4d03945cd2e6aa6a305ce9f28a3b02799e1b9424
[libav.git] / libavcodec / h264.c
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 */
20
21 /**
22 * @file h264.c
23 * H.264 / AVC / MPEG4 part10 codec.
24 * @author Michael Niedermayer <michaelni@gmx.at>
25 */
26
27 #include "common.h"
28 #include "dsputil.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "h264data.h"
32 #include "golomb.h"
33
34 #include "cabac.h"
35
36 #undef NDEBUG
37 #include <assert.h>
38
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_isnt_initalized_see_mb_type
41
42 #define LUMA_DC_BLOCK_INDEX 25
43 #define CHROMA_DC_BLOCK_INDEX 26
44
45 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46 #define COEFF_TOKEN_VLC_BITS 8
47 #define TOTAL_ZEROS_VLC_BITS 9
48 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49 #define RUN_VLC_BITS 3
50 #define RUN7_VLC_BITS 6
51
52 #define MAX_SPS_COUNT 32
53 #define MAX_PPS_COUNT 256
54
55 #define MAX_MMCO_COUNT 66
56
57 /**
58 * Sequence parameter set
59 */
60 typedef struct SPS{
61
62 int profile_idc;
63 int level_idc;
64 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
65 int poc_type; ///< pic_order_cnt_type
66 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
67 int delta_pic_order_always_zero_flag;
68 int offset_for_non_ref_pic;
69 int offset_for_top_to_bottom_field;
70 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
71 int ref_frame_count; ///< num_ref_frames
72 int gaps_in_frame_num_allowed_flag;
73 int mb_width; ///< frame_width_in_mbs_minus1 + 1
74 int mb_height; ///< frame_height_in_mbs_minus1 + 1
75 int frame_mbs_only_flag;
76 int mb_aff; ///<mb_adaptive_frame_field_flag
77 int direct_8x8_inference_flag;
78 int crop; ///< frame_cropping_flag
79 int crop_left; ///< frame_cropping_rect_left_offset
80 int crop_right; ///< frame_cropping_rect_right_offset
81 int crop_top; ///< frame_cropping_rect_top_offset
82 int crop_bottom; ///< frame_cropping_rect_bottom_offset
83 int vui_parameters_present_flag;
84 AVRational sar;
85 short offset_for_ref_frame[256]; //FIXME dyn aloc?
86 }SPS;
87
88 /**
89 * Picture parameter set
90 */
91 typedef struct PPS{
92 int sps_id;
93 int cabac; ///< entropy_coding_mode_flag
94 int pic_order_present; ///< pic_order_present_flag
95 int slice_group_count; ///< num_slice_groups_minus1 + 1
96 int mb_slice_group_map_type;
97 int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
98 int weighted_pred; ///< weighted_pred_flag
99 int weighted_bipred_idc;
100 int init_qp; ///< pic_init_qp_minus26 + 26
101 int init_qs; ///< pic_init_qs_minus26 + 26
102 int chroma_qp_index_offset;
103 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
104 int constrained_intra_pred; ///< constrained_intra_pred_flag
105 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
106 }PPS;
107
108 /**
109 * Memory management control operation opcode.
110 */
111 typedef enum MMCOOpcode{
112 MMCO_END=0,
113 MMCO_SHORT2UNUSED,
114 MMCO_LONG2UNUSED,
115 MMCO_SHORT2LONG,
116 MMCO_SET_MAX_LONG,
117 MMCO_RESET,
118 MMCO_LONG,
119 } MMCOOpcode;
120
121 /**
122 * Memory management control operation.
123 */
124 typedef struct MMCO{
125 MMCOOpcode opcode;
126 int short_frame_num;
127 int long_index;
128 } MMCO;
129
130 /**
131 * H264Context
132 */
133 typedef struct H264Context{
134 MpegEncContext s;
135 int nal_ref_idc;
136 int nal_unit_type;
137 #define NAL_SLICE 1
138 #define NAL_DPA 2
139 #define NAL_DPB 3
140 #define NAL_DPC 4
141 #define NAL_IDR_SLICE 5
142 #define NAL_SEI 6
143 #define NAL_SPS 7
144 #define NAL_PPS 8
145 #define NAL_PICTURE_DELIMITER 9
146 #define NAL_FILTER_DATA 10
147 uint8_t *rbsp_buffer;
148 int rbsp_buffer_size;
149
150 int chroma_qp; //QPc
151
152 int prev_mb_skiped; //FIXME remove (IMHO not used)
153
154 //prediction stuff
155 int chroma_pred_mode;
156 int intra16x16_pred_mode;
157
158 int8_t intra4x4_pred_mode_cache[5*8];
159 int8_t (*intra4x4_pred_mode)[8];
160 void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
161 void (*pred8x8 [4+3])(uint8_t *src, int stride);
162 void (*pred16x16[4+3])(uint8_t *src, int stride);
163 unsigned int topleft_samples_available;
164 unsigned int top_samples_available;
165 unsigned int topright_samples_available;
166 unsigned int left_samples_available;
167 uint8_t (*top_border)[16+2*8];
168 uint8_t left_border[17+2*9];
169
170 /**
171 * non zero coeff count cache.
172 * is 64 if not available.
173 */
174 uint8_t non_zero_count_cache[6*8];
175 uint8_t (*non_zero_count)[16];
176
177 /**
178 * Motion vector cache.
179 */
180 int16_t mv_cache[2][5*8][2];
181 int8_t ref_cache[2][5*8];
182 #define LIST_NOT_USED -1 //FIXME rename?
183 #define PART_NOT_AVAILABLE -2
184
185 /**
186 * is 1 if the specific list MV&references are set to 0,0,-2.
187 */
188 int mv_cache_clean[2];
189
190 int block_offset[16+8];
191 int chroma_subblock_offset[16]; //FIXME remove
192
193 uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
194 uint16_t *mb2b8_xy;
195 int b_stride;
196 int b8_stride;
197
198 int halfpel_flag;
199 int thirdpel_flag;
200
201 int unknown_svq3_flag;
202 int next_slice_index;
203
204 SPS sps_buffer[MAX_SPS_COUNT];
205 SPS sps; ///< current sps
206
207 PPS pps_buffer[MAX_PPS_COUNT];
208 /**
209 * current pps
210 */
211 PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
212
213 int slice_num;
214 uint8_t *slice_table_base;
215 uint8_t *slice_table; ///< slice_table_base + mb_stride + 1
216 int slice_type;
217 int slice_type_fixed;
218
219 //interlacing specific flags
220 int mb_field_decoding_flag;
221
222 int sub_mb_type[4];
223
224 //POC stuff
225 int poc_lsb;
226 int poc_msb;
227 int delta_poc_bottom;
228 int delta_poc[2];
229 int frame_num;
230 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
231 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
232 int frame_num_offset; ///< for POC type 2
233 int prev_frame_num_offset; ///< for POC type 2
234 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
235
236 /**
237 * frame_num for frames or 2*frame_num for field pics.
238 */
239 int curr_pic_num;
240
241 /**
242 * max_frame_num or 2*max_frame_num for field pics.
243 */
244 int max_pic_num;
245
246 //Weighted pred stuff
247 int luma_log2_weight_denom;
248 int chroma_log2_weight_denom;
249 int luma_weight[2][16];
250 int luma_offset[2][16];
251 int chroma_weight[2][16][2];
252 int chroma_offset[2][16][2];
253
254 //deblock
255 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
256 int slice_alpha_c0_offset;
257 int slice_beta_offset;
258
259 int redundant_pic_count;
260
261 int direct_spatial_mv_pred;
262
263 /**
264 * num_ref_idx_l0/1_active_minus1 + 1
265 */
266 int ref_count[2];// FIXME split for AFF
267 Picture *short_ref[16];
268 Picture *long_ref[16];
269 Picture default_ref_list[2][32];
270 Picture ref_list[2][32]; //FIXME size?
271 Picture field_ref_list[2][32]; //FIXME size?
272
273 /**
274 * memory management control operations buffer.
275 */
276 MMCO mmco[MAX_MMCO_COUNT];
277 int mmco_index;
278
279 int long_ref_count; ///< number of actual long term references
280 int short_ref_count; ///< number of actual short term references
281
282 //data partitioning
283 GetBitContext intra_gb;
284 GetBitContext inter_gb;
285 GetBitContext *intra_gb_ptr;
286 GetBitContext *inter_gb_ptr;
287
288 DCTELEM mb[16*24] __align8;
289
290 /**
291 * Cabac
292 */
293 CABACContext cabac;
294 uint8_t cabac_state[399];
295 int cabac_init_idc;
296
297 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
298 uint16_t *cbp_table;
299 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
300 uint8_t *chroma_pred_mode_table;
301 int last_qscale_diff;
302 int16_t (*mvd_table[2])[2];
303 int16_t mvd_cache[2][5*8][2];
304
305 }H264Context;
306
307 static VLC coeff_token_vlc[4];
308 static VLC chroma_dc_coeff_token_vlc;
309
310 static VLC total_zeros_vlc[15];
311 static VLC chroma_dc_total_zeros_vlc[3];
312
313 static VLC run_vlc[6];
314 static VLC run7_vlc;
315
316 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
317 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
318 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr);
319
320 static inline uint32_t pack16to32(int a, int b){
321 #ifdef WORDS_BIGENDIAN
322 return (b&0xFFFF) + (a<<16);
323 #else
324 return (a&0xFFFF) + (b<<16);
325 #endif
326 }
327
328 /**
329 * fill a rectangle.
330 * @param h height of the recatangle, should be a constant
331 * @param w width of the recatangle, should be a constant
332 * @param size the size of val (1 or 4), should be a constant
333 */
334 static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
335 uint8_t *p= (uint8_t*)vp;
336 assert(size==1 || size==4);
337
338 w *= size;
339 stride *= size;
340
341 //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
342 if(w==2 && h==2){
343 *(uint16_t*)(p + 0)=
344 *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
345 }else if(w==2 && h==4){
346 *(uint16_t*)(p + 0*stride)=
347 *(uint16_t*)(p + 1*stride)=
348 *(uint16_t*)(p + 2*stride)=
349 *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
350 }else if(w==4 && h==1){
351 *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
352 }else if(w==4 && h==2){
353 *(uint32_t*)(p + 0*stride)=
354 *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
355 }else if(w==4 && h==4){
356 *(uint32_t*)(p + 0*stride)=
357 *(uint32_t*)(p + 1*stride)=
358 *(uint32_t*)(p + 2*stride)=
359 *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
360 }else if(w==8 && h==1){
361 *(uint32_t*)(p + 0)=
362 *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
363 }else if(w==8 && h==2){
364 *(uint32_t*)(p + 0 + 0*stride)=
365 *(uint32_t*)(p + 4 + 0*stride)=
366 *(uint32_t*)(p + 0 + 1*stride)=
367 *(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101;
368 }else if(w==8 && h==4){
369 *(uint64_t*)(p + 0*stride)=
370 *(uint64_t*)(p + 1*stride)=
371 *(uint64_t*)(p + 2*stride)=
372 *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
373 }else if(w==16 && h==2){
374 *(uint64_t*)(p + 0+0*stride)=
375 *(uint64_t*)(p + 8+0*stride)=
376 *(uint64_t*)(p + 0+1*stride)=
377 *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
378 }else if(w==16 && h==4){
379 *(uint64_t*)(p + 0+0*stride)=
380 *(uint64_t*)(p + 8+0*stride)=
381 *(uint64_t*)(p + 0+1*stride)=
382 *(uint64_t*)(p + 8+1*stride)=
383 *(uint64_t*)(p + 0+2*stride)=
384 *(uint64_t*)(p + 8+2*stride)=
385 *(uint64_t*)(p + 0+3*stride)=
386 *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
387 }else
388 assert(0);
389 }
390
391 static inline void fill_caches(H264Context *h, int mb_type){
392 MpegEncContext * const s = &h->s;
393 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
394 int topleft_xy, top_xy, topright_xy, left_xy[2];
395 int topleft_type, top_type, topright_type, left_type[2];
396 int left_block[4];
397 int i;
398
399 //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it
400
401 if(h->sps.mb_aff){
402 //FIXME
403 topleft_xy = 0; /* avoid warning */
404 top_xy = 0; /* avoid warning */
405 topright_xy = 0; /* avoid warning */
406 }else{
407 topleft_xy = mb_xy-1 - s->mb_stride;
408 top_xy = mb_xy - s->mb_stride;
409 topright_xy= mb_xy+1 - s->mb_stride;
410 left_xy[0] = mb_xy-1;
411 left_xy[1] = mb_xy-1;
412 left_block[0]= 0;
413 left_block[1]= 1;
414 left_block[2]= 2;
415 left_block[3]= 3;
416 }
417
418 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
419 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
420 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
421 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
422 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
423
424 if(IS_INTRA(mb_type)){
425 h->topleft_samples_available=
426 h->top_samples_available=
427 h->left_samples_available= 0xFFFF;
428 h->topright_samples_available= 0xEEEA;
429
430 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
431 h->topleft_samples_available= 0xB3FF;
432 h->top_samples_available= 0x33FF;
433 h->topright_samples_available= 0x26EA;
434 }
435 for(i=0; i<2; i++){
436 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
437 h->topleft_samples_available&= 0xDF5F;
438 h->left_samples_available&= 0x5F5F;
439 }
440 }
441
442 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
443 h->topleft_samples_available&= 0x7FFF;
444
445 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
446 h->topright_samples_available&= 0xFBFF;
447
448 if(IS_INTRA4x4(mb_type)){
449 if(IS_INTRA4x4(top_type)){
450 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
451 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
452 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
453 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
454 }else{
455 int pred;
456 if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
457 pred= 2;
458 else{
459 pred= -1;
460 }
461 h->intra4x4_pred_mode_cache[4+8*0]=
462 h->intra4x4_pred_mode_cache[5+8*0]=
463 h->intra4x4_pred_mode_cache[6+8*0]=
464 h->intra4x4_pred_mode_cache[7+8*0]= pred;
465 }
466 for(i=0; i<2; i++){
467 if(IS_INTRA4x4(left_type[i])){
468 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
469 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
470 }else{
471 int pred;
472 if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
473 pred= 2;
474 else{
475 pred= -1;
476 }
477 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
478 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
479 }
480 }
481 }
482 }
483
484
485 /*
486 0 . T T. T T T T
487 1 L . .L . . . .
488 2 L . .L . . . .
489 3 . T TL . . . .
490 4 L . .L . . . .
491 5 L . .. . . . .
492 */
493 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
494 if(top_type){
495 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
496 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
497 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
498 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
499
500 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
501 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
502
503 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
504 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
505 }else{
506 h->non_zero_count_cache[4+8*0]=
507 h->non_zero_count_cache[5+8*0]=
508 h->non_zero_count_cache[6+8*0]=
509 h->non_zero_count_cache[7+8*0]=
510
511 h->non_zero_count_cache[1+8*0]=
512 h->non_zero_count_cache[2+8*0]=
513
514 h->non_zero_count_cache[1+8*3]=
515 h->non_zero_count_cache[2+8*3]= 64;
516 }
517
518 if(left_type[0]){
519 h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
520 h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
521 h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
522 h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
523 }else{
524 h->non_zero_count_cache[3+8*1]=
525 h->non_zero_count_cache[3+8*2]=
526 h->non_zero_count_cache[0+8*1]=
527 h->non_zero_count_cache[0+8*4]= 64;
528 }
529
530 if(left_type[1]){
531 h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
532 h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
533 h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
534 h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
535 }else{
536 h->non_zero_count_cache[3+8*3]=
537 h->non_zero_count_cache[3+8*4]=
538 h->non_zero_count_cache[0+8*2]=
539 h->non_zero_count_cache[0+8*5]= 64;
540 }
541
542 #if 1
543 if(IS_INTER(mb_type)){
544 int list;
545 for(list=0; list<2; list++){
546 if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
547 /*if(!h->mv_cache_clean[list]){
548 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
549 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
550 h->mv_cache_clean[list]= 1;
551 }*/
552 continue; //FIXME direct mode ...
553 }
554 h->mv_cache_clean[list]= 0;
555
556 if(IS_INTER(topleft_type)){
557 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
558 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
559 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
560 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
561 }else{
562 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
563 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
564 }
565
566 if(IS_INTER(top_type)){
567 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
568 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
569 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
570 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
571 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
572 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
573 h->ref_cache[list][scan8[0] + 0 - 1*8]=
574 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
575 h->ref_cache[list][scan8[0] + 2 - 1*8]=
576 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
577 }else{
578 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
579 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
580 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
581 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
582 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
583 }
584
585 if(IS_INTER(topright_type)){
586 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
587 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
588 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
589 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
590 }else{
591 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
592 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
593 }
594
595 //FIXME unify cleanup or sth
596 if(IS_INTER(left_type[0])){
597 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
598 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
599 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
600 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
601 h->ref_cache[list][scan8[0] - 1 + 0*8]=
602 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
603 }else{
604 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
605 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
606 h->ref_cache[list][scan8[0] - 1 + 0*8]=
607 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
608 }
609
610 if(IS_INTER(left_type[1])){
611 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
612 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
613 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
614 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
615 h->ref_cache[list][scan8[0] - 1 + 2*8]=
616 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
617 }else{
618 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
619 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
620 h->ref_cache[list][scan8[0] - 1 + 2*8]=
621 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
622 }
623
624 h->ref_cache[list][scan8[5 ]+1] =
625 h->ref_cache[list][scan8[7 ]+1] =
626 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewher else)
627 h->ref_cache[list][scan8[4 ]] =
628 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
629 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
630 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
631 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
632 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
633 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
634
635 if( h->pps.cabac ) {
636 /* XXX beurk, Load mvd */
637 if(IS_INTER(topleft_type)){
638 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
639 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
640 }else{
641 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
642 }
643
644 if(IS_INTER(top_type)){
645 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
646 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
647 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
648 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
649 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
650 }else{
651 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
652 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
653 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
654 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
655 }
656 if(IS_INTER(left_type[0])){
657 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
658 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
659 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
660 }else{
661 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
662 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
663 }
664 if(IS_INTER(left_type[1])){
665 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
666 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
667 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
668 }else{
669 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
670 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
671 }
672 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
673 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
674 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
675 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
676 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
677 }
678 }
679 //FIXME
680 }
681 #endif
682 }
683
684 static inline void write_back_intra_pred_mode(H264Context *h){
685 MpegEncContext * const s = &h->s;
686 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
687
688 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
689 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
690 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
691 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
692 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
693 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
694 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
695 }
696
697 /**
698 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
699 */
700 static inline int check_intra4x4_pred_mode(H264Context *h){
701 MpegEncContext * const s = &h->s;
702 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
703 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
704 int i;
705
706 if(!(h->top_samples_available&0x8000)){
707 for(i=0; i<4; i++){
708 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
709 if(status<0){
710 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
711 return -1;
712 } else if(status){
713 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
714 }
715 }
716 }
717
718 if(!(h->left_samples_available&0x8000)){
719 for(i=0; i<4; i++){
720 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
721 if(status<0){
722 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
723 return -1;
724 } else if(status){
725 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
726 }
727 }
728 }
729
730 return 0;
731 } //FIXME cleanup like next
732
733 /**
734 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
735 */
736 static inline int check_intra_pred_mode(H264Context *h, int mode){
737 MpegEncContext * const s = &h->s;
738 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
739 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
740
741 if(!(h->top_samples_available&0x8000)){
742 mode= top[ mode ];
743 if(mode<0){
744 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
745 return -1;
746 }
747 }
748
749 if(!(h->left_samples_available&0x8000)){
750 mode= left[ mode ];
751 if(mode<0){
752 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
753 return -1;
754 }
755 }
756
757 return mode;
758 }
759
760 /**
761 * gets the predicted intra4x4 prediction mode.
762 */
763 static inline int pred_intra_mode(H264Context *h, int n){
764 const int index8= scan8[n];
765 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
766 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
767 const int min= FFMIN(left, top);
768
769 tprintf("mode:%d %d min:%d\n", left ,top, min);
770
771 if(min<0) return DC_PRED;
772 else return min;
773 }
774
775 static inline void write_back_non_zero_count(H264Context *h){
776 MpegEncContext * const s = &h->s;
777 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
778
779 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
780 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
781 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
782 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
783 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
784 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
785 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
786
787 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
788 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
789 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
790
791 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
792 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
793 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
794 }
795
796 /**
797 * gets the predicted number of non zero coefficients.
798 * @param n block index
799 */
800 static inline int pred_non_zero_count(H264Context *h, int n){
801 const int index8= scan8[n];
802 const int left= h->non_zero_count_cache[index8 - 1];
803 const int top = h->non_zero_count_cache[index8 - 8];
804 int i= left + top;
805
806 if(i<64) i= (i+1)>>1;
807
808 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
809
810 return i&31;
811 }
812
813 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
814 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
815
816 if(topright_ref != PART_NOT_AVAILABLE){
817 *C= h->mv_cache[list][ i - 8 + part_width ];
818 return topright_ref;
819 }else{
820 tprintf("topright MV not available\n");
821
822 *C= h->mv_cache[list][ i - 8 - 1 ];
823 return h->ref_cache[list][ i - 8 - 1 ];
824 }
825 }
826
827 /**
828 * gets the predicted MV.
829 * @param n the block index
830 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
831 * @param mx the x component of the predicted motion vector
832 * @param my the y component of the predicted motion vector
833 */
834 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
835 const int index8= scan8[n];
836 const int top_ref= h->ref_cache[list][ index8 - 8 ];
837 const int left_ref= h->ref_cache[list][ index8 - 1 ];
838 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
839 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
840 const int16_t * C;
841 int diagonal_ref, match_count;
842
843 assert(part_width==1 || part_width==2 || part_width==4);
844
845 /* mv_cache
846 B . . A T T T T
847 U . . L . . , .
848 U . . L . . . .
849 U . . L . . , .
850 . . . L . . . .
851 */
852
853 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
854 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
855 if(match_count > 1){ //most common
856 *mx= mid_pred(A[0], B[0], C[0]);
857 *my= mid_pred(A[1], B[1], C[1]);
858 }else if(match_count==1){
859 if(left_ref==ref){
860 *mx= A[0];
861 *my= A[1];
862 }else if(top_ref==ref){
863 *mx= B[0];
864 *my= B[1];
865 }else{
866 *mx= C[0];
867 *my= C[1];
868 }
869 }else{
870 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
871 *mx= A[0];
872 *my= A[1];
873 }else{
874 *mx= mid_pred(A[0], B[0], C[0]);
875 *my= mid_pred(A[1], B[1], C[1]);
876 }
877 }
878
879 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
880 }
881
882 /**
883 * gets the directionally predicted 16x8 MV.
884 * @param n the block index
885 * @param mx the x component of the predicted motion vector
886 * @param my the y component of the predicted motion vector
887 */
888 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
889 if(n==0){
890 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
891 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
892
893 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
894
895 if(top_ref == ref){
896 *mx= B[0];
897 *my= B[1];
898 return;
899 }
900 }else{
901 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
902 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
903
904 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
905
906 if(left_ref == ref){
907 *mx= A[0];
908 *my= A[1];
909 return;
910 }
911 }
912
913 //RARE
914 pred_motion(h, n, 4, list, ref, mx, my);
915 }
916
917 /**
918 * gets the directionally predicted 8x16 MV.
919 * @param n the block index
920 * @param mx the x component of the predicted motion vector
921 * @param my the y component of the predicted motion vector
922 */
923 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
924 if(n==0){
925 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
926 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
927
928 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
929
930 if(left_ref == ref){
931 *mx= A[0];
932 *my= A[1];
933 return;
934 }
935 }else{
936 const int16_t * C;
937 int diagonal_ref;
938
939 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
940
941 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
942
943 if(diagonal_ref == ref){
944 *mx= C[0];
945 *my= C[1];
946 return;
947 }
948 }
949
950 //RARE
951 pred_motion(h, n, 2, list, ref, mx, my);
952 }
953
954 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
955 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
956 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
957
958 tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
959
960 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
961 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
962 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
963
964 *mx = *my = 0;
965 return;
966 }
967
968 pred_motion(h, 0, 4, 0, 0, mx, my);
969
970 return;
971 }
972
973 static inline void write_back_motion(H264Context *h, int mb_type){
974 MpegEncContext * const s = &h->s;
975 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
976 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
977 int list;
978
979 for(list=0; list<2; list++){
980 int y;
981 if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
982 if(1){ //FIXME skip or never read if mb_type doesnt use it
983 for(y=0; y<4; y++){
984 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
985 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
986 }
987 if( h->pps.cabac ) {
988 /* FIXME needed ? */
989 for(y=0; y<4; y++){
990 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
991 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
992 }
993 }
994 for(y=0; y<2; y++){
995 *(uint16_t*)s->current_picture.motion_val[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
996 }
997 }
998 continue; //FIXME direct mode ...
999 }
1000
1001 for(y=0; y<4; y++){
1002 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1003 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1004 }
1005 if( h->pps.cabac ) {
1006 for(y=0; y<4; y++){
1007 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1008 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1009 }
1010 }
1011 for(y=0; y<2; y++){
1012 s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
1013 s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
1014 }
1015 }
1016 }
1017
1018 /**
1019 * Decodes a network abstraction layer unit.
1020 * @param consumed is the number of bytes used as input
1021 * @param length is the length of the array
1022 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
1023 * @returns decoded bytes, might be src+1 if no escapes
1024 */
1025 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1026 int i, si, di;
1027 uint8_t *dst;
1028
1029 // src[0]&0x80; //forbidden bit
1030 h->nal_ref_idc= src[0]>>5;
1031 h->nal_unit_type= src[0]&0x1F;
1032
1033 src++; length--;
1034 #if 0
1035 for(i=0; i<length; i++)
1036 printf("%2X ", src[i]);
1037 #endif
1038 for(i=0; i+1<length; i+=2){
1039 if(src[i]) continue;
1040 if(i>0 && src[i-1]==0) i--;
1041 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1042 if(src[i+2]!=3){
1043 /* startcode, so we must be past the end */
1044 length=i;
1045 }
1046 break;
1047 }
1048 }
1049
1050 if(i>=length-1){ //no escaped 0
1051 *dst_length= length;
1052 *consumed= length+1; //+1 for the header
1053 return src;
1054 }
1055
1056 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1057 dst= h->rbsp_buffer;
1058
1059 //printf("deoding esc\n");
1060 si=di=0;
1061 while(si<length){
1062 //remove escapes (very rare 1:2^22)
1063 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1064 if(src[si+2]==3){ //escape
1065 dst[di++]= 0;
1066 dst[di++]= 0;
1067 si+=3;
1068 continue;
1069 }else //next start code
1070 break;
1071 }
1072
1073 dst[di++]= src[si++];
1074 }
1075
1076 *dst_length= di;
1077 *consumed= si + 1;//+1 for the header
1078 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1079 return dst;
1080 }
1081
1082 #if 0
1083 /**
1084 * @param src the data which should be escaped
1085 * @param dst the target buffer, dst+1 == src is allowed as a special case
1086 * @param length the length of the src data
1087 * @param dst_length the length of the dst array
1088 * @returns length of escaped data in bytes or -1 if an error occured
1089 */
1090 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1091 int i, escape_count, si, di;
1092 uint8_t *temp;
1093
1094 assert(length>=0);
1095 assert(dst_length>0);
1096
1097 dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1098
1099 if(length==0) return 1;
1100
1101 escape_count= 0;
1102 for(i=0; i<length; i+=2){
1103 if(src[i]) continue;
1104 if(i>0 && src[i-1]==0)
1105 i--;
1106 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1107 escape_count++;
1108 i+=2;
1109 }
1110 }
1111
1112 if(escape_count==0){
1113 if(dst+1 != src)
1114 memcpy(dst+1, src, length);
1115 return length + 1;
1116 }
1117
1118 if(length + escape_count + 1> dst_length)
1119 return -1;
1120
1121 //this should be damn rare (hopefully)
1122
1123 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1124 temp= h->rbsp_buffer;
1125 //printf("encoding esc\n");
1126
1127 si= 0;
1128 di= 0;
1129 while(si < length){
1130 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1131 temp[di++]= 0; si++;
1132 temp[di++]= 0; si++;
1133 temp[di++]= 3;
1134 temp[di++]= src[si++];
1135 }
1136 else
1137 temp[di++]= src[si++];
1138 }
1139 memcpy(dst+1, temp, length+escape_count);
1140
1141 assert(di == length+escape_count);
1142
1143 return di + 1;
1144 }
1145
1146 /**
1147 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1148 */
1149 static void encode_rbsp_trailing(PutBitContext *pb){
1150 int length;
1151 put_bits(pb, 1, 1);
1152 length= (-put_bits_count(pb))&7;
1153 if(length) put_bits(pb, length, 0);
1154 }
1155 #endif
1156
1157 /**
1158 * identifies the exact end of the bitstream
1159 * @return the length of the trailing, or 0 if damaged
1160 */
1161 static int decode_rbsp_trailing(uint8_t *src){
1162 int v= *src;
1163 int r;
1164
1165 tprintf("rbsp trailing %X\n", v);
1166
1167 for(r=1; r<9; r++){
1168 if(v&1) return r;
1169 v>>=1;
1170 }
1171 return 0;
1172 }
1173
1174 /**
1175 * idct tranforms the 16 dc values and dequantize them.
1176 * @param qp quantization parameter
1177 */
1178 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1179 const int qmul= dequant_coeff[qp][0];
1180 #define stride 16
1181 int i;
1182 int temp[16]; //FIXME check if this is a good idea
1183 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1184 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1185
1186 //memset(block, 64, 2*256);
1187 //return;
1188 for(i=0; i<4; i++){
1189 const int offset= y_offset[i];
1190 const int z0= block[offset+stride*0] + block[offset+stride*4];
1191 const int z1= block[offset+stride*0] - block[offset+stride*4];
1192 const int z2= block[offset+stride*1] - block[offset+stride*5];
1193 const int z3= block[offset+stride*1] + block[offset+stride*5];
1194
1195 temp[4*i+0]= z0+z3;
1196 temp[4*i+1]= z1+z2;
1197 temp[4*i+2]= z1-z2;
1198 temp[4*i+3]= z0-z3;
1199 }
1200
1201 for(i=0; i<4; i++){
1202 const int offset= x_offset[i];
1203 const int z0= temp[4*0+i] + temp[4*2+i];
1204 const int z1= temp[4*0+i] - temp[4*2+i];
1205 const int z2= temp[4*1+i] - temp[4*3+i];
1206 const int z3= temp[4*1+i] + temp[4*3+i];
1207
1208 block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1209 block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1210 block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1211 block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1212 }
1213 }
1214
1215 #if 0
1216 /**
1217 * dct tranforms the 16 dc values.
1218 * @param qp quantization parameter ??? FIXME
1219 */
1220 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1221 // const int qmul= dequant_coeff[qp][0];
1222 int i;
1223 int temp[16]; //FIXME check if this is a good idea
1224 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1225 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1226
1227 for(i=0; i<4; i++){
1228 const int offset= y_offset[i];
1229 const int z0= block[offset+stride*0] + block[offset+stride*4];
1230 const int z1= block[offset+stride*0] - block[offset+stride*4];
1231 const int z2= block[offset+stride*1] - block[offset+stride*5];
1232 const int z3= block[offset+stride*1] + block[offset+stride*5];
1233
1234 temp[4*i+0]= z0+z3;
1235 temp[4*i+1]= z1+z2;
1236 temp[4*i+2]= z1-z2;
1237 temp[4*i+3]= z0-z3;
1238 }
1239
1240 for(i=0; i<4; i++){
1241 const int offset= x_offset[i];
1242 const int z0= temp[4*0+i] + temp[4*2+i];
1243 const int z1= temp[4*0+i] - temp[4*2+i];
1244 const int z2= temp[4*1+i] - temp[4*3+i];
1245 const int z3= temp[4*1+i] + temp[4*3+i];
1246
1247 block[stride*0 +offset]= (z0 + z3)>>1;
1248 block[stride*2 +offset]= (z1 + z2)>>1;
1249 block[stride*8 +offset]= (z1 - z2)>>1;
1250 block[stride*10+offset]= (z0 - z3)>>1;
1251 }
1252 }
1253 #endif
1254
1255 #undef xStride
1256 #undef stride
1257
1258 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1259 const int qmul= dequant_coeff[qp][0];
1260 const int stride= 16*2;
1261 const int xStride= 16;
1262 int a,b,c,d,e;
1263
1264 a= block[stride*0 + xStride*0];
1265 b= block[stride*0 + xStride*1];
1266 c= block[stride*1 + xStride*0];
1267 d= block[stride*1 + xStride*1];
1268
1269 e= a-b;
1270 a= a+b;
1271 b= c-d;
1272 c= c+d;
1273
1274 block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1275 block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1276 block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1277 block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1278 }
1279
1280 #if 0
1281 static void chroma_dc_dct_c(DCTELEM *block){
1282 const int stride= 16*2;
1283 const int xStride= 16;
1284 int a,b,c,d,e;
1285
1286 a= block[stride*0 + xStride*0];
1287 b= block[stride*0 + xStride*1];
1288 c= block[stride*1 + xStride*0];
1289 d= block[stride*1 + xStride*1];
1290
1291 e= a-b;
1292 a= a+b;
1293 b= c-d;
1294 c= c+d;
1295
1296 block[stride*0 + xStride*0]= (a+c);
1297 block[stride*0 + xStride*1]= (e+b);
1298 block[stride*1 + xStride*0]= (a-c);
1299 block[stride*1 + xStride*1]= (e-b);
1300 }
1301 #endif
1302
1303 /**
1304 * gets the chroma qp.
1305 */
1306 static inline int get_chroma_qp(H264Context *h, int qscale){
1307
1308 return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1309 }
1310
1311
1312 /**
1313 *
1314 */
1315 static void h264_add_idct_c(uint8_t *dst, DCTELEM *block, int stride){
1316 int i;
1317 uint8_t *cm = cropTbl + MAX_NEG_CROP;
1318
1319 block[0] += 32;
1320
1321 for(i=0; i<4; i++){
1322 const int z0= block[0 + 4*i] + block[2 + 4*i];
1323 const int z1= block[0 + 4*i] - block[2 + 4*i];
1324 const int z2= (block[1 + 4*i]>>1) - block[3 + 4*i];
1325 const int z3= block[1 + 4*i] + (block[3 + 4*i]>>1);
1326
1327 block[0 + 4*i]= z0 + z3;
1328 block[1 + 4*i]= z1 + z2;
1329 block[2 + 4*i]= z1 - z2;
1330 block[3 + 4*i]= z0 - z3;
1331 }
1332
1333 for(i=0; i<4; i++){
1334 const int z0= block[i + 4*0] + block[i + 4*2];
1335 const int z1= block[i + 4*0] - block[i + 4*2];
1336 const int z2= (block[i + 4*1]>>1) - block[i + 4*3];
1337 const int z3= block[i + 4*1] + (block[i + 4*3]>>1);
1338
1339 dst[i + 0*stride]= cm[ dst[i + 0*stride] + ((z0 + z3) >> 6) ];
1340 dst[i + 1*stride]= cm[ dst[i + 1*stride] + ((z1 + z2) >> 6) ];
1341 dst[i + 2*stride]= cm[ dst[i + 2*stride] + ((z1 - z2) >> 6) ];
1342 dst[i + 3*stride]= cm[ dst[i + 3*stride] + ((z0 - z3) >> 6) ];
1343 }
1344 }
1345
1346 #if 0
1347 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1348 int i;
1349 //FIXME try int temp instead of block
1350
1351 for(i=0; i<4; i++){
1352 const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1353 const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1354 const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1355 const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1356 const int z0= d0 + d3;
1357 const int z3= d0 - d3;
1358 const int z1= d1 + d2;
1359 const int z2= d1 - d2;
1360
1361 block[0 + 4*i]= z0 + z1;
1362 block[1 + 4*i]= 2*z3 + z2;
1363 block[2 + 4*i]= z0 - z1;
1364 block[3 + 4*i]= z3 - 2*z2;
1365 }
1366
1367 for(i=0; i<4; i++){
1368 const int z0= block[0*4 + i] + block[3*4 + i];
1369 const int z3= block[0*4 + i] - block[3*4 + i];
1370 const int z1= block[1*4 + i] + block[2*4 + i];
1371 const int z2= block[1*4 + i] - block[2*4 + i];
1372
1373 block[0*4 + i]= z0 + z1;
1374 block[1*4 + i]= 2*z3 + z2;
1375 block[2*4 + i]= z0 - z1;
1376 block[3*4 + i]= z3 - 2*z2;
1377 }
1378 }
1379 #endif
1380
1381 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1382 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1383 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1384 int i;
1385 const int * const quant_table= quant_coeff[qscale];
1386 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1387 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1388 const unsigned int threshold2= (threshold1<<1);
1389 int last_non_zero;
1390
1391 if(seperate_dc){
1392 if(qscale<=18){
1393 //avoid overflows
1394 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1395 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1396 const unsigned int dc_threshold2= (dc_threshold1<<1);
1397
1398 int level= block[0]*quant_coeff[qscale+18][0];
1399 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1400 if(level>0){
1401 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1402 block[0]= level;
1403 }else{
1404 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1405 block[0]= -level;
1406 }
1407 // last_non_zero = i;
1408 }else{
1409 block[0]=0;
1410 }
1411 }else{
1412 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1413 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1414 const unsigned int dc_threshold2= (dc_threshold1<<1);
1415
1416 int level= block[0]*quant_table[0];
1417 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1418 if(level>0){
1419 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1420 block[0]= level;
1421 }else{
1422 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1423 block[0]= -level;
1424 }
1425 // last_non_zero = i;
1426 }else{
1427 block[0]=0;
1428 }
1429 }
1430 last_non_zero= 0;
1431 i=1;
1432 }else{
1433 last_non_zero= -1;
1434 i=0;
1435 }
1436
1437 for(; i<16; i++){
1438 const int j= scantable[i];
1439 int level= block[j]*quant_table[j];
1440
1441 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1442 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1443 if(((unsigned)(level+threshold1))>threshold2){
1444 if(level>0){
1445 level= (bias + level)>>QUANT_SHIFT;
1446 block[j]= level;
1447 }else{
1448 level= (bias - level)>>QUANT_SHIFT;
1449 block[j]= -level;
1450 }
1451 last_non_zero = i;
1452 }else{
1453 block[j]=0;
1454 }
1455 }
1456
1457 return last_non_zero;
1458 }
1459
1460 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1461 const uint32_t a= ((uint32_t*)(src-stride))[0];
1462 ((uint32_t*)(src+0*stride))[0]= a;
1463 ((uint32_t*)(src+1*stride))[0]= a;
1464 ((uint32_t*)(src+2*stride))[0]= a;
1465 ((uint32_t*)(src+3*stride))[0]= a;
1466 }
1467
1468 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1469 ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1470 ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1471 ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1472 ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1473 }
1474
1475 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1476 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1477 + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1478
1479 ((uint32_t*)(src+0*stride))[0]=
1480 ((uint32_t*)(src+1*stride))[0]=
1481 ((uint32_t*)(src+2*stride))[0]=
1482 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1483 }
1484
1485 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1486 const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1487
1488 ((uint32_t*)(src+0*stride))[0]=
1489 ((uint32_t*)(src+1*stride))[0]=
1490 ((uint32_t*)(src+2*stride))[0]=
1491 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1492 }
1493
1494 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1495 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1496
1497 ((uint32_t*)(src+0*stride))[0]=
1498 ((uint32_t*)(src+1*stride))[0]=
1499 ((uint32_t*)(src+2*stride))[0]=
1500 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1501 }
1502
1503 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1504 ((uint32_t*)(src+0*stride))[0]=
1505 ((uint32_t*)(src+1*stride))[0]=
1506 ((uint32_t*)(src+2*stride))[0]=
1507 ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1508 }
1509
1510
1511 #define LOAD_TOP_RIGHT_EDGE\
1512 const int t4= topright[0];\
1513 const int t5= topright[1];\
1514 const int t6= topright[2];\
1515 const int t7= topright[3];\
1516
1517 #define LOAD_LEFT_EDGE\
1518 const int l0= src[-1+0*stride];\
1519 const int l1= src[-1+1*stride];\
1520 const int l2= src[-1+2*stride];\
1521 const int l3= src[-1+3*stride];\
1522
1523 #define LOAD_TOP_EDGE\
1524 const int t0= src[ 0-1*stride];\
1525 const int t1= src[ 1-1*stride];\
1526 const int t2= src[ 2-1*stride];\
1527 const int t3= src[ 3-1*stride];\
1528
1529 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1530 const int lt= src[-1-1*stride];
1531 LOAD_TOP_EDGE
1532 LOAD_LEFT_EDGE
1533
1534 src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
1535 src[0+2*stride]=
1536 src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
1537 src[0+1*stride]=
1538 src[1+2*stride]=
1539 src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
1540 src[0+0*stride]=
1541 src[1+1*stride]=
1542 src[2+2*stride]=
1543 src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1544 src[1+0*stride]=
1545 src[2+1*stride]=
1546 src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1547 src[2+0*stride]=
1548 src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1549 src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1550 }
1551
1552 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1553 LOAD_TOP_EDGE
1554 LOAD_TOP_RIGHT_EDGE
1555 // LOAD_LEFT_EDGE
1556
1557 src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1558 src[1+0*stride]=
1559 src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1560 src[2+0*stride]=
1561 src[1+1*stride]=
1562 src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1563 src[3+0*stride]=
1564 src[2+1*stride]=
1565 src[1+2*stride]=
1566 src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1567 src[3+1*stride]=
1568 src[2+2*stride]=
1569 src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1570 src[3+2*stride]=
1571 src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1572 src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1573 }
1574
1575 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1576 const int lt= src[-1-1*stride];
1577 LOAD_TOP_EDGE
1578 LOAD_LEFT_EDGE
1579 const __attribute__((unused)) int unu= l3;
1580
1581 src[0+0*stride]=
1582 src[1+2*stride]=(lt + t0 + 1)>>1;
1583 src[1+0*stride]=
1584 src[2+2*stride]=(t0 + t1 + 1)>>1;
1585 src[2+0*stride]=
1586 src[3+2*stride]=(t1 + t2 + 1)>>1;
1587 src[3+0*stride]=(t2 + t3 + 1)>>1;
1588 src[0+1*stride]=
1589 src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1590 src[1+1*stride]=
1591 src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1592 src[2+1*stride]=
1593 src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1594 src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1595 src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1596 src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1597 }
1598
1599 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1600 LOAD_TOP_EDGE
1601 LOAD_TOP_RIGHT_EDGE
1602 const __attribute__((unused)) int unu= t7;
1603
1604 src[0+0*stride]=(t0 + t1 + 1)>>1;
1605 src[1+0*stride]=
1606 src[0+2*stride]=(t1 + t2 + 1)>>1;
1607 src[2+0*stride]=
1608 src[1+2*stride]=(t2 + t3 + 1)>>1;
1609 src[3+0*stride]=
1610 src[2+2*stride]=(t3 + t4+ 1)>>1;
1611 src[3+2*stride]=(t4 + t5+ 1)>>1;
1612 src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1613 src[1+1*stride]=
1614 src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1615 src[2+1*stride]=
1616 src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1617 src[3+1*stride]=
1618 src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1619 src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1620 }
1621
1622 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1623 LOAD_LEFT_EDGE
1624
1625 src[0+0*stride]=(l0 + l1 + 1)>>1;
1626 src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1627 src[2+0*stride]=
1628 src[0+1*stride]=(l1 + l2 + 1)>>1;
1629 src[3+0*stride]=
1630 src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1631 src[2+1*stride]=
1632 src[0+2*stride]=(l2 + l3 + 1)>>1;
1633 src[3+1*stride]=
1634 src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1635 src[3+2*stride]=
1636 src[1+3*stride]=
1637 src[0+3*stride]=
1638 src[2+2*stride]=
1639 src[2+3*stride]=
1640 src[3+3*stride]=l3;
1641 }
1642
1643 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1644 const int lt= src[-1-1*stride];
1645 LOAD_TOP_EDGE
1646 LOAD_LEFT_EDGE
1647 const __attribute__((unused)) int unu= t3;
1648
1649 src[0+0*stride]=
1650 src[2+1*stride]=(lt + l0 + 1)>>1;
1651 src[1+0*stride]=
1652 src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1653 src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1654 src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1655 src[0+1*stride]=
1656 src[2+2*stride]=(l0 + l1 + 1)>>1;
1657 src[1+1*stride]=
1658 src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1659 src[0+2*stride]=
1660 src[2+3*stride]=(l1 + l2+ 1)>>1;
1661 src[1+2*stride]=
1662 src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1663 src[0+3*stride]=(l2 + l3 + 1)>>1;
1664 src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1665 }
1666
1667 static void pred16x16_vertical_c(uint8_t *src, int stride){
1668 int i;
1669 const uint32_t a= ((uint32_t*)(src-stride))[0];
1670 const uint32_t b= ((uint32_t*)(src-stride))[1];
1671 const uint32_t c= ((uint32_t*)(src-stride))[2];
1672 const uint32_t d= ((uint32_t*)(src-stride))[3];
1673
1674 for(i=0; i<16; i++){
1675 ((uint32_t*)(src+i*stride))[0]= a;
1676 ((uint32_t*)(src+i*stride))[1]= b;
1677 ((uint32_t*)(src+i*stride))[2]= c;
1678 ((uint32_t*)(src+i*stride))[3]= d;
1679 }
1680 }
1681
1682 static void pred16x16_horizontal_c(uint8_t *src, int stride){
1683 int i;
1684
1685 for(i=0; i<16; i++){
1686 ((uint32_t*)(src+i*stride))[0]=
1687 ((uint32_t*)(src+i*stride))[1]=
1688 ((uint32_t*)(src+i*stride))[2]=
1689 ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1690 }
1691 }
1692
1693 static void pred16x16_dc_c(uint8_t *src, int stride){
1694 int i, dc=0;
1695
1696 for(i=0;i<16; i++){
1697 dc+= src[-1+i*stride];
1698 }
1699
1700 for(i=0;i<16; i++){
1701 dc+= src[i-stride];
1702 }
1703
1704 dc= 0x01010101*((dc + 16)>>5);
1705
1706 for(i=0; i<16; i++){
1707 ((uint32_t*)(src+i*stride))[0]=
1708 ((uint32_t*)(src+i*stride))[1]=
1709 ((uint32_t*)(src+i*stride))[2]=
1710 ((uint32_t*)(src+i*stride))[3]= dc;
1711 }
1712 }
1713
1714 static void pred16x16_left_dc_c(uint8_t *src, int stride){
1715 int i, dc=0;
1716
1717 for(i=0;i<16; i++){
1718 dc+= src[-1+i*stride];
1719 }
1720
1721 dc= 0x01010101*((dc + 8)>>4);
1722
1723 for(i=0; i<16; i++){
1724 ((uint32_t*)(src+i*stride))[0]=
1725 ((uint32_t*)(src+i*stride))[1]=
1726 ((uint32_t*)(src+i*stride))[2]=
1727 ((uint32_t*)(src+i*stride))[3]= dc;
1728 }
1729 }
1730
1731 static void pred16x16_top_dc_c(uint8_t *src, int stride){
1732 int i, dc=0;
1733
1734 for(i=0;i<16; i++){
1735 dc+= src[i-stride];
1736 }
1737 dc= 0x01010101*((dc + 8)>>4);
1738
1739 for(i=0; i<16; i++){
1740 ((uint32_t*)(src+i*stride))[0]=
1741 ((uint32_t*)(src+i*stride))[1]=
1742 ((uint32_t*)(src+i*stride))[2]=
1743 ((uint32_t*)(src+i*stride))[3]= dc;
1744 }
1745 }
1746
1747 static void pred16x16_128_dc_c(uint8_t *src, int stride){
1748 int i;
1749
1750 for(i=0; i<16; i++){
1751 ((uint32_t*)(src+i*stride))[0]=
1752 ((uint32_t*)(src+i*stride))[1]=
1753 ((uint32_t*)(src+i*stride))[2]=
1754 ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1755 }
1756 }
1757
1758 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1759 int i, j, k;
1760 int a;
1761 uint8_t *cm = cropTbl + MAX_NEG_CROP;
1762 const uint8_t * const src0 = src+7-stride;
1763 const uint8_t *src1 = src+8*stride-1;
1764 const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
1765 int H = src0[1] - src0[-1];
1766 int V = src1[0] - src2[ 0];
1767 for(k=2; k<=8; ++k) {
1768 src1 += stride; src2 -= stride;
1769 H += k*(src0[k] - src0[-k]);
1770 V += k*(src1[0] - src2[ 0]);
1771 }
1772 if(svq3){
1773 H = ( 5*(H/4) ) / 16;
1774 V = ( 5*(V/4) ) / 16;
1775
1776 /* required for 100% accuracy */
1777 i = H; H = V; V = i;
1778 }else{
1779 H = ( 5*H+32 ) >> 6;
1780 V = ( 5*V+32 ) >> 6;
1781 }
1782
1783 a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
1784 for(j=16; j>0; --j) {
1785 int b = a;
1786 a += V;
1787 for(i=-16; i<0; i+=4) {
1788 src[16+i] = cm[ (b ) >> 5 ];
1789 src[17+i] = cm[ (b+ H) >> 5 ];
1790 src[18+i] = cm[ (b+2*H) >> 5 ];
1791 src[19+i] = cm[ (b+3*H) >> 5 ];
1792 b += 4*H;
1793 }
1794 src += stride;
1795 }
1796 }
1797
1798 static void pred16x16_plane_c(uint8_t *src, int stride){
1799 pred16x16_plane_compat_c(src, stride, 0);
1800 }
1801
1802 static void pred8x8_vertical_c(uint8_t *src, int stride){
1803 int i;
1804 const uint32_t a= ((uint32_t*)(src-stride))[0];
1805 const uint32_t b= ((uint32_t*)(src-stride))[1];
1806
1807 for(i=0; i<8; i++){
1808 ((uint32_t*)(src+i*stride))[0]= a;
1809 ((uint32_t*)(src+i*stride))[1]= b;
1810 }
1811 }
1812
1813 static void pred8x8_horizontal_c(uint8_t *src, int stride){
1814 int i;
1815
1816 for(i=0; i<8; i++){
1817 ((uint32_t*)(src+i*stride))[0]=
1818 ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
1819 }
1820 }
1821
1822 static void pred8x8_128_dc_c(uint8_t *src, int stride){
1823 int i;
1824
1825 for(i=0; i<4; i++){
1826 ((uint32_t*)(src+i*stride))[0]=
1827 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1828 }
1829 for(i=4; i<8; i++){
1830 ((uint32_t*)(src+i*stride))[0]=
1831 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1832 }
1833 }
1834
1835 static void pred8x8_left_dc_c(uint8_t *src, int stride){
1836 int i;
1837 int dc0, dc2;
1838
1839 dc0=dc2=0;
1840 for(i=0;i<4; i++){
1841 dc0+= src[-1+i*stride];
1842 dc2+= src[-1+(i+4)*stride];
1843 }
1844 dc0= 0x01010101*((dc0 + 2)>>2);
1845 dc2= 0x01010101*((dc2 + 2)>>2);
1846
1847 for(i=0; i<4; i++){
1848 ((uint32_t*)(src+i*stride))[0]=
1849 ((uint32_t*)(src+i*stride))[1]= dc0;
1850 }
1851 for(i=4; i<8; i++){
1852 ((uint32_t*)(src+i*stride))[0]=
1853 ((uint32_t*)(src+i*stride))[1]= dc2;
1854 }
1855 }
1856
1857 static void pred8x8_top_dc_c(uint8_t *src, int stride){
1858 int i;
1859 int dc0, dc1;
1860
1861 dc0=dc1=0;
1862 for(i=0;i<4; i++){
1863 dc0+= src[i-stride];
1864 dc1+= src[4+i-stride];
1865 }
1866 dc0= 0x01010101*((dc0 + 2)>>2);
1867 dc1= 0x01010101*((dc1 + 2)>>2);
1868
1869 for(i=0; i<4; i++){
1870 ((uint32_t*)(src+i*stride))[0]= dc0;
1871 ((uint32_t*)(src+i*stride))[1]= dc1;
1872 }
1873 for(i=4; i<8; i++){
1874 ((uint32_t*)(src+i*stride))[0]= dc0;
1875 ((uint32_t*)(src+i*stride))[1]= dc1;
1876 }
1877 }
1878
1879
1880 static void pred8x8_dc_c(uint8_t *src, int stride){
1881 int i;
1882 int dc0, dc1, dc2, dc3;
1883
1884 dc0=dc1=dc2=0;
1885 for(i=0;i<4; i++){
1886 dc0+= src[-1+i*stride] + src[i-stride];
1887 dc1+= src[4+i-stride];
1888 dc2+= src[-1+(i+4)*stride];
1889 }
1890 dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
1891 dc0= 0x01010101*((dc0 + 4)>>3);
1892 dc1= 0x01010101*((dc1 + 2)>>2);
1893 dc2= 0x01010101*((dc2 + 2)>>2);
1894
1895 for(i=0; i<4; i++){
1896 ((uint32_t*)(src+i*stride))[0]= dc0;
1897 ((uint32_t*)(src+i*stride))[1]= dc1;
1898 }
1899 for(i=4; i<8; i++){
1900 ((uint32_t*)(src+i*stride))[0]= dc2;
1901 ((uint32_t*)(src+i*stride))[1]= dc3;
1902 }
1903 }
1904
1905 static void pred8x8_plane_c(uint8_t *src, int stride){
1906 int j, k;
1907 int a;
1908 uint8_t *cm = cropTbl + MAX_NEG_CROP;
1909 const uint8_t * const src0 = src+3-stride;
1910 const uint8_t *src1 = src+4*stride-1;
1911 const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
1912 int H = src0[1] - src0[-1];
1913 int V = src1[0] - src2[ 0];
1914 for(k=2; k<=4; ++k) {
1915 src1 += stride; src2 -= stride;
1916 H += k*(src0[k] - src0[-k]);
1917 V += k*(src1[0] - src2[ 0]);
1918 }
1919 H = ( 17*H+16 ) >> 5;
1920 V = ( 17*V+16 ) >> 5;
1921
1922 a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
1923 for(j=8; j>0; --j) {
1924 int b = a;
1925 a += V;
1926 src[0] = cm[ (b ) >> 5 ];
1927 src[1] = cm[ (b+ H) >> 5 ];
1928 src[2] = cm[ (b+2*H) >> 5 ];
1929 src[3] = cm[ (b+3*H) >> 5 ];
1930 src[4] = cm[ (b+4*H) >> 5 ];
1931 src[5] = cm[ (b+5*H) >> 5 ];
1932 src[6] = cm[ (b+6*H) >> 5 ];
1933 src[7] = cm[ (b+7*H) >> 5 ];
1934 src += stride;
1935 }
1936 }
1937
1938 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1939 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1940 int src_x_offset, int src_y_offset,
1941 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1942 MpegEncContext * const s = &h->s;
1943 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1944 const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1945 const int luma_xy= (mx&3) + ((my&3)<<2);
1946 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
1947 uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
1948 uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
1949 int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
1950 int extra_height= extra_width;
1951 int emu=0;
1952 const int full_mx= mx>>2;
1953 const int full_my= my>>2;
1954
1955 assert(pic->data[0]);
1956
1957 if(mx&7) extra_width -= 3;
1958 if(my&7) extra_height -= 3;
1959
1960 if( full_mx < 0-extra_width
1961 || full_my < 0-extra_height
1962 || full_mx + 16/*FIXME*/ > s->width + extra_width
1963 || full_my + 16/*FIXME*/ > s->height + extra_height){
1964 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
1965 src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
1966 emu=1;
1967 }
1968
1969 qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
1970 if(!square){
1971 qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
1972 }
1973
1974 if(s->flags&CODEC_FLAG_GRAY) return;
1975
1976 if(emu){
1977 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1978 src_cb= s->edge_emu_buffer;
1979 }
1980 chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
1981
1982 if(emu){
1983 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1984 src_cr= s->edge_emu_buffer;
1985 }
1986 chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
1987 }
1988
1989 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1990 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1991 int x_offset, int y_offset,
1992 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1993 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1994 int list0, int list1){
1995 MpegEncContext * const s = &h->s;
1996 qpel_mc_func *qpix_op= qpix_put;
1997 h264_chroma_mc_func chroma_op= chroma_put;
1998
1999 dest_y += 2*x_offset + 2*y_offset*s-> linesize;
2000 dest_cb += x_offset + y_offset*s->uvlinesize;
2001 dest_cr += x_offset + y_offset*s->uvlinesize;
2002 x_offset += 8*s->mb_x;
2003 y_offset += 8*s->mb_y;
2004
2005 if(list0){
2006 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2007 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2008 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2009 qpix_op, chroma_op);
2010
2011 qpix_op= qpix_avg;
2012 chroma_op= chroma_avg;
2013 }
2014
2015 if(list1){
2016 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2017 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2018 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2019 qpix_op, chroma_op);
2020 }
2021 }
2022
2023 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2024 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
2025 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){
2026 MpegEncContext * const s = &h->s;
2027 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
2028 const int mb_type= s->current_picture.mb_type[mb_xy];
2029
2030 assert(IS_INTER(mb_type));
2031
2032 if(IS_16X16(mb_type)){
2033 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
2034 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
2035 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2036 }else if(IS_16X8(mb_type)){
2037 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
2038 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2039 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2040 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
2041 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2042 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2043 }else if(IS_8X16(mb_type)){
2044 mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
2045 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2046 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2047 mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
2048 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2049 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2050 }else{
2051 int i;
2052
2053 assert(IS_8X8(mb_type));
2054
2055 for(i=0; i<4; i++){
2056 const int sub_mb_type= h->sub_mb_type[i];
2057 const int n= 4*i;
2058 int x_offset= (i&1)<<2;
2059 int y_offset= (i&2)<<1;
2060
2061 if(IS_SUB_8X8(sub_mb_type)){
2062 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2063 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2064 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2065 }else if(IS_SUB_8X4(sub_mb_type)){
2066 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2067 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2068 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2069 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2070 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2071 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2072 }else if(IS_SUB_4X8(sub_mb_type)){
2073 mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2074 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2075 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2076 mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2077 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2078 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2079 }else{
2080 int j;
2081 assert(IS_SUB_4X4(sub_mb_type));
2082 for(j=0; j<4; j++){
2083 int sub_x_offset= x_offset + 2*(j&1);
2084 int sub_y_offset= y_offset + (j&2);
2085 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2086 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2087 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2088 }
2089 }
2090 }
2091 }
2092 }
2093
2094 static void decode_init_vlc(H264Context *h){
2095 static int done = 0;
2096
2097 if (!done) {
2098 int i;
2099 done = 1;
2100
2101 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
2102 &chroma_dc_coeff_token_len [0], 1, 1,
2103 &chroma_dc_coeff_token_bits[0], 1, 1);
2104
2105 for(i=0; i<4; i++){
2106 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
2107 &coeff_token_len [i][0], 1, 1,
2108 &coeff_token_bits[i][0], 1, 1);
2109 }
2110
2111 for(i=0; i<3; i++){
2112 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2113 &chroma_dc_total_zeros_len [i][0], 1, 1,
2114 &chroma_dc_total_zeros_bits[i][0], 1, 1);
2115 }
2116 for(i=0; i<15; i++){
2117 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
2118 &total_zeros_len [i][0], 1, 1,
2119 &total_zeros_bits[i][0], 1, 1);
2120 }
2121
2122 for(i=0; i<6; i++){
2123 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
2124 &run_len [i][0], 1, 1,
2125 &run_bits[i][0], 1, 1);
2126 }
2127 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
2128 &run_len [6][0], 1, 1,
2129 &run_bits[6][0], 1, 1);
2130 }
2131 }
2132
2133 /**
2134 * Sets the intra prediction function pointers.
2135 */
2136 static void init_pred_ptrs(H264Context *h){
2137 // MpegEncContext * const s = &h->s;
2138
2139 h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
2140 h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
2141 h->pred4x4[DC_PRED ]= pred4x4_dc_c;
2142 h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2143 h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2144 h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
2145 h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
2146 h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
2147 h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
2148 h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
2149 h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
2150 h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
2151
2152 h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
2153 h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
2154 h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
2155 h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
2156 h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2157 h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2158 h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2159
2160 h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
2161 h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
2162 h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
2163 h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
2164 h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2165 h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2166 h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2167 }
2168
2169 static void free_tables(H264Context *h){
2170 av_freep(&h->intra4x4_pred_mode);
2171 av_freep(&h->chroma_pred_mode_table);
2172 av_freep(&h->cbp_table);
2173 av_freep(&h->mvd_table[0]);
2174 av_freep(&h->mvd_table[1]);
2175 av_freep(&h->non_zero_count);
2176 av_freep(&h->slice_table_base);
2177 av_freep(&h->top_border);
2178 h->slice_table= NULL;
2179
2180 av_freep(&h->mb2b_xy);
2181 av_freep(&h->mb2b8_xy);
2182 }
2183
2184 /**
2185 * allocates tables.
2186 * needs widzh/height
2187 */
2188 static int alloc_tables(H264Context *h){
2189 MpegEncContext * const s = &h->s;
2190 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2191 int x,y;
2192
2193 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2194
2195 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2196 CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t))
2197 CHECKED_ALLOCZ(h->top_border , s->mb_width * (16+8+8) * sizeof(uint8_t))
2198
2199 if( h->pps.cabac ) {
2200 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2201 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2202 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2203 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2204 }
2205
2206 memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t));
2207 h->slice_table= h->slice_table_base + s->mb_stride + 1;
2208
2209 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint16_t));
2210 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2211 for(y=0; y<s->mb_height; y++){
2212 for(x=0; x<s->mb_width; x++){
2213 const int mb_xy= x + y*s->mb_stride;
2214 const int b_xy = 4*x + 4*y*h->b_stride;
2215 const int b8_xy= 2*x + 2*y*h->b8_stride;
2216
2217 h->mb2b_xy [mb_xy]= b_xy;
2218 h->mb2b8_xy[mb_xy]= b8_xy;
2219 }
2220 }
2221
2222 return 0;
2223 fail:
2224 free_tables(h);
2225 return -1;
2226 }
2227
2228 static void common_init(H264Context *h){
2229 MpegEncContext * const s = &h->s;
2230
2231 s->width = s->avctx->width;
2232 s->height = s->avctx->height;
2233 s->codec_id= s->avctx->codec->id;
2234
2235 init_pred_ptrs(h);
2236
2237 s->unrestricted_mv=1;
2238 s->decode=1; //FIXME
2239 }
2240
2241 static int decode_init(AVCodecContext *avctx){
2242 H264Context *h= avctx->priv_data;
2243 MpegEncContext * const s = &h->s;
2244
2245 MPV_decode_defaults(s);
2246
2247 s->avctx = avctx;
2248 common_init(h);
2249
2250 s->out_format = FMT_H264;
2251 s->workaround_bugs= avctx->workaround_bugs;
2252
2253 // set defaults
2254 // s->decode_mb= ff_h263_decode_mb;
2255 s->low_delay= 1;
2256 avctx->pix_fmt= PIX_FMT_YUV420P;
2257
2258 decode_init_vlc(h);
2259
2260 return 0;
2261 }
2262
2263 static void frame_start(H264Context *h){
2264 MpegEncContext * const s = &h->s;
2265 int i;
2266
2267 MPV_frame_start(s, s->avctx);
2268 ff_er_frame_start(s);
2269 h->mmco_index=0;
2270
2271 assert(s->linesize && s->uvlinesize);
2272
2273 for(i=0; i<16; i++){
2274 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2275 h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2276 }
2277 for(i=0; i<4; i++){
2278 h->block_offset[16+i]=
2279 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2280 }
2281
2282 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2283 }
2284
2285 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2286 MpegEncContext * const s = &h->s;
2287 int i;
2288
2289 src_y -= linesize;
2290 src_cb -= uvlinesize;
2291 src_cr -= uvlinesize;
2292
2293 h->left_border[0]= h->top_border[s->mb_x][15];
2294 for(i=1; i<17; i++){
2295 h->left_border[i]= src_y[15+i* linesize];
2296 }
2297
2298 *(uint64_t*)(h->top_border[s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2299 *(uint64_t*)(h->top_border[s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2300
2301 if(!(s->flags&CODEC_FLAG_GRAY)){
2302 h->left_border[17 ]= h->top_border[s->mb_x][16+7];
2303 h->left_border[17+9]= h->top_border[s->mb_x][24+7];
2304 for(i=1; i<9; i++){
2305 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2306 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2307 }
2308 *(uint64_t*)(h->top_border[s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2309 *(uint64_t*)(h->top_border[s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2310 }
2311 }
2312
2313 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2314 MpegEncContext * const s = &h->s;
2315 int temp8, i;
2316 uint64_t temp64;
2317
2318 src_y -= linesize + 1;
2319 src_cb -= uvlinesize + 1;
2320 src_cr -= uvlinesize + 1;
2321
2322 #define XCHG(a,b,t,xchg)\
2323 t= a;\
2324 if(xchg)\
2325 a= b;\
2326 b= t;
2327
2328 for(i=0; i<17; i++){
2329 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2330 }
2331
2332 XCHG(*(uint64_t*)(h->top_border[s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2333 XCHG(*(uint64_t*)(h->top_border[s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2334
2335 if(!(s->flags&CODEC_FLAG_GRAY)){
2336 for(i=0; i<9; i++){
2337 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2338 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2339 }
2340 XCHG(*(uint64_t*)(h->top_border[s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2341 XCHG(*(uint64_t*)(h->top_border[s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2342 }
2343 }
2344
2345 static void hl_decode_mb(H264Context *h){
2346 MpegEncContext * const s = &h->s;
2347 const int mb_x= s->mb_x;
2348 const int mb_y= s->mb_y;
2349 const int mb_xy= mb_x + mb_y*s->mb_stride;
2350 const int mb_type= s->current_picture.mb_type[mb_xy];
2351 uint8_t *dest_y, *dest_cb, *dest_cr;
2352 int linesize, uvlinesize /*dct_offset*/;
2353 int i;
2354
2355 if(!s->decode)
2356 return;
2357
2358 if(s->mb_skiped){
2359 }
2360
2361 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2362 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2363 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2364
2365 if (h->mb_field_decoding_flag) {
2366 linesize = s->linesize * 2;
2367 uvlinesize = s->uvlinesize * 2;
2368 if(mb_y&1){ //FIXME move out of this func?
2369 dest_y -= s->linesize*15;
2370 dest_cb-= s->linesize*7;
2371 dest_cr-= s->linesize*7;
2372 }
2373 } else {
2374 linesize = s->linesize;
2375 uvlinesize = s->uvlinesize;
2376 // dct_offset = s->linesize * 16;
2377 }
2378
2379 if(IS_INTRA(mb_type)){
2380 if(h->deblocking_filter)
2381 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
2382
2383 if(!(s->flags&CODEC_FLAG_GRAY)){
2384 h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2385 h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2386 }
2387
2388 if(IS_INTRA4x4(mb_type)){
2389 if(!s->encoding){
2390 for(i=0; i<16; i++){
2391 uint8_t * const ptr= dest_y + h->block_offset[i];
2392 uint8_t *topright= ptr + 4 - linesize;
2393 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2394 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2395 int tr;
2396
2397 if(!topright_avail){
2398 tr= ptr[3 - linesize]*0x01010101;
2399 topright= (uint8_t*) &tr;
2400 }else if(i==5 && h->deblocking_filter){
2401 tr= *(uint32_t*)h->top_border[mb_x+1];
2402 topright= (uint8_t*) &tr;
2403 }
2404
2405 h->pred4x4[ dir ](ptr, topright, linesize);
2406 if(h->non_zero_count_cache[ scan8[i] ]){
2407 if(s->codec_id == CODEC_ID_H264)
2408 h264_add_idct_c(ptr, h->mb + i*16, linesize);
2409 else
2410 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2411 }
2412 }
2413 }
2414 }else{
2415 h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2416 if(s->codec_id == CODEC_ID_H264)
2417 h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2418 else
2419 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2420 }
2421 if(h->deblocking_filter)
2422 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
2423 }else if(s->codec_id == CODEC_ID_H264){
2424 hl_motion(h, dest_y, dest_cb, dest_cr,
2425 s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab,
2426 s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab);
2427 }
2428
2429
2430 if(!IS_INTRA4x4(mb_type)){
2431 if(s->codec_id == CODEC_ID_H264){
2432 for(i=0; i<16; i++){
2433 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2434 uint8_t * const ptr= dest_y + h->block_offset[i];
2435 h264_add_idct_c(ptr, h->mb + i*16, linesize);
2436 }
2437 }
2438 }else{
2439 for(i=0; i<16; i++){
2440 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2441 uint8_t * const ptr= dest_y + h->block_offset[i];
2442 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2443 }
2444 }
2445 }
2446 }
2447
2448 if(!(s->flags&CODEC_FLAG_GRAY)){
2449 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2450 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2451 if(s->codec_id == CODEC_ID_H264){
2452 for(i=16; i<16+4; i++){
2453 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2454 uint8_t * const ptr= dest_cb + h->block_offset[i];
2455 h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2456 }
2457 }
2458 for(i=20; i<20+4; i++){
2459 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2460 uint8_t * const ptr= dest_cr + h->block_offset[i];
2461 h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2462 }
2463 }
2464 }else{
2465 for(i=16; i<16+4; i++){
2466 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2467 uint8_t * const ptr= dest_cb + h->block_offset[i];
2468 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2469 }
2470 }
2471 for(i=20; i<20+4; i++){
2472 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2473 uint8_t * const ptr= dest_cr + h->block_offset[i];
2474 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2475 }
2476 }
2477 }
2478 }
2479 if(h->deblocking_filter) {
2480 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2481 filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr);
2482 }
2483 }
2484
2485 /**
2486 * fills the default_ref_list.
2487 */
2488 static int fill_default_ref_list(H264Context *h){
2489 MpegEncContext * const s = &h->s;
2490 int i;
2491 Picture sorted_short_ref[16];
2492
2493 if(h->slice_type==B_TYPE){
2494 int out_i;
2495 int limit= -1;
2496
2497 for(out_i=0; out_i<h->short_ref_count; out_i++){
2498 int best_i=-1;
2499 int best_poc=-1;
2500
2501 for(i=0; i<h->short_ref_count; i++){
2502 const int poc= h->short_ref[i]->poc;
2503 if(poc > limit && poc < best_poc){
2504 best_poc= poc;
2505 best_i= i;
2506 }
2507 }
2508
2509 assert(best_i != -1);
2510
2511 limit= best_poc;
2512 sorted_short_ref[out_i]= *h->short_ref[best_i];
2513 }
2514 }
2515
2516 if(s->picture_structure == PICT_FRAME){
2517 if(h->slice_type==B_TYPE){
2518 const int current_poc= s->current_picture_ptr->poc;
2519 int list;
2520
2521 for(list=0; list<2; list++){
2522 int index=0;
2523
2524 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
2525 const int i2= list ? h->short_ref_count - i - 1 : i;
2526 const int poc= sorted_short_ref[i2].poc;
2527
2528 if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
2529
2530 if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
2531 h->default_ref_list[list][index ]= sorted_short_ref[i2];
2532 h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
2533 }
2534 }
2535
2536 for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
2537 if(h->long_ref[i]->reference != 3) continue;
2538
2539 h->default_ref_list[ list ][index ]= *h->long_ref[i];
2540 h->default_ref_list[ list ][index++].pic_id= i;;
2541 }
2542
2543 if(h->long_ref_count > 1 && h->short_ref_count==0){
2544 Picture temp= h->default_ref_list[1][0];
2545 h->default_ref_list[1][0] = h->default_ref_list[1][1];
2546 h->default_ref_list[1][0] = temp;
2547 }
2548
2549 if(index < h->ref_count[ list ])
2550 memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2551 }
2552 }else{
2553 int index=0;
2554 for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2555 if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2556 h->default_ref_list[0][index ]= *h->short_ref[i];
2557 h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2558 }
2559 for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
2560 if(h->long_ref[i]->reference != 3) continue;
2561 h->default_ref_list[0][index ]= *h->long_ref[i];
2562 h->default_ref_list[0][index++].pic_id= i;;
2563 }
2564 if(index < h->ref_count[0])
2565 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2566 }
2567 }else{ //FIELD
2568 if(h->slice_type==B_TYPE){
2569 }else{
2570 //FIXME second field balh
2571 }
2572 }
2573 return 0;
2574 }
2575
2576 static int decode_ref_pic_list_reordering(H264Context *h){
2577 MpegEncContext * const s = &h->s;
2578 int list;
2579
2580 if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2581
2582 for(list=0; list<2; list++){
2583 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2584
2585 if(get_bits1(&s->gb)){
2586 int pred= h->curr_pic_num;
2587 int index;
2588
2589 for(index=0; ; index++){
2590 int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2591 int pic_id;
2592 int i;
2593
2594
2595 if(index >= h->ref_count[list]){
2596 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
2597 return -1;
2598 }
2599
2600 if(reordering_of_pic_nums_idc<3){
2601 if(reordering_of_pic_nums_idc<2){
2602 const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2603
2604 if(abs_diff_pic_num >= h->max_pic_num){
2605 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
2606 return -1;
2607 }
2608
2609 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2610 else pred+= abs_diff_pic_num;
2611 pred &= h->max_pic_num - 1;
2612
2613 for(i= h->ref_count[list]-1; i>=index; i--){
2614 if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
2615 break;
2616 }
2617 }else{
2618 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2619
2620 for(i= h->ref_count[list]-1; i>=index; i--){
2621 if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
2622 break;
2623 }
2624 }
2625
2626 if(i < index){
2627 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
2628 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2629 }else if(i > index){
2630 Picture tmp= h->ref_list[list][i];
2631 for(; i>index; i--){
2632 h->ref_list[list][i]= h->ref_list[list][i-1];
2633 }
2634 h->ref_list[list][index]= tmp;
2635 }
2636 }else if(reordering_of_pic_nums_idc==3)
2637 break;
2638 else{
2639 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
2640 return -1;
2641 }
2642 }
2643 }
2644
2645 if(h->slice_type!=B_TYPE) break;
2646 }
2647 return 0;
2648 }
2649
2650 static int pred_weight_table(H264Context *h){
2651 MpegEncContext * const s = &h->s;
2652 int list, i;
2653
2654 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
2655 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
2656
2657 for(list=0; list<2; list++){
2658 for(i=0; i<h->ref_count[list]; i++){
2659 int luma_weight_flag, chroma_weight_flag;
2660
2661 luma_weight_flag= get_bits1(&s->gb);
2662 if(luma_weight_flag){
2663 h->luma_weight[list][i]= get_se_golomb(&s->gb);
2664 h->luma_offset[list][i]= get_se_golomb(&s->gb);
2665 }
2666
2667 chroma_weight_flag= get_bits1(&s->gb);
2668 if(chroma_weight_flag){
2669 int j;
2670 for(j=0; j<2; j++){
2671 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
2672 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
2673 }
2674 }
2675 }
2676 if(h->slice_type != B_TYPE) break;
2677 }
2678 return 0;
2679 }
2680
2681 /**
2682 * instantaneos decoder refresh.
2683 */
2684 static void idr(H264Context *h){
2685 int i;
2686
2687 for(i=0; i<h->long_ref_count; i++){
2688 h->long_ref[i]->reference=0;
2689 h->long_ref[i]= NULL;
2690 }
2691 h->long_ref_count=0;
2692
2693 for(i=0; i<h->short_ref_count; i++){
2694 h->short_ref[i]->reference=0;
2695 h->short_ref[i]= NULL;
2696 }
2697 h->short_ref_count=0;
2698 }
2699
2700 /**
2701 *
2702 * @return the removed picture or NULL if an error occures
2703 */
2704 static Picture * remove_short(H264Context *h, int frame_num){
2705 MpegEncContext * const s = &h->s;
2706 int i;
2707
2708 if(s->avctx->debug&FF_DEBUG_MMCO)
2709 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
2710
2711 for(i=0; i<h->short_ref_count; i++){
2712 Picture *pic= h->short_ref[i];
2713 if(s->avctx->debug&FF_DEBUG_MMCO)
2714 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
2715 if(pic->frame_num == frame_num){
2716 h->short_ref[i]= NULL;
2717 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
2718 h->short_ref_count--;
2719 return pic;
2720 }
2721 }
2722 return NULL;
2723 }
2724
2725 /**
2726 *
2727 * @return the removed picture or NULL if an error occures
2728 */
2729 static Picture * remove_long(H264Context *h, int i){
2730 Picture *pic;
2731
2732 if(i >= h->long_ref_count) return NULL;
2733 pic= h->long_ref[i];
2734 if(pic==NULL) return NULL;
2735
2736 h->long_ref[i]= NULL;
2737 memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
2738 h->long_ref_count--;
2739
2740 return pic;
2741 }
2742
2743 /**
2744 * Executes the reference picture marking (memory management control operations).
2745 */
2746 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
2747 MpegEncContext * const s = &h->s;
2748 int i;
2749 int current_is_long=0;
2750 Picture *pic;
2751
2752 if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
2753 av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
2754
2755 for(i=0; i<mmco_count; i++){
2756 if(s->avctx->debug&FF_DEBUG_MMCO)
2757 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
2758
2759 switch(mmco[i].opcode){
2760 case MMCO_SHORT2UNUSED:
2761 pic= remove_short(h, mmco[i].short_frame_num);
2762 if(pic==NULL) return -1;
2763 pic->reference= 0;
2764 break;
2765 case MMCO_SHORT2LONG:
2766 pic= remove_long(h, mmco[i].long_index);
2767 if(pic) pic->reference=0;
2768
2769 h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
2770 h->long_ref[ mmco[i].long_index ]->long_ref=1;
2771 break;
2772 case MMCO_LONG2UNUSED:
2773 pic= remove_long(h, mmco[i].long_index);
2774 if(pic==NULL) return -1;
2775 pic->reference= 0;
2776 break;
2777 case MMCO_LONG:
2778 pic= remove_long(h, mmco[i].long_index);
2779 if(pic) pic->reference=0;
2780
2781 h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
2782 h->long_ref[ mmco[i].long_index ]->long_ref=1;
2783 h->long_ref_count++;
2784
2785 current_is_long=1;
2786 break;
2787 case MMCO_SET_MAX_LONG:
2788 assert(mmco[i].long_index <= 16);
2789 while(mmco[i].long_index < h->long_ref_count){
2790 pic= remove_long(h, mmco[i].long_index);
2791 pic->reference=0;
2792 }
2793 while(mmco[i].long_index > h->long_ref_count){
2794 h->long_ref[ h->long_ref_count++ ]= NULL;
2795 }
2796 break;
2797 case MMCO_RESET:
2798 while(h->short_ref_count){
2799 pic= remove_short(h, h->short_ref[0]->frame_num);
2800 pic->reference=0;
2801 }
2802 while(h->long_ref_count){
2803 pic= remove_long(h, h->long_ref_count-1);
2804 pic->reference=0;
2805 }
2806 break;
2807 default: assert(0);
2808 }
2809 }
2810
2811 if(!current_is_long){
2812 pic= remove_short(h, s->current_picture_ptr->frame_num);
2813 if(pic){
2814 pic->reference=0;
2815 av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
2816 }
2817
2818 if(h->short_ref_count)
2819 memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
2820
2821 h->short_ref[0]= s->current_picture_ptr;
2822 h->short_ref[0]->long_ref=0;
2823 h->short_ref_count++;
2824 }
2825
2826 return 0;
2827 }
2828
2829 static int decode_ref_pic_marking(H264Context *h){
2830 MpegEncContext * const s = &h->s;
2831 int i;
2832
2833 if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
2834 s->broken_link= get_bits1(&s->gb) -1;
2835 h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
2836 if(h->mmco[0].long_index == -1)
2837 h->mmco_index= 0;
2838 else{
2839 h->mmco[0].opcode= MMCO_LONG;
2840 h->mmco_index= 1;
2841 }
2842 }else{
2843 if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
2844 for(i= h->mmco_index; i<MAX_MMCO_COUNT; i++) {
2845 MMCOOpcode opcode= get_ue_golomb(&s->gb);;
2846
2847 h->mmco[i].opcode= opcode;
2848 if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
2849 h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
2850 /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
2851 fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
2852 return -1;
2853 }*/
2854 }
2855 if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
2856 h->mmco[i].long_index= get_ue_golomb(&s->gb);
2857 if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
2858 av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
2859 return -1;
2860 }
2861 }
2862
2863 if(opcode > MMCO_LONG){
2864 av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
2865 return -1;
2866 }
2867 }
2868 h->mmco_index= i;
2869 }else{
2870 assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
2871
2872 if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
2873 h->mmco[0].opcode= MMCO_SHORT2UNUSED;
2874 h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
2875 h->mmco_index= 1;
2876 }else
2877 h->mmco_index= 0;
2878 }
2879 }
2880
2881 return 0;
2882 }
2883
2884 static int init_poc(H264Context *h){
2885 MpegEncContext * const s = &h->s;
2886 const int max_frame_num= 1<<h->sps.log2_max_frame_num;
2887 int field_poc[2];
2888
2889 if(h->nal_unit_type == NAL_IDR_SLICE){
2890 h->frame_num_offset= 0;
2891 }else{
2892 if(h->frame_num < h->prev_frame_num)
2893 h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
2894 else
2895 h->frame_num_offset= h->prev_frame_num_offset;
2896 }
2897
2898 if(h->sps.poc_type==0){
2899 const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
2900
2901 if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
2902 h->poc_msb = h->prev_poc_msb + max_poc_lsb;
2903 else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
2904 h->poc_msb = h->prev_poc_msb - max_poc_lsb;
2905 else
2906 h->poc_msb = h->prev_poc_msb;
2907 //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
2908 field_poc[0] =
2909 field_poc[1] = h->poc_msb + h->poc_lsb;
2910 if(s->picture_structure == PICT_FRAME)
2911 field_poc[1] += h->delta_poc_bottom;
2912 }else if(h->sps.poc_type==1){
2913 int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
2914 int i;
2915
2916 if(h->sps.poc_cycle_length != 0)
2917 abs_frame_num = h->frame_num_offset + h->frame_num;
2918 else
2919 abs_frame_num = 0;
2920
2921 if(h->nal_ref_idc==0 && abs_frame_num > 0)
2922 abs_frame_num--;
2923
2924 expected_delta_per_poc_cycle = 0;
2925 for(i=0; i < h->sps.poc_cycle_length; i++)
2926 expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
2927
2928 if(abs_frame_num > 0){
2929 int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
2930 int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
2931
2932 expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
2933 for(i = 0; i <= frame_num_in_poc_cycle; i++)
2934 expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
2935 } else
2936 expectedpoc = 0;
2937
2938 if(h->nal_ref_idc == 0)
2939 expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
2940
2941 field_poc[0] = expectedpoc + h->delta_poc[0];
2942 field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
2943
2944 if(s->picture_structure == PICT_FRAME)
2945 field_poc[1] += h->delta_poc[1];
2946 }else{
2947 int poc;
2948 if(h->nal_unit_type == NAL_IDR_SLICE){
2949 poc= 0;
2950 }else{
2951 if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
2952 else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
2953 }
2954 field_poc[0]= poc;
2955 field_poc[1]= poc;
2956 }
2957
2958 if(s->picture_structure != PICT_BOTTOM_FIELD)
2959 s->current_picture_ptr->field_poc[0]= field_poc[0];
2960 if(s->picture_structure != PICT_TOP_FIELD)
2961 s->current_picture_ptr->field_poc[1]= field_poc[1];
2962 if(s->picture_structure == PICT_FRAME) // FIXME field pix?
2963 s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
2964
2965 return 0;
2966 }
2967
2968 /**
2969 * decodes a slice header.
2970 * this will allso call MPV_common_init() and frame_start() as needed
2971 */
2972 static int decode_slice_header(H264Context *h){
2973 MpegEncContext * const s = &h->s;
2974 int first_mb_in_slice, pps_id;
2975 int num_ref_idx_active_override_flag;
2976 static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
2977
2978 s->current_picture.reference= h->nal_ref_idc != 0;
2979
2980 first_mb_in_slice= get_ue_golomb(&s->gb);
2981
2982 h->slice_type= get_ue_golomb(&s->gb);
2983 if(h->slice_type > 9){
2984 av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
2985 }
2986 if(h->slice_type > 4){
2987 h->slice_type -= 5;
2988 h->slice_type_fixed=1;
2989 }else
2990 h->slice_type_fixed=0;
2991
2992 h->slice_type= slice_type_map[ h->slice_type ];
2993
2994 s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
2995
2996 pps_id= get_ue_golomb(&s->gb);
2997 if(pps_id>255){
2998 av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
2999 return -1;
3000 }
3001 h->pps= h->pps_buffer[pps_id];
3002 if(h->pps.slice_group_count == 0){
3003 av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
3004 return -1;
3005 }
3006
3007 h->sps= h->sps_buffer[ h->pps.sps_id ];
3008 if(h->sps.log2_max_frame_num == 0){
3009 av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
3010 return -1;
3011 }
3012
3013 s->mb_width= h->sps.mb_width;
3014 s->mb_height= h->sps.mb_height;
3015
3016 h->b_stride= s->mb_width*4;
3017 h->b8_stride= s->mb_width*2;
3018
3019 s->mb_x = first_mb_in_slice % s->mb_width;
3020 s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
3021
3022 s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
3023 if(h->sps.frame_mbs_only_flag)
3024 s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
3025 else
3026 s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
3027
3028 if (s->context_initialized
3029 && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
3030 free_tables(h);
3031 MPV_common_end(s);
3032 }
3033 if (!s->context_initialized) {
3034 if (MPV_common_init(s) < 0)
3035 return -1;
3036
3037 alloc_tables(h);
3038
3039 s->avctx->width = s->width;
3040 s->avctx->height = s->height;
3041 s->avctx->sample_aspect_ratio= h->sps.sar;
3042 }
3043
3044 if(first_mb_in_slice == 0){
3045 frame_start(h);
3046 }
3047
3048 s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
3049 h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
3050
3051 if(h->sps.frame_mbs_only_flag){
3052 s->picture_structure= PICT_FRAME;
3053 }else{
3054 if(get_bits1(&s->gb)) //field_pic_flag
3055 s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
3056 else
3057 s->picture_structure= PICT_FRAME;
3058 }
3059
3060 if(s->picture_structure==PICT_FRAME){
3061 h->curr_pic_num= h->frame_num;
3062 h->m