087 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1088 else
1089 mv[list][0] = mv[list][1] = 0;
1090 }
1091 }
1092
1093 if(ref[1] < 0){
1094 if(!is_b8x8)
1095 *mb_type &= ~MB_TYPE_L1;
1096 sub_mb_type &= ~MB_TYPE_L1;
1097 }else if(ref[0] < 0){
1098 if(!is_b8x8)
1099 *mb_type &= ~MB_TYPE_L0;
1100 sub_mb_type &= ~MB_TYPE_L0;
1101 }
1102
1103 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
1104 for(i8=0; i8<4; i8++){
1105 int x8 = i8&1;
1106 int y8 = i8>>1;
1107 int xy8 = x8+y8*b8_stride;
1108 int xy4 = 3*x8+y8*b4_stride;
1109 int a=0, b=0;
1110
1111 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1112 continue;
1113 h->sub_mb_type[i8] = sub_mb_type;
1114
1115 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1116 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1117 if(!IS_INTRA(mb_type_col[y8])
1118 && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
1119 || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
1120 if(ref[0] > 0)
1121 a= pack16to32(mv[0][0],mv[0][1]);
1122 if(ref[1] > 0)
1123 b= pack16to32(mv[1][0],mv[1][1]);
1124 }else{
1125 a= pack16to32(mv[0][0],mv[0][1]);
1126 b= pack16to32(mv[1][0],mv[1][1]);
1127 }
1128 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
1129 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
1130 }
1131 }else if(IS_16X16(*mb_type)){
1132 int a=0, b=0;
1133
1134 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1135 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1136 if(!IS_INTRA(mb_type_col[0])
1137 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1138 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1139 && (h->x264_build>33 || !h->x264_build)))){
1140 if(ref[0] > 0)
1141 a= pack16to32(mv[0][0],mv[0][1]);
1142 if(ref[1] > 0)
1143 b= pack16to32(mv[1][0],mv[1][1]);
1144 }else{
1145 a= pack16to32(mv[0][0],mv[0][1]);
1146 b= pack16to32(mv[1][0],mv[1][1]);
1147 }
1148 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
1149 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
1150 }else{
1151 for(i8=0; i8<4; i8++){
1152 const int x8 = i8&1;
1153 const int y8 = i8>>1;
1154
1155 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1156 continue;
1157 h->sub_mb_type[i8] = sub_mb_type;
1158
1159 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1160 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1161 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1162 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1163
1164 /* col_zero_flag */
1165 if(!IS_INTRA(mb_type_col[0]) && ( l1ref0[x8 + y8*b8_stride] == 0
1166 || (l1ref0[x8 + y8*b8_stride] < 0 && l1ref1[x8 + y8*b8_stride] == 0
1167 && (h->x264_build>33 || !h->x264_build)))){
1168 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*b8_stride] == 0 ? l1mv0 : l1mv1;
1169 if(IS_SUB_8X8(sub_mb_type)){
1170 const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
1171 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1172 if(ref[0] == 0)
1173 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1174 if(ref[1] == 0)
1175 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1176 }
1177 }else
1178 for(i4=0; i4<4; i4++){
1179 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
1180 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1181 if(ref[0] == 0)
1182 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1183 if(ref[1] == 0)
1184 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1185 }
1186 }
1187 }
1188 }
1189 }
1190 }else{ /* direct temporal mv pred */
1191 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1192 const int *dist_scale_factor = h->dist_scale_factor;
1193 int ref_offset= 0;
1194
1195 if(FRAME_MBAFF && IS_INTERLACED(*mb_type)){
1196 map_col_to_list0[0] = h->map_col_to_list0_field[s->mb_y&1][0];
1197 map_col_to_list0[1] = h->map_col_to_list0_field[s->mb_y&1][1];
1198 dist_scale_factor =h->dist_scale_factor_field[s->mb_y&1];
1199 }
1200 if(h->ref_list[1][0].mbaff && IS_INTERLACED(mb_type_col[0]))
1201 ref_offset += 16;
1202
1203 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
1204 /* FIXME assumes direct_8x8_inference == 1 */
1205 int y_shift = 2*!IS_INTERLACED(*mb_type);
1206
1207 for(i8=0; i8<4; i8++){
1208 const int x8 = i8&1;
1209 const int y8 = i8>>1;
1210 int ref0, scale;
1211 const int16_t (*l1mv)[2]= l1mv0;
1212
1213 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1214 continue;
1215 h->sub_mb_type[i8] = sub_mb_type;
1216
1217 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1218 if(IS_INTRA(mb_type_col[y8])){
1219 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1220 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1221 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1222 continue;
1223 }
1224
1225 ref0 = l1ref0[x8 + y8*b8_stride];
1226 if(ref0 >= 0)
1227 ref0 = map_col_to_list0[0][ref0 + ref_offset];
1228 else{
1229 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
1230 l1mv= l1mv1;
1231 }
1232 scale = dist_scale_factor[ref0];
1233 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1234
1235 {
1236 const int16_t *mv_col = l1mv[x8*3 + y8*b4_stride];
1237 int my_col = (mv_col[1]<<y_shift)/2;
1238 int mx = (scale * mv_col[0] + 128) >> 8;
1239 int my = (scale * my_col + 128) >> 8;
1240 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1241 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1242 }
1243 }
1244 return;
1245 }
1246
1247 /* one-to-one mv scaling */
1248
1249 if(IS_16X16(*mb_type)){
1250 int ref, mv0, mv1;
1251
1252 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1253 if(IS_INTRA(mb_type_col[0])){
1254 ref=mv0=mv1=0;
1255 }else{
1256 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
1257 : map_col_to_list0[1][l1ref1[0] + ref_offset];
1258 const int scale = dist_scale_factor[ref0];
1259 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1260 int mv_l0[2];
1261 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1262 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1263 ref= ref0;
1264 mv0= pack16to32(mv_l0[0],mv_l0[1]);
1265 mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1266 }
1267 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
1268 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
1269 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
1270 }else{
1271 for(i8=0; i8<4; i8++){
1272 const int x8 = i8&1;
1273 const int y8 = i8>>1;
1274 int ref0, scale;
1275 const int16_t (*l1mv)[2]= l1mv0;
1276
1277 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1278 continue;
1279 h->sub_mb_type[i8] = sub_mb_type;
1280 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1281 if(IS_INTRA(mb_type_col[0])){
1282 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1283 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1284 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1285 continue;
1286 }
1287
1288 ref0 = l1ref0[x8 + y8*b8_stride] + ref_offset;
1289 if(ref0 >= 0)
1290 ref0 = map_col_to_list0[0][ref0];
1291 else{
1292 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
1293 l1mv= l1mv1;
1294 }
1295 scale = dist_scale_factor[ref0];
1296
1297 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1298 if(IS_SUB_8X8(sub_mb_type)){
1299 const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
1300 int mx = (scale * mv_col[0] + 128) >> 8;
1301 int my = (scale * mv_col[1] + 128) >> 8;
1302 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1303 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1304 }else
1305 for(i4=0; i4<4; i4++){
1306 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
1307 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1308 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1309 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1310 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1311 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1312 }
1313 }
1314 }
1315 }
1316 }
1317
1318 static inline void write_back_motion(H264Context *h, int mb_type){
1319 MpegEncContext * const s = &h->s;
1320 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1321 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1322 int list;
1323
1324 if(!USES_LIST(mb_type, 0))
1325 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1326
1327 for(list=0; list<h->list_count; list++){
1328 int y;
1329 if(!USES_LIST(mb_type, list))
1330 continue;
1331
1332 for(y=0; y<4; y++){
1333 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1334 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1335 }
1336 if( h->pps.cabac ) {
1337 if(IS_SKIP(mb_type))
1338 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1339 else
1340 for(y=0; y<4; y++){
1341 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1342 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1343 }
1344 }
1345
1346 {
1347 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1348 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1349 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1350 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1351 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1352 }
1353 }
1354
1355 if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
1356 if(IS_8X8(mb_type)){
1357 uint8_t *direct_table = &h->direct_table[b8_xy];
1358 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1359 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1360 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1361 }
1362 }
1363 }
1364
1365 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
1366 int i, si, di;
1367 uint8_t *dst;
1368 int bufidx;
1369
1370 // src[0]&0x80; //forbidden bit
1371 h->nal_ref_idc= src[0]>>5;
1372 h->nal_unit_type= src[0]&0x1F;
1373
1374 src++; length--;
1375 #if 0
1376 for(i=0; i<length; i++)
1377 printf("%2X ", src[i]);
1378 #endif
1379
1380 #if HAVE_FAST_UNALIGNED
1381 # if HAVE_FAST_64BIT
1382 # define RS 7
1383 for(i=0; i+1<length; i+=9){
1384 if(!((~*(const uint64_t*)(src+i) & (*(const uint64_t*)(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
1385 # else
1386 # define RS 3
1387 for(i=0; i+1<length; i+=5){
1388 if(!((~*(const uint32_t*)(src+i) & (*(const uint32_t*)(src+i) - 0x01000101U)) & 0x80008080U))
1389 # endif
1390 continue;
1391 if(i>0 && !src[i]) i--;
1392 while(src[i]) i++;
1393 #else
1394 # define RS 0
1395 for(i=0; i+1<length; i+=2){
1396 if(src[i]) continue;
1397 if(i>0 && src[i-1]==0) i--;
1398 #endif
1399 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1400 if(src[i+2]!=3){
1401 /* startcode, so we must be past the end */
1402 length=i;
1403 }
1404 break;
1405 }
1406 i-= RS;
1407 }
1408
1409 if(i>=length-1){ //no escaped 0
1410 *dst_length= length;
1411 *consumed= length+1; //+1 for the header
1412 return src;
1413 }
1414
1415 bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
1416 av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
1417 dst= h->rbsp_buffer[bufidx];
1418
1419 if (dst == NULL){
1420 return NULL;
1421 }
1422
1423 //printf("decoding esc\n");
1424 memcpy(dst, src, i);
1425 si=di=i;
1426 while(si+2<length){
1427 //remove escapes (very rare 1:2^22)
1428 if(src[si+2]>3){
1429 dst[di++]= src[si++];
1430 dst[di++]= src[si++];
1431 }else if(src[si]==0 && src[si+1]==0){
1432 if(src[si+2]==3){ //escape
1433 dst[di++]= 0;
1434 dst[di++]= 0;
1435 si+=3;
1436 continue;
1437 }else //next start code
1438 goto nsc;
1439 }
1440
1441 dst[di++]= src[si++];
1442 }
1443 while(si<length)
1444 dst[di++]= src[si++];
1445 nsc:
1446
1447 memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
1448
1449 *dst_length= di;
1450 *consumed= si + 1;//+1 for the header
1451 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1452 return dst;
1453 }
1454
1455 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
1456 int v= *src;
1457 int r;
1458
1459 tprintf(h->s.avctx, "rbsp trailing %X\n", v);
1460
1461 for(r=1; r<9; r++){
1462 if(v&1) return r;
1463 v>>=1;
1464 }
1465 return 0;
1466 }
1467
1468 /**
1469 * IDCT transforms the 16 dc values and dequantizes them.
1470 * @param qp quantization parameter
1471 */
1472 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1473 #define stride 16
1474 int i;
1475 int temp[16]; //FIXME check if this is a good idea
1476 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1477 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1478
1479 //memset(block, 64, 2*256);
1480 //return;
1481 for(i=0; i<4; i++){
1482 const int offset= y_offset[i];
1483 const int z0= block[offset+stride*0] + block[offset+stride*4];
1484 const int z1= block[offset+stride*0] - block[offset+stride*4];
1485 const int z2= block[offset+stride*1] - block[offset+stride*5];
1486 const int z3= block[offset+stride*1] + block[offset+stride*5];
1487
1488 temp[4*i+0]= z0+z3;
1489 temp[4*i+1]= z1+z2;
1490 temp[4*i+2]= z1-z2;
1491 temp[4*i+3]= z0-z3;
1492 }
1493
1494 for(i=0; i<4; i++){
1495 const int offset= x_offset[i];
1496 const int z0= temp[4*0+i] + temp[4*2+i];
1497 const int z1= temp[4*0+i] - temp[4*2+i];
1498 const int z2= temp[4*1+i] - temp[4*3+i];
1499 const int z3= temp[4*1+i] + temp[4*3+i];
1500
1501 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
1502 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1503 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1504 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1505 }
1506 }
1507
1508 #if 0
1509 /**
1510 * DCT transforms the 16 dc values.
1511 * @param qp quantization parameter ??? FIXME
1512 */
1513 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1514 // const int qmul= dequant_coeff[qp][0];
1515 int i;
1516 int temp[16]; //FIXME check if this is a good idea
1517 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1518 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1519
1520 for(i=0; i<4; i++){
1521 const int offset= y_offset[i];
1522 const int z0= block[offset+stride*0] + block[offset+stride*4];
1523 const int z1= block[offset+stride*0] - block[offset+stride*4];
1524 const int z2= block[offset+stride*1] - block[offset+stride*5];
1525 const int z3= block[offset+stride*1] + block[offset+stride*5];
1526
1527 temp[4*i+0]= z0+z3;
1528 temp[4*i+1]= z1+z2;
1529 temp[4*i+2]= z1-z2;
1530 temp[4*i+3]= z0-z3;
1531 }
1532
1533 for(i=0; i<4; i++){
1534 const int offset= x_offset[i];
1535 const int z0= temp[4*0+i] + temp[4*2+i];
1536 const int z1= temp[4*0+i] - temp[4*2+i];
1537 const int z2= temp[4*1+i] - temp[4*3+i];
1538 const int z3= temp[4*1+i] + temp[4*3+i];
1539
1540 block[stride*0 +offset]= (z0 + z3)>>1;
1541 block[stride*2 +offset]= (z1 + z2)>>1;
1542 block[stride*8 +offset]= (z1 - z2)>>1;
1543 block[stride*10+offset]= (z0 - z3)>>1;
1544 }
1545 }
1546 #endif
1547
1548 #undef xStride
1549 #undef stride
1550
1551 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1552 const int stride= 16*2;
1553 const int xStride= 16;
1554 int a,b,c,d,e;
1555
1556 a= block[stride*0 + xStride*0];
1557 b= block[stride*0 + xStride*1];
1558 c= block[stride*1 + xStride*0];
1559 d= block[stride*1 + xStride*1];
1560
1561 e= a-b;
1562 a= a+b;
1563 b= c-d;
1564 c= c+d;
1565
1566 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1567 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1568 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1569 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1570 }
1571
1572 #if 0
1573 static void chroma_dc_dct_c(DCTELEM *block){
1574 const int stride= 16*2;
1575 const int xStride= 16;
1576 int a,b,c,d,e;
1577
1578 a= block[stride*0 + xStride*0];
1579 b= block[stride*0 + xStride*1];
1580 c= block[stride*1 + xStride*0];
1581 d= block[stride*1 + xStride*1];
1582
1583 e= a-b;
1584 a= a+b;
1585 b= c-d;
1586 c= c+d;
1587
1588 block[stride*0 + xStride*0]= (a+c);
1589 block[stride*0 + xStride*1]= (e+b);
1590 block[stride*1 + xStride*0]= (a-c);
1591 block[stride*1 + xStride*1]= (e-b);
1592 }
1593 #endif
1594
1595 /**
1596 * gets the chroma qp.
1597 */
1598 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
1599 return h->pps.chroma_qp_table[t][qscale];
1600 }
1601
1602 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1603 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1604 int src_x_offset, int src_y_offset,
1605 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1606 MpegEncContext * const s = &h->s;
1607 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1608 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1609 const int luma_xy= (mx&3) + ((my&3)<<2);
1610 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
1611 uint8_t * src_cb, * src_cr;
1612 int extra_width= h->emu_edge_width;
1613 int extra_height= h->emu_edge_height;
1614 int emu=0;
1615 const int full_mx= mx>>2;
1616 const int full_my= my>>2;
1617 const int pic_width = 16*s->mb_width;
1618 const int pic_height = 16*s->mb_height >> MB_FIELD;
1619
1620 if(mx&7) extra_width -= 3;
1621 if(my&7) extra_height -= 3;
1622
1623 if( full_mx < 0-extra_width
1624 || full_my < 0-extra_height
1625 || full_mx + 16/*FIXME*/ > pic_width + extra_width
1626 || full_my + 16/*FIXME*/ > pic_height + extra_height){
1627 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
1628 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
1629 emu=1;
1630 }
1631
1632 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
1633 if(!square){
1634 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
1635 }
1636
1637 if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
1638
1639 if(MB_FIELD){
1640 // chroma offset when predicting from a field of opposite parity
1641 my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
1642 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
1643 }
1644 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1645 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1646
1647 if(emu){
1648 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1649 src_cb= s->edge_emu_buffer;
1650 }
1651 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1652
1653 if(emu){
1654 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1655 src_cr= s->edge_emu_buffer;
1656 }
1657 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1658 }
1659
1660 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
1661 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1662 int x_offset, int y_offset,
1663 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1664 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1665 int list0, int list1){
1666 MpegEncContext * const s = &h->s;
1667 qpel_mc_func *qpix_op= qpix_put;
1668 h264_chroma_mc_func chroma_op= chroma_put;
1669
1670 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1671 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1672 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1673 x_offset += 8*s->mb_x;
1674 y_offset += 8*(s->mb_y >> MB_FIELD);
1675
1676 if(list0){
1677 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1678 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1679 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1680 qpix_op, chroma_op);
1681
1682 qpix_op= qpix_avg;
1683 chroma_op= chroma_avg;
1684 }
1685
1686 if(list1){
1687 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1688 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1689 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1690 qpix_op, chroma_op);
1691 }
1692 }
1693
1694 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
1695 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1696 int x_offset, int y_offset,
1697 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1698 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
1699 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
1700 int list0, int list1){
1701 MpegEncContext * const s = &h->s;
1702
1703 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1704 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1705 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1706 x_offset += 8*s->mb_x;
1707 y_offset += 8*(s->mb_y >> MB_FIELD);
1708
1709 if(list0 && list1){
1710 /* don't optimize for luma-only case, since B-frames usually
1711 * use implicit weights => chroma too. */
1712 uint8_t *tmp_cb = s->obmc_scratchpad;
1713 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
1714 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
1715 int refn0 = h->ref_cache[0][ scan8[n] ];
1716 int refn1 = h->ref_cache[1][ scan8[n] ];
1717
1718 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
1719 dest_y, dest_cb, dest_cr,
1720 x_offset, y_offset, qpix_put, chroma_put);
1721 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
1722 tmp_y, tmp_cb, tmp_cr,
1723 x_offset, y_offset, qpix_put, chroma_put);
1724
1725 if(h->use_weight == 2){
1726 int weight0 = h->implicit_weight[refn0][refn1];
1727 int weight1 = 64 - weight0;
1728 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
1729 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
1730 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
1731 }else{
1732 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
1733 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
1734 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
1735 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1736 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
1737 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
1738 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1739 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
1740 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
1741 }
1742 }else{
1743 int list = list1 ? 1 : 0;
1744 int refn = h->ref_cache[list][ scan8[n] ];
1745 Picture *ref= &h->ref_list[list][refn];
1746 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
1747 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1748 qpix_put, chroma_put);
1749
1750 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
1751 h->luma_weight[list][refn], h->luma_offset[list][refn]);
1752 if(h->use_weight_chroma){
1753 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1754 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
1755 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1756 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
1757 }
1758 }
1759 }
1760
1761 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1762 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1763 int x_offset, int y_offset,
1764 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1765 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1766 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
1767 int list0, int list1){
1768 if((h->use_weight==2 && list0 && list1
1769 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
1770 || h->use_weight==1)
1771 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1772 x_offset, y_offset, qpix_put, chroma_put,
1773 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
1774 else
1775 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1776 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
1777 }
1778
1779 static inline void prefetch_motion(H264Context *h, int list){
1780 /* fetch pixels for estimated mv 4 macroblocks ahead
1781 * optimized for 64byte cache lines */
1782 MpegEncContext * const s = &h->s;
1783 const int refn = h->ref_cache[list][scan8[0]];
1784 if(refn >= 0){
1785 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
1786 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
1787 uint8_t **src= h->ref_list[list][refn].data;
1788 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
1789 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1790 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
1791 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1792 }
1793 }
1794
1795 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1796 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1797 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
1798 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
1799 MpegEncContext * const s = &h->s;
1800 const int mb_xy= h->mb_xy;
1801 const int mb_type= s->current_picture.mb_type[mb_xy];
1802
1803 assert(IS_INTER(mb_type));
1804
1805 prefetch_motion(h, 0);
1806
1807 if(IS_16X16(mb_type)){
1808 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1809 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1810 &weight_op[0], &weight_avg[0],
1811 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1812 }else if(IS_16X8(mb_type)){
1813 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1814 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1815 &weight_op[1], &weight_avg[1],
1816 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1817 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1818 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1819 &weight_op[1], &weight_avg[1],
1820 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1821 }else if(IS_8X16(mb_type)){
1822 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
1823 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1824 &weight_op[2], &weight_avg[2],
1825 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1826 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
1827 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1828 &weight_op[2], &weight_avg[2],
1829 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1830 }else{
1831 int i;
1832
1833 assert(IS_8X8(mb_type));
1834
1835 for(i=0; i<4; i++){
1836 const int sub_mb_type= h->sub_mb_type[i];
1837 const int n= 4*i;
1838 int x_offset= (i&1)<<2;
1839 int y_offset= (i&2)<<1;
1840
1841 if(IS_SUB_8X8(sub_mb_type)){
1842 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1843 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1844 &weight_op[3], &weight_avg[3],
1845 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1846 }else if(IS_SUB_8X4(sub_mb_type)){
1847 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1848 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1849 &weight_op[4], &weight_avg[4],
1850 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1851 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1852 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1853 &weight_op[4], &weight_avg[4],
1854 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1855 }else if(IS_SUB_4X8(sub_mb_type)){
1856 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1857 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1858 &weight_op[5], &weight_avg[5],
1859 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1860 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
1861 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1862 &weight_op[5], &weight_avg[5],
1863 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1864 }else{
1865 int j;
1866 assert(IS_SUB_4X4(sub_mb_type));
1867 for(j=0; j<4; j++){
1868 int sub_x_offset= x_offset + 2*(j&1);
1869 int sub_y_offset= y_offset + (j&2);
1870 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
1871 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1872 &weight_op[6], &weight_avg[6],
1873 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1874 }
1875 }
1876 }
1877 }
1878
1879 prefetch_motion(h, 1);
1880 }
1881
1882 static av_cold void init_cavlc_level_tab(void){
1883 int suffix_length, mask;
1884 unsigned int i;
1885
1886 for(suffix_length=0; suffix_length<7; suffix_length++){
1887 for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
1888 int prefix= LEVEL_TAB_BITS - av_log2(2*i);
1889 int level_code= (prefix<<suffix_length) + (i>>(LEVEL_TAB_BITS-prefix-1-suffix_length)) - (1<<suffix_length);
1890
1891 mask= -(level_code&1);
1892 level_code= (((2+level_code)>>1) ^ mask) - mask;
1893 if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
1894 cavlc_level_tab[suffix_length][i][0]= level_code;
1895 cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
1896 }else if(prefix + 1 <= LEVEL_TAB_BITS){
1897 cavlc_level_tab[suffix_length][i][0]= prefix+100;
1898 cavlc_level_tab[suffix_length][i][1]= prefix + 1;
1899 }else{
1900 cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
1901 cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
1902 }
1903 }
1904 }
1905 }
1906
1907 static av_cold void decode_init_vlc(void){
1908 static int done = 0;
1909
1910 if (!done) {
1911 int i;
1912 int offset;
1913 done = 1;
1914
1915 chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
1916 chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
1917 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
1918 &chroma_dc_coeff_token_len [0], 1, 1,
1919 &chroma_dc_coeff_token_bits[0], 1, 1,
1920 INIT_VLC_USE_NEW_STATIC);
1921
1922 offset = 0;
1923 for(i=0; i<4; i++){
1924 coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
1925 coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
1926 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
1927 &coeff_token_len [i][0], 1, 1,
1928 &coeff_token_bits[i][0], 1, 1,
1929 INIT_VLC_USE_NEW_STATIC);
1930 offset += coeff_token_vlc_tables_size[i];
1931 }
1932 /*
1933 * This is a one time safety check to make sure that
1934 * the packed static coeff_token_vlc table sizes
1935 * were initialized correctly.
1936 */
1937 assert(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
1938
1939 for(i=0; i<3; i++){
1940 chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
1941 chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
1942 init_vlc(&chroma_dc_total_zeros_vlc[i],
1943 CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
1944 &chroma_dc_total_zeros_len [i][0], 1, 1,
1945 &chroma_dc_total_zeros_bits[i][0], 1, 1,
1946 INIT_VLC_USE_NEW_STATIC);
1947 }
1948 for(i=0; i<15; i++){
1949 total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
1950 total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
1951 init_vlc(&total_zeros_vlc[i],
1952 TOTAL_ZEROS_VLC_BITS, 16,
1953 &total_zeros_len [i][0], 1, 1,
1954 &total_zeros_bits[i][0], 1, 1,
1955 INIT_VLC_USE_NEW_STATIC);
1956 }
1957
1958 for(i=0; i<6; i++){
1959 run_vlc[i].table = run_vlc_tables[i];
1960 run_vlc[i].table_allocated = run_vlc_tables_size;
1961 init_vlc(&run_vlc[i],
1962 RUN_VLC_BITS, 7,
1963 &run_len [i][0], 1, 1,
1964 &run_bits[i][0], 1, 1,
1965 INIT_VLC_USE_NEW_STATIC);
1966 }
1967 run7_vlc.table = run7_vlc_table,
1968 run7_vlc.table_allocated = run7_vlc_table_size;
1969 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
1970 &run_len [6][0], 1, 1,
1971 &run_bits[6][0], 1, 1,
1972 INIT_VLC_USE_NEW_STATIC);
1973
1974 init_cavlc_level_tab();
1975 }
1976 }
1977
1978 static void free_tables(H264Context *h){
1979 int i;
1980 H264Context *hx;
1981 av_freep(&h->intra4x4_pred_mode);
1982 av_freep(&h->chroma_pred_mode_table);
1983 av_freep(&h->cbp_table);
1984 av_freep(&h->mvd_table[0]);
1985 av_freep(&h->mvd_table[1]);
1986 av_freep(&h->direct_table);
1987 av_freep(&h->non_zero_count);
1988 av_freep(&h->slice_table_base);
1989 h->slice_table= NULL;
1990
1991 av_freep(&h->mb2b_xy);
1992 av_freep(&h->mb2b8_xy);
1993
1994 for(i = 0; i < MAX_THREADS; i++) {
1995 hx = h->thread_context[i];
1996 if(!hx) continue;
1997 av_freep(&hx->top_borders[1]);
1998 av_freep(&hx->top_borders[0]);
1999 av_freep(&hx->s.obmc_scratchpad);
2000 av_freep(&hx->rbsp_buffer[1]);
2001 av_freep(&hx->rbsp_buffer[0]);
2002 if (i) av_freep(&h->thread_context[i]);
2003 }
2004 }
2005
2006 static void init_dequant8_coeff_table(H264Context *h){
2007 int i,q,x;
2008 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
2009 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2010 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2011
2012 for(i=0; i<2; i++ ){
2013 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2014 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2015 break;
2016 }
2017
2018 for(q=0; q<52; q++){
2019 int shift = div6[q];
2020 int idx = rem6[q];
2021 for(x=0; x<64; x++)
2022 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
2023 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
2024 h->pps.scaling_matrix8[i][x]) << shift;
2025 }
2026 }
2027 }
2028
2029 static void init_dequant4_coeff_table(H264Context *h){
2030 int i,j,q,x;
2031 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2032 for(i=0; i<6; i++ ){
2033 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2034 for(j=0; j<i; j++){
2035 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2036 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2037 break;
2038 }
2039 }
2040 if(j<i)
2041 continue;
2042
2043 for(q=0; q<52; q++){
2044 int shift = div6[q] + 2;
2045 int idx = rem6[q];
2046 for(x=0; x<16; x++)
2047 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2048 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2049 h->pps.scaling_matrix4[i][x]) << shift;
2050 }
2051 }
2052 }
2053
2054 static void init_dequant_tables(H264Context *h){
2055 int i,x;
2056 init_dequant4_coeff_table(h);
2057 if(h->pps.transform_8x8_mode)
2058 init_dequant8_coeff_table(h);
2059 if(h->sps.transform_bypass){
2060 for(i=0; i<6; i++)
2061 for(x=0; x<16; x++)
2062 h->dequant4_coeff[i][0][x] = 1<<6;
2063 if(h->pps.transform_8x8_mode)
2064 for(i=0; i<2; i++)
2065 for(x=0; x<64; x++)
2066 h->dequant8_coeff[i][0][x] = 1<<6;
2067 }
2068 }
2069
2070
2071 /**
2072 * allocates tables.
2073 * needs width/height
2074 */
2075 static int alloc_tables(H264Context *h){
2076 MpegEncContext * const s = &h->s;
2077 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2078 int x,y;
2079
2080 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2081
2082 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2083 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base))
2084 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2085
2086 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2087 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2088 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2089 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2090
2091 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
2092 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
2093
2094 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
2095 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
2096 for(y=0; y<s->mb_height; y++){
2097 for(x=0; x<s->mb_width; x++){
2098 const int mb_xy= x + y*s->mb_stride;
2099 const int b_xy = 4*x + 4*y*h->b_stride;
2100 const int b8_xy= 2*x + 2*y*h->b8_stride;
2101
2102 h->mb2b_xy [mb_xy]= b_xy;
2103 h->mb2b8_xy[mb_xy]= b8_xy;
2104 }
2105 }
2106
2107 s->obmc_scratchpad = NULL;
2108
2109 if(!h->dequant4_coeff[0])
2110 init_dequant_tables(h);
2111
2112 return 0;
2113 fail:
2114 free_tables(h);
2115 return -1;
2116 }
2117
2118 /**
2119 * Mimic alloc_tables(), but for every context thread.
2120 */
2121 static void clone_tables(H264Context *dst, H264Context *src){
2122 dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
2123 dst->non_zero_count = src->non_zero_count;
2124 dst->slice_table = src->slice_table;
2125 dst->cbp_table = src->cbp_table;
2126 dst->mb2b_xy = src->mb2b_xy;
2127 dst->mb2b8_xy = src->mb2b8_xy;
2128 dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
2129 dst->mvd_table[0] = src->mvd_table[0];
2130 dst->mvd_table[1] = src->mvd_table[1];
2131 dst->direct_table = src->direct_table;
2132
2133 dst->s.obmc_scratchpad = NULL;
2134 ff_h264_pred_init(&dst->hpc, src->s.codec_id);
2135 }
2136
2137 /**
2138 * Init context
2139 * Allocate buffers which are not shared amongst multiple threads.
2140 */
2141 static int context_init(H264Context *h){
2142 CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2143 CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2144
2145 return 0;
2146 fail:
2147 return -1; // free_tables will clean up for us
2148 }
2149
2150 static av_cold void common_init(H264Context *h){
2151 MpegEncContext * const s = &h->s;
2152
2153 s->width = s->avctx->width;
2154 s->height = s->avctx->height;
2155 s->codec_id= s->avctx->codec->id;
2156
2157 ff_h264_pred_init(&h->hpc, s->codec_id);
2158
2159 h->dequant_coeff_pps= -1;
2160 s->unrestricted_mv=1;
2161 s->decode=1; //FIXME
2162
2163 dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
2164
2165 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
2166 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
2167 }
2168
2169 /**
2170 * Reset SEI values at the beginning of the frame.
2171 *
2172 * @param h H.264 context.
2173 */
2174 static void reset_sei(H264Context *h) {
2175 h->sei_recovery_frame_cnt = -1;
2176 h->sei_dpb_output_delay = 0;
2177 h->sei_cpb_removal_delay = -1;
2178 h->sei_buffering_period_present = 0;
2179 }
2180
2181 static av_cold int decode_init(AVCodecContext *avctx){
2182 H264Context *h= avctx->priv_data;
2183 MpegEncContext * const s = &h->s;
2184
2185 MPV_decode_defaults(s);
2186
2187 s->avctx = avctx;
2188 common_init(h);
2189
2190 s->out_format = FMT_H264;
2191 s->workaround_bugs= avctx->workaround_bugs;
2192
2193 // set defaults
2194 // s->decode_mb= ff_h263_decode_mb;
2195 s->quarter_sample = 1;
2196 if(!avctx->has_b_frames)
2197 s->low_delay= 1;
2198
2199 if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
2200 avctx->pix_fmt= PIX_FMT_VDPAU_H264;
2201 else
2202 avctx->pix_fmt= avctx->get_format(avctx, avctx->codec->pix_fmts);
2203 avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
2204 avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
2205
2206 decode_init_vlc();
2207
2208 if(avctx->extradata_size > 0 && avctx->extradata &&
2209 *(char *)avctx->extradata == 1){
2210 h->is_avc = 1;
2211 h->got_avcC = 0;
2212 } else {
2213 h->is_avc = 0;
2214 }
2215
2216 h->thread_context[0] = h;
2217 h->outputed_poc = INT_MIN;
2218 h->prev_poc_msb= 1<<16;
2219 reset_sei(h);
2220 if(avctx->codec_id == CODEC_ID_H264){
2221 if(avctx->ticks_per_frame == 1){
2222 s->avctx->time_base.den *=2;
2223 }
2224 avctx->ticks_per_frame = 2;
2225 }
2226 return 0;
2227 }
2228
2229 static int frame_start(H264Context *h){
2230 MpegEncContext * const s = &h->s;
2231 int i;
2232
2233 if(MPV_frame_start(s, s->avctx) < 0)
2234 return -1;
2235 ff_er_frame_start(s);
2236 /*
2237 * MPV_frame_start uses pict_type to derive key_frame.
2238 * This is incorrect for H.264; IDR markings must be used.
2239 * Zero here; IDR markings per slice in frame or fields are ORed in later.
2240 * See decode_nal_units().
2241 */
2242 s->current_picture_ptr->key_frame= 0;
2243 s->current_picture_ptr->mmco_reset= 0;
2244
2245 assert(s->linesize && s->uvlinesize);
2246
2247 for(i=0; i<16; i++){
2248 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2249 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2250 }
2251 for(i=0; i<4; i++){
2252 h->block_offset[16+i]=
2253 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2254 h->block_offset[24+16+i]=
2255 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2256 }
2257
2258 /* can't be in alloc_tables because linesize isn't known there.
2259 * FIXME: redo bipred weight to not require extra buffer? */
2260 for(i = 0; i < s->avctx->thread_count; i++)
2261 if(!h->thread_context[i]->s.obmc_scratchpad)
2262 h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
2263
2264 /* some macroblocks will be accessed before they're available */
2265 if(FRAME_MBAFF || s->avctx->thread_count > 1)
2266 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
2267
2268 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2269
2270 // We mark the current picture as non-reference after allocating it, so
2271 // that if we break out due to an error it can be released automatically
2272 // in the next MPV_frame_start().
2273 // SVQ3 as well as most other codecs have only last/next/current and thus
2274 // get released even with set reference, besides SVQ3 and others do not
2275 // mark frames as reference later "naturally".
2276 if(s->codec_id != CODEC_ID_SVQ3)
2277 s->current_picture_ptr->reference= 0;
2278
2279 s->current_picture_ptr->field_poc[0]=
2280 s->current_picture_ptr->field_poc[1]= INT_MAX;
2281 assert(s->current_picture_ptr->long_ref==0);
2282
2283 return 0;
2284 }
2285
2286 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
2287 MpegEncContext * const s = &h->s;
2288 int i;
2289 int step = 1;
2290 int offset = 1;
2291 int uvoffset= 1;
2292 int top_idx = 1;
2293 int skiplast= 0;
2294
2295 src_y -= linesize;
2296 src_cb -= uvlinesize;
2297 src_cr -= uvlinesize;
2298
2299 if(!simple && FRAME_MBAFF){
2300 if(s->mb_y&1){
2301 offset = MB_MBAFF ? 1 : 17;
2302 uvoffset= MB_MBAFF ? 1 : 9;
2303 if(!MB_MBAFF){
2304 *(uint64_t*)(h->top_borders[0][s->mb_x]+ 0)= *(uint64_t*)(src_y + 15*linesize);
2305 *(uint64_t*)(h->top_borders[0][s->mb_x]+ 8)= *(uint64_t*)(src_y +8+15*linesize);
2306 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2307 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+7*uvlinesize);
2308 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+7*uvlinesize);
2309 }
2310 }
2311 }else{
2312 if(!MB_MBAFF){
2313 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2314 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2315 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7 ];
2316 h->left_border[34+18]= h->top_borders[0][s->mb_x][16+8+7];
2317 }
2318 skiplast= 1;
2319 }
2320 offset =
2321 uvoffset=
2322 top_idx = MB_MBAFF ? 0 : 1;
2323 }
2324 step= MB_MBAFF ? 2 : 1;
2325 }
2326
2327 // There are two lines saved, the line above the the top macroblock of a pair,
2328 // and the line above the bottom macroblock
2329 h->left_border[offset]= h->top_borders[top_idx][s->mb_x][15];
2330 for(i=1; i<17 - skiplast; i++){
2331 h->left_border[offset+i*step]= src_y[15+i* linesize];
2332 }
2333
2334 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2335 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2336
2337 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2338 h->left_border[uvoffset+34 ]= h->top_borders[top_idx][s->mb_x][16+7];
2339 h->left_border[uvoffset+34+18]= h->top_borders[top_idx][s->mb_x][24+7];
2340 for(i=1; i<9 - skiplast; i++){
2341 h->left_border[uvoffset+34 +i*step]= src_cb[7+i*uvlinesize];
2342 h->left_border[uvoffset+34+18+i*step]= src_cr[7+i*uvlinesize];
2343 }
2344 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2345 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2346 }
2347 }
2348
2349 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
2350 MpegEncContext * const s = &h->s;
2351 int temp8, i;
2352 uint64_t temp64;
2353 int deblock_left;
2354 int deblock_top;
2355 int mb_xy;
2356 int step = 1;
2357 int offset = 1;
2358 int uvoffset= 1;
2359 int top_idx = 1;
2360
2361 if(!simple && FRAME_MBAFF){
2362 if(s->mb_y&1){
2363 offset = MB_MBAFF ? 1 : 17;
2364 uvoffset= MB_MBAFF ? 1 : 9;
2365 }else{
2366 offset =
2367 uvoffset=
2368 top_idx = MB_MBAFF ? 0 : 1;
2369 }
2370 step= MB_MBAFF ? 2 : 1;
2371 }
2372
2373 if(h->deblocking_filter == 2) {
2374 mb_xy = h->mb_xy;
2375 deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
2376 deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
2377 } else {
2378 deblock_left = (s->mb_x > 0);
2379 deblock_top = (s->mb_y > !!MB_FIELD);
2380 }
2381
2382 src_y -= linesize + 1;
2383 src_cb -= uvlinesize + 1;
2384 src_cr -= uvlinesize + 1;
2385
2386 #define XCHG(a,b,t,xchg)\
2387 t= a;\
2388 if(xchg)\
2389 a= b;\
2390 b= t;
2391
2392 if(deblock_left){
2393 for(i = !deblock_top; i<16; i++){
2394 XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, xchg);
2395 }
2396 XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, 1);
2397 }
2398
2399 if(deblock_top){
2400 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2401 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2402 if(s->mb_x+1 < s->mb_width){
2403 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2404 }
2405 }
2406
2407 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2408 if(deblock_left){
2409 for(i = !deblock_top; i<8; i++){
2410 XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, xchg);
2411 XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, xchg);
2412 }
2413 XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, 1);
2414 XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, 1);
2415 }
2416 if(deblock_top){
2417 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2418 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2419 }
2420 }
2421 }
2422
2423 static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
2424 MpegEncContext * const s = &h->s;
2425 const int mb_x= s->mb_x;
2426 const int mb_y= s->mb_y;
2427 const int mb_xy= h->mb_xy;
2428 const int mb_type= s->current_picture.mb_type[mb_xy];
2429 uint8_t *dest_y, *dest_cb, *dest_cr;
2430 int linesize, uvlinesize /*dct_offset*/;
2431 int i;
2432 int *block_offset = &h->block_offset[0];
2433 const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
2434 /* is_h264 should always be true if SVQ3 is disabled. */
2435 const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
2436 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
2437 void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
2438
2439 dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
2440 dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
2441 dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
2442
2443 s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
2444 s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
2445
2446 if (!simple && MB_FIELD) {
2447 linesize = h->mb_linesize = s->linesize * 2;
2448 uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
2449 block_offset = &h->block_offset[24];
2450 if(mb_y&1){ //FIXME move out of this function?
2451 dest_y -= s->linesize*15;
2452 dest_cb-= s->uvlinesize*7;
2453 dest_cr-= s->uvlinesize*7;
2454 }
2455 if(FRAME_MBAFF) {
2456 int list;
2457 for(list=0; list<h->list_count; list++){
2458 if(!USES_LIST(mb_type, list))
2459 continue;
2460 if(IS_16X16(mb_type)){
2461 int8_t *ref = &h->ref_cache[list][scan8[0]];
2462 fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
2463 }else{
2464 for(i=0; i<16; i+=4){
2465 int ref = h->ref_cache[list][scan8[i]];
2466 if(ref >= 0)
2467 fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
2468 }
2469 }
2470 }
2471 }
2472 } else {
2473 linesize = h->mb_linesize = s->linesize;
2474 uvlinesize = h->mb_uvlinesize = s->uvlinesize;
2475 // dct_offset = s->linesize * 16;
2476 }
2477
2478 if (!simple && IS_INTRA_PCM(mb_type)) {
2479 for (i=0; i<16; i++) {
2480 memcpy(dest_y + i* linesize, h->mb + i*8, 16);
2481 }
2482 for (i=0; i<8; i++) {
2483 memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
2484 memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
2485 }
2486 } else {
2487 if(IS_INTRA(mb_type)){
2488 if(h->deblocking_filter)
2489 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
2490
2491 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2492 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2493 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2494 }
2495
2496 if(IS_INTRA4x4(mb_type)){
2497 if(simple || !s->encoding){
2498 if(IS_8x8DCT(mb_type)){
2499 if(transform_bypass){
2500 idct_dc_add =
2501 idct_add = s->dsp.add_pixels8;
2502 }else{
2503 idct_dc_add = s->dsp.h264_idct8_dc_add;
2504 idct_add = s->dsp.h264_idct8_add;
2505 }
2506 for(i=0; i<16; i+=4){
2507 uint8_t * const ptr= dest_y + block_offset[i];
2508 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2509 if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
2510 h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
2511 }else{
2512 const int nnz = h->non_zero_count_cache[ scan8[i] ];
2513 h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
2514 (h->topright_samples_available<<i)&0x4000, linesize);
2515 if(nnz){
2516 if(nnz == 1 && h->mb[i*16])
2517 idct_dc_add(ptr, h->mb + i*16, linesize);
2518 else
2519 idct_add (ptr, h->mb + i*16, linesize);
2520 }
2521 }
2522 }
2523 }else{
2524 if(transform_bypass){
2525 idct_dc_add =
2526 idct_add = s->dsp.add_pixels4;
2527 }else{
2528 idct_dc_add = s->dsp.h264_idct_dc_add;
2529 idct_add = s->dsp.h264_idct_add;
2530 }
2531 for(i=0; i<16; i++){
2532 uint8_t * const ptr= dest_y + block_offset[i];
2533 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2534
2535 if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
2536 h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
2537 }else{
2538 uint8_t *topright;
2539 int nnz, tr;
2540 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2541 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2542 assert(mb_y || linesize <= block_offset[i]);
2543 if(!topright_avail){
2544 tr= ptr[3 - linesize]*0x01010101;
2545 topright= (uint8_t*) &tr;
2546 }else
2547 topright= ptr + 4 - linesize;
2548 }else
2549 topright= NULL;
2550
2551 h->hpc.pred4x4[ dir ](ptr, topright, linesize);
2552 nnz = h->non_zero_count_cache[ scan8[i] ];
2553 if(nnz){
2554 if(is_h264){
2555 if(nnz == 1 && h->mb[i*16])
2556 idct_dc_add(ptr, h->mb + i*16, linesize);
2557 else
2558 idct_add (ptr, h->mb + i*16, linesize);
2559 }else
2560 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2561 }
2562 }
2563 }
2564 }
2565 }
2566 }else{
2567 h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2568 if(is_h264){
2569 if(!transform_bypass)
2570 h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
2571 }else
2572 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2573 }
2574 if(h->deblocking_filter)
2575 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
2576 }else if(is_h264){
2577 hl_motion(h, dest_y, dest_cb, dest_cr,
2578 s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
2579 s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
2580 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2581 }
2582
2583
2584 if(!IS_INTRA4x4(mb_type)){
2585 if(is_h264){
2586 if(IS_INTRA16x16(mb_type)){
2587 if(transform_bypass){
2588 if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
2589 h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize);
2590 }else{
2591 for(i=0; i<16; i++){
2592 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
2593 s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize);
2594 }
2595 }
2596 }else{
2597 s->dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
2598 }
2599 }else if(h->cbp&15){
2600 if(transform_bypass){
2601 const int di = IS_8x8DCT(mb_type) ? 4 : 1;
2602 idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
2603 for(i=0; i<16; i+=di){
2604 if(h->non_zero_count_cache[ scan8[i] ]){
2605 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2606 }
2607 }
2608 }else{
2609 if(IS_8x8DCT(mb_type)){
2610 s->dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
2611 }else{
2612 s->dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
2613 }
2614 }
2615 }
2616 }else{
2617 for(i=0; i<16; i++){
2618 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2619 uint8_t * const ptr= dest_y + block_offset[i];
2620 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2621 }
2622 }
2623 }
2624 }
2625
2626 if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
2627 uint8_t *dest[2] = {dest_cb, dest_cr};
2628 if(transform_bypass){
2629 if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
2630 h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize);
2631 h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize);
2632 }else{
2633 idct_add = s->dsp.add_pixels4;
2634 for(i=16; i<16+8; i++){
2635 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
2636 idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2637 }
2638 }
2639 }else{
2640 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
2641 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
2642 if(is_h264){
2643 idct_add = s->dsp.h264_idct_add;
2644 idct_dc_add = s->dsp.h264_idct_dc_add;
2645 for(i=16; i<16+8; i++){
2646 if(h->non_zero_count_cache[ scan8[i] ])
2647 idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2648 else if(h->mb[i*16])
2649 idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2650 }
2651 }else{
2652 for(i=16; i<16+8; i++){
2653 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2654 uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
2655 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2656 }
2657 }
2658 }
2659 }
2660 }
2661 }
2662 if(h->cbp || IS_INTRA(mb_type))
2663 s->dsp.clear_blocks(h->mb);
2664
2665 if(h->deblocking_filter) {
2666 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
2667 fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
2668 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
2669 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
2670 if (!simple && FRAME_MBAFF) {
2671 filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2672 } else {
2673 filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2674 }
2675 }
2676 }
2677
2678 /**
2679 * Process a macroblock; this case avoids checks for expensive uncommon cases.
2680 */
2681 static void hl_decode_mb_simple(H264Context *h){
2682 hl_decode_mb_internal(h, 1);
2683 }
2684
2685 /**
2686 * Process a macroblock; this handles edge cases, such as interlacing.
2687 */
2688 static void av_noinline hl_decode_mb_complex(H264Context *h){
2689 hl_decode_mb_internal(h, 0);
2690 }
2691
2692 static void hl_decode_mb(H264Context *h){
2693 MpegEncContext * const s = &h->s;
2694 const int mb_xy= h->mb_xy;
2695 const int mb_type= s->current_picture.mb_type[mb_xy];
2696 int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
2697
2698 if (is_complex)
2699 hl_decode_mb_complex(h);
2700 else hl_decode_mb_simple(h);
2701 }
2702
2703 static void pic_as_field(Picture *pic, const int parity){
2704 int i;
2705 for (i = 0; i < 4; ++i) {
2706 if (parity == PICT_BOTTOM_FIELD)
2707 pic->data[i] += pic->linesize[i];
2708 pic->reference = parity;
2709 pic->linesize[i] *= 2;
2710 }
2711 pic->poc= pic->field_poc[parity == PICT_BOTTOM_FIELD];
2712 }
2713
2714 static int split_field_copy(Picture *dest, Picture *src,
2715 int parity, int id_add){
2716 int match = !!(src->reference & parity);
2717
2718 if (match) {
2719 *dest = *src;
2720 if(parity != PICT_FRAME){
2721 pic_as_field(dest, parity);
2722 dest->pic_id *= 2;
2723 dest->pic_id += id_add;
2724 }
2725 }
2726
2727 return match;
2728 }
2729
2730 static int build_def_list(Picture *def, Picture **in, int len, int is_long, int sel){
2731 int i[2]={0};
2732 int index=0;
2733
2734 while(i[0]<len || i[1]<len){
2735 while(i[0]<len && !(in[ i[0] ] && (in[ i[0] ]->reference & sel)))
2736 i[0]++;
2737 while(i[1]<len && !(in[ i[1] ] && (in[ i[1] ]->reference & (sel^3))))
2738 i[1]++;
2739 if(i[0] < len){
2740 in[ i[0] ]->pic_id= is_long ? i[0] : in[ i[0] ]->frame_num;
2741 split_field_copy(&def[index++], in[ i[0]++ ], sel , 1);
2742 }
2743 if(i[1] < len){
2744 in[ i[1] ]->pic_id= is_long ? i[1] : in[ i[1] ]->frame_num;
2745 split_field_copy(&def[index++], in[ i[1]++ ], sel^3, 0);
2746 }
2747 }
2748
2749 return index;
2750 }
2751
2752 static int add_sorted(Picture **sorted, Picture **src, int len, int limit, int dir){
2753 int i, best_poc;
2754 int out_i= 0;
2755
2756 for(;;){
2757 best_poc= dir ? INT_MIN : INT_MAX;
2758
2759 for(i=0; i<len; i++){
2760 const int poc= src[i]->poc;
2761 if(((poc > limit) ^ dir) && ((poc < best_poc) ^ dir)){
2762 best_poc= poc;
2763 sorted[out_i]= src[i];
2764 }
2765 }
2766 if(best_poc == (dir ? INT_MIN : INT_MAX))
2767 break;
2768 limit= sorted[out_i++]->poc - dir;
2769 }
2770 return out_i;
2771 }
2772
2773 /**
2774 * fills the default_ref_list.
2775 */
2776 static int fill_default_ref_list(H264Context *h){
2777 MpegEncContext * const s = &h->s;
2778 int i, len;
2779
2780 if(h->slice_type_nos==FF_B_TYPE){
2781 Picture *sorted[32];
2782 int cur_poc, list;
2783 int lens[2];
2784
2785 if(FIELD_PICTURE)
2786 cur_poc= s->current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
2787 else
2788 cur_poc= s->current_picture_ptr->poc;
2789
2790 for(list= 0; list<2; list++){
2791 len= add_sorted(sorted , h->short_ref, h->short_ref_count, cur_poc, 1^list);
2792 len+=add_sorted(sorted+len, h->short_ref, h->short_ref_count, cur_poc, 0^list);
2793 assert(len<=32);
2794 len= build_def_list(h->default_ref_list[list] , sorted , len, 0, s->picture_structure);
2795 len+=build_def_list(h->default_ref_list[list]+len, h->long_ref, 16 , 1, s->picture_structure);
2796 assert(len<=32);
2797
2798 if(len < h->ref_count[list])
2799 memset(&h->default_ref_list[list][len], 0, sizeof(Picture)*(h->ref_count[list] - len));
2800 lens[list]= len;
2801 }
2802
2803 if(lens[0] == lens[1] && lens[1] > 1){
2804 for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0] && i<lens[0]; i++);
2805 if(i == lens[0])
2806 FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
2807 }
2808 }else{
2809 len = build_def_list(h->default_ref_list[0] , h->short_ref, h->short_ref_count, 0, s->picture_structure);
2810 len+= build_def_list(h->default_ref_list[0]+len, h-> long_ref, 16 , 1, s->picture_structure);
2811 assert(len <= 32);
2812 if(len < h->ref_count[0])
2813 memset(&h->default_ref_list[0][len], 0, sizeof(Picture)*(h->ref_count[0] - len));
2814 }
2815 #ifdef TRACE
2816 for (i=0; i<h->ref_count[0]; i++) {
2817 tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
2818 }
2819 if(h->slice_type_nos==FF_B_TYPE){
2820 for (i=0; i<h->ref_count[1]; i++) {
2821 tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
2822 }
2823 }
2824 #endif
2825 return 0;
2826 }
2827
2828 static void print_short_term(H264Context *h);
2829 static void print_long_term(H264Context *h);
2830
2831 /**
2832 * Extract structure information about the picture described by pic_num in
2833 * the current decoding context (frame or field). Note that pic_num is
2834 * picture number without wrapping (so, 0<=pic_num<max_pic_num).
2835 * @param pic_num picture number for which to extract structure information
2836 * @param structure one of PICT_XXX describing structure of picture
2837 * with pic_num
2838 * @return frame number (short term) or long term index of picture
2839 * described by pic_num
2840 */
2841 static int pic_num_extract(H264Context *h, int pic_num, int *structure){
2842 MpegEncContext * const s = &h->s;
2843
2844 *structure = s->picture_structure;
2845 if(FIELD_PICTURE){
2846 if (!(pic_num & 1))
2847 /* opposite field */
2848 *structure ^= PICT_FRAME;
2849 pic_num >>= 1;
2850 }
2851
2852 return pic_num;
2853 }
2854
2855 static int decode_ref_pic_list_reordering(H264Context *h){
2856 MpegEncContext * const s = &h->s;
2857 int list, index, pic_structure;
2858
2859 print_short_term(h);
2860 print_long_term(h);
2861
2862 for(list=0; list<h->list_count; list++){
2863 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2864
2865 if(get_bits1(&s->gb)){
2866 int pred= h->curr_pic_num;
2867
2868 for(index=0; ; index++){
2869 unsigned int reordering_of_pic_nums_idc= get_ue_golomb_31(&s->gb);
2870 unsigned int pic_id;
2871 int i;
2872 Picture *ref = NULL;
2873
2874 if(reordering_of_pic_nums_idc