6ea09b086ee6bcccda242f5202765275383f9ec5
[libav.git] / libavcodec / h264.c
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file libavcodec/h264.c
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28 #include "internal.h"
29 #include "dsputil.h"
30 #include "avcodec.h"
31 #include "mpegvideo.h"
32 #include "h264.h"
33 #include "h264data.h"
34 #include "h264_parser.h"
35 #include "golomb.h"
36 #include "mathops.h"
37 #include "rectangle.h"
38 #include "vdpau_internal.h"
39
40 #include "cabac.h"
41 #if ARCH_X86
42 #include "x86/h264_i386.h"
43 #endif
44
45 //#undef NDEBUG
46 #include <assert.h>
47
48 /**
49 * Value of Picture.reference when Picture is not a reference picture, but
50 * is held for delayed output.
51 */
52 #define DELAYED_PIC_REF 4
53
54 static VLC coeff_token_vlc[4];
55 static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
56 static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
57
58 static VLC chroma_dc_coeff_token_vlc;
59 static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
60 static const int chroma_dc_coeff_token_vlc_table_size = 256;
61
62 static VLC total_zeros_vlc[15];
63 static VLC_TYPE total_zeros_vlc_tables[15][512][2];
64 static const int total_zeros_vlc_tables_size = 512;
65
66 static VLC chroma_dc_total_zeros_vlc[3];
67 static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
68 static const int chroma_dc_total_zeros_vlc_tables_size = 8;
69
70 static VLC run_vlc[6];
71 static VLC_TYPE run_vlc_tables[6][8][2];
72 static const int run_vlc_tables_size = 8;
73
74 static VLC run7_vlc;
75 static VLC_TYPE run7_vlc_table[96][2];
76 static const int run7_vlc_table_size = 96;
77
78 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
79 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
80 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
81 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
82 static Picture * remove_long(H264Context *h, int i, int ref_mask);
83
84 static av_always_inline uint32_t pack16to32(int a, int b){
85 #ifdef WORDS_BIGENDIAN
86 return (b&0xFFFF) + (a<<16);
87 #else
88 return (a&0xFFFF) + (b<<16);
89 #endif
90 }
91
92 static const uint8_t rem6[52]={
93 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
94 };
95
96 static const uint8_t div6[52]={
97 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
98 };
99
100 static const uint8_t left_block_options[4][8]={
101 {0,1,2,3,7,10,8,11},
102 {2,2,3,3,8,11,8,11},
103 {0,0,1,1,7,10,7,10},
104 {0,2,0,2,7,10,7,10}
105 };
106
107 #define LEVEL_TAB_BITS 8
108 static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
109
110 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
111 MpegEncContext * const s = &h->s;
112 const int mb_xy= h->mb_xy;
113 int topleft_xy, top_xy, topright_xy, left_xy[2];
114 int topleft_type, top_type, topright_type, left_type[2];
115 const uint8_t * left_block;
116 int topleft_partition= -1;
117 int i;
118
119 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
120
121 //FIXME deblocking could skip the intra and nnz parts.
122 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
123 return;
124
125 /* Wow, what a mess, why didn't they simplify the interlacing & intra
126 * stuff, I can't imagine that these complex rules are worth it. */
127
128 topleft_xy = top_xy - 1;
129 topright_xy= top_xy + 1;
130 left_xy[1] = left_xy[0] = mb_xy-1;
131 left_block = left_block_options[0];
132 if(FRAME_MBAFF){
133 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
134 const int top_pair_xy = pair_xy - s->mb_stride;
135 const int topleft_pair_xy = top_pair_xy - 1;
136 const int topright_pair_xy = top_pair_xy + 1;
137 const int topleft_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
138 const int top_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
139 const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
140 const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
141 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
142 const int bottom = (s->mb_y & 1);
143 tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
144
145 if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
146 top_xy -= s->mb_stride;
147 }
148 if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
149 topleft_xy -= s->mb_stride;
150 } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
151 topleft_xy += s->mb_stride;
152 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
153 topleft_partition = 0;
154 }
155 if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
156 topright_xy -= s->mb_stride;
157 }
158 if (left_mb_field_flag != curr_mb_field_flag) {
159 left_xy[1] = left_xy[0] = pair_xy - 1;
160 if (curr_mb_field_flag) {
161 left_xy[1] += s->mb_stride;
162 left_block = left_block_options[3];
163 } else {
164 left_block= left_block_options[2 - bottom];
165 }
166 }
167 }
168
169 h->top_mb_xy = top_xy;
170 h->left_mb_xy[0] = left_xy[0];
171 h->left_mb_xy[1] = left_xy[1];
172 if(for_deblock){
173 topleft_type = 0;
174 topright_type = 0;
175 top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
176 left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
177 left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
178
179 if(MB_MBAFF && !IS_INTRA(mb_type)){
180 int list;
181 for(list=0; list<h->list_count; list++){
182 //These values where changed for ease of performing MC, we need to change them back
183 //FIXME maybe we can make MC and loop filter use the same values or prevent
184 //the MC code from changing ref_cache and rather use a temporary array.
185 if(USES_LIST(mb_type,list)){
186 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
187 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
188 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
189 ref += h->b8_stride;
190 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
191 *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
192 }
193 }
194 }
195 }else{
196 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
197 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
198 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
199 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
200 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
201
202 if(IS_INTRA(mb_type)){
203 int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
204 h->topleft_samples_available=
205 h->top_samples_available=
206 h->left_samples_available= 0xFFFF;
207 h->topright_samples_available= 0xEEEA;
208
209 if(!(top_type & type_mask)){
210 h->topleft_samples_available= 0xB3FF;
211 h->top_samples_available= 0x33FF;
212 h->topright_samples_available= 0x26EA;
213 }
214 if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
215 if(IS_INTERLACED(mb_type)){
216 if(!(left_type[0] & type_mask)){
217 h->topleft_samples_available&= 0xDFFF;
218 h->left_samples_available&= 0x5FFF;
219 }
220 if(!(left_type[1] & type_mask)){
221 h->topleft_samples_available&= 0xFF5F;
222 h->left_samples_available&= 0xFF5F;
223 }
224 }else{
225 int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
226 ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
227 assert(left_xy[0] == left_xy[1]);
228 if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
229 h->topleft_samples_available&= 0xDF5F;
230 h->left_samples_available&= 0x5F5F;
231 }
232 }
233 }else{
234 if(!(left_type[0] & type_mask)){
235 h->topleft_samples_available&= 0xDF5F;
236 h->left_samples_available&= 0x5F5F;
237 }
238 }
239
240 if(!(topleft_type & type_mask))
241 h->topleft_samples_available&= 0x7FFF;
242
243 if(!(topright_type & type_mask))
244 h->topright_samples_available&= 0xFBFF;
245
246 if(IS_INTRA4x4(mb_type)){
247 if(IS_INTRA4x4(top_type)){
248 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
249 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
250 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
251 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
252 }else{
253 int pred;
254 if(!(top_type & type_mask))
255 pred= -1;
256 else{
257 pred= 2;
258 }
259 h->intra4x4_pred_mode_cache[4+8*0]=
260 h->intra4x4_pred_mode_cache[5+8*0]=
261 h->intra4x4_pred_mode_cache[6+8*0]=
262 h->intra4x4_pred_mode_cache[7+8*0]= pred;
263 }
264 for(i=0; i<2; i++){
265 if(IS_INTRA4x4(left_type[i])){
266 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
267 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
268 }else{
269 int pred;
270 if(!(left_type[i] & type_mask))
271 pred= -1;
272 else{
273 pred= 2;
274 }
275 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
276 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
277 }
278 }
279 }
280 }
281 }
282
283
284 /*
285 0 . T T. T T T T
286 1 L . .L . . . .
287 2 L . .L . . . .
288 3 . T TL . . . .
289 4 L . .L . . . .
290 5 L . .. . . . .
291 */
292 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
293 if(top_type){
294 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
295 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
296 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
297 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
298
299 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
300 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
301
302 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
303 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
304
305 }else{
306 h->non_zero_count_cache[4+8*0]=
307 h->non_zero_count_cache[5+8*0]=
308 h->non_zero_count_cache[6+8*0]=
309 h->non_zero_count_cache[7+8*0]=
310
311 h->non_zero_count_cache[1+8*0]=
312 h->non_zero_count_cache[2+8*0]=
313
314 h->non_zero_count_cache[1+8*3]=
315 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
316
317 }
318
319 for (i=0; i<2; i++) {
320 if(left_type[i]){
321 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
322 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
323 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
324 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
325 }else{
326 h->non_zero_count_cache[3+8*1 + 2*8*i]=
327 h->non_zero_count_cache[3+8*2 + 2*8*i]=
328 h->non_zero_count_cache[0+8*1 + 8*i]=
329 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
330 }
331 }
332
333 if( h->pps.cabac ) {
334 // top_cbp
335 if(top_type) {
336 h->top_cbp = h->cbp_table[top_xy];
337 } else if(IS_INTRA(mb_type)) {
338 h->top_cbp = 0x1C0;
339 } else {
340 h->top_cbp = 0;
341 }
342 // left_cbp
343 if (left_type[0]) {
344 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
345 } else if(IS_INTRA(mb_type)) {
346 h->left_cbp = 0x1C0;
347 } else {
348 h->left_cbp = 0;
349 }
350 if (left_type[0]) {
351 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
352 }
353 if (left_type[1]) {
354 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
355 }
356 }
357
358 #if 1
359 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
360 int list;
361 for(list=0; list<h->list_count; list++){
362 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
363 /*if(!h->mv_cache_clean[list]){
364 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
365 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
366 h->mv_cache_clean[list]= 1;
367 }*/
368 continue;
369 }
370 h->mv_cache_clean[list]= 0;
371
372 if(USES_LIST(top_type, list)){
373 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
374 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
375 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
376 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
377 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
378 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
379 h->ref_cache[list][scan8[0] + 0 - 1*8]=
380 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
381 h->ref_cache[list][scan8[0] + 2 - 1*8]=
382 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
383 }else{
384 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
385 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
386 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
387 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
388 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
389 }
390
391 for(i=0; i<2; i++){
392 int cache_idx = scan8[0] - 1 + i*2*8;
393 if(USES_LIST(left_type[i], list)){
394 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
395 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
396 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
397 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
398 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
399 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
400 }else{
401 *(uint32_t*)h->mv_cache [list][cache_idx ]=
402 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
403 h->ref_cache[list][cache_idx ]=
404 h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
405 }
406 }
407
408 if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
409 continue;
410
411 if(USES_LIST(topleft_type, list)){
412 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
413 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
414 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
415 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
416 }else{
417 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
418 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
419 }
420
421 if(USES_LIST(topright_type, list)){
422 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
423 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
424 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
425 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
426 }else{
427 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
428 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
429 }
430
431 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
432 continue;
433
434 h->ref_cache[list][scan8[5 ]+1] =
435 h->ref_cache[list][scan8[7 ]+1] =
436 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
437 h->ref_cache[list][scan8[4 ]] =
438 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
439 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
440 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
441 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
442 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
443 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
444
445 if( h->pps.cabac ) {
446 /* XXX beurk, Load mvd */
447 if(USES_LIST(top_type, list)){
448 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
449 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
450 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
451 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
452 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
453 }else{
454 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
455 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
456 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
457 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
458 }
459 if(USES_LIST(left_type[0], list)){
460 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
461 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
462 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
463 }else{
464 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
465 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
466 }
467 if(USES_LIST(left_type[1], list)){
468 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
469 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
470 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
471 }else{
472 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
473 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
474 }
475 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
476 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
477 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
478 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
479 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
480
481 if(h->slice_type_nos == FF_B_TYPE){
482 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
483
484 if(IS_DIRECT(top_type)){
485 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
486 }else if(IS_8X8(top_type)){
487 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
488 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
489 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
490 }else{
491 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
492 }
493
494 if(IS_DIRECT(left_type[0]))
495 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
496 else if(IS_8X8(left_type[0]))
497 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
498 else
499 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
500
501 if(IS_DIRECT(left_type[1]))
502 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
503 else if(IS_8X8(left_type[1]))
504 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
505 else
506 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
507 }
508 }
509
510 if(FRAME_MBAFF){
511 #define MAP_MVS\
512 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
513 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
514 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
515 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
516 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
517 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
518 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
519 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
520 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
521 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
522 if(MB_FIELD){
523 #define MAP_F2F(idx, mb_type)\
524 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
525 h->ref_cache[list][idx] <<= 1;\
526 h->mv_cache[list][idx][1] /= 2;\
527 h->mvd_cache[list][idx][1] /= 2;\
528 }
529 MAP_MVS
530 #undef MAP_F2F
531 }else{
532 #define MAP_F2F(idx, mb_type)\
533 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
534 h->ref_cache[list][idx] >>= 1;\
535 h->mv_cache[list][idx][1] <<= 1;\
536 h->mvd_cache[list][idx][1] <<= 1;\
537 }
538 MAP_MVS
539 #undef MAP_F2F
540 }
541 }
542 }
543 }
544 #endif
545
546 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
547 }
548
549 static inline void write_back_intra_pred_mode(H264Context *h){
550 const int mb_xy= h->mb_xy;
551
552 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
553 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
554 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
555 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
556 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
557 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
558 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
559 }
560
561 /**
562 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
563 */
564 static inline int check_intra4x4_pred_mode(H264Context *h){
565 MpegEncContext * const s = &h->s;
566 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
567 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
568 int i;
569
570 if(!(h->top_samples_available&0x8000)){
571 for(i=0; i<4; i++){
572 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
573 if(status<0){
574 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
575 return -1;
576 } else if(status){
577 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
578 }
579 }
580 }
581
582 if((h->left_samples_available&0x8888)!=0x8888){
583 static const int mask[4]={0x8000,0x2000,0x80,0x20};
584 for(i=0; i<4; i++){
585 if(!(h->left_samples_available&mask[i])){
586 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
587 if(status<0){
588 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
589 return -1;
590 } else if(status){
591 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
592 }
593 }
594 }
595 }
596
597 return 0;
598 } //FIXME cleanup like next
599
600 /**
601 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
602 */
603 static inline int check_intra_pred_mode(H264Context *h, int mode){
604 MpegEncContext * const s = &h->s;
605 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
606 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
607
608 if(mode > 6U) {
609 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
610 return -1;
611 }
612
613 if(!(h->top_samples_available&0x8000)){
614 mode= top[ mode ];
615 if(mode<0){
616 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
617 return -1;
618 }
619 }
620
621 if((h->left_samples_available&0x8080) != 0x8080){
622 mode= left[ mode ];
623 if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
624 mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
625 }
626 if(mode<0){
627 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
628 return -1;
629 }
630 }
631
632 return mode;
633 }
634
635 /**
636 * gets the predicted intra4x4 prediction mode.
637 */
638 static inline int pred_intra_mode(H264Context *h, int n){
639 const int index8= scan8[n];
640 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
641 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
642 const int min= FFMIN(left, top);
643
644 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
645
646 if(min<0) return DC_PRED;
647 else return min;
648 }
649
650 static inline void write_back_non_zero_count(H264Context *h){
651 const int mb_xy= h->mb_xy;
652
653 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
654 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
655 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
656 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
657 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
658 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
659 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
660
661 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
662 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
663 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
664
665 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
666 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
667 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
668 }
669
670 /**
671 * gets the predicted number of non-zero coefficients.
672 * @param n block index
673 */
674 static inline int pred_non_zero_count(H264Context *h, int n){
675 const int index8= scan8[n];
676 const int left= h->non_zero_count_cache[index8 - 1];
677 const int top = h->non_zero_count_cache[index8 - 8];
678 int i= left + top;
679
680 if(i<64) i= (i+1)>>1;
681
682 tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
683
684 return i&31;
685 }
686
687 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
688 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
689 MpegEncContext *s = &h->s;
690
691 /* there is no consistent mapping of mvs to neighboring locations that will
692 * make mbaff happy, so we can't move all this logic to fill_caches */
693 if(FRAME_MBAFF){
694 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
695 const int16_t *mv;
696 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
697 *C = h->mv_cache[list][scan8[0]-2];
698
699 if(!MB_FIELD
700 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
701 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
702 if(IS_INTERLACED(mb_types[topright_xy])){
703 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
704 const int x4 = X4, y4 = Y4;\
705 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
706 if(!USES_LIST(mb_type,list))\
707 return LIST_NOT_USED;\
708 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
709 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
710 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
711 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
712
713 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
714 }
715 }
716 if(topright_ref == PART_NOT_AVAILABLE
717 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
718 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
719 if(!MB_FIELD
720 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
721 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
722 }
723 if(MB_FIELD
724 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
725 && i >= scan8[0]+8){
726 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
727 SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
728 }
729 }
730 #undef SET_DIAG_MV
731 }
732
733 if(topright_ref != PART_NOT_AVAILABLE){
734 *C= h->mv_cache[list][ i - 8 + part_width ];
735 return topright_ref;
736 }else{
737 tprintf(s->avctx, "topright MV not available\n");
738
739 *C= h->mv_cache[list][ i - 8 - 1 ];
740 return h->ref_cache[list][ i - 8 - 1 ];
741 }
742 }
743
744 /**
745 * gets the predicted MV.
746 * @param n the block index
747 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
748 * @param mx the x component of the predicted motion vector
749 * @param my the y component of the predicted motion vector
750 */
751 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
752 const int index8= scan8[n];
753 const int top_ref= h->ref_cache[list][ index8 - 8 ];
754 const int left_ref= h->ref_cache[list][ index8 - 1 ];
755 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
756 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
757 const int16_t * C;
758 int diagonal_ref, match_count;
759
760 assert(part_width==1 || part_width==2 || part_width==4);
761
762 /* mv_cache
763 B . . A T T T T
764 U . . L . . , .
765 U . . L . . . .
766 U . . L . . , .
767 . . . L . . . .
768 */
769
770 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
771 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
772 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
773 if(match_count > 1){ //most common
774 *mx= mid_pred(A[0], B[0], C[0]);
775 *my= mid_pred(A[1], B[1], C[1]);
776 }else if(match_count==1){
777 if(left_ref==ref){
778 *mx= A[0];
779 *my= A[1];
780 }else if(top_ref==ref){
781 *mx= B[0];
782 *my= B[1];
783 }else{
784 *mx= C[0];
785 *my= C[1];
786 }
787 }else{
788 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
789 *mx= A[0];
790 *my= A[1];
791 }else{
792 *mx= mid_pred(A[0], B[0], C[0]);
793 *my= mid_pred(A[1], B[1], C[1]);
794 }
795 }
796
797 tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
798 }
799
800 /**
801 * gets the directionally predicted 16x8 MV.
802 * @param n the block index
803 * @param mx the x component of the predicted motion vector
804 * @param my the y component of the predicted motion vector
805 */
806 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
807 if(n==0){
808 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
809 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
810
811 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
812
813 if(top_ref == ref){
814 *mx= B[0];
815 *my= B[1];
816 return;
817 }
818 }else{
819 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
820 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
821
822 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
823
824 if(left_ref == ref){
825 *mx= A[0];
826 *my= A[1];
827 return;
828 }
829 }
830
831 //RARE
832 pred_motion(h, n, 4, list, ref, mx, my);
833 }
834
835 /**
836 * gets the directionally predicted 8x16 MV.
837 * @param n the block index
838 * @param mx the x component of the predicted motion vector
839 * @param my the y component of the predicted motion vector
840 */
841 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
842 if(n==0){
843 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
844 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
845
846 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
847
848 if(left_ref == ref){
849 *mx= A[0];
850 *my= A[1];
851 return;
852 }
853 }else{
854 const int16_t * C;
855 int diagonal_ref;
856
857 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
858
859 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
860
861 if(diagonal_ref == ref){
862 *mx= C[0];
863 *my= C[1];
864 return;
865 }
866 }
867
868 //RARE
869 pred_motion(h, n, 2, list, ref, mx, my);
870 }
871
872 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
873 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
874 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
875
876 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
877
878 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
879 || !( top_ref | *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ])
880 || !(left_ref | *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ])){
881
882 *mx = *my = 0;
883 return;
884 }
885
886 pred_motion(h, 0, 4, 0, 0, mx, my);
887
888 return;
889 }
890
891 static int get_scale_factor(H264Context * const h, int poc, int poc1, int i){
892 int poc0 = h->ref_list[0][i].poc;
893 int td = av_clip(poc1 - poc0, -128, 127);
894 if(td == 0 || h->ref_list[0][i].long_ref){
895 return 256;
896 }else{
897 int tb = av_clip(poc - poc0, -128, 127);
898 int tx = (16384 + (FFABS(td) >> 1)) / td;
899 return av_clip((tb*tx + 32) >> 6, -1024, 1023);
900 }
901 }
902
903 static inline void direct_dist_scale_factor(H264Context * const h){
904 MpegEncContext * const s = &h->s;
905 const int poc = h->s.current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
906 const int poc1 = h->ref_list[1][0].poc;
907 int i, field;
908 for(field=0; field<2; field++){
909 const int poc = h->s.current_picture_ptr->field_poc[field];
910 const int poc1 = h->ref_list[1][0].field_poc[field];
911 for(i=0; i < 2*h->ref_count[0]; i++)
912 h->dist_scale_factor_field[field][i^field] = get_scale_factor(h, poc, poc1, i+16);
913 }
914
915 for(i=0; i<h->ref_count[0]; i++){
916 h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i);
917 }
918 }
919
920 static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi){
921 MpegEncContext * const s = &h->s;
922 Picture * const ref1 = &h->ref_list[1][0];
923 int j, old_ref, rfield;
924 int start= mbafi ? 16 : 0;
925 int end = mbafi ? 16+2*h->ref_count[list] : h->ref_count[list];
926 int interl= mbafi || s->picture_structure != PICT_FRAME;
927
928 /* bogus; fills in for missing frames */
929 memset(map[list], 0, sizeof(map[list]));
930
931 for(rfield=0; rfield<2; rfield++){
932 for(old_ref=0; old_ref<ref1->ref_count[colfield][list]; old_ref++){
933 int poc = ref1->ref_poc[colfield][list][old_ref];
934
935 if (!interl)
936 poc |= 3;
937 else if( interl && (poc&3) == 3) //FIXME store all MBAFF references so this isnt needed
938 poc= (poc&~3) + rfield + 1;
939
940 for(j=start; j<end; j++){
941 if(4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3) == poc){
942 int cur_ref= mbafi ? (j-16)^field : j;
943 map[list][2*old_ref + (rfield^field) + 16] = cur_ref;
944 if(rfield == field)
945 map[list][old_ref] = cur_ref;
946 break;
947 }
948 }
949 }
950 }
951 }
952
953 static inline void direct_ref_list_init(H264Context * const h){
954 MpegEncContext * const s = &h->s;
955 Picture * const ref1 = &h->ref_list[1][0];
956 Picture * const cur = s->current_picture_ptr;
957 int list, j, field;
958 int sidx= (s->picture_structure&1)^1;
959 int ref1sidx= (ref1->reference&1)^1;
960
961 for(list=0; list<2; list++){
962 cur->ref_count[sidx][list] = h->ref_count[list];
963 for(j=0; j<h->ref_count[list]; j++)
964 cur->ref_poc[sidx][list][j] = 4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3);
965 }
966
967 if(s->picture_structure == PICT_FRAME){
968 memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
969 memcpy(cur->ref_poc [1], cur->ref_poc [0], sizeof(cur->ref_poc [0]));
970 }
971
972 cur->mbaff= FRAME_MBAFF;
973
974 if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
975 return;
976
977 for(list=0; list<2; list++){
978 fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0);
979 for(field=0; field<2; field++)
980 fill_colmap(h, h->map_col_to_list0_field[field], list, field, field, 1);
981 }
982 }
983
984 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
985 MpegEncContext * const s = &h->s;
986 int b8_stride = h->b8_stride;
987 int b4_stride = h->b_stride;
988 int mb_xy = h->mb_xy;
989 int mb_type_col[2];
990 const int16_t (*l1mv0)[2], (*l1mv1)[2];
991 const int8_t *l1ref0, *l1ref1;
992 const int is_b8x8 = IS_8X8(*mb_type);
993 unsigned int sub_mb_type;
994 int i8, i4;
995
996 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
997
998 if(IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])){ // AFL/AFR/FR/FL -> AFL/FL
999 if(!IS_INTERLACED(*mb_type)){ // AFR/FR -> AFL/FL
1000 int cur_poc = s->current_picture_ptr->poc;
1001 int *col_poc = h->ref_list[1]->field_poc;
1002 int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
1003 mb_xy= s->mb_x + ((s->mb_y&~1) + col_parity)*s->mb_stride;
1004 b8_stride = 0;
1005 }else if(!(s->picture_structure & h->ref_list[1][0].reference) && !h->ref_list[1][0].mbaff){// FL -> FL & differ parity
1006 int fieldoff= 2*(h->ref_list[1][0].reference)-3;
1007 mb_xy += s->mb_stride*fieldoff;
1008 }
1009 goto single_col;
1010 }else{ // AFL/AFR/FR/FL -> AFR/FR
1011 if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
1012 mb_xy= s->mb_x + (s->mb_y&~1)*s->mb_stride;
1013 mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
1014 mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + s->mb_stride];
1015 b8_stride *= 3;
1016 b4_stride *= 6;
1017 //FIXME IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag
1018 if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
1019 && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
1020 && !is_b8x8){
1021 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1022 *mb_type |= MB_TYPE_16x8 |MB_TYPE_L0L1|MB_TYPE_DIRECT2; /* B_16x8 */
1023 }else{
1024 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1025 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1026 }
1027 }else{ // AFR/FR -> AFR/FR
1028 single_col:
1029 mb_type_col[0] =
1030 mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
1031 if(IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag){
1032 /* FIXME save sub mb types from previous frames (or derive from MVs)
1033 * so we know exactly what block size to use */
1034 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1035 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1036 }else if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
1037 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1038 *mb_type |= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1039 }else{
1040 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1041 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1042 }
1043 }
1044 }
1045
1046 l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
1047 l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
1048 l1ref0 = &h->ref_list[1][0].ref_index [0][h->mb2b8_xy[mb_xy]];
1049 l1ref1 = &h->ref_list[1][0].ref_index [1][h->mb2b8_xy[mb_xy]];
1050 if(!b8_stride){
1051 if(s->mb_y&1){
1052 l1ref0 += h->b8_stride;
1053 l1ref1 += h->b8_stride;
1054 l1mv0 += 2*b4_stride;
1055 l1mv1 += 2*b4_stride;
1056 }
1057 }
1058
1059 if(h->direct_spatial_mv_pred){
1060 int ref[2];
1061 int mv[2][2];
1062 int list;
1063
1064 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1065
1066 /* ref = min(neighbors) */
1067 for(list=0; list<2; list++){
1068 int refa = h->ref_cache[list][scan8[0] - 1];
1069 int refb = h->ref_cache[list][scan8[0] - 8];
1070 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1071 if(refc == PART_NOT_AVAILABLE)
1072 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1073 ref[list] = FFMIN3((unsigned)refa, (unsigned)refb, (unsigned)refc);
1074 if(ref[list] < 0)
1075 ref[list] = -1;
1076 }
1077
1078 if(ref[0] < 0 && ref[1] < 0){
1079 ref[0] = ref[1] = 0;
1080 mv[0][0] = mv[0][1] =
1081 mv[1][0] = mv[1][1] = 0;
1082 }else{
1083 for(list=0; list<2; list++){
1084 if(ref[list] >= 0)
1085 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1086 else
1087 mv[list][0] = mv[list][1] = 0;
1088 }
1089 }
1090
1091 if(ref[1] < 0){
1092 if(!is_b8x8)
1093 *mb_type &= ~MB_TYPE_L1;
1094 sub_mb_type &= ~MB_TYPE_L1;
1095 }else if(ref[0] < 0){
1096 if(!is_b8x8)
1097 *mb_type &= ~MB_TYPE_L0;
1098 sub_mb_type &= ~MB_TYPE_L0;
1099 }
1100
1101 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
1102 for(i8=0; i8<4; i8++){
1103 int x8 = i8&1;
1104 int y8 = i8>>1;
1105 int xy8 = x8+y8*b8_stride;
1106 int xy4 = 3*x8+y8*b4_stride;
1107 int a=0, b=0;
1108
1109 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1110 continue;
1111 h->sub_mb_type[i8] = sub_mb_type;
1112
1113 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1114 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1115 if(!IS_INTRA(mb_type_col[y8])
1116 && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
1117 || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
1118 if(ref[0] > 0)
1119 a= pack16to32(mv[0][0],mv[0][1]);
1120 if(ref[1] > 0)
1121 b= pack16to32(mv[1][0],mv[1][1]);
1122 }else{
1123 a= pack16to32(mv[0][0],mv[0][1]);
1124 b= pack16to32(mv[1][0],mv[1][1]);
1125 }
1126 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
1127 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
1128 }
1129 }else if(IS_16X16(*mb_type)){
1130 int a=0, b=0;
1131
1132 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1133 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1134 if(!IS_INTRA(mb_type_col[0])
1135 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1136 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1137 && (h->x264_build>33 || !h->x264_build)))){
1138 if(ref[0] > 0)
1139 a= pack16to32(mv[0][0],mv[0][1]);
1140 if(ref[1] > 0)
1141 b= pack16to32(mv[1][0],mv[1][1]);
1142 }else{
1143 a= pack16to32(mv[0][0],mv[0][1]);
1144 b= pack16to32(mv[1][0],mv[1][1]);
1145 }
1146 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
1147 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
1148 }else{
1149 for(i8=0; i8<4; i8++){
1150 const int x8 = i8&1;
1151 const int y8 = i8>>1;
1152
1153 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1154 continue;
1155 h->sub_mb_type[i8] = sub_mb_type;
1156
1157 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1158 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1159 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1160 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1161
1162 /* col_zero_flag */
1163 if(!IS_INTRA(mb_type_col[0]) && ( l1ref0[x8 + y8*b8_stride] == 0
1164 || (l1ref0[x8 + y8*b8_stride] < 0 && l1ref1[x8 + y8*b8_stride] == 0
1165 && (h->x264_build>33 || !h->x264_build)))){
1166 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*b8_stride] == 0 ? l1mv0 : l1mv1;
1167 if(IS_SUB_8X8(sub_mb_type)){
1168 const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
1169 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1170 if(ref[0] == 0)
1171 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1172 if(ref[1] == 0)
1173 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1174 }
1175 }else
1176 for(i4=0; i4<4; i4++){
1177 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
1178 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1179 if(ref[0] == 0)
1180 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1181 if(ref[1] == 0)
1182 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1183 }
1184 }
1185 }
1186 }
1187 }
1188 }else{ /* direct temporal mv pred */
1189 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1190 const int *dist_scale_factor = h->dist_scale_factor;
1191 int ref_offset= 0;
1192
1193 if(FRAME_MBAFF && IS_INTERLACED(*mb_type)){
1194 map_col_to_list0[0] = h->map_col_to_list0_field[s->mb_y&1][0];
1195 map_col_to_list0[1] = h->map_col_to_list0_field[s->mb_y&1][1];
1196 dist_scale_factor =h->dist_scale_factor_field[s->mb_y&1];
1197 }
1198 if(h->ref_list[1][0].mbaff && IS_INTERLACED(mb_type_col[0]))
1199 ref_offset += 16;
1200
1201 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
1202 /* FIXME assumes direct_8x8_inference == 1 */
1203 int y_shift = 2*!IS_INTERLACED(*mb_type);
1204
1205 for(i8=0; i8<4; i8++){
1206 const int x8 = i8&1;
1207 const int y8 = i8>>1;
1208 int ref0, scale;
1209 const int16_t (*l1mv)[2]= l1mv0;
1210
1211 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1212 continue;
1213 h->sub_mb_type[i8] = sub_mb_type;
1214
1215 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1216 if(IS_INTRA(mb_type_col[y8])){
1217 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1218 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1219 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1220 continue;
1221 }
1222
1223 ref0 = l1ref0[x8 + y8*b8_stride];
1224 if(ref0 >= 0)
1225 ref0 = map_col_to_list0[0][ref0 + ref_offset];
1226 else{
1227 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
1228 l1mv= l1mv1;
1229 }
1230 scale = dist_scale_factor[ref0];
1231 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1232
1233 {
1234 const int16_t *mv_col = l1mv[x8*3 + y8*b4_stride];
1235 int my_col = (mv_col[1]<<y_shift)/2;
1236 int mx = (scale * mv_col[0] + 128) >> 8;
1237 int my = (scale * my_col + 128) >> 8;
1238 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1239 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1240 }
1241 }
1242 return;
1243 }
1244
1245 /* one-to-one mv scaling */
1246
1247 if(IS_16X16(*mb_type)){
1248 int ref, mv0, mv1;
1249
1250 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1251 if(IS_INTRA(mb_type_col[0])){
1252 ref=mv0=mv1=0;
1253 }else{
1254 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
1255 : map_col_to_list0[1][l1ref1[0] + ref_offset];
1256 const int scale = dist_scale_factor[ref0];
1257 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1258 int mv_l0[2];
1259 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1260 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1261 ref= ref0;
1262 mv0= pack16to32(mv_l0[0],mv_l0[1]);
1263 mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1264 }
1265 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
1266 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
1267 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
1268 }else{
1269 for(i8=0; i8<4; i8++){
1270 const int x8 = i8&1;
1271 const int y8 = i8>>1;
1272 int ref0, scale;
1273 const int16_t (*l1mv)[2]= l1mv0;
1274
1275 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1276 continue;
1277 h->sub_mb_type[i8] = sub_mb_type;
1278 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1279 if(IS_INTRA(mb_type_col[0])){
1280 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1281 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1282 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1283 continue;
1284 }
1285
1286 ref0 = l1ref0[x8 + y8*b8_stride] + ref_offset;
1287 if(ref0 >= 0)
1288 ref0 = map_col_to_list0[0][ref0];
1289 else{
1290 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
1291 l1mv= l1mv1;
1292 }
1293 scale = dist_scale_factor[ref0];
1294
1295 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1296 if(IS_SUB_8X8(sub_mb_type)){
1297 const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
1298 int mx = (scale * mv_col[0] + 128) >> 8;
1299 int my = (scale * mv_col[1] + 128) >> 8;
1300 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1301 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1302 }else
1303 for(i4=0; i4<4; i4++){
1304 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
1305 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1306 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1307 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1308 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1309 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1310 }
1311 }
1312 }
1313 }
1314 }
1315
1316 static inline void write_back_motion(H264Context *h, int mb_type){
1317 MpegEncContext * const s = &h->s;
1318 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1319 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1320 int list;
1321
1322 if(!USES_LIST(mb_type, 0))
1323 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1324
1325 for(list=0; list<h->list_count; list++){
1326 int y;
1327 if(!USES_LIST(mb_type, list))
1328 continue;
1329
1330 for(y=0; y<4; y++){
1331 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1332 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1333 }
1334 if( h->pps.cabac ) {
1335 if(IS_SKIP(mb_type))
1336 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1337 else
1338 for(y=0; y<4; y++){
1339 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1340 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1341 }
1342 }
1343
1344 {
1345 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1346 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1347 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1348 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1349 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1350 }
1351 }
1352
1353 if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
1354 if(IS_8X8(mb_type)){
1355 uint8_t *direct_table = &h->direct_table[b8_xy];
1356 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1357 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1358 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1359 }
1360 }
1361 }
1362
1363 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
1364 int i, si, di;
1365 uint8_t *dst;
1366 int bufidx;
1367
1368 // src[0]&0x80; //forbidden bit
1369 h->nal_ref_idc= src[0]>>5;
1370 h->nal_unit_type= src[0]&0x1F;
1371
1372 src++; length--;
1373 #if 0
1374 for(i=0; i<length; i++)
1375 printf("%2X ", src[i]);
1376 #endif
1377
1378 #if HAVE_FAST_UNALIGNED
1379 # if HAVE_FAST_64BIT
1380 # define RS 7
1381 for(i=0; i+1<length; i+=9){
1382 if(!((~*(const uint64_t*)(src+i) & (*(const uint64_t*)(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
1383 # else
1384 # define RS 3
1385 for(i=0; i+1<length; i+=5){
1386 if(!((~*(const uint32_t*)(src+i) & (*(const uint32_t*)(src+i) - 0x01000101U)) & 0x80008080U))
1387 # endif
1388 continue;
1389 if(i>0 && !src[i]) i--;
1390 while(src[i]) i++;
1391 #else
1392 # define RS 0
1393 for(i=0; i+1<length; i+=2){
1394 if(src[i]) continue;
1395 if(i>0 && src[i-1]==0) i--;
1396 #endif
1397 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1398 if(src[i+2]!=3){
1399 /* startcode, so we must be past the end */
1400 length=i;
1401 }
1402 break;
1403 }
1404 i-= RS;
1405 }
1406
1407 if(i>=length-1){ //no escaped 0
1408 *dst_length= length;
1409 *consumed= length+1; //+1 for the header
1410 return src;
1411 }
1412
1413 bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
1414 h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
1415 dst= h->rbsp_buffer[bufidx];
1416
1417 if (dst == NULL){
1418 return NULL;
1419 }
1420
1421 //printf("decoding esc\n");
1422 memcpy(dst, src, i);
1423 si=di=i;
1424 while(si+2<length){
1425 //remove escapes (very rare 1:2^22)
1426 if(src[si+2]>3){
1427 dst[di++]= src[si++];
1428 dst[di++]= src[si++];
1429 }else if(src[si]==0 && src[si+1]==0){
1430 if(src[si+2]==3){ //escape
1431 dst[di++]= 0;
1432 dst[di++]= 0;
1433 si+=3;
1434 continue;
1435 }else //next start code
1436 goto nsc;
1437 }
1438
1439 dst[di++]= src[si++];
1440 }
1441 while(si<length)
1442 dst[di++]= src[si++];
1443 nsc:
1444
1445 memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
1446
1447 *dst_length= di;
1448 *consumed= si + 1;//+1 for the header
1449 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1450 return dst;
1451 }
1452
1453 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
1454 int v= *src;
1455 int r;
1456
1457 tprintf(h->s.avctx, "rbsp trailing %X\n", v);
1458
1459 for(r=1; r<9; r++){
1460 if(v&1) return r;
1461 v>>=1;
1462 }
1463 return 0;
1464 }
1465
1466 /**
1467 * IDCT transforms the 16 dc values and dequantizes them.
1468 * @param qp quantization parameter
1469 */
1470 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1471 #define stride 16
1472 int i;
1473 int temp[16]; //FIXME check if this is a good idea
1474 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1475 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1476
1477 //memset(block, 64, 2*256);
1478 //return;
1479 for(i=0; i<4; i++){
1480 const int offset= y_offset[i];
1481 const int z0= block[offset+stride*0] + block[offset+stride*4];
1482 const int z1= block[offset+stride*0] - block[offset+stride*4];
1483 const int z2= block[offset+stride*1] - block[offset+stride*5];
1484 const int z3= block[offset+stride*1] + block[offset+stride*5];
1485
1486 temp[4*i+0]= z0+z3;
1487 temp[4*i+1]= z1+z2;
1488 temp[4*i+2]= z1-z2;
1489 temp[4*i+3]= z0-z3;
1490 }
1491
1492 for(i=0; i<4; i++){
1493 const int offset= x_offset[i];
1494 const int z0= temp[4*0+i] + temp[4*2+i];
1495 const int z1= temp[4*0+i] - temp[4*2+i];
1496 const int z2= temp[4*1+i] - temp[4*3+i];
1497 const int z3= temp[4*1+i] + temp[4*3+i];
1498
1499 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
1500 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1501 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1502 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1503 }
1504 }
1505
1506 #if 0
1507 /**
1508 * DCT transforms the 16 dc values.
1509 * @param qp quantization parameter ??? FIXME
1510 */
1511 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1512 // const int qmul= dequant_coeff[qp][0];
1513 int i;
1514 int temp[16]; //FIXME check if this is a good idea
1515 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1516 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1517
1518 for(i=0; i<4; i++){
1519 const int offset= y_offset[i];
1520 const int z0= block[offset+stride*0] + block[offset+stride*4];
1521 const int z1= block[offset+stride*0] - block[offset+stride*4];
1522 const int z2= block[offset+stride*1] - block[offset+stride*5];
1523 const int z3= block[offset+stride*1] + block[offset+stride*5];
1524
1525 temp[4*i+0]= z0+z3;
1526 temp[4*i+1]= z1+z2;
1527 temp[4*i+2]= z1-z2;
1528 temp[4*i+3]= z0-z3;
1529 }
1530
1531 for(i=0; i<4; i++){
1532 const int offset= x_offset[i];
1533 const int z0= temp[4*0+i] + temp[4*2+i];
1534 const int z1= temp[4*0+i] - temp[4*2+i];
1535 const int z2= temp[4*1+i] - temp[4*3+i];
1536 const int z3= temp[4*1+i] + temp[4*3+i];
1537
1538 block[stride*0 +offset]= (z0 + z3)>>1;
1539 block[stride*2 +offset]= (z1 + z2)>>1;
1540 block[stride*8 +offset]= (z1 - z2)>>1;
1541 block[stride*10+offset]= (z0 - z3)>>1;
1542 }
1543 }
1544 #endif
1545
1546 #undef xStride
1547 #undef stride
1548
1549 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1550 const int stride= 16*2;
1551 const int xStride= 16;
1552 int a,b,c,d,e;
1553
1554 a= block[stride*0 + xStride*0];
1555 b= block[stride*0 + xStride*1];
1556 c= block[stride*1 + xStride*0];
1557 d= block[stride*1 + xStride*1];
1558
1559 e= a-b;
1560 a= a+b;
1561 b= c-d;
1562 c= c+d;
1563
1564 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1565 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1566 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1567 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1568 }
1569
1570 #if 0
1571 static void chroma_dc_dct_c(DCTELEM *block){
1572 const int stride= 16*2;
1573 const int xStride= 16;
1574 int a,b,c,d,e;
1575
1576 a= block[stride*0 + xStride*0];
1577 b= block[stride*0 + xStride*1];
1578 c= block[stride*1 + xStride*0];
1579 d= block[stride*1 + xStride*1];
1580
1581 e= a-b;
1582 a= a+b;
1583 b= c-d;
1584 c= c+d;
1585
1586 block[stride*0 + xStride*0]= (a+c);
1587 block[stride*0 + xStride*1]= (e+b);
1588 block[stride*1 + xStride*0]= (a-c);
1589 block[stride*1 + xStride*1]= (e-b);
1590 }
1591 #endif
1592
1593 /**
1594 * gets the chroma qp.
1595 */
1596 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
1597 return h->pps.chroma_qp_table[t][qscale];
1598 }
1599
1600 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1601 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1602 int src_x_offset, int src_y_offset,
1603 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1604 MpegEncContext * const s = &h->s;
1605 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1606 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1607 const int luma_xy= (mx&3) + ((my&3)<<2);
1608 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
1609 uint8_t * src_cb, * src_cr;
1610 int extra_width= h->emu_edge_width;
1611 int extra_height= h->emu_edge_height;
1612 int emu=0;
1613 const int full_mx= mx>>2;
1614 const int full_my= my>>2;
1615 const int pic_width = 16*s->mb_width;
1616 const int pic_height = 16*s->mb_height >> MB_FIELD;
1617
1618 if(mx&7) extra_width -= 3;
1619 if(my&7) extra_height -= 3;
1620
1621 if( full_mx < 0-extra_width
1622 || full_my < 0-extra_height
1623 || full_mx + 16/*FIXME*/ > pic_width + extra_width
1624 || full_my + 16/*FIXME*/ > pic_height + extra_height){
1625 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
1626 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
1627 emu=1;
1628 }
1629
1630 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
1631 if(!square){
1632 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
1633 }
1634
1635 if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
1636
1637 if(MB_FIELD){
1638 // chroma offset when predicting from a field of opposite parity
1639 my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
1640 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
1641 }
1642 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1643 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1644
1645 if(emu){
1646 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1647 src_cb= s->edge_emu_buffer;
1648 }
1649 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1650
1651 if(emu){
1652 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1653 src_cr= s->edge_emu_buffer;
1654 }
1655 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1656 }
1657
1658 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
1659 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1660 int x_offset, int y_offset,
1661 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1662 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1663 int list0, int list1){
1664 MpegEncContext * const s = &h->s;
1665 qpel_mc_func *qpix_op= qpix_put;
1666 h264_chroma_mc_func chroma_op= chroma_put;
1667
1668 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1669 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1670 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1671 x_offset += 8*s->mb_x;
1672 y_offset += 8*(s->mb_y >> MB_FIELD);
1673
1674 if(list0){
1675 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1676 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1677 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1678 qpix_op, chroma_op);
1679
1680 qpix_op= qpix_avg;
1681 chroma_op= chroma_avg;
1682 }
1683
1684 if(list1){
1685 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1686 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1687 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1688 qpix_op, chroma_op);
1689 }
1690 }
1691
1692 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
1693 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1694 int x_offset, int y_offset,
1695 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1696 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
1697 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
1698 int list0, int list1){
1699 MpegEncContext * const s = &h->s;
1700
1701 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1702 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1703 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1704 x_offset += 8*s->mb_x;
1705 y_offset += 8*(s->mb_y >> MB_FIELD);
1706
1707 if(list0 && list1){
1708 /* don't optimize for luma-only case, since B-frames usually
1709 * use implicit weights => chroma too. */
1710 uint8_t *tmp_cb = s->obmc_scratchpad;
1711 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
1712 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
1713 int refn0 = h->ref_cache[0][ scan8[n] ];
1714 int refn1 = h->ref_cache[1][ scan8[n] ];
1715
1716 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
1717 dest_y, dest_cb, dest_cr,
1718 x_offset, y_offset, qpix_put, chroma_put);
1719 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
1720 tmp_y, tmp_cb, tmp_cr,
1721 x_offset, y_offset, qpix_put, chroma_put);
1722
1723 if(h->use_weight == 2){
1724 int weight0 = h->implicit_weight[refn0][refn1];
1725 int weight1 = 64 - weight0;
1726 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
1727 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
1728 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
1729 }else{
1730 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
1731 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
1732 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
1733 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1734 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
1735 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
1736 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1737 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
1738 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
1739 }
1740 }else{
1741 int list = list1 ? 1 : 0;
1742 int refn = h->ref_cache[list][ scan8[n] ];
1743 Picture *ref= &h->ref_list[list][refn];
1744 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
1745 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1746 qpix_put, chroma_put);
1747
1748 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
1749 h->luma_weight[list][refn], h->luma_offset[list][refn]);
1750 if(h->use_weight_chroma){
1751 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1752 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
1753 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1754 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
1755 }
1756 }
1757 }
1758
1759 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1760 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1761 int x_offset, int y_offset,
1762 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1763 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1764 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
1765 int list0, int list1){
1766 if((h->use_weight==2 && list0 && list1
1767 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
1768 || h->use_weight==1)
1769 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1770 x_offset, y_offset, qpix_put, chroma_put,
1771 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
1772 else
1773 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1774 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
1775 }
1776
1777 static inline void prefetch_motion(H264Context *h, int list){
1778 /* fetch pixels for estimated mv 4 macroblocks ahead
1779 * optimized for 64byte cache lines */
1780 MpegEncContext * const s = &h->s;
1781 const int refn = h->ref_cache[list][scan8[0]];
1782 if(refn >= 0){
1783 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
1784 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
1785 uint8_t **src= h->ref_list[list][refn].data;
1786 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
1787 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1788 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
1789 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1790 }
1791 }
1792
1793 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1794 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1795 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
1796 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
1797 MpegEncContext * const s = &h->s;
1798 const int mb_xy= h->mb_xy;
1799 const int mb_type= s->current_picture.mb_type[mb_xy];
1800
1801 assert(IS_INTER(mb_type));
1802
1803 prefetch_motion(h, 0);
1804
1805 if(IS_16X16(mb_type)){
1806 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1807 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1808 &weight_op[0], &weight_avg[0],
1809 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1810 }else if(IS_16X8(mb_type)){
1811 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1812 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1813 &weight_op[1], &weight_avg[1],
1814 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1815 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1816 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1817 &weight_op[1], &weight_avg[1],
1818 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1819 }else if(IS_8X16(mb_type)){
1820 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
1821 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1822 &weight_op[2], &weight_avg[2],
1823 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1824 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
1825 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1826 &weight_op[2], &weight_avg[2],
1827 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1828 }else{
1829 int i;
1830
1831 assert(IS_8X8(mb_type));
1832
1833 for(i=0; i<4; i++){
1834 const int sub_mb_type= h->sub_mb_type[i];
1835 const int n= 4*i;
1836 int x_offset= (i&1)<<2;
1837 int y_offset= (i&2)<<1;
1838
1839 if(IS_SUB_8X8(sub_mb_type)){
1840 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1841 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1842 &weight_op[3], &weight_avg[3],
1843 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1844 }else if(IS_SUB_8X4(sub_mb_type)){
1845 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1846 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1847 &weight_op[4], &weight_avg[4],
1848 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1849 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1850 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1851 &weight_op[4], &weight_avg[4],
1852 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1853 }else if(IS_SUB_4X8(sub_mb_type)){
1854 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1855 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1856 &weight_op[5], &weight_avg[5],
1857 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1858 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
1859 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1860 &weight_op[5], &weight_avg[5],
1861 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1862 }else{
1863 int j;
1864 assert(IS_SUB_4X4(sub_mb_type));
1865 for(j=0; j<4; j++){
1866 int sub_x_offset= x_offset + 2*(j&1);
1867 int sub_y_offset= y_offset + (j&2);
1868 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
1869 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1870 &weight_op[6], &weight_avg[6],
1871 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1872 }
1873 }
1874 }
1875 }
1876
1877 prefetch_motion(h, 1);
1878 }
1879
1880 static av_cold void init_cavlc_level_tab(void){
1881 int suffix_length, mask;
1882 unsigned int i;
1883
1884 for(suffix_length=0; suffix_length<7; suffix_length++){
1885 for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
1886 int prefix= LEVEL_TAB_BITS - av_log2(2*i);
1887 int level_code= (prefix<<suffix_length) + (i>>(LEVEL_TAB_BITS-prefix-1-suffix_length)) - (1<<suffix_length);
1888
1889 mask= -(level_code&1);
1890 level_code= (((2+level_code)>>1) ^ mask) - mask;
1891 if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
1892 cavlc_level_tab[suffix_length][i][0]= level_code;
1893 cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
1894 }else if(prefix + 1 <= LEVEL_TAB_BITS){
1895 cavlc_level_tab[suffix_length][i][0]= prefix+100;
1896 cavlc_level_tab[suffix_length][i][1]= prefix + 1;
1897 }else{
1898 cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
1899 cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
1900 }
1901 }
1902 }
1903 }
1904
1905 static av_cold void decode_init_vlc(void){
1906 static int done = 0;
1907
1908 if (!done) {
1909 int i;
1910 int offset;
1911 done = 1;
1912
1913 chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
1914 chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
1915 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
1916 &chroma_dc_coeff_token_len [0], 1, 1,
1917 &chroma_dc_coeff_token_bits[0], 1, 1,
1918 INIT_VLC_USE_NEW_STATIC);
1919
1920 offset = 0;
1921 for(i=0; i<4; i++){
1922 coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
1923 coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
1924 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
1925 &coeff_token_len [i][0], 1, 1,
1926 &coeff_token_bits[i][0], 1, 1,
1927 INIT_VLC_USE_NEW_STATIC);
1928 offset += coeff_token_vlc_tables_size[i];
1929 }
1930 /*
1931 * This is a one time safety check to make sure that
1932 * the packed static coeff_token_vlc table sizes
1933 * were initialized correctly.
1934 */
1935 assert(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
1936
1937 for(i=0; i<3; i++){
1938 chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
1939 chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
1940 init_vlc(&chroma_dc_total_zeros_vlc[i],
1941 CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
1942 &chroma_dc_total_zeros_len [i][0], 1, 1,
1943 &chroma_dc_total_zeros_bits[i][0], 1, 1,
1944 INIT_VLC_USE_NEW_STATIC);
1945 }
1946 for(i=0; i<15; i++){
1947 total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
1948 total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
1949 init_vlc(&total_zeros_vlc[i],
1950 TOTAL_ZEROS_VLC_BITS, 16,
1951 &total_zeros_len [i][0], 1, 1,
1952 &total_zeros_bits[i][0], 1, 1,
1953 INIT_VLC_USE_NEW_STATIC);
1954 }
1955
1956 for(i=0; i<6; i++){
1957 run_vlc[i].table = run_vlc_tables[i];
1958 run_vlc[i].table_allocated = run_vlc_tables_size;
1959 init_vlc(&run_vlc[i],
1960 RUN_VLC_BITS, 7,
1961 &run_len [i][0], 1, 1,
1962 &run_bits[i][0], 1, 1,
1963 INIT_VLC_USE_NEW_STATIC);
1964 }
1965 run7_vlc.table = run7_vlc_table,
1966 run7_vlc.table_allocated = run7_vlc_table_size;
1967 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
1968 &run_len [6][0], 1, 1,
1969 &run_bits[6][0], 1, 1,
1970 INIT_VLC_USE_NEW_STATIC);
1971
1972 init_cavlc_level_tab();
1973 }
1974 }
1975
1976 static void free_tables(H264Context *h){
1977 int i;
1978 H264Context *hx;
1979 av_freep(&h->intra4x4_pred_mode);
1980 av_freep(&h->chroma_pred_mode_table);
1981 av_freep(&h->cbp_table);
1982 av_freep(&h->mvd_table[0]);
1983 av_freep(&h->mvd_table[1]);
1984 av_freep(&h->direct_table);
1985 av_freep(&h->non_zero_count);
1986 av_freep(&h->slice_table_base);
1987 h->slice_table= NULL;
1988
1989 av_freep(&h->mb2b_xy);
1990 av_freep(&h->mb2b8_xy);
1991
1992 for(i = 0; i < h->s.avctx->thread_count; i++) {
1993 hx = h->thread_context[i];
1994 if(!hx) continue;
1995 av_freep(&hx->top_borders[1]);
1996 av_freep(&hx->top_borders[0]);
1997 av_freep(&hx->s.obmc_scratchpad);
1998 }
1999 }
2000
2001 static void init_dequant8_coeff_table(H264Context *h){
2002 int i,q,x;
2003 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
2004 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2005 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2006
2007 for(i=0; i<2; i++ ){
2008 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2009 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2010 break;
2011 }
2012
2013 for(q=0; q<52; q++){
2014 int shift = div6[q];
2015 int idx = rem6[q];
2016 for(x=0; x<64; x++)
2017 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
2018 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
2019 h->pps.scaling_matrix8[i][x]) << shift;
2020 }
2021 }
2022 }
2023
2024 static void init_dequant4_coeff_table(H264Context *h){
2025 int i,j,q,x;
2026 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2027 for(i=0; i<6; i++ ){
2028 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2029 for(j=0; j<i; j++){
2030 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2031 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2032 break;
2033 }
2034 }
2035 if(j<i)
2036 continue;
2037
2038 for(q=0; q<52; q++){
2039 int shift = div6[q] + 2;
2040 int idx = rem6[q];
2041 for(x=0; x<16; x++)
2042 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2043 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2044 h->pps.scaling_matrix4[i][x]) << shift;
2045 }
2046 }
2047 }
2048
2049 static void init_dequant_tables(H264Context *h){
2050 int i,x;
2051 init_dequant4_coeff_table(h);
2052 if(h->pps.transform_8x8_mode)
2053 init_dequant8_coeff_table(h);
2054 if(h->sps.transform_bypass){
2055 for(i=0; i<6; i++)
2056 for(x=0; x<16; x++)
2057 h->dequant4_coeff[i][0][x] = 1<<6;
2058 if(h->pps.transform_8x8_mode)
2059 for(i=0; i<2; i++)
2060 for(x=0; x<64; x++)
2061 h->dequant8_coeff[i][0][x] = 1<<6;
2062 }
2063 }
2064
2065
2066 /**
2067 * allocates tables.
2068 * needs width/height
2069 */
2070 static int alloc_tables(H264Context *h){
2071 MpegEncContext * const s = &h->s;
2072 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2073 int x,y;
2074
2075 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2076
2077 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2078 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base))
2079 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2080
2081 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2082 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2083 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2084 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2085
2086 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
2087 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
2088
2089 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
2090 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
2091 for(y=0; y<s->mb_height; y++){
2092 for(x=0; x<s->mb_width; x++){
2093 const int mb_xy= x + y*s->mb_stride;
2094 const int b_xy = 4*x + 4*y*h->b_stride;
2095 const int b8_xy= 2*x + 2*y*h->b8_stride;
2096
2097 h->mb2b_xy [mb_xy]= b_xy;
2098 h->mb2b8_xy[mb_xy]= b8_xy;
2099 }
2100 }
2101
2102 s->obmc_scratchpad = NULL;
2103
2104 if(!h->dequant4_coeff[0])
2105 init_dequant_tables(h);
2106
2107 return 0;
2108 fail:
2109 free_tables(h);
2110 return -1;
2111 }
2112
2113 /**
2114 * Mimic alloc_tables(), but for every context thread.
2115 */
2116 static void clone_tables(H264Context *dst, H264Context *src){
2117 dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
2118 dst->non_zero_count = src->non_zero_count;
2119 dst->slice_table = src->slice_table;
2120 dst->cbp_table = src->cbp_table;
2121 dst->mb2b_xy = src->mb2b_xy;
2122 dst->mb2b8_xy = src->mb2b8_xy;
2123 dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
2124 dst->mvd_table[0] = src->mvd_table[0];
2125 dst->mvd_table[1] = src->mvd_table[1];
2126 dst->direct_table = src->direct_table;
2127
2128 dst->s.obmc_scratchpad = NULL;
2129 ff_h264_pred_init(&dst->hpc, src->s.codec_id);
2130 }
2131
2132 /**
2133 * Init context
2134 * Allocate buffers which are not shared amongst multiple threads.
2135 */
2136 static int context_init(H264Context *h){
2137 CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2138 CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2139
2140 return 0;
2141 fail:
2142 return -1; // free_tables will clean up for us
2143 }
2144
2145 static av_cold void common_init(H264Context *h){
2146 MpegEncContext * const s = &h->s;
2147
2148 s->width = s->avctx->width;
2149 s->height = s->avctx->height;
2150 s->codec_id= s->avctx->codec->id;
2151
2152 ff_h264_pred_init(&h->hpc, s->codec_id);
2153
2154 h->dequant_coeff_pps= -1;
2155 s->unrestricted_mv=1;
2156 s->decode=1; //FIXME
2157
2158 dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
2159
2160 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
2161 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
2162 }
2163
2164 static av_cold int decode_init(AVCodecContext *avctx){
2165 H264Context *h= avctx->priv_data;
2166 MpegEncContext * const s = &h->s;
2167
2168 MPV_decode_defaults(s);
2169
2170 s->avctx = avctx;
2171 common_init(h);
2172
2173 s->out_format = FMT_H264;
2174 s->workaround_bugs= avctx->workaround_bugs;
2175
2176 // set defaults
2177 // s->decode_mb= ff_h263_decode_mb;
2178 s->quarter_sample = 1;
2179 s->low_delay= 1;
2180
2181 if(avctx->codec_id == CODEC_ID_SVQ3)
2182 avctx->pix_fmt= PIX_FMT_YUVJ420P;
2183 else if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
2184 avctx->pix_fmt= PIX_FMT_VDPAU_H264;
2185 else
2186 avctx->pix_fmt= PIX_FMT_YUV420P;
2187
2188 decode_init_vlc();
2189
2190 if(avctx->extradata_size > 0 && avctx->extradata &&
2191 *(char *)avctx->extradata == 1){
2192 h->is_avc = 1;
2193 h->got_avcC = 0;
2194 } else {
2195 h->is_avc = 0;
2196 }
2197
2198 h->thread_context[0] = h;
2199 h->outputed_poc = INT_MIN;
2200 h->prev_poc_msb= 1<<16;
2201 h->sei_recovery_frame_cnt = -1;
2202 h->sei_dpb_output_delay = 0;
2203 h->sei_cpb_removal_delay = -1;
2204 h->sei_buffering_period_present = 0;
2205 return 0;
2206 }
2207
2208 static int frame_start(H264Context *h){
2209 MpegEncContext * const s = &h->s;
2210 int i;
2211
2212 if(MPV_frame_start(s, s->avctx) < 0)
2213 return -1;
2214 ff_er_frame_start(s);
2215 /*
2216 * MPV_frame_start uses pict_type to derive key_frame.
2217 * This is incorrect for H.264; IDR markings must be used.
2218 * Zero here; IDR markings per slice in frame or fields are ORed in later.
2219 * See decode_nal_units().
2220 */
2221 s->current_picture_ptr->key_frame= 0;
2222
2223 assert(s->linesize && s->uvlinesize);
2224
2225 for(i=0; i<16; i++){
2226 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2227 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2228 }
2229 for(i=0; i<4; i++){
2230 h->block_offset[16+i]=
2231 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2232 h->block_offset[24+16+i]=
2233 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2234 }
2235
2236 /* can't be in alloc_tables because linesize isn't known there.
2237 * FIXME: redo bipred weight to not require extra buffer? */
2238 for(i = 0; i < s->avctx->thread_count; i++)
2239 if(!h->thread_context[i]->s.obmc_scratchpad)
2240 h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
2241
2242 /* some macroblocks will be accessed before they're available */
2243 if(FRAME_MBAFF || s->avctx->thread_count > 1)
2244 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
2245
2246 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2247
2248 // We mark the current picture as non-reference after allocating it, so
2249 // that if we break out due to an error it can be released automatically
2250 // in the next MPV_frame_start().
2251 // SVQ3 as well as most other codecs have only last/next/current and thus
2252 // get released even with set reference, besides SVQ3 and others do not
2253 // mark frames as reference later "naturally".
2254 if(s->codec_id != CODEC_ID_SVQ3)
2255 s->current_picture_ptr->reference= 0;
2256
2257 s->current_picture_ptr->field_poc[0]=
2258 s->current_picture_ptr->field_poc[1]= INT_MAX;
2259 assert(s->current_picture_ptr->long_ref==0);
2260
2261 return 0;
2262 }
2263
2264 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
2265 MpegEncContext * const s = &h->s;
2266 int i;
2267 int step = 1;
2268 int offset = 1;
2269 int uvoffset= 1;
2270 int top_idx = 1;
2271 int skiplast= 0;
2272
2273 src_y -= linesize;
2274 src_cb -= uvlinesize;
2275 src_cr -= uvlinesize;
2276
2277 if(!simple && FRAME_MBAFF){
2278 if(s->mb_y&1){
2279 offset = MB_MBAFF ? 1 : 17;
2280 uvoffset= MB_MBAFF ? 1 : 9;
2281 if(!MB_MBAFF){
2282 *(uint64_t*)(h->top_borders[0][s->mb_x]+ 0)= *(uint64_t*)(src_y + 15*linesize);
2283 *(uint64_t*)(h->top_borders[0][s->mb_x]+ 8)= *(uint64_t*)(src_y +8+15*linesize);
2284 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2285 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+7*uvlinesize);
2286 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+7*uvlinesize);
2287 }
2288 }
2289 }else{
2290 if(!MB_MBAFF){
2291 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2292 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2293 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7 ];
2294 h->left_border[34+18]= h->top_borders[0][s->mb_x][16+8+7];
2295 }
2296 skiplast= 1;
2297 }
2298 offset =
2299 uvoffset=
2300 top_idx = MB_MBAFF ? 0 : 1;
2301 }
2302 step= MB_MBAFF ? 2 : 1;
2303 }
2304
2305 // There are two lines saved, the line above the the top macroblock of a pair,
2306 // and the line above the bottom macroblock
2307 h->left_border[offset]= h->top_borders[top_idx][s->mb_x][15];
2308 for(i=1; i<17 - skiplast; i++){
2309 h->left_border[offset+i*step]= src_y[15+i* linesize];
2310 }
2311
2312 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2313 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2314
2315 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2316 h->left_border[uvoffset+34 ]= h->top_borders[top_idx][s->mb_x][16+7];
2317 h->left_border[uvoffset+34+18]= h->top_borders[top_idx][s->mb_x][24+7];
2318 for(i=1; i<9 - skiplast; i++){
2319 h->left_border[uvoffset+34 +i*step]= src_cb[7+i*uvlinesize];
2320 h->left_border[uvoffset+34+18+i*step]= src_cr[7+i*uvlinesize];
2321 }
2322 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2323 *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2324 }
2325 }
2326
2327 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
2328 MpegEncContext * const s = &h->s;
2329 int temp8, i;
2330 uint64_t temp64;
2331 int deblock_left;
2332 int deblock_top;
2333 int mb_xy;
2334 int step = 1;
2335 int offset = 1;
2336 int uvoffset= 1;
2337 int top_idx = 1;
2338
2339 if(!simple && FRAME_MBAFF){
2340 if(s->mb_y&1){
2341 offset = MB_MBAFF ? 1 : 17;
2342 uvoffset= MB_MBAFF ? 1 : 9;
2343 }else{
2344 offset =
2345 uvoffset=
2346 top_idx = MB_MBAFF ? 0 : 1;
2347 }
2348 step= MB_MBAFF ? 2 : 1;
2349 }
2350
2351 if(h->deblocking_filter == 2) {
2352 mb_xy = h->mb_xy;
2353 deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
2354 deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
2355 } else {
2356 deblock_left = (s->mb_x > 0);
2357 deblock_top = (s->mb_y > !!MB_FIELD);
2358 }
2359
2360 src_y -= linesize + 1;
2361 src_cb -= uvlinesize + 1;
2362 src_cr -= uvlinesize + 1;
2363
2364 #define XCHG(a,b,t,xchg)\
2365 t= a;\
2366 if(xchg)\
2367 a= b;\
2368 b= t;
2369
2370 if(deblock_left){
2371 for(i = !deblock_top; i<16; i++){
2372 XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, xchg);
2373 }
2374 XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, 1);
2375 }
2376
2377 if(deblock_top){
2378 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2379 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2380 if(s->mb_x+1 < s->mb_width){
2381 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2382 }
2383 }
2384
2385 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2386 if(deblock_left){
2387 for(i = !deblock_top; i<8; i++){
2388 XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, xchg);
2389 XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, xchg);
2390 }
2391 XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, 1);
2392 XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, 1);
2393 }
2394 if(deblock_top){
2395 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2396 XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2397 }
2398 }
2399 }
2400
2401 static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
2402 MpegEncContext * const s = &h->s;
2403 const int mb_x= s->mb_x;
2404 const int mb_y= s->mb_y;
2405 const int mb_xy= h->mb_xy;
2406 const int mb_type= s->current_picture.mb_type[mb_xy];
2407 uint8_t *dest_y, *dest_cb, *dest_cr;
2408 int linesize, uvlinesize /*dct_offset*/;
2409 int i;
2410 int *block_offset = &h->block_offset[0];
2411 const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
2412 /* is_h264 should always be true if SVQ3 is disabled. */
2413 const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
2414 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
2415 void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
2416
2417 dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
2418 dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
2419 dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
2420
2421 s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
2422 s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
2423
2424 if (!simple && MB_FIELD) {
2425 linesize = h->mb_linesize = s->linesize * 2;
2426 uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
2427 block_offset = &h->block_offset[24];
2428 if(mb_y&1){ //FIXME move out of this function?
2429 dest_y -= s->linesize*15;
2430 dest_cb-= s->uvlinesize*7;
2431 dest_cr-= s->uvlinesize*7;
2432 }
2433 if(FRAME_MBAFF) {
2434 int list;
2435 for(list=0; list<h->list_count; list++){
2436 if(!USES_LIST(mb_type, list))
2437 continue;
2438 if(IS_16X16(mb_type)){
2439 int8_t *ref = &h->ref_cache[list][scan8[0]];
2440 fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
2441 }else{
2442 for(i=0; i<16; i+=4){
2443 int ref = h->ref_cache[list][scan8[i]];
2444 if(ref >= 0)
2445 fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
2446 }
2447 }
2448 }
2449 }
2450 } else {
2451 linesize = h->mb_linesize = s->linesize;
2452 uvlinesize = h->mb_uvlinesize = s->uvlinesize;
2453 // dct_offset = s->linesize * 16;
2454 }
2455
2456 if (!simple && IS_INTRA_PCM(mb_type)) {
2457 for (i=0; i<16; i++) {
2458 memcpy(dest_y + i* linesize, h->mb + i*8, 16);
2459 }
2460 for (i=0; i<8; i++) {
2461 memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
2462 memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
2463 }
2464 } else {
2465 if(IS_INTRA(mb_type)){
2466 if(h->deblocking_filter)
2467 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
2468
2469 if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2470 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2471 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2472 }
2473
2474 if(IS_INTRA4x4(mb_type)){
2475 if(simple || !s->encoding){
2476 if(IS_8x8DCT(mb_type)){
2477 if(transform_bypass){
2478 idct_dc_add =
2479 idct_add = s->dsp.add_pixels8;
2480 }else{
2481 idct_dc_add = s->dsp.h264_idct8_dc_add;
2482 idct_add = s->dsp.h264_idct8_add;
2483 }
2484 for(i=0; i<16; i+=4){
2485 uint8_t * const ptr= dest_y + block_offset[i];
2486 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2487 if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
2488 h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
2489 }else{
2490 const int nnz = h->non_zero_count_cache[ scan8[i] ];
2491 h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
2492 (h->topright_samples_available<<i)&0x4000, linesize);
2493 if(nnz){
2494 if(nnz == 1 && h->mb[i*16])
2495 idct_dc_add(ptr, h->mb + i*16, linesize);
2496 else
2497 idct_add (ptr, h->mb + i*16, linesize);
2498 }
2499 }
2500 }
2501 }else{
2502 if(transform_bypass){
2503 idct_dc_add =
2504 idct_add = s->dsp.add_pixels4;
2505 }else{
2506 idct_dc_add = s->dsp.h264_idct_dc_add;
2507 idct_add = s->dsp.h264_idct_add;
2508 }
2509 for(i=0; i<16; i++){
2510 uint8_t * const ptr= dest_y + block_offset[i];
2511 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2512
2513 if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
2514 h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
2515 }else{
2516 uint8_t *topright;
2517 int nnz, tr;
2518 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2519 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2520 assert(mb_y || linesize <= block_offset[i]);
2521 if(!topright_avail){
2522 tr= ptr[3 - linesize]*0x01010101;
2523 topright= (uint8_t*) &tr;
2524 }else
2525 topright= ptr + 4 - linesize;
2526 }else
2527 topright= NULL;
2528
2529 h->hpc.pred4x4[ dir ](ptr, topright, linesize);
2530 nnz = h->non_zero_count_cache[ scan8[i] ];
2531 if(nnz){
2532 if(is_h264){
2533 if(nnz == 1 && h->mb[i*16])
2534 idct_dc_add(ptr, h->mb + i*16, linesize);
2535 else
2536 idct_add (ptr, h->mb + i*16, linesize);
2537 }else
2538 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2539 }
2540 }
2541 }
2542 }
2543 }
2544 }else{
2545 h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2546 if(is_h264){<