440c254bf2ea2a1dc9a85e19523e280e5a9391f3
[libav.git] / libavcodec / h264.c
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 *
21 */
22
23 /**
24 * @file h264.c
25 * H.264 / AVC / MPEG4 part10 codec.
26 * @author Michael Niedermayer <michaelni@gmx.at>
27 */
28
29 #include "common.h"
30 #include "dsputil.h"
31 #include "avcodec.h"
32 #include "mpegvideo.h"
33 #include "h264data.h"
34 #include "golomb.h"
35
36 #include "cabac.h"
37
38 //#undef NDEBUG
39 #include <assert.h>
40
41 #define interlaced_dct interlaced_dct_is_a_bad_name
42 #define mb_intra mb_intra_isnt_initalized_see_mb_type
43
44 #define LUMA_DC_BLOCK_INDEX 25
45 #define CHROMA_DC_BLOCK_INDEX 26
46
47 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
48 #define COEFF_TOKEN_VLC_BITS 8
49 #define TOTAL_ZEROS_VLC_BITS 9
50 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
51 #define RUN_VLC_BITS 3
52 #define RUN7_VLC_BITS 6
53
54 #define MAX_SPS_COUNT 32
55 #define MAX_PPS_COUNT 256
56
57 #define MAX_MMCO_COUNT 66
58
59 /* Compiling in interlaced support reduces the speed
60 * of progressive decoding by about 2%. */
61 #define ALLOW_INTERLACE
62
63 #ifdef ALLOW_INTERLACE
64 #define MB_MBAFF h->mb_mbaff
65 #define MB_FIELD h->mb_field_decoding_flag
66 #define FRAME_MBAFF h->mb_aff_frame
67 #else
68 #define MB_MBAFF 0
69 #define MB_FIELD 0
70 #define FRAME_MBAFF 0
71 #undef IS_INTERLACED
72 #define IS_INTERLACED(mb_type) 0
73 #endif
74
75 /**
76 * Sequence parameter set
77 */
78 typedef struct SPS{
79
80 int profile_idc;
81 int level_idc;
82 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
83 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
84 int poc_type; ///< pic_order_cnt_type
85 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
86 int delta_pic_order_always_zero_flag;
87 int offset_for_non_ref_pic;
88 int offset_for_top_to_bottom_field;
89 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
90 int ref_frame_count; ///< num_ref_frames
91 int gaps_in_frame_num_allowed_flag;
92 int mb_width; ///< frame_width_in_mbs_minus1 + 1
93 int mb_height; ///< frame_height_in_mbs_minus1 + 1
94 int frame_mbs_only_flag;
95 int mb_aff; ///<mb_adaptive_frame_field_flag
96 int direct_8x8_inference_flag;
97 int crop; ///< frame_cropping_flag
98 int crop_left; ///< frame_cropping_rect_left_offset
99 int crop_right; ///< frame_cropping_rect_right_offset
100 int crop_top; ///< frame_cropping_rect_top_offset
101 int crop_bottom; ///< frame_cropping_rect_bottom_offset
102 int vui_parameters_present_flag;
103 AVRational sar;
104 int timing_info_present_flag;
105 uint32_t num_units_in_tick;
106 uint32_t time_scale;
107 int fixed_frame_rate_flag;
108 short offset_for_ref_frame[256]; //FIXME dyn aloc?
109 int bitstream_restriction_flag;
110 int num_reorder_frames;
111 int scaling_matrix_present;
112 uint8_t scaling_matrix4[6][16];
113 uint8_t scaling_matrix8[2][64];
114 }SPS;
115
116 /**
117 * Picture parameter set
118 */
119 typedef struct PPS{
120 int sps_id;
121 int cabac; ///< entropy_coding_mode_flag
122 int pic_order_present; ///< pic_order_present_flag
123 int slice_group_count; ///< num_slice_groups_minus1 + 1
124 int mb_slice_group_map_type;
125 int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
126 int weighted_pred; ///< weighted_pred_flag
127 int weighted_bipred_idc;
128 int init_qp; ///< pic_init_qp_minus26 + 26
129 int init_qs; ///< pic_init_qs_minus26 + 26
130 int chroma_qp_index_offset;
131 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
132 int constrained_intra_pred; ///< constrained_intra_pred_flag
133 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
134 int transform_8x8_mode; ///< transform_8x8_mode_flag
135 uint8_t scaling_matrix4[6][16];
136 uint8_t scaling_matrix8[2][64];
137 }PPS;
138
139 /**
140 * Memory management control operation opcode.
141 */
142 typedef enum MMCOOpcode{
143 MMCO_END=0,
144 MMCO_SHORT2UNUSED,
145 MMCO_LONG2UNUSED,
146 MMCO_SHORT2LONG,
147 MMCO_SET_MAX_LONG,
148 MMCO_RESET,
149 MMCO_LONG,
150 } MMCOOpcode;
151
152 /**
153 * Memory management control operation.
154 */
155 typedef struct MMCO{
156 MMCOOpcode opcode;
157 int short_frame_num;
158 int long_index;
159 } MMCO;
160
161 /**
162 * H264Context
163 */
164 typedef struct H264Context{
165 MpegEncContext s;
166 int nal_ref_idc;
167 int nal_unit_type;
168 #define NAL_SLICE 1
169 #define NAL_DPA 2
170 #define NAL_DPB 3
171 #define NAL_DPC 4
172 #define NAL_IDR_SLICE 5
173 #define NAL_SEI 6
174 #define NAL_SPS 7
175 #define NAL_PPS 8
176 #define NAL_AUD 9
177 #define NAL_END_SEQUENCE 10
178 #define NAL_END_STREAM 11
179 #define NAL_FILLER_DATA 12
180 #define NAL_SPS_EXT 13
181 #define NAL_AUXILIARY_SLICE 19
182 uint8_t *rbsp_buffer;
183 unsigned int rbsp_buffer_size;
184
185 /**
186 * Used to parse AVC variant of h264
187 */
188 int is_avc; ///< this flag is != 0 if codec is avc1
189 int got_avcC; ///< flag used to parse avcC data only once
190 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
191
192 int chroma_qp; //QPc
193
194 int prev_mb_skipped;
195 int next_mb_skipped;
196
197 //prediction stuff
198 int chroma_pred_mode;
199 int intra16x16_pred_mode;
200
201 int top_mb_xy;
202 int left_mb_xy[2];
203
204 int8_t intra4x4_pred_mode_cache[5*8];
205 int8_t (*intra4x4_pred_mode)[8];
206 void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
207 void (*pred8x8l [9+3])(uint8_t *src, int topleft, int topright, int stride);
208 void (*pred8x8 [4+3])(uint8_t *src, int stride);
209 void (*pred16x16[4+3])(uint8_t *src, int stride);
210 unsigned int topleft_samples_available;
211 unsigned int top_samples_available;
212 unsigned int topright_samples_available;
213 unsigned int left_samples_available;
214 uint8_t (*top_borders[2])[16+2*8];
215 uint8_t left_border[2*(17+2*9)];
216
217 /**
218 * non zero coeff count cache.
219 * is 64 if not available.
220 */
221 DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
222 uint8_t (*non_zero_count)[16];
223
224 /**
225 * Motion vector cache.
226 */
227 DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
228 DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
229 #define LIST_NOT_USED -1 //FIXME rename?
230 #define PART_NOT_AVAILABLE -2
231
232 /**
233 * is 1 if the specific list MV&references are set to 0,0,-2.
234 */
235 int mv_cache_clean[2];
236
237 /**
238 * number of neighbors (top and/or left) that used 8x8 dct
239 */
240 int neighbor_transform_size;
241
242 /**
243 * block_offset[ 0..23] for frame macroblocks
244 * block_offset[24..47] for field macroblocks
245 */
246 int block_offset[2*(16+8)];
247
248 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
249 uint32_t *mb2b8_xy;
250 int b_stride; //FIXME use s->b4_stride
251 int b8_stride;
252
253 int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
254 int mb_uvlinesize;
255
256 int emu_edge_width;
257 int emu_edge_height;
258
259 int halfpel_flag;
260 int thirdpel_flag;
261
262 int unknown_svq3_flag;
263 int next_slice_index;
264
265 SPS sps_buffer[MAX_SPS_COUNT];
266 SPS sps; ///< current sps
267
268 PPS pps_buffer[MAX_PPS_COUNT];
269 /**
270 * current pps
271 */
272 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
273
274 uint32_t dequant4_buffer[6][52][16];
275 uint32_t dequant8_buffer[2][52][64];
276 uint32_t (*dequant4_coeff[6])[16];
277 uint32_t (*dequant8_coeff[2])[64];
278 int dequant_coeff_pps; ///< reinit tables when pps changes
279
280 int slice_num;
281 uint8_t *slice_table_base;
282 uint8_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
283 int slice_type;
284 int slice_type_fixed;
285
286 //interlacing specific flags
287 int mb_aff_frame;
288 int mb_field_decoding_flag;
289 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
290
291 int sub_mb_type[4];
292
293 //POC stuff
294 int poc_lsb;
295 int poc_msb;
296 int delta_poc_bottom;
297 int delta_poc[2];
298 int frame_num;
299 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
300 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
301 int frame_num_offset; ///< for POC type 2
302 int prev_frame_num_offset; ///< for POC type 2
303 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
304
305 /**
306 * frame_num for frames or 2*frame_num for field pics.
307 */
308 int curr_pic_num;
309
310 /**
311 * max_frame_num or 2*max_frame_num for field pics.
312 */
313 int max_pic_num;
314
315 //Weighted pred stuff
316 int use_weight;
317 int use_weight_chroma;
318 int luma_log2_weight_denom;
319 int chroma_log2_weight_denom;
320 int luma_weight[2][48];
321 int luma_offset[2][48];
322 int chroma_weight[2][48][2];
323 int chroma_offset[2][48][2];
324 int implicit_weight[48][48];
325
326 //deblock
327 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
328 int slice_alpha_c0_offset;
329 int slice_beta_offset;
330
331 int redundant_pic_count;
332
333 int direct_spatial_mv_pred;
334 int dist_scale_factor[16];
335 int dist_scale_factor_field[32];
336 int map_col_to_list0[2][16];
337 int map_col_to_list0_field[2][32];
338
339 /**
340 * num_ref_idx_l0/1_active_minus1 + 1
341 */
342 int ref_count[2]; ///< counts frames or fields, depending on current mb mode
343 Picture *short_ref[32];
344 Picture *long_ref[32];
345 Picture default_ref_list[2][32];
346 Picture ref_list[2][48]; ///< 0..15: frame refs, 16..47: mbaff field refs
347 Picture *delayed_pic[16]; //FIXME size?
348 Picture *delayed_output_pic;
349
350 /**
351 * memory management control operations buffer.
352 */
353 MMCO mmco[MAX_MMCO_COUNT];
354 int mmco_index;
355
356 int long_ref_count; ///< number of actual long term references
357 int short_ref_count; ///< number of actual short term references
358
359 //data partitioning
360 GetBitContext intra_gb;
361 GetBitContext inter_gb;
362 GetBitContext *intra_gb_ptr;
363 GetBitContext *inter_gb_ptr;
364
365 DECLARE_ALIGNED_8(DCTELEM, mb[16*24]);
366
367 /**
368 * Cabac
369 */
370 CABACContext cabac;
371 uint8_t cabac_state[460];
372 int cabac_init_idc;
373
374 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
375 uint16_t *cbp_table;
376 int cbp;
377 int top_cbp;
378 int left_cbp;
379 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
380 uint8_t *chroma_pred_mode_table;
381 int last_qscale_diff;
382 int16_t (*mvd_table[2])[2];
383 DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
384 uint8_t *direct_table;
385 uint8_t direct_cache[5*8];
386
387 uint8_t zigzag_scan[16];
388 uint8_t zigzag_scan8x8[64];
389 uint8_t zigzag_scan8x8_cavlc[64];
390 uint8_t field_scan[16];
391 uint8_t field_scan8x8[64];
392 uint8_t field_scan8x8_cavlc[64];
393 const uint8_t *zigzag_scan_q0;
394 const uint8_t *zigzag_scan8x8_q0;
395 const uint8_t *zigzag_scan8x8_cavlc_q0;
396 const uint8_t *field_scan_q0;
397 const uint8_t *field_scan8x8_q0;
398 const uint8_t *field_scan8x8_cavlc_q0;
399
400 int x264_build;
401 }H264Context;
402
403 static VLC coeff_token_vlc[4];
404 static VLC chroma_dc_coeff_token_vlc;
405
406 static VLC total_zeros_vlc[15];
407 static VLC chroma_dc_total_zeros_vlc[3];
408
409 static VLC run_vlc[6];
410 static VLC run7_vlc;
411
412 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
413 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
414 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
415 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
416
417 static always_inline uint32_t pack16to32(int a, int b){
418 #ifdef WORDS_BIGENDIAN
419 return (b&0xFFFF) + (a<<16);
420 #else
421 return (a&0xFFFF) + (b<<16);
422 #endif
423 }
424
425 /**
426 * fill a rectangle.
427 * @param h height of the rectangle, should be a constant
428 * @param w width of the rectangle, should be a constant
429 * @param size the size of val (1 or 4), should be a constant
430 */
431 static always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
432 uint8_t *p= (uint8_t*)vp;
433 assert(size==1 || size==4);
434 assert(w<=4);
435
436 w *= size;
437 stride *= size;
438
439 assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
440 assert((stride&(w-1))==0);
441 if(w==2){
442 const uint16_t v= size==4 ? val : val*0x0101;
443 *(uint16_t*)(p + 0*stride)= v;
444 if(h==1) return;
445 *(uint16_t*)(p + 1*stride)= v;
446 if(h==2) return;
447 *(uint16_t*)(p + 2*stride)=
448 *(uint16_t*)(p + 3*stride)= v;
449 }else if(w==4){
450 const uint32_t v= size==4 ? val : val*0x01010101;
451 *(uint32_t*)(p + 0*stride)= v;
452 if(h==1) return;
453 *(uint32_t*)(p + 1*stride)= v;
454 if(h==2) return;
455 *(uint32_t*)(p + 2*stride)=
456 *(uint32_t*)(p + 3*stride)= v;
457 }else if(w==8){
458 //gcc can't optimize 64bit math on x86_32
459 #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
460 const uint64_t v= val*0x0100000001ULL;
461 *(uint64_t*)(p + 0*stride)= v;
462 if(h==1) return;
463 *(uint64_t*)(p + 1*stride)= v;
464 if(h==2) return;
465 *(uint64_t*)(p + 2*stride)=
466 *(uint64_t*)(p + 3*stride)= v;
467 }else if(w==16){
468 const uint64_t v= val*0x0100000001ULL;
469 *(uint64_t*)(p + 0+0*stride)=
470 *(uint64_t*)(p + 8+0*stride)=
471 *(uint64_t*)(p + 0+1*stride)=
472 *(uint64_t*)(p + 8+1*stride)= v;
473 if(h==2) return;
474 *(uint64_t*)(p + 0+2*stride)=
475 *(uint64_t*)(p + 8+2*stride)=
476 *(uint64_t*)(p + 0+3*stride)=
477 *(uint64_t*)(p + 8+3*stride)= v;
478 #else
479 *(uint32_t*)(p + 0+0*stride)=
480 *(uint32_t*)(p + 4+0*stride)= val;
481 if(h==1) return;
482 *(uint32_t*)(p + 0+1*stride)=
483 *(uint32_t*)(p + 4+1*stride)= val;
484 if(h==2) return;
485 *(uint32_t*)(p + 0+2*stride)=
486 *(uint32_t*)(p + 4+2*stride)=
487 *(uint32_t*)(p + 0+3*stride)=
488 *(uint32_t*)(p + 4+3*stride)= val;
489 }else if(w==16){
490 *(uint32_t*)(p + 0+0*stride)=
491 *(uint32_t*)(p + 4+0*stride)=
492 *(uint32_t*)(p + 8+0*stride)=
493 *(uint32_t*)(p +12+0*stride)=
494 *(uint32_t*)(p + 0+1*stride)=
495 *(uint32_t*)(p + 4+1*stride)=
496 *(uint32_t*)(p + 8+1*stride)=
497 *(uint32_t*)(p +12+1*stride)= val;
498 if(h==2) return;
499 *(uint32_t*)(p + 0+2*stride)=
500 *(uint32_t*)(p + 4+2*stride)=
501 *(uint32_t*)(p + 8+2*stride)=
502 *(uint32_t*)(p +12+2*stride)=
503 *(uint32_t*)(p + 0+3*stride)=
504 *(uint32_t*)(p + 4+3*stride)=
505 *(uint32_t*)(p + 8+3*stride)=
506 *(uint32_t*)(p +12+3*stride)= val;
507 #endif
508 }else
509 assert(0);
510 assert(h==4);
511 }
512
513 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
514 MpegEncContext * const s = &h->s;
515 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
516 int topleft_xy, top_xy, topright_xy, left_xy[2];
517 int topleft_type, top_type, topright_type, left_type[2];
518 int left_block[8];
519 int i;
520
521 //FIXME deblocking could skip the intra and nnz parts.
522 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[mb_xy-s->mb_stride]) && !FRAME_MBAFF)
523 return;
524
525 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
526
527 top_xy = mb_xy - s->mb_stride;
528 topleft_xy = top_xy - 1;
529 topright_xy= top_xy + 1;
530 left_xy[1] = left_xy[0] = mb_xy-1;
531 left_block[0]= 0;
532 left_block[1]= 1;
533 left_block[2]= 2;
534 left_block[3]= 3;
535 left_block[4]= 7;
536 left_block[5]= 10;
537 left_block[6]= 8;
538 left_block[7]= 11;
539 if(FRAME_MBAFF){
540 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
541 const int top_pair_xy = pair_xy - s->mb_stride;
542 const int topleft_pair_xy = top_pair_xy - 1;
543 const int topright_pair_xy = top_pair_xy + 1;
544 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
545 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
546 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
547 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
548 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
549 const int bottom = (s->mb_y & 1);
550 tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
551 if (bottom
552 ? !curr_mb_frame_flag // bottom macroblock
553 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
554 ) {
555 top_xy -= s->mb_stride;
556 }
557 if (bottom
558 ? !curr_mb_frame_flag // bottom macroblock
559 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
560 ) {
561 topleft_xy -= s->mb_stride;
562 }
563 if (bottom
564 ? !curr_mb_frame_flag // bottom macroblock
565 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
566 ) {
567 topright_xy -= s->mb_stride;
568 }
569 if (left_mb_frame_flag != curr_mb_frame_flag) {
570 left_xy[1] = left_xy[0] = pair_xy - 1;
571 if (curr_mb_frame_flag) {
572 if (bottom) {
573 left_block[0]= 2;
574 left_block[1]= 2;
575 left_block[2]= 3;
576 left_block[3]= 3;
577 left_block[4]= 8;
578 left_block[5]= 11;
579 left_block[6]= 8;
580 left_block[7]= 11;
581 } else {
582 left_block[0]= 0;
583 left_block[1]= 0;
584 left_block[2]= 1;
585 left_block[3]= 1;
586 left_block[4]= 7;
587 left_block[5]= 10;
588 left_block[6]= 7;
589 left_block[7]= 10;
590 }
591 } else {
592 left_xy[1] += s->mb_stride;
593 //left_block[0]= 0;
594 left_block[1]= 2;
595 left_block[2]= 0;
596 left_block[3]= 2;
597 //left_block[4]= 7;
598 left_block[5]= 10;
599 left_block[6]= 7;
600 left_block[7]= 10;
601 }
602 }
603 }
604
605 h->top_mb_xy = top_xy;
606 h->left_mb_xy[0] = left_xy[0];
607 h->left_mb_xy[1] = left_xy[1];
608 if(for_deblock){
609 topleft_type = 0;
610 topright_type = 0;
611 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
612 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
613 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
614
615 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
616 int list;
617 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
618 for(i=0; i<16; i++)
619 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
620 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
621 if(USES_LIST(mb_type,list)){
622 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
623 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
624 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
625 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
626 dst[0] = src[0];
627 dst[1] = src[1];
628 dst[2] = src[2];
629 dst[3] = src[3];
630 }
631 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
632 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
633 ref += h->b8_stride;
634 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
635 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
636 }else{
637 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
638 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
639 }
640 }
641 }
642 }else{
643 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
644 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
645 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
646 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
647 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
648 }
649
650 if(IS_INTRA(mb_type)){
651 h->topleft_samples_available=
652 h->top_samples_available=
653 h->left_samples_available= 0xFFFF;
654 h->topright_samples_available= 0xEEEA;
655
656 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
657 h->topleft_samples_available= 0xB3FF;
658 h->top_samples_available= 0x33FF;
659 h->topright_samples_available= 0x26EA;
660 }
661 for(i=0; i<2; i++){
662 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
663 h->topleft_samples_available&= 0xDF5F;
664 h->left_samples_available&= 0x5F5F;
665 }
666 }
667
668 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
669 h->topleft_samples_available&= 0x7FFF;
670
671 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
672 h->topright_samples_available&= 0xFBFF;
673
674 if(IS_INTRA4x4(mb_type)){
675 if(IS_INTRA4x4(top_type)){
676 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
677 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
678 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
679 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
680 }else{
681 int pred;
682 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
683 pred= -1;
684 else{
685 pred= 2;
686 }
687 h->intra4x4_pred_mode_cache[4+8*0]=
688 h->intra4x4_pred_mode_cache[5+8*0]=
689 h->intra4x4_pred_mode_cache[6+8*0]=
690 h->intra4x4_pred_mode_cache[7+8*0]= pred;
691 }
692 for(i=0; i<2; i++){
693 if(IS_INTRA4x4(left_type[i])){
694 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
695 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
696 }else{
697 int pred;
698 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
699 pred= -1;
700 else{
701 pred= 2;
702 }
703 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
704 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
705 }
706 }
707 }
708 }
709
710
711 /*
712 0 . T T. T T T T
713 1 L . .L . . . .
714 2 L . .L . . . .
715 3 . T TL . . . .
716 4 L . .L . . . .
717 5 L . .. . . . .
718 */
719 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
720 if(top_type){
721 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
722 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
723 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
724 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
725
726 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
727 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
728
729 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
730 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
731
732 }else{
733 h->non_zero_count_cache[4+8*0]=
734 h->non_zero_count_cache[5+8*0]=
735 h->non_zero_count_cache[6+8*0]=
736 h->non_zero_count_cache[7+8*0]=
737
738 h->non_zero_count_cache[1+8*0]=
739 h->non_zero_count_cache[2+8*0]=
740
741 h->non_zero_count_cache[1+8*3]=
742 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
743
744 }
745
746 for (i=0; i<2; i++) {
747 if(left_type[i]){
748 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
749 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
750 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
751 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
752 }else{
753 h->non_zero_count_cache[3+8*1 + 2*8*i]=
754 h->non_zero_count_cache[3+8*2 + 2*8*i]=
755 h->non_zero_count_cache[0+8*1 + 8*i]=
756 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
757 }
758 }
759
760 if( h->pps.cabac ) {
761 // top_cbp
762 if(top_type) {
763 h->top_cbp = h->cbp_table[top_xy];
764 } else if(IS_INTRA(mb_type)) {
765 h->top_cbp = 0x1C0;
766 } else {
767 h->top_cbp = 0;
768 }
769 // left_cbp
770 if (left_type[0]) {
771 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
772 } else if(IS_INTRA(mb_type)) {
773 h->left_cbp = 0x1C0;
774 } else {
775 h->left_cbp = 0;
776 }
777 if (left_type[0]) {
778 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
779 }
780 if (left_type[1]) {
781 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
782 }
783 }
784
785 #if 1
786 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
787 int list;
788 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
789 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
790 /*if(!h->mv_cache_clean[list]){
791 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
792 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
793 h->mv_cache_clean[list]= 1;
794 }*/
795 continue;
796 }
797 h->mv_cache_clean[list]= 0;
798
799 if(USES_LIST(top_type, list)){
800 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
801 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
802 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
803 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
804 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
805 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
806 h->ref_cache[list][scan8[0] + 0 - 1*8]=
807 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
808 h->ref_cache[list][scan8[0] + 2 - 1*8]=
809 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
810 }else{
811 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
812 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
813 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
814 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
815 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
816 }
817
818 //FIXME unify cleanup or sth
819 if(USES_LIST(left_type[0], list)){
820 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
821 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
822 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
823 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
824 h->ref_cache[list][scan8[0] - 1 + 0*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
825 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1]>>1)];
826 }else{
827 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
828 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
829 h->ref_cache[list][scan8[0] - 1 + 0*8]=
830 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
831 }
832
833 if(USES_LIST(left_type[1], list)){
834 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
835 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
836 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
837 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
838 h->ref_cache[list][scan8[0] - 1 + 2*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
839 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[3]>>1)];
840 }else{
841 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
842 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
843 h->ref_cache[list][scan8[0] - 1 + 2*8]=
844 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
845 assert((!left_type[0]) == (!left_type[1]));
846 }
847
848 if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
849 continue;
850
851 if(USES_LIST(topleft_type, list)){
852 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
853 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
854 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
855 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
856 }else{
857 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
858 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
859 }
860
861 if(USES_LIST(topright_type, list)){
862 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
863 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
864 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
865 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
866 }else{
867 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
868 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
869 }
870
871 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
872 continue;
873
874 h->ref_cache[list][scan8[5 ]+1] =
875 h->ref_cache[list][scan8[7 ]+1] =
876 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
877 h->ref_cache[list][scan8[4 ]] =
878 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
879 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
880 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
881 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
882 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
883 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
884
885 if( h->pps.cabac ) {
886 /* XXX beurk, Load mvd */
887 if(USES_LIST(top_type, list)){
888 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
889 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
890 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
891 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
892 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
893 }else{
894 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
895 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
896 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
897 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
898 }
899 if(USES_LIST(left_type[0], list)){
900 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
901 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
902 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
903 }else{
904 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
905 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
906 }
907 if(USES_LIST(left_type[1], list)){
908 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
909 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
910 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
911 }else{
912 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
913 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
914 }
915 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
916 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
917 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
918 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
919 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
920
921 if(h->slice_type == B_TYPE){
922 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
923
924 if(IS_DIRECT(top_type)){
925 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
926 }else if(IS_8X8(top_type)){
927 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
928 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
929 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
930 }else{
931 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
932 }
933
934 if(IS_DIRECT(left_type[0]))
935 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
936 else if(IS_8X8(left_type[0]))
937 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
938 else
939 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
940
941 if(IS_DIRECT(left_type[1]))
942 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
943 else if(IS_8X8(left_type[1]))
944 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
945 else
946 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
947 }
948 }
949
950 if(FRAME_MBAFF){
951 #define MAP_MVS\
952 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
953 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
954 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
955 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
956 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
957 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
958 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
959 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
960 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
961 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
962 if(MB_FIELD){
963 #define MAP_F2F(idx, mb_type)\
964 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
965 h->ref_cache[list][idx] <<= 1;\
966 h->mv_cache[list][idx][1] /= 2;\
967 h->mvd_cache[list][idx][1] /= 2;\
968 }
969 MAP_MVS
970 #undef MAP_F2F
971 }else{
972 #define MAP_F2F(idx, mb_type)\
973 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
974 h->ref_cache[list][idx] >>= 1;\
975 h->mv_cache[list][idx][1] <<= 1;\
976 h->mvd_cache[list][idx][1] <<= 1;\
977 }
978 MAP_MVS
979 #undef MAP_F2F
980 }
981 }
982 }
983 }
984 #endif
985
986 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
987 }
988
989 static inline void write_back_intra_pred_mode(H264Context *h){
990 MpegEncContext * const s = &h->s;
991 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
992
993 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
994 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
995 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
996 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
997 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
998 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
999 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
1000 }
1001
1002 /**
1003 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
1004 */
1005 static inline int check_intra4x4_pred_mode(H264Context *h){
1006 MpegEncContext * const s = &h->s;
1007 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
1008 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
1009 int i;
1010
1011 if(!(h->top_samples_available&0x8000)){
1012 for(i=0; i<4; i++){
1013 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
1014 if(status<0){
1015 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
1016 return -1;
1017 } else if(status){
1018 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
1019 }
1020 }
1021 }
1022
1023 if(!(h->left_samples_available&0x8000)){
1024 for(i=0; i<4; i++){
1025 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
1026 if(status<0){
1027 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
1028 return -1;
1029 } else if(status){
1030 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
1031 }
1032 }
1033 }
1034
1035 return 0;
1036 } //FIXME cleanup like next
1037
1038 /**
1039 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
1040 */
1041 static inline int check_intra_pred_mode(H264Context *h, int mode){
1042 MpegEncContext * const s = &h->s;
1043 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
1044 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
1045
1046 if(mode < 0 || mode > 6) {
1047 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
1048 return -1;
1049 }
1050
1051 if(!(h->top_samples_available&0x8000)){
1052 mode= top[ mode ];
1053 if(mode<0){
1054 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
1055 return -1;
1056 }
1057 }
1058
1059 if(!(h->left_samples_available&0x8000)){
1060 mode= left[ mode ];
1061 if(mode<0){
1062 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
1063 return -1;
1064 }
1065 }
1066
1067 return mode;
1068 }
1069
1070 /**
1071 * gets the predicted intra4x4 prediction mode.
1072 */
1073 static inline int pred_intra_mode(H264Context *h, int n){
1074 const int index8= scan8[n];
1075 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1076 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1077 const int min= FFMIN(left, top);
1078
1079 tprintf("mode:%d %d min:%d\n", left ,top, min);
1080
1081 if(min<0) return DC_PRED;
1082 else return min;
1083 }
1084
1085 static inline void write_back_non_zero_count(H264Context *h){
1086 MpegEncContext * const s = &h->s;
1087 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1088
1089 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
1090 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
1091 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
1092 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
1093 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
1094 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
1095 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
1096
1097 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
1098 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
1099 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
1100
1101 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
1102 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
1103 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
1104
1105 if(FRAME_MBAFF){
1106 // store all luma nnzs, for deblocking
1107 int v = 0, i;
1108 for(i=0; i<16; i++)
1109 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
1110 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
1111 }
1112 }
1113
1114 /**
1115 * gets the predicted number of non zero coefficients.
1116 * @param n block index
1117 */
1118 static inline int pred_non_zero_count(H264Context *h, int n){
1119 const int index8= scan8[n];
1120 const int left= h->non_zero_count_cache[index8 - 1];
1121 const int top = h->non_zero_count_cache[index8 - 8];
1122 int i= left + top;
1123
1124 if(i<64) i= (i+1)>>1;
1125
1126 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
1127
1128 return i&31;
1129 }
1130
1131 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
1132 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
1133
1134 /* there is no consistent mapping of mvs to neighboring locations that will
1135 * make mbaff happy, so we can't move all this logic to fill_caches */
1136 if(FRAME_MBAFF){
1137 MpegEncContext *s = &h->s;
1138 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
1139 const int16_t *mv;
1140 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
1141 *C = h->mv_cache[list][scan8[0]-2];
1142
1143 if(!MB_FIELD
1144 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
1145 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
1146 if(IS_INTERLACED(mb_types[topright_xy])){
1147 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
1148 const int x4 = X4, y4 = Y4;\
1149 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
1150 if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
1151 return LIST_NOT_USED;\
1152 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
1153 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
1154 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
1155 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
1156
1157 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
1158 }
1159 }
1160 if(topright_ref == PART_NOT_AVAILABLE
1161 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
1162 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
1163 if(!MB_FIELD
1164 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
1165 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
1166 }
1167 if(MB_FIELD
1168 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
1169 && i >= scan8[0]+8){
1170 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
1171 SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
1172 }
1173 }
1174 #undef SET_DIAG_MV
1175 }
1176
1177 if(topright_ref != PART_NOT_AVAILABLE){
1178 *C= h->mv_cache[list][ i - 8 + part_width ];
1179 return topright_ref;
1180 }else{
1181 tprintf("topright MV not available\n");
1182
1183 *C= h->mv_cache[list][ i - 8 - 1 ];
1184 return h->ref_cache[list][ i - 8 - 1 ];
1185 }
1186 }
1187
1188 /**
1189 * gets the predicted MV.
1190 * @param n the block index
1191 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
1192 * @param mx the x component of the predicted motion vector
1193 * @param my the y component of the predicted motion vector
1194 */
1195 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
1196 const int index8= scan8[n];
1197 const int top_ref= h->ref_cache[list][ index8 - 8 ];
1198 const int left_ref= h->ref_cache[list][ index8 - 1 ];
1199 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
1200 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
1201 const int16_t * C;
1202 int diagonal_ref, match_count;
1203
1204 assert(part_width==1 || part_width==2 || part_width==4);
1205
1206 /* mv_cache
1207 B . . A T T T T
1208 U . . L . . , .
1209 U . . L . . . .
1210 U . . L . . , .
1211 . . . L . . . .
1212 */
1213
1214 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
1215 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
1216 tprintf("pred_motion match_count=%d\n", match_count);
1217 if(match_count > 1){ //most common
1218 *mx= mid_pred(A[0], B[0], C[0]);
1219 *my= mid_pred(A[1], B[1], C[1]);
1220 }else if(match_count==1){
1221 if(left_ref==ref){
1222 *mx= A[0];
1223 *my= A[1];
1224 }else if(top_ref==ref){
1225 *mx= B[0];
1226 *my= B[1];
1227 }else{
1228 *mx= C[0];
1229 *my= C[1];
1230 }
1231 }else{
1232 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
1233 *mx= A[0];
1234 *my= A[1];
1235 }else{
1236 *mx= mid_pred(A[0], B[0], C[0]);
1237 *my= mid_pred(A[1], B[1], C[1]);
1238 }
1239 }
1240
1241 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
1242 }
1243
1244 /**
1245 * gets the directionally predicted 16x8 MV.
1246 * @param n the block index
1247 * @param mx the x component of the predicted motion vector
1248 * @param my the y component of the predicted motion vector
1249 */
1250 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1251 if(n==0){
1252 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
1253 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
1254
1255 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
1256
1257 if(top_ref == ref){
1258 *mx= B[0];
1259 *my= B[1];
1260 return;
1261 }
1262 }else{
1263 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
1264 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
1265
1266 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1267
1268 if(left_ref == ref){
1269 *mx= A[0];
1270 *my= A[1];
1271 return;
1272 }
1273 }
1274
1275 //RARE
1276 pred_motion(h, n, 4, list, ref, mx, my);
1277 }
1278
1279 /**
1280 * gets the directionally predicted 8x16 MV.
1281 * @param n the block index
1282 * @param mx the x component of the predicted motion vector
1283 * @param my the y component of the predicted motion vector
1284 */
1285 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1286 if(n==0){
1287 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
1288 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
1289
1290 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1291
1292 if(left_ref == ref){
1293 *mx= A[0];
1294 *my= A[1];
1295 return;
1296 }
1297 }else{
1298 const int16_t * C;
1299 int diagonal_ref;
1300
1301 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1302
1303 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1304
1305 if(diagonal_ref == ref){
1306 *mx= C[0];
1307 *my= C[1];
1308 return;
1309 }
1310 }
1311
1312 //RARE
1313 pred_motion(h, n, 2, list, ref, mx, my);
1314 }
1315
1316 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1317 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1318 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1319
1320 tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1321
1322 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1323 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1324 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1325
1326 *mx = *my = 0;
1327 return;
1328 }
1329
1330 pred_motion(h, 0, 4, 0, 0, mx, my);
1331
1332 return;
1333 }
1334
1335 static inline void direct_dist_scale_factor(H264Context * const h){
1336 const int poc = h->s.current_picture_ptr->poc;
1337 const int poc1 = h->ref_list[1][0].poc;
1338 int i;
1339 for(i=0; i<h->ref_count[0]; i++){
1340 int poc0 = h->ref_list[0][i].poc;
1341 int td = clip(poc1 - poc0, -128, 127);
1342 if(td == 0 /* FIXME || pic0 is a long-term ref */){
1343 h->dist_scale_factor[i] = 256;
1344 }else{
1345 int tb = clip(poc - poc0, -128, 127);
1346 int tx = (16384 + (FFABS(td) >> 1)) / td;
1347 h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1348 }
1349 }
1350 if(FRAME_MBAFF){
1351 for(i=0; i<h->ref_count[0]; i++){
1352 h->dist_scale_factor_field[2*i] =
1353 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
1354 }
1355 }
1356 }
1357 static inline void direct_ref_list_init(H264Context * const h){
1358 MpegEncContext * const s = &h->s;
1359 Picture * const ref1 = &h->ref_list[1][0];
1360 Picture * const cur = s->current_picture_ptr;
1361 int list, i, j;
1362 if(cur->pict_type == I_TYPE)
1363 cur->ref_count[0] = 0;
1364 if(cur->pict_type != B_TYPE)
1365 cur->ref_count[1] = 0;
1366 for(list=0; list<2; list++){
1367 cur->ref_count[list] = h->ref_count[list];
1368 for(j=0; j<h->ref_count[list]; j++)
1369 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1370 }
1371 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1372 return;
1373 for(list=0; list<2; list++){
1374 for(i=0; i<ref1->ref_count[list]; i++){
1375 const int poc = ref1->ref_poc[list][i];
1376 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
1377 for(j=0; j<h->ref_count[list]; j++)
1378 if(h->ref_list[list][j].poc == poc){
1379 h->map_col_to_list0[list][i] = j;
1380 break;
1381 }
1382 }
1383 }
1384 if(FRAME_MBAFF){
1385 for(list=0; list<2; list++){
1386 for(i=0; i<ref1->ref_count[list]; i++){
1387 j = h->map_col_to_list0[list][i];
1388 h->map_col_to_list0_field[list][2*i] = 2*j;
1389 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
1390 }
1391 }
1392 }
1393 }
1394
1395 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1396 MpegEncContext * const s = &h->s;
1397 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1398 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1399 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1400 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1401 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1402 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
1403 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1404 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1405 const int is_b8x8 = IS_8X8(*mb_type);
1406 int sub_mb_type;
1407 int i8, i4;
1408
1409 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
1410 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1411 /* FIXME save sub mb types from previous frames (or derive from MVs)
1412 * so we know exactly what block size to use */
1413 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1414 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1415 }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
1416 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1417 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1418 }else{
1419 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1420 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1421 }
1422 if(!is_b8x8)
1423 *mb_type |= MB_TYPE_DIRECT2;
1424 if(MB_FIELD)
1425 *mb_type |= MB_TYPE_INTERLACED;
1426
1427 tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1428
1429 if(h->direct_spatial_mv_pred){
1430 int ref[2];
1431 int mv[2][2];
1432 int list;
1433
1434 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1435
1436 /* ref = min(neighbors) */
1437 for(list=0; list<2; list++){
1438 int refa = h->ref_cache[list][scan8[0] - 1];
1439 int refb = h->ref_cache[list][scan8[0] - 8];
1440 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1441 if(refc == -2)
1442 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1443 ref[list] = refa;
1444 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1445 ref[list] = refb;
1446 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1447 ref[list] = refc;
1448 if(ref[list] < 0)
1449 ref[list] = -1;
1450 }
1451
1452 if(ref[0] < 0 && ref[1] < 0){
1453 ref[0] = ref[1] = 0;
1454 mv[0][0] = mv[0][1] =
1455 mv[1][0] = mv[1][1] = 0;
1456 }else{
1457 for(list=0; list<2; list++){
1458 if(ref[list] >= 0)
1459 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1460 else
1461 mv[list][0] = mv[list][1] = 0;
1462 }
1463 }
1464
1465 if(ref[1] < 0){
1466 *mb_type &= ~MB_TYPE_P0L1;
1467 sub_mb_type &= ~MB_TYPE_P0L1;
1468 }else if(ref[0] < 0){
1469 *mb_type &= ~MB_TYPE_P0L0;
1470 sub_mb_type &= ~MB_TYPE_P0L0;
1471 }
1472
1473 if(IS_16X16(*mb_type)){
1474 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1475 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1476 if(!IS_INTRA(mb_type_col)
1477 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1478 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1479 && (h->x264_build>33 || !h->x264_build)))){
1480 if(ref[0] > 0)
1481 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1482 else
1483 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1484 if(ref[1] > 0)
1485 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1486 else
1487 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1488 }else{
1489 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1490 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1491 }
1492 }else{
1493 for(i8=0; i8<4; i8++){
1494 const int x8 = i8&1;
1495 const int y8 = i8>>1;
1496
1497 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1498 continue;
1499 h->sub_mb_type[i8] = sub_mb_type;
1500
1501 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1502 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1503 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1504 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1505
1506 /* col_zero_flag */
1507 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1508 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1509 && (h->x264_build>33 || !h->x264_build)))){
1510 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1511 if(IS_SUB_8X8(sub_mb_type)){
1512 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1513 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1514 if(ref[0] == 0)
1515 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1516 if(ref[1] == 0)
1517 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1518 }
1519 }else
1520 for(i4=0; i4<4; i4++){
1521 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1522 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1523 if(ref[0] == 0)
1524 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1525 if(ref[1] == 0)
1526 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1527 }
1528 }
1529 }
1530 }
1531 }
1532 }else{ /* direct temporal mv pred */
1533 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1534 const int *dist_scale_factor = h->dist_scale_factor;
1535
1536 if(FRAME_MBAFF){
1537 if(IS_INTERLACED(*mb_type)){
1538 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1539 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1540 dist_scale_factor = h->dist_scale_factor_field;
1541 }
1542 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1543 /* FIXME assumes direct_8x8_inference == 1 */
1544 const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1545 int mb_types_col[2];
1546 int y_shift;
1547
1548 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
1549 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
1550 | (*mb_type & MB_TYPE_INTERLACED);
1551 sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
1552
1553 if(IS_INTERLACED(*mb_type)){
1554 /* frame to field scaling */
1555 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1556 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1557 if(s->mb_y&1){
1558 l1ref0 -= 2*h->b8_stride;
1559 l1ref1 -= 2*h->b8_stride;
1560 l1mv0 -= 4*h->b_stride;
1561 l1mv1 -= 4*h->b_stride;
1562 }
1563 y_shift = 0;
1564
1565 if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
1566 && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
1567 && !is_b8x8)
1568 *mb_type |= MB_TYPE_16x8;
1569 else
1570 *mb_type |= MB_TYPE_8x8;
1571 }else{
1572 /* field to frame scaling */
1573 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1574 * but in MBAFF, top and bottom POC are equal */
1575 int dy = (s->mb_y&1) ? 1 : 2;
1576 mb_types_col[0] =
1577 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1578 l1ref0 += dy*h->b8_stride;
1579 l1ref1 += dy*h->b8_stride;
1580 l1mv0 += 2*dy*h->b_stride;
1581 l1mv1 += 2*dy*h->b_stride;
1582 y_shift = 2;
1583
1584 if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
1585 && !is_b8x8)
1586 *mb_type |= MB_TYPE_16x16;
1587 else
1588 *mb_type |= MB_TYPE_8x8;
1589 }
1590
1591 for(i8=0; i8<4; i8++){
1592 const int x8 = i8&1;
1593 const int y8 = i8>>1;
1594 int ref0, scale;
1595 const int16_t (*l1mv)[2]= l1mv0;
1596
1597 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1598 continue;
1599 h->sub_mb_type[i8] = sub_mb_type;
1600
1601 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1602 if(IS_INTRA(mb_types_col[y8])){
1603 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1604 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1605 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1606 continue;
1607 }
1608
1609 ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
1610 if(ref0 >= 0)
1611 ref0 = map_col_to_list0[0][ref0*2>>y_shift];
1612 else{
1613 ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
1614 l1mv= l1mv1;
1615 }
1616 scale = dist_scale_factor[ref0];
1617 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1618
1619 {
1620 const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
1621 int my_col = (mv_col[1]<<y_shift)/2;
1622 int mx = (scale * mv_col[0] + 128) >> 8;
1623 int my = (scale * my_col + 128) >> 8;
1624 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1625 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1626 }
1627 }
1628 return;
1629 }
1630 }
1631
1632 /* one-to-one mv scaling */
1633
1634 if(IS_16X16(*mb_type)){
1635 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1636 if(IS_INTRA(mb_type_col)){
1637 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1638 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1639 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1640 }else{
1641 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1642 : map_col_to_list0[1][l1ref1[0]];
1643 const int scale = dist_scale_factor[ref0];
1644 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1645 int mv_l0[2];
1646 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1647 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1648 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1649 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1650 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1651 }
1652 }else{
1653 for(i8=0; i8<4; i8++){
1654 const int x8 = i8&1;
1655 const int y8 = i8>>1;
1656 int ref0, scale;
1657 const int16_t (*l1mv)[2]= l1mv0;
1658
1659 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1660 continue;
1661 h->sub_mb_type[i8] = sub_mb_type;
1662 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1663 if(IS_INTRA(mb_type_col)){
1664 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1665 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1666 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1667 continue;
1668 }
1669
1670 ref0 = l1ref0[x8 + y8*h->b8_stride];
1671 if(ref0 >= 0)
1672 ref0 = map_col_to_list0[0][ref0];
1673 else{
1674 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1675 l1mv= l1mv1;
1676 }
1677 scale = dist_scale_factor[ref0];
1678
1679 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1680 if(IS_SUB_8X8(sub_mb_type)){
1681 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1682 int mx = (scale * mv_col[0] + 128) >> 8;
1683 int my = (scale * mv_col[1] + 128) >> 8;
1684 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1685 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1686 }else
1687 for(i4=0; i4<4; i4++){
1688 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1689 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1690 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1691 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1692 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1693 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1694 }
1695 }
1696 }
1697 }
1698 }
1699
1700 static inline void write_back_motion(H264Context *h, int mb_type){
1701 MpegEncContext * const s = &h->s;
1702 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1703 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1704 int list;
1705
1706 if(!USES_LIST(mb_type, 0))
1707 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1708
1709 for(list=0; list<2; list++){
1710 int y;
1711 if(!USES_LIST(mb_type, list))
1712 continue;
1713
1714 for(y=0; y<4; y++){
1715 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1716 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1717 }
1718 if( h->pps.cabac ) {
1719 if(IS_SKIP(mb_type))
1720 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1721 else
1722 for(y=0; y<4; y++){
1723 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1724 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1725 }
1726 }
1727
1728 {
1729 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1730 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1731 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1732 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1733 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1734 }
1735 }
1736
1737 if(h->slice_type == B_TYPE && h->pps.cabac){
1738 if(IS_8X8(mb_type)){
1739 uint8_t *direct_table = &h->direct_table[b8_xy];
1740 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1741 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1742 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1743 }
1744 }
1745 }
1746
1747 /**
1748 * Decodes a network abstraction layer unit.
1749 * @param consumed is the number of bytes used as input
1750 * @param length is the length of the array
1751 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1752 * @returns decoded bytes, might be src+1 if no escapes
1753 */
1754 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1755 int i, si, di;
1756 uint8_t *dst;
1757
1758 // src[0]&0x80; //forbidden bit
1759 h->nal_ref_idc= src[0]>>5;
1760 h->nal_unit_type= src[0]&0x1F;
1761
1762 src++; length--;
1763 #if 0
1764 for(i=0; i<length; i++)
1765 printf("%2X ", src[i]);
1766 #endif
1767 for(i=0; i+1<length; i+=2){
1768 if(src[i]) continue;
1769 if(i>0 && src[i-1]==0) i--;
1770 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1771 if(src[i+2]!=3){
1772 /* startcode, so we must be past the end */
1773 length=i;
1774 }
1775 break;
1776 }
1777 }
1778
1779 if(i>=length-1){ //no escaped 0
1780 *dst_length= length;
1781 *consumed= length+1; //+1 for the header
1782 return src;
1783 }
1784
1785 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1786 dst= h->rbsp_buffer;
1787
1788 //printf("decoding esc\n");
1789 si=di=0;
1790 while(si<length){
1791 //remove escapes (very rare 1:2^22)
1792 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1793 if(src[si+2]==3){ //escape
1794 dst[di++]= 0;
1795 dst[di++]= 0;
1796 si+=3;
1797 continue;
1798 }else //next start code
1799 break;
1800 }
1801
1802 dst[di++]= src[si++];
1803 }
1804
1805 *dst_length= di;
1806 *consumed= si + 1;//+1 for the header
1807 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1808 return dst;
1809 }
1810
1811 #if 0
1812 /**
1813 * @param src the data which should be escaped
1814 * @param dst the target buffer, dst+1 == src is allowed as a special case
1815 * @param length the length of the src data
1816 * @param dst_length the length of the dst array
1817 * @returns length of escaped data in bytes or -1 if an error occured
1818 */
1819 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1820 int i, escape_count, si, di;
1821 uint8_t *temp;
1822
1823 assert(length>=0);
1824 assert(dst_length>0);
1825
1826 dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1827
1828 if(length==0) return 1;
1829
1830 escape_count= 0;
1831 for(i=0; i<length; i+=2){
1832 if(src[i]) continue;
1833 if(i>0 && src[i-1]==0)
1834 i--;
1835 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1836 escape_count++;
1837 i+=2;
1838 }
1839 }
1840
1841 if(escape_count==0){
1842 if(dst+1 != src)
1843 memcpy(dst+1, src, length);
1844 return length + 1;
1845 }
1846
1847 if(length + escape_count + 1> dst_length)
1848 return -1;
1849
1850 //this should be damn rare (hopefully)
1851
1852 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1853 temp= h->rbsp_buffer;
1854 //printf("encoding esc\n");
1855
1856 si= 0;
1857 di= 0;
1858 while(si < length){
1859 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1860 temp[di++]= 0; si++;
1861 temp[di++]= 0; si++;
1862 temp[di++]= 3;
1863 temp[di++]= src[si++];
1864 }
1865 else
1866 temp[di++]= src[si++];
1867 }
1868 memcpy(dst+1, temp, length+escape_count);
1869
1870 assert(di == length+escape_count);
1871
1872 return di + 1;
1873 }
1874
1875 /**
1876 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1877 */
1878 static void encode_rbsp_trailing(PutBitContext *pb){
1879 int length;
1880 put_bits(pb, 1, 1);
1881 length= (-put_bits_count(pb))&7;
1882 if(length) put_bits(pb, length, 0);
1883 }
1884 #endif
1885
1886 /**
1887 * identifies the exact end of the bitstream
1888 * @return the length of the trailing, or 0 if damaged
1889 */
1890 static int decode_rbsp_trailing(uint8_t *src){
1891 int v= *src;
1892 int r;
1893
1894 tprintf("rbsp trailing %X\n", v);
1895
1896 for(r=1; r<9; r++){
1897 if(v&1) return r;
1898 v>>=1;
1899 }
1900 return 0;
1901 }
1902
1903 /**
1904 * idct tranforms the 16 dc values and dequantize them.
1905 * @param qp quantization parameter
1906 */
1907 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1908 #define stride 16
1909 int i;
1910 int temp[16]; //FIXME check if this is a good idea
1911 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1912 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1913
1914 //memset(block, 64, 2*256);
1915 //return;
1916 for(i=0; i<4; i++){
1917 const int offset= y_offset[i];
1918 const int z0= block[offset+stride*0] + block[offset+stride*4];
1919 const int z1= block[offset+stride*0] - block[offset+stride*4];
1920 const int z2= block[offset+stride*1] - block[offset+stride*5];
1921 const int z3= block[offset+stride*1] + block[offset+stride*5];
1922
1923 temp[4*i+0]= z0+z3;
1924 temp[4*i+1]= z1+z2;
1925 temp[4*i+2]= z1-z2;
1926 temp[4*i+3]= z0-z3;
1927 }
1928
1929 for(i=0; i<4; i++){
1930 const int offset= x_offset[i];
1931 const int z0= temp[4*0+i] + temp[4*2+i];
1932 const int z1= temp[4*0+i] - temp[4*2+i];
1933 const int z2= temp[4*1+i] - temp[4*3+i];
1934 const int z3= temp[4*1+i] + temp[4*3+i];
1935
1936 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1937 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1938 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1939 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1940 }
1941 }
1942
1943 #if 0
1944 /**
1945 * dct tranforms the 16 dc values.
1946 * @param qp quantization parameter ??? FIXME
1947 */
1948 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1949 // const int qmul= dequant_coeff[qp][0];
1950 int i;
1951 int temp[16]; //FIXME check if this is a good idea
1952 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1953 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1954
1955 for(i=0; i<4; i++){
1956 const int offset= y_offset[i];
1957 const int z0= block[offset+stride*0] + block[offset+stride*4];
1958 const int z1= block[offset+stride*0] - block[offset+stride*4];
1959 const int z2= block[offset+stride*1] - block[offset+stride*5];
1960 const int z3= block[offset+stride*1] + block[offset+stride*5];
1961
1962 temp[4*i+0]= z0+z3;
1963 temp[4*i+1]= z1+z2;
1964 temp[4*i+2]= z1-z2;
1965 temp[4*i+3]= z0-z3;
1966 }
1967
1968 for(i=0; i<4; i++){
1969 const int offset= x_offset[i];
1970 const int z0= temp[4*0+i] + temp[4*2+i];
1971 const int z1= temp[4*0+i] - temp[4*2+i];
1972 const int z2= temp[4*1+i] - temp[4*3+i];
1973 const int z3= temp[4*1+i] + temp[4*3+i];
1974
1975 block[stride*0 +offset]= (z0 + z3)>>1;
1976 block[stride*2 +offset]= (z1 + z2)>>1;
1977 block[stride*8 +offset]= (z1 - z2)>>1;
1978 block[stride*10+offset]= (z0 - z3)>>1;
1979 }
1980 }
1981 #endif
1982
1983 #undef xStride
1984 #undef stride
1985
1986 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1987 const int stride= 16*2;
1988 const int xStride= 16;
1989 int a,b,c,d,e;
1990
1991 a= block[stride*0 + xStride*0];
1992 b= block[stride*0 + xStride*1];
1993 c= block[stride*1 + xStride*0];
1994 d= block[stride*1 + xStride*1];
1995
1996 e= a-b;
1997 a= a+b;
1998 b= c-d;
1999 c= c+d;
2000
2001 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
2002 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
2003 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
2004 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
2005 }
2006
2007 #if 0
2008 static void chroma_dc_dct_c(DCTELEM *block){
2009 const int stride= 16*2;
2010 const int xStride= 16;
2011 int a,b,c,d,e;
2012
2013 a= block[stride*0 + xStride*0];
2014 b= block[stride*0 + xStride*1];
2015 c= block[stride*1 + xStride*0];
2016 d= block[stride*1 + xStride*1];
2017
2018 e= a-b;
2019 a= a+b;
2020 b= c-d;
2021 c= c+d;
2022
2023 block[stride*0 + xStride*0]= (a+c);
2024 block[stride*0 + xStride*1]= (e+b);
2025 block[stride*1 + xStride*0]= (a-c);
2026 block[stride*1 + xStride*1]= (e-b);
2027 }
2028 #endif
2029
2030 /**
2031 * gets the chroma qp.
2032 */
2033 static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
2034
2035 return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
2036 }
2037
2038
2039 #if 0
2040 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
2041 int i;
2042 //FIXME try int temp instead of block
2043
2044 for(i=0; i<4; i++){
2045 const int d0= src1[0 + i*stride] - src2[0 + i*stride];
2046 const int d1= src1[1 + i*stride] - src2[1 + i*stride];
2047 const int d2= src1[2 + i*stride] - src2[2 + i*stride];
2048 const int d3= src1[3 + i*stride] - src2[3 + i*stride];
2049 const int z0= d0 + d3;
2050 const int z3= d0 - d3;
2051 const int z1= d1 + d2;
2052 const int z2= d1 - d2;
2053
2054 block[0 + 4*i]= z0 + z1;
2055 block[1 + 4*i]= 2*z3 + z2;
2056 block[2 + 4*i]= z0 - z1;
2057 block[3 + 4*i]= z3 - 2*z2;
2058 }
2059
2060 for(i=0; i<4; i++){
2061 const int z0= block[0*4 + i] + block[3*4 + i];
2062 const int z3= block[0*4 + i] - block[3*4 + i];
2063 const int z1= block[1*4 + i] + block[2*4 + i];
2064 const int z2= block[1*4 + i] - block[2*4 + i];
2065
2066 block[0*4 + i]= z0 + z1;
2067 block[1*4 + i]= 2*z3 + z2;
2068 block[2*4 + i]= z0 - z1;
2069 block[3*4 + i]= z3 - 2*z2;
2070 }
2071 }
2072 #endif
2073
2074 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close
2075 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
2076 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
2077 int i;
2078 const int * const quant_table= quant_coeff[qscale];
2079 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
2080 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
2081 const unsigned int threshold2= (threshold1<<1);
2082 int last_non_zero;
2083
2084 if(seperate_dc){
2085 if(qscale<=18){
2086 //avoid overflows
2087 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
2088 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
2089 const unsigned int dc_threshold2= (dc_threshold1<<1);
2090
2091 int level= block[0]*quant_coeff[qscale+18][0];
2092 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
2093 if(level>0){
2094 level= (dc_bias + level)>>(QUANT_SHIFT-2);
2095 block[0]= level;
2096 }else{
2097 level= (dc_bias - level)>>(QUANT_SHIFT-2);
2098 block[0]= -level;
2099 }
2100 // last_non_zero = i;
2101 }else{
2102 block[0]=0;
2103 }
2104 }else{
2105 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
2106 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
2107 const unsigned int dc_threshold2= (dc_threshold1<<1);
2108
2109 int level= block[0]*quant_table[0];
2110 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
2111 if(level>0){
2112 level= (dc_bias + level)>>(QUANT_SHIFT+1);
2113 block[0]= level;
2114 }else{
2115 level= (dc_bias - level)>>(QUANT_SHIFT+1);
2116 block[0]= -level;
2117 }
2118 // last_non_zero = i;
2119 }else{
2120 block[0]=0;
2121 }
2122 }
2123 last_non_zero= 0;
2124 i=1;
2125 }else{
2126 last_non_zero= -1;
2127 i=0;
2128 }
2129
2130 for(; i<16; i++){
2131 const int j= scantable[i];
2132 int level= block[j]*quant_table[j];
2133
2134 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
2135 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
2136 if(((unsigned)(level+threshold1))>threshold2){
2137 if(level>0){
2138 level= (bias + level)>>QUANT_SHIFT;
2139 block[j]= level;
2140 }else{
2141 level= (bias - level)>>QUANT_SHIFT;
2142 block[j]= -level;
2143 }
2144 last_non_zero = i;
2145 }else{
2146 block[j]=0;
2147 }
2148 }
2149
2150 return last_non_zero;
2151 }
2152
2153 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
2154 const uint32_t a= ((uint32_t*)(src-stride))[0];
2155 ((uint32_t*)(src+0*stride))[0]= a;
2156 ((uint32_t*)(src+1*stride))[0]= a;
2157 ((uint32_t*)(src+2*stride))[0]= a;
2158 ((uint32_t*)(src+3*stride))[0]= a;
2159 }
2160
2161 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
2162 ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
2163 ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
2164 ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
2165 ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
2166 }
2167
2168 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
2169 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
2170 + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
2171
2172 ((uint32_t*)(src+0*stride))[0]=
2173 ((uint32_t*)(src+1*stride))[0]=
2174 ((uint32_t*)(src+2*stride))[0]=
2175 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2176 }
2177
2178 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
2179 const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
2180
2181 ((uint32_t*)(src+0*stride))[0]=
2182 ((uint32_t*)(src+1*stride))[0]=
2183 ((uint32_t*)(src+2*stride))[0]=
2184 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2185 }
2186
2187 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
2188 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
2189
2190 ((uint32_t*)(src+0*stride))[0]=
2191 ((uint32_t*)(src+1*stride))[0]=
2192 ((uint32_t*)(src+2*stride))[0]=
2193 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2194 }
2195
2196 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
2197 ((uint32_t*)(src+0*stride))[0]=
2198 ((uint32_t*)(src+1*stride))[0]=
2199 ((uint32_t*)(src+2*stride))[0]=
2200 ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
2201 }
2202
2203
2204 #define LOAD_TOP_RIGHT_EDGE\
2205 const int t4= topright[0];\
2206 const int t5= topright[1];\
2207 const int t6= topright[2];\
2208 const int t7= topright[3];\
2209
2210 #define LOAD_LEFT_EDGE\
2211 const int l0= src[-1+0*stride];\
2212 const int l1= src[-1+1*stride];\
2213 const int l2= src[-1+2*stride];\
2214 const int l3= src[-1+3*stride];\
2215
2216 #define LOAD_TOP_EDGE\
2217 const int t0= src[ 0-1*stride];\
2218 const int t1= src[ 1-1*stride];\
2219 const int t2= src[ 2-1*stride];\
2220 const int t3= src[ 3-1*stride];\
2221
2222 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
2223 const int lt= src[-1-1*stride];
2224 LOAD_TOP_EDGE
2225 LOAD_LEFT_EDGE
2226
2227 src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
2228 src[0+2*stride]=
2229 src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
2230 src[0+1*stride]=
2231 src[1+2*stride]=
2232 src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
2233 src[0+0*stride]=
2234 src[1+1*stride]=
2235 src[2+2*stride]=
2236 src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
2237 src[1+0*stride]=
2238 src[2+1*stride]=
2239 src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
2240 src[2+0*stride]=
2241 src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2242 src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2243 }
2244
2245 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
2246 LOAD_TOP_EDGE
2247 LOAD_TOP_RIGHT_EDGE
2248 // LOAD_LEFT_EDGE
2249
2250 src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
2251 src[1+0*stride]=
2252 src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
2253 src[2+0*stride]=
2254 src[1+1*stride]=
2255 src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
2256 src[3+0*stride]=
2257 src[2+1*stride]=
2258 src[1+2*stride]=
2259 src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
2260 src[3+1*stride]=
2261 src[2+2*stride]=
2262 src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
2263 src[3+2*stride]=
2264 src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
2265 src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
2266 }
2267
2268 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
2269 const int lt= src[-1-1*stride];
2270 LOAD_TOP_EDGE
2271 LOAD_LEFT_EDGE
2272 const __attribute__((unused)) int unu= l3;
2273
2274 src[0+0*stride]=
2275 src[1+2*stride]=(lt + t0 + 1)>>1;
2276 src[1+0*stride]=
2277 src[2+2*stride]=(t0 + t1 + 1)>>1;
2278 src[2+0*stride]=
2279 src[3+2*stride]=(t1 + t2 + 1)>>1;
2280 src[3+0*stride]=(t2 + t3 + 1)>>1;
2281 src[0+1*stride]=
2282 src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
2283 src[1+1*stride]=
2284 src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
2285 src[2+1*stride]=
2286 src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2287 src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2288 src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2289 src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2290 }
2291
2292 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
2293 LOAD_TOP_EDGE
2294 LOAD_TOP_RIGHT_EDGE
2295 const __attribute__((unused)) int unu= t7;
2296
2297 src[0+0*stride]=(t0 + t1 + 1)>>1;
2298 src[1+0*stride]=
2299 src[0+2*stride]=(t1 + t2 + 1)>>1;
2300 src[2+0*stride]=
2301 src[1+2*stride]=(t2 + t3 + 1)>>1;
2302 src[3+0*stride]=
2303 src[2+2*stride]=(t3 + t4+ 1)>>1;
2304 src[3+2*stride]=(t4 + t5+ 1)>>1;
2305 src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2306 src[1+1*stride]=
2307 src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2308 src[2+1*stride]=
2309 src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
2310 src[3+1*stride]=
2311 src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
2312 src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
2313 }
2314
2315 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
2316 LOAD_LEFT_EDGE
2317
2318 src[0+0*stride]=(l0 + l1 + 1)>>1;
2319 src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2320 src[2+0*stride]=
2321 src[0+1*stride]=(l1 + l2 + 1)>>1;
2322 src[3+0*stride]=
2323 src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2324 src[2+1*stride]=
2325 src[0+2*stride]=(l2 + l3 + 1)>>1;
2326 src[3+1*stride]=
2327 src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
2328 src[3+2*stride]=
2329 src[1+3*stride]=
2330 src[0+3*stride]=
2331 src[2+2*stride]=
2332 src[2+3*stride]=
2333 src[3+3*stride]=l3;
2334 }
2335
2336 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
2337 const int lt= src[-1-1*stride];
2338 LOAD_TOP_EDGE
2339 LOAD_LEFT_EDGE
2340 const __attribute__((unused)) int unu= t3;
2341
2342 src[0+0*stride]=
2343 src[2+1*stride]=(lt + l0 + 1)>>1;
2344 src[1+0*stride]=
2345 src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
2346 src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
2347 src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2348 src[0+1*stride]=
2349 src[2+2*stride]=(l0 + l1 + 1)>>1;
2350 src[1+1*stride]=
2351 src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2352 src[0+2*stride]=
2353 src[2+3*stride]=(l1 + l2+ 1)>>1;
2354 src[1+2*stride]=
2355 src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2356 src[0+3*stride]=(l2 + l3 + 1)>>1;
2357 src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2358 }
2359
2360 static void pred16x16_vertical_c(uint8_t *src, int stride){
2361 int i;
2362 const uint32_t a= ((uint32_t*)(src-stride))[0];
2363 const uint32_t b= ((uint32_t*)(src-stride))[1];
2364 const uint32_t c= ((uint32_t*)(src-stride))[2];
2365 const uint32_t d= ((uint32_t*)(src-stride))[3];
2366
2367 for(i=0; i<16; i++){
2368 ((uint32_t*)(src+i*stride))[0]= a;
2369 ((uint32_t*)(src+i*stride))[1]= b;
2370 ((uint32_t*)(src+i*stride))[2]= c;
2371 ((uint32_t*)(src+i*stride))[3]= d;
2372 }
2373 }
2374
2375 static void pred16x16_horizontal_c(uint8_t *src, int stride){
2376 int i;
2377
2378 for(i=0; i<16; i++){
2379 ((uint32_t*)(src+i*stride))[0]=
2380 ((uint32_t*)(src+i*stride))[1]=
2381 ((uint32_t*)(src+i*stride))[2]=
2382 ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
2383 }
2384 }
2385
2386 static void pred16x16_dc_c(uint8_t *src, int stride){
2387 int i, dc=0;
2388
2389 for(i=0;i<16; i++){
2390 dc+= src[-1+i*stride];
2391 }
2392
2393 for(i=0;i<16; i++){
2394 dc+= src[i-stride];
2395 }
2396
2397 dc= 0x01010101*((dc + 16)>>5);
2398
2399 for(i=0; i<16; i++){
2400 ((uint32_t*)(src+i*stride))[0]=
2401 ((uint32_t*)(src+i*stride))[1]=
2402 ((uint32_t*)(src+i*stride))[2]=
2403 ((uint32_t*)(src+i*stride))[3]= dc;
2404 }
2405 }
2406
2407 static void pred16x16_left_dc_c(uint8_t *src, int stride){
2408 int i, dc=0;
2409
2410 for(i=0;i<16; i++){
2411 dc+= src[-1+i*stride];
2412 }
2413
2414 dc= 0x01010101*((dc + 8)>>4);
2415
2416 for(i=0; i<16; i++){
2417 ((uint32_t*)(src+i*stride))[0]=
2418 ((uint32_t*)(src+i*stride))[1]=
2419 ((uint32_t*)(src+i*stride))[2]=
2420 ((uint32_t*)(src+i*stride))[3]= dc;
2421 }
2422 }
2423
2424 static void pred16x16_top_dc_c(uint8_t *src, int stride){
2425 int i, dc=0;
2426
2427 for(i=0;i<16; i++){
2428 dc+= src[i-stride];
2429 }
2430 dc= 0x01010101*((dc + 8)>>4);
2431
2432 for(i=0; i<16; i++){
2433 ((uint32_t*)(src+i*stride))[0]=
2434 ((uint32_t*)(src+i*stride))[1]=
2435 ((uint32_t*)(src+i*stride))[2]=
2436 ((uint32_t*)(src+i*stride))[3]= dc;
2437 }
2438 }
2439
2440 static void pred16x16_128_dc_c(uint8_t *src, int stride){
2441 int i;
2442
2443 for(i=0; i<16; i++){
2444 ((uint32_t*)(src+i*stride))[0]=
2445 ((uint32_t*)(src+i*stride))[1]=
2446 ((uint32_t*)(src+i*stride))[2]=
2447 ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
2448 }
2449 }
2450
2451 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
2452 int i, j, k;
2453 int a;
2454 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2455 const uint8_t * const src0 = src+7-stride;
2456 const uint8_t *src1 = src+8*stride-1;
2457 const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
2458 int H = src0[1] - src0[-1];
2459 int V = src1[0] - src2[ 0];
2460 for(k=2; k<=8; ++k) {
2461 src1 += stride; src2 -= stride;
2462 H += k*(src0[k] - src0[-k]);
2463 V += k*(src1[0] - src2[ 0]);
2464 }
2465 if(svq3){
2466 H = ( 5*(H/4) ) / 16;
2467 V = ( 5*(V/4) ) / 16;
2468
2469 /* required for 100% accuracy */
2470 i = H; H = V; V = i;
2471 }else{
2472 H = ( 5*H+32 ) >> 6;
2473 V = ( 5*V+32 ) >> 6;
2474 }
2475
2476 a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2477 for(j=16; j>0; --j) {
2478 int b = a;
2479 a += V;
2480 for(i=-16; i<0; i+=4) {
2481 src[16+i] = cm[ (b ) >> 5 ];
2482 src[17+i] = cm[ (b+ H) >> 5 ];
2483 src[18+i] = cm[ (b+2*H) >> 5 ];
2484 src[19+i] = cm[ (b+3*H) >> 5 ];
2485 b += 4*H;
2486 }
2487 src += stride;
2488 }
2489 }
2490
2491 static void pred16x16_plane_c(uint8_t *src, int stride){
2492 pred16x16_plane_compat_c(src, stride, 0);
2493 }
2494
2495 static void pred8x8_vertical_c(uint8_t *src, int stride){
2496 int i;
2497 const uint32_t a= ((uint32_t*)(src-stride))[0];
2498 const uint32_t b= ((uint32_t*)(src-stride))[1];
2499
2500 for(i=0; i<8; i++){
2501 ((uint32_t*)(src+i*stride))[0]= a;
2502 ((uint32_t*)(src+i*stride))[1]= b;
2503 }
2504 }
2505
2506 static void pred8x8_horizontal_c(uint8_t *src, int stride){
2507 int i;
2508
2509 for(i=0; i<8; i++){
2510 ((uint32_t*)(src+i*stride))[0]=
2511 ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2512 }
2513 }
2514
2515 static void pred8x8_128_dc_c(uint8_t *src, int stride){
2516 int i;
2517
2518 for(i=0; i<8; i++){
2519 ((uint32_t*)(src+i*stride))[0]=
2520 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2521 }
2522 }
2523
2524 static void pred8x8_left_dc_c(uint8_t *src, int stride){
2525 int i;
2526 int dc0, dc2;
2527
2528 dc0=dc2=0;
2529 for(i=0;i<4; i++){
2530 dc0+= src[-1+i*stride];
2531 dc2+= src[-1+(i+4)*stride];
2532 }
2533 dc0= 0x01010101*((dc0 + 2)>>2);
2534 dc2= 0x01010101*((dc2 + 2)>>2);
2535
2536 for(i=0; i<4; i++){
2537 ((uint32_t*)(src+i*stride))[0]=
2538 ((uint32_t*)(src+i*stride))[1]= dc0;
2539 }
2540 for(i=4; i<8; i++){
2541 ((uint32_t*)(src+i*stride))[0]=
2542 ((uint32_t*)(src+i*stride))[1]= dc2;
2543 }
2544 }
2545
2546 static void pred8x8_top_dc_c(uint8_t *src, int stride){
2547 int i;
2548 int dc0, dc1;
2549
2550 dc0=dc1=0;
2551 for(i=0;i<4; i++){
2552 dc0+= src[i-stride];
2553 dc1+= src[4+i-stride];
2554 }
2555 dc0= 0x01010101*((dc0 + 2)>>2);
2556 dc1= 0x01010101*((dc1 + 2)>>2);
2557
2558 for(i=0; i<4; i++){
2559 ((uint32_t*)(src+i*stride))[0]= dc0;
2560 ((uint32_t*)(src+i*stride))[1]= dc1;
2561 }
2562 for(i=4; i<8; i++){
2563 ((uint32_t*)(src+i*stride))[0]= dc0;
2564 ((uint32_t*)(src+i*stride))[1]= dc1;
2565 }
2566 }
2567
2568
2569 static void pred8x8_dc_c(uint8_t *src, int stride){
2570 int i;
2571 int dc0, dc1, dc2, dc3;
2572
2573 dc0=dc1=dc2=0;
2574 for(i=0;i<4; i++){
2575 dc0+= src[-1+i*stride] + src[i-stride];
2576 dc1+= src[4+i-stride];
2577 dc2+= src[-1+(i+4)*stride];
2578 }
2579 dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2580 dc0= 0x01010101*((dc0 + 4)>>3);
2581 dc1= 0x01010101*((dc1 + 2)>>2);
2582 dc2= 0x01010101*((dc2 + 2)>>2);
2583
2584 for(i=0; i<4; i++){
2585 ((uint32_t*)(src+i*stride))[0]= dc0;
2586 ((uint32_t*)(src+i*stride))[1]= dc1;
2587 }
2588 for(i=4; i<8; i++){
2589 ((uint32_t*)(src+i*stride))[0]= dc2;
2590 ((uint32_t*)(src+i*stride))[1]= dc3;
2591 }
2592 }
2593
2594 static void pred8x8_plane_c(uint8_t *src, int stride){
2595 int j, k;
2596 int a;
2597 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2598 const uint8_t * const src0 = src+3-stride;
2599 const uint8_t *src1 = src+4*stride-1;
2600 const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
2601 int H = src0[1] - src0[-1];
2602 int V = src1[0] - src2[ 0];
2603 for(k=2; k<=4; ++k) {
2604 src1 += stride; src2 -= stride;
2605 H += k*(src0[k] - src0[-k]);
2606 V += k*(src1[0] - src2[ 0]);
2607 }
2608 H = ( 17*H+16 ) >> 5;
2609 V = ( 17*V+16 ) >> 5;
2610
2611 a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2612 for(j=8; j>0; --j) {
2613 int b = a;
2614 a += V;
2615 src[0] = cm[ (b ) >> 5 ];
2616 src[1] = cm[ (b+ H) >> 5 ];
2617 src[2] = cm[ (b+2*H) >> 5 ];
2618 src[3] = cm[ (b+3*H) >> 5 ];
2619 src[4] = cm[ (b+4*H) >> 5 ];
2620 src[5] = cm[ (b+5*H) >> 5 ];
2621 src[6] = cm[ (b+6*H) >> 5 ];
2622 src[7] = cm[ (b+7*H) >> 5 ];
2623 src += stride;
2624 }
2625 }
2626
2627 #define SRC(x,y) src[(x)+(y)*stride]
2628 #define PL(y) \
2629 const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
2630 #define PREDICT_8x8_LOAD_LEFT \
2631 const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
2632 + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
2633 PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
2634 const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
2635
2636 #define PT(x) \
2637 const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2638 #define PREDICT_8x8_LOAD_TOP \
2639 const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
2640 + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
2641 PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
2642 const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
2643 + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
2644
2645 #define PTR(x) \
2646 t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2647 #define PREDICT_8x8_LOAD_TOPRIGHT \
2648 int t8, t9, t10, t11, t12, t13, t14, t15; \
2649 if(has_topright) { \
2650 PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
2651 t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
2652 } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
2653
2654 #define PREDICT_8x8_LOAD_TOPLEFT \
2655 const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
2656
2657 #define PREDICT_8x8_DC(v) \
2658 int y; \
2659 for( y = 0; y < 8; y++ ) { \
2660 ((uint32_t*)src)[0] = \
2661 ((uint32_t*)src)[1] = v; \
2662 src += stride; \
2663 }
2664
2665 static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2666 {
2667 PREDICT_8x8_DC(0x80808080);
2668 }
2669 static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2670 {
2671 PREDICT_8x8_LOAD_LEFT;
2672 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
2673 PREDICT_8x8_DC(dc);
2674 }
2675 static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2676 {
2677 PREDICT_8x8_LOAD_TOP;
2678 const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
2679 PREDICT_8x8_DC(dc);
2680 }
2681 static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2682 {
2683 PREDICT_8x8_LOAD_LEFT;
2684 PREDICT_8x8_LOAD_TOP;
2685 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
2686 +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
2687 PREDICT_8x8_DC(dc);
2688 }
2689 static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2690 {
2691 PREDICT_8x8_LOAD_LEFT;
2692 #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
2693 ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
2694 ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
2695 #undef ROW
2696 }
2697 static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2698 {
2699 int y;
2700 PREDICT_8x8_LOAD_TOP;
2701 src[0] = t0;
2702 src[1] = t1;
2703 src[2] = t2;
2704 src[3] = t3;
2705 src[4] = t4;
2706 src[5] = t5;
2707 src[6] = t6;
2708 src[7] = t7;
2709 for( y = 1; y < 8; y++ )
2710 *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
2711 }
2712 static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2713 {
2714 PREDICT_8x8_LOAD_TOP;
2715 PREDICT_8x8_LOAD_TOPRIGHT;
2716 SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
2717 SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
2718 SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
2719 SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
2720 SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
2721 SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2722 SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
2723 SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
2724 SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
2725 SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
2726 SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
2727 SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
2728 SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
2729 SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
2730 SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
2731 }
2732 static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2733 {
2734 PREDICT_8x8_LOAD_TOP;
2735 PREDICT_8x8_LOAD_LEFT;
2736 PREDICT_8x8_LOAD_TOPLEFT;
2737 SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
2738 SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2739 SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
2740 SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2741 SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
2742 SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2743 SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
2744 SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
2745 SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
2746 SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
2747 SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
2748 SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
2749 SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
2750 SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2751 SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2752
2753 }
2754 static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2755 {
2756 PREDICT_8x8_LOAD_TOP;
2757 PREDICT_8x8_LOAD_LEFT;
2758 PREDICT_8x8_LOAD_TOPLEFT;
2759 SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
2760 SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2761 SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
2762 SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2763 SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
2764 SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2765 SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
2766 SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
2767 SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
2768 SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
2769 SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
2770 SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
2771 SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
2772 SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
2773 SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
2774 SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
2775 SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
2776 SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
2777 SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
2778 SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
2779 SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2780 SRC(7,0)= (t6 + t7 + 1) >> 1;
2781 }
2782 static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2783 {
2784 PREDICT_8x8_LOAD_TOP;
2785 PREDICT_8x8_LOAD_LEFT;
2786 PREDICT_8x8_LOAD_TOPLEFT;
2787 SRC(0,7)= (l6 + l7 + 1) >> 1;
2788 SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
2789 SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
2790 SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
2791 SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
2792 SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
2793 SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
2794 SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
2795 SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
2796 SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
2797 SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
2798 SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
2799 SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
2800 SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
2801 SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
2802 SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
2803 SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
2804 SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
2805 SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
2806 SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
2807 SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
2808 SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
2809 }
2810 static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2811 {
2812 PREDICT_8x8_LOAD_TOP;
2813 PREDICT_8x8_LOAD_TOPRIGHT;
2814 SRC(0,0)= (t0 + t1 + 1) >> 1;
2815 SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
2816 SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
2817 SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
2818 SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
2819 SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
2820 SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
2821 SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
2822 SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
2823 SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2824 SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
2825 SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2826 SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
2827 SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
2828 SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
2829 SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
2830 SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
2831 SRC