2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
42 * Value of Picture.reference when Picture is not a reference picture, but
43 * is held for delayed output.
45 #define DELAYED_PIC_REF 4
47 static VLC coeff_token_vlc
[4];
48 static VLC chroma_dc_coeff_token_vlc
;
50 static VLC total_zeros_vlc
[15];
51 static VLC chroma_dc_total_zeros_vlc
[3];
53 static VLC run_vlc
[6];
56 static void svq3_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
);
57 static void svq3_add_idct_c(uint8_t *dst
, DCTELEM
*block
, int stride
, int qp
, int dc
);
58 static void filter_mb( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
59 static void filter_mb_fast( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
61 static av_always_inline
uint32_t pack16to32(int a
, int b
){
62 #ifdef WORDS_BIGENDIAN
63 return (b
&0xFFFF) + (a
<<16);
65 return (a
&0xFFFF) + (b
<<16);
69 const uint8_t ff_rem6
[52]={
70 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
73 const uint8_t ff_div6
[52]={
74 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
80 * @param h height of the rectangle, should be a constant
81 * @param w width of the rectangle, should be a constant
82 * @param size the size of val (1 or 4), should be a constant
84 static av_always_inline
void fill_rectangle(void *vp
, int w
, int h
, int stride
, uint32_t val
, int size
){
85 uint8_t *p
= (uint8_t*)vp
;
86 assert(size
==1 || size
==4);
92 assert((((long)vp
)&(FFMIN(w
, STRIDE_ALIGN
)-1)) == 0);
93 assert((stride
&(w
-1))==0);
95 const uint16_t v
= size
==4 ? val
: val
*0x0101;
96 *(uint16_t*)(p
+ 0*stride
)= v
;
98 *(uint16_t*)(p
+ 1*stride
)= v
;
100 *(uint16_t*)(p
+ 2*stride
)= v
;
101 *(uint16_t*)(p
+ 3*stride
)= v
;
103 const uint32_t v
= size
==4 ? val
: val
*0x01010101;
104 *(uint32_t*)(p
+ 0*stride
)= v
;
106 *(uint32_t*)(p
+ 1*stride
)= v
;
108 *(uint32_t*)(p
+ 2*stride
)= v
;
109 *(uint32_t*)(p
+ 3*stride
)= v
;
111 //gcc can't optimize 64bit math on x86_32
112 #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
113 const uint64_t v
= val
*0x0100000001ULL
;
114 *(uint64_t*)(p
+ 0*stride
)= v
;
116 *(uint64_t*)(p
+ 1*stride
)= v
;
118 *(uint64_t*)(p
+ 2*stride
)= v
;
119 *(uint64_t*)(p
+ 3*stride
)= v
;
121 const uint64_t v
= val
*0x0100000001ULL
;
122 *(uint64_t*)(p
+ 0+0*stride
)= v
;
123 *(uint64_t*)(p
+ 8+0*stride
)= v
;
124 *(uint64_t*)(p
+ 0+1*stride
)= v
;
125 *(uint64_t*)(p
+ 8+1*stride
)= v
;
127 *(uint64_t*)(p
+ 0+2*stride
)= v
;
128 *(uint64_t*)(p
+ 8+2*stride
)= v
;
129 *(uint64_t*)(p
+ 0+3*stride
)= v
;
130 *(uint64_t*)(p
+ 8+3*stride
)= v
;
132 *(uint32_t*)(p
+ 0+0*stride
)= val
;
133 *(uint32_t*)(p
+ 4+0*stride
)= val
;
135 *(uint32_t*)(p
+ 0+1*stride
)= val
;
136 *(uint32_t*)(p
+ 4+1*stride
)= val
;
138 *(uint32_t*)(p
+ 0+2*stride
)= val
;
139 *(uint32_t*)(p
+ 4+2*stride
)= val
;
140 *(uint32_t*)(p
+ 0+3*stride
)= val
;
141 *(uint32_t*)(p
+ 4+3*stride
)= val
;
143 *(uint32_t*)(p
+ 0+0*stride
)= val
;
144 *(uint32_t*)(p
+ 4+0*stride
)= val
;
145 *(uint32_t*)(p
+ 8+0*stride
)= val
;
146 *(uint32_t*)(p
+12+0*stride
)= val
;
147 *(uint32_t*)(p
+ 0+1*stride
)= val
;
148 *(uint32_t*)(p
+ 4+1*stride
)= val
;
149 *(uint32_t*)(p
+ 8+1*stride
)= val
;
150 *(uint32_t*)(p
+12+1*stride
)= val
;
152 *(uint32_t*)(p
+ 0+2*stride
)= val
;
153 *(uint32_t*)(p
+ 4+2*stride
)= val
;
154 *(uint32_t*)(p
+ 8+2*stride
)= val
;
155 *(uint32_t*)(p
+12+2*stride
)= val
;
156 *(uint32_t*)(p
+ 0+3*stride
)= val
;
157 *(uint32_t*)(p
+ 4+3*stride
)= val
;
158 *(uint32_t*)(p
+ 8+3*stride
)= val
;
159 *(uint32_t*)(p
+12+3*stride
)= val
;
166 static void fill_caches(H264Context
*h
, int mb_type
, int for_deblock
){
167 MpegEncContext
* const s
= &h
->s
;
168 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
169 int topleft_xy
, top_xy
, topright_xy
, left_xy
[2];
170 int topleft_type
, top_type
, topright_type
, left_type
[2];
174 //FIXME deblocking could skip the intra and nnz parts.
175 if(for_deblock
&& (h
->slice_num
== 1 || h
->slice_table
[mb_xy
] == h
->slice_table
[mb_xy
-s
->mb_stride
]) && !FRAME_MBAFF
)
178 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
180 top_xy
= mb_xy
- (s
->mb_stride
<< FIELD_PICTURE
);
181 topleft_xy
= top_xy
- 1;
182 topright_xy
= top_xy
+ 1;
183 left_xy
[1] = left_xy
[0] = mb_xy
-1;
193 const int pair_xy
= s
->mb_x
+ (s
->mb_y
& ~1)*s
->mb_stride
;
194 const int top_pair_xy
= pair_xy
- s
->mb_stride
;
195 const int topleft_pair_xy
= top_pair_xy
- 1;
196 const int topright_pair_xy
= top_pair_xy
+ 1;
197 const int topleft_mb_frame_flag
= !IS_INTERLACED(s
->current_picture
.mb_type
[topleft_pair_xy
]);
198 const int top_mb_frame_flag
= !IS_INTERLACED(s
->current_picture
.mb_type
[top_pair_xy
]);
199 const int topright_mb_frame_flag
= !IS_INTERLACED(s
->current_picture
.mb_type
[topright_pair_xy
]);
200 const int left_mb_frame_flag
= !IS_INTERLACED(s
->current_picture
.mb_type
[pair_xy
-1]);
201 const int curr_mb_frame_flag
= !IS_INTERLACED(mb_type
);
202 const int bottom
= (s
->mb_y
& 1);
203 tprintf(s
->avctx
, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag
, left_mb_frame_flag
, topleft_mb_frame_flag
, top_mb_frame_flag
, topright_mb_frame_flag
);
205 ?
!curr_mb_frame_flag
// bottom macroblock
206 : (!curr_mb_frame_flag
&& !top_mb_frame_flag
) // top macroblock
208 top_xy
-= s
->mb_stride
;
211 ?
!curr_mb_frame_flag
// bottom macroblock
212 : (!curr_mb_frame_flag
&& !topleft_mb_frame_flag
) // top macroblock
214 topleft_xy
-= s
->mb_stride
;
217 ?
!curr_mb_frame_flag
// bottom macroblock
218 : (!curr_mb_frame_flag
&& !topright_mb_frame_flag
) // top macroblock
220 topright_xy
-= s
->mb_stride
;
222 if (left_mb_frame_flag
!= curr_mb_frame_flag
) {
223 left_xy
[1] = left_xy
[0] = pair_xy
- 1;
224 if (curr_mb_frame_flag
) {
245 left_xy
[1] += s
->mb_stride
;
258 h
->top_mb_xy
= top_xy
;
259 h
->left_mb_xy
[0] = left_xy
[0];
260 h
->left_mb_xy
[1] = left_xy
[1];
264 top_type
= h
->slice_table
[top_xy
] < 255 ? s
->current_picture
.mb_type
[top_xy
] : 0;
265 left_type
[0] = h
->slice_table
[left_xy
[0] ] < 255 ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
266 left_type
[1] = h
->slice_table
[left_xy
[1] ] < 255 ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
268 if(FRAME_MBAFF
&& !IS_INTRA(mb_type
)){
270 int v
= *(uint16_t*)&h
->non_zero_count
[mb_xy
][14];
272 h
->non_zero_count_cache
[scan8
[i
]] = (v
>>i
)&1;
273 for(list
=0; list
<h
->list_count
; list
++){
274 if(USES_LIST(mb_type
,list
)){
275 uint32_t *src
= (uint32_t*)s
->current_picture
.motion_val
[list
][h
->mb2b_xy
[mb_xy
]];
276 uint32_t *dst
= (uint32_t*)h
->mv_cache
[list
][scan8
[0]];
277 int8_t *ref
= &s
->current_picture
.ref_index
[list
][h
->mb2b8_xy
[mb_xy
]];
278 for(i
=0; i
<4; i
++, dst
+=8, src
+=h
->b_stride
){
284 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 0]] =
285 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 2]] = pack16to32(ref
[0],ref
[1])*0x0101;
287 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 8]] =
288 *(uint32_t*)&h
->ref_cache
[list
][scan8
[10]] = pack16to32(ref
[0],ref
[1])*0x0101;
290 fill_rectangle(&h
-> mv_cache
[list
][scan8
[ 0]], 4, 4, 8, 0, 4);
291 fill_rectangle(&h
->ref_cache
[list
][scan8
[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED
, 1);
296 topleft_type
= h
->slice_table
[topleft_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topleft_xy
] : 0;
297 top_type
= h
->slice_table
[top_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[top_xy
] : 0;
298 topright_type
= h
->slice_table
[topright_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topright_xy
]: 0;
299 left_type
[0] = h
->slice_table
[left_xy
[0] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
300 left_type
[1] = h
->slice_table
[left_xy
[1] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
303 if(IS_INTRA(mb_type
)){
304 h
->topleft_samples_available
=
305 h
->top_samples_available
=
306 h
->left_samples_available
= 0xFFFF;
307 h
->topright_samples_available
= 0xEEEA;
309 if(!IS_INTRA(top_type
) && (top_type
==0 || h
->pps
.constrained_intra_pred
)){
310 h
->topleft_samples_available
= 0xB3FF;
311 h
->top_samples_available
= 0x33FF;
312 h
->topright_samples_available
= 0x26EA;
315 if(!IS_INTRA(left_type
[i
]) && (left_type
[i
]==0 || h
->pps
.constrained_intra_pred
)){
316 h
->topleft_samples_available
&= 0xDF5F;
317 h
->left_samples_available
&= 0x5F5F;
321 if(!IS_INTRA(topleft_type
) && (topleft_type
==0 || h
->pps
.constrained_intra_pred
))
322 h
->topleft_samples_available
&= 0x7FFF;
324 if(!IS_INTRA(topright_type
) && (topright_type
==0 || h
->pps
.constrained_intra_pred
))
325 h
->topright_samples_available
&= 0xFBFF;
327 if(IS_INTRA4x4(mb_type
)){
328 if(IS_INTRA4x4(top_type
)){
329 h
->intra4x4_pred_mode_cache
[4+8*0]= h
->intra4x4_pred_mode
[top_xy
][4];
330 h
->intra4x4_pred_mode_cache
[5+8*0]= h
->intra4x4_pred_mode
[top_xy
][5];
331 h
->intra4x4_pred_mode_cache
[6+8*0]= h
->intra4x4_pred_mode
[top_xy
][6];
332 h
->intra4x4_pred_mode_cache
[7+8*0]= h
->intra4x4_pred_mode
[top_xy
][3];
335 if(!top_type
|| (IS_INTER(top_type
) && h
->pps
.constrained_intra_pred
))
340 h
->intra4x4_pred_mode_cache
[4+8*0]=
341 h
->intra4x4_pred_mode_cache
[5+8*0]=
342 h
->intra4x4_pred_mode_cache
[6+8*0]=
343 h
->intra4x4_pred_mode_cache
[7+8*0]= pred
;
346 if(IS_INTRA4x4(left_type
[i
])){
347 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[0+2*i
]];
348 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[1+2*i
]];
351 if(!left_type
[i
] || (IS_INTER(left_type
[i
]) && h
->pps
.constrained_intra_pred
))
356 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]=
357 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= pred
;
372 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
374 h
->non_zero_count_cache
[4+8*0]= h
->non_zero_count
[top_xy
][4];
375 h
->non_zero_count_cache
[5+8*0]= h
->non_zero_count
[top_xy
][5];
376 h
->non_zero_count_cache
[6+8*0]= h
->non_zero_count
[top_xy
][6];
377 h
->non_zero_count_cache
[7+8*0]= h
->non_zero_count
[top_xy
][3];
379 h
->non_zero_count_cache
[1+8*0]= h
->non_zero_count
[top_xy
][9];
380 h
->non_zero_count_cache
[2+8*0]= h
->non_zero_count
[top_xy
][8];
382 h
->non_zero_count_cache
[1+8*3]= h
->non_zero_count
[top_xy
][12];
383 h
->non_zero_count_cache
[2+8*3]= h
->non_zero_count
[top_xy
][11];
386 h
->non_zero_count_cache
[4+8*0]=
387 h
->non_zero_count_cache
[5+8*0]=
388 h
->non_zero_count_cache
[6+8*0]=
389 h
->non_zero_count_cache
[7+8*0]=
391 h
->non_zero_count_cache
[1+8*0]=
392 h
->non_zero_count_cache
[2+8*0]=
394 h
->non_zero_count_cache
[1+8*3]=
395 h
->non_zero_count_cache
[2+8*3]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
399 for (i
=0; i
<2; i
++) {
401 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[0+2*i
]];
402 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[1+2*i
]];
403 h
->non_zero_count_cache
[0+8*1 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[4+2*i
]];
404 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[5+2*i
]];
406 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]=
407 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]=
408 h
->non_zero_count_cache
[0+8*1 + 8*i
]=
409 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
416 h
->top_cbp
= h
->cbp_table
[top_xy
];
417 } else if(IS_INTRA(mb_type
)) {
424 h
->left_cbp
= h
->cbp_table
[left_xy
[0]] & 0x1f0;
425 } else if(IS_INTRA(mb_type
)) {
431 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[0]]>>((left_block
[0]&(~1))+1))&0x1) << 1;
434 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[1]]>>((left_block
[2]&(~1))+1))&0x1) << 3;
439 if(IS_INTER(mb_type
) || IS_DIRECT(mb_type
)){
441 for(list
=0; list
<h
->list_count
; list
++){
442 if(!USES_LIST(mb_type
, list
) && !IS_DIRECT(mb_type
) && !h
->deblocking_filter
){
443 /*if(!h->mv_cache_clean[list]){
444 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
445 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
446 h->mv_cache_clean[list]= 1;
450 h
->mv_cache_clean
[list
]= 0;
452 if(USES_LIST(top_type
, list
)){
453 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
454 const int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
455 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0];
456 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 1];
457 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2];
458 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 3];
459 h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]=
460 h
->ref_cache
[list
][scan8
[0] + 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 0];
461 h
->ref_cache
[list
][scan8
[0] + 2 - 1*8]=
462 h
->ref_cache
[list
][scan8
[0] + 3 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 1];
464 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]=
465 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]=
466 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]=
467 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
468 *(uint32_t*)&h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
)&0xFF)*0x01010101;
472 int cache_idx
= scan8
[0] - 1 + i
*2*8;
473 if(USES_LIST(left_type
[i
], list
)){
474 const int b_xy
= h
->mb2b_xy
[left_xy
[i
]] + 3;
475 const int b8_xy
= h
->mb2b8_xy
[left_xy
[i
]] + 1;
476 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[0+i
*2]];
477 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[1+i
*2]];
478 h
->ref_cache
[list
][cache_idx
]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[0+i
*2]>>1)];
479 h
->ref_cache
[list
][cache_idx
+8]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[1+i
*2]>>1)];
481 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]=
482 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= 0;
483 h
->ref_cache
[list
][cache_idx
]=
484 h
->ref_cache
[list
][cache_idx
+8]= left_type
[i
] ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
488 if((for_deblock
|| (IS_DIRECT(mb_type
) && !h
->direct_spatial_mv_pred
)) && !FRAME_MBAFF
)
491 if(USES_LIST(topleft_type
, list
)){
492 const int b_xy
= h
->mb2b_xy
[topleft_xy
] + 3 + 3*h
->b_stride
;
493 const int b8_xy
= h
->mb2b8_xy
[topleft_xy
] + 1 + h
->b8_stride
;
494 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
495 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
497 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= 0;
498 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
501 if(USES_LIST(topright_type
, list
)){
502 const int b_xy
= h
->mb2b_xy
[topright_xy
] + 3*h
->b_stride
;
503 const int b8_xy
= h
->mb2b8_xy
[topright_xy
] + h
->b8_stride
;
504 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
505 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
507 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= 0;
508 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
511 if((IS_SKIP(mb_type
) || IS_DIRECT(mb_type
)) && !FRAME_MBAFF
)
514 h
->ref_cache
[list
][scan8
[5 ]+1] =
515 h
->ref_cache
[list
][scan8
[7 ]+1] =
516 h
->ref_cache
[list
][scan8
[13]+1] = //FIXME remove past 3 (init somewhere else)
517 h
->ref_cache
[list
][scan8
[4 ]] =
518 h
->ref_cache
[list
][scan8
[12]] = PART_NOT_AVAILABLE
;
519 *(uint32_t*)h
->mv_cache
[list
][scan8
[5 ]+1]=
520 *(uint32_t*)h
->mv_cache
[list
][scan8
[7 ]+1]=
521 *(uint32_t*)h
->mv_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
522 *(uint32_t*)h
->mv_cache
[list
][scan8
[4 ]]=
523 *(uint32_t*)h
->mv_cache
[list
][scan8
[12]]= 0;
526 /* XXX beurk, Load mvd */
527 if(USES_LIST(top_type
, list
)){
528 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
529 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 0];
530 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 1];
531 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 2];
532 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 3];
534 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]=
535 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]=
536 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]=
537 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
539 if(USES_LIST(left_type
[0], list
)){
540 const int b_xy
= h
->mb2b_xy
[left_xy
[0]] + 3;
541 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[0]];
542 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[1]];
544 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]=
545 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= 0;
547 if(USES_LIST(left_type
[1], list
)){
548 const int b_xy
= h
->mb2b_xy
[left_xy
[1]] + 3;
549 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[2]];
550 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[3]];
552 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]=
553 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= 0;
555 *(uint32_t*)h
->mvd_cache
[list
][scan8
[5 ]+1]=
556 *(uint32_t*)h
->mvd_cache
[list
][scan8
[7 ]+1]=
557 *(uint32_t*)h
->mvd_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
558 *(uint32_t*)h
->mvd_cache
[list
][scan8
[4 ]]=
559 *(uint32_t*)h
->mvd_cache
[list
][scan8
[12]]= 0;
561 if(h
->slice_type
== B_TYPE
){
562 fill_rectangle(&h
->direct_cache
[scan8
[0]], 4, 4, 8, 0, 1);
564 if(IS_DIRECT(top_type
)){
565 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0x01010101;
566 }else if(IS_8X8(top_type
)){
567 int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
568 h
->direct_cache
[scan8
[0] + 0 - 1*8]= h
->direct_table
[b8_xy
];
569 h
->direct_cache
[scan8
[0] + 2 - 1*8]= h
->direct_table
[b8_xy
+ 1];
571 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0;
574 if(IS_DIRECT(left_type
[0]))
575 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 1;
576 else if(IS_8X8(left_type
[0]))
577 h
->direct_cache
[scan8
[0] - 1 + 0*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[0]] + 1 + h
->b8_stride
*(left_block
[0]>>1)];
579 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 0;
581 if(IS_DIRECT(left_type
[1]))
582 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 1;
583 else if(IS_8X8(left_type
[1]))
584 h
->direct_cache
[scan8
[0] - 1 + 2*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[1]] + 1 + h
->b8_stride
*(left_block
[2]>>1)];
586 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 0;
592 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
593 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
594 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
595 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
596 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
597 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
598 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
599 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
600 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
601 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
603 #define MAP_F2F(idx, mb_type)\
604 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
605 h->ref_cache[list][idx] <<= 1;\
606 h->mv_cache[list][idx][1] /= 2;\
607 h->mvd_cache[list][idx][1] /= 2;\
612 #define MAP_F2F(idx, mb_type)\
613 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
614 h->ref_cache[list][idx] >>= 1;\
615 h->mv_cache[list][idx][1] <<= 1;\
616 h->mvd_cache[list][idx][1] <<= 1;\
626 h
->neighbor_transform_size
= !!IS_8x8DCT(top_type
) + !!IS_8x8DCT(left_type
[0]);
629 static inline void write_back_intra_pred_mode(H264Context
*h
){
630 MpegEncContext
* const s
= &h
->s
;
631 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
633 h
->intra4x4_pred_mode
[mb_xy
][0]= h
->intra4x4_pred_mode_cache
[7+8*1];
634 h
->intra4x4_pred_mode
[mb_xy
][1]= h
->intra4x4_pred_mode_cache
[7+8*2];
635 h
->intra4x4_pred_mode
[mb_xy
][2]= h
->intra4x4_pred_mode_cache
[7+8*3];
636 h
->intra4x4_pred_mode
[mb_xy
][3]= h
->intra4x4_pred_mode_cache
[7+8*4];
637 h
->intra4x4_pred_mode
[mb_xy
][4]= h
->intra4x4_pred_mode_cache
[4+8*4];
638 h
->intra4x4_pred_mode
[mb_xy
][5]= h
->intra4x4_pred_mode_cache
[5+8*4];
639 h
->intra4x4_pred_mode
[mb_xy
][6]= h
->intra4x4_pred_mode_cache
[6+8*4];
643 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
645 static inline int check_intra4x4_pred_mode(H264Context
*h
){
646 MpegEncContext
* const s
= &h
->s
;
647 static const int8_t top
[12]= {-1, 0,LEFT_DC_PRED
,-1,-1,-1,-1,-1, 0};
648 static const int8_t left
[12]= { 0,-1, TOP_DC_PRED
, 0,-1,-1,-1, 0,-1,DC_128_PRED
};
651 if(!(h
->top_samples_available
&0x8000)){
653 int status
= top
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + i
] ];
655 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
658 h
->intra4x4_pred_mode_cache
[scan8
[0] + i
]= status
;
663 if(!(h
->left_samples_available
&0x8000)){
665 int status
= left
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
] ];
667 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
670 h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
]= status
;
676 } //FIXME cleanup like next
679 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
681 static inline int check_intra_pred_mode(H264Context
*h
, int mode
){
682 MpegEncContext
* const s
= &h
->s
;
683 static const int8_t top
[7]= {LEFT_DC_PRED8x8
, 1,-1,-1};
684 static const int8_t left
[7]= { TOP_DC_PRED8x8
,-1, 2,-1,DC_128_PRED8x8
};
687 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "out of range intra chroma pred mode at %d %d\n", s
->mb_x
, s
->mb_y
);
691 if(!(h
->top_samples_available
&0x8000)){
694 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
699 if(!(h
->left_samples_available
&0x8000)){
702 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
711 * gets the predicted intra4x4 prediction mode.
713 static inline int pred_intra_mode(H264Context
*h
, int n
){
714 const int index8
= scan8
[n
];
715 const int left
= h
->intra4x4_pred_mode_cache
[index8
- 1];
716 const int top
= h
->intra4x4_pred_mode_cache
[index8
- 8];
717 const int min
= FFMIN(left
, top
);
719 tprintf(h
->s
.avctx
, "mode:%d %d min:%d\n", left
,top
, min
);
721 if(min
<0) return DC_PRED
;
725 static inline void write_back_non_zero_count(H264Context
*h
){
726 MpegEncContext
* const s
= &h
->s
;
727 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
729 h
->non_zero_count
[mb_xy
][0]= h
->non_zero_count_cache
[7+8*1];
730 h
->non_zero_count
[mb_xy
][1]= h
->non_zero_count_cache
[7+8*2];
731 h
->non_zero_count
[mb_xy
][2]= h
->non_zero_count_cache
[7+8*3];
732 h
->non_zero_count
[mb_xy
][3]= h
->non_zero_count_cache
[7+8*4];
733 h
->non_zero_count
[mb_xy
][4]= h
->non_zero_count_cache
[4+8*4];
734 h
->non_zero_count
[mb_xy
][5]= h
->non_zero_count_cache
[5+8*4];
735 h
->non_zero_count
[mb_xy
][6]= h
->non_zero_count_cache
[6+8*4];
737 h
->non_zero_count
[mb_xy
][9]= h
->non_zero_count_cache
[1+8*2];
738 h
->non_zero_count
[mb_xy
][8]= h
->non_zero_count_cache
[2+8*2];
739 h
->non_zero_count
[mb_xy
][7]= h
->non_zero_count_cache
[2+8*1];
741 h
->non_zero_count
[mb_xy
][12]=h
->non_zero_count_cache
[1+8*5];
742 h
->non_zero_count
[mb_xy
][11]=h
->non_zero_count_cache
[2+8*5];
743 h
->non_zero_count
[mb_xy
][10]=h
->non_zero_count_cache
[2+8*4];
746 // store all luma nnzs, for deblocking
749 v
+= (!!h
->non_zero_count_cache
[scan8
[i
]]) << i
;
750 *(uint16_t*)&h
->non_zero_count
[mb_xy
][14] = v
;
755 * gets the predicted number of non zero coefficients.
756 * @param n block index
758 static inline int pred_non_zero_count(H264Context
*h
, int n
){
759 const int index8
= scan8
[n
];
760 const int left
= h
->non_zero_count_cache
[index8
- 1];
761 const int top
= h
->non_zero_count_cache
[index8
- 8];
764 if(i
<64) i
= (i
+1)>>1;
766 tprintf(h
->s
.avctx
, "pred_nnz L%X T%X n%d s%d P%X\n", left
, top
, n
, scan8
[n
], i
&31);
771 static inline int fetch_diagonal_mv(H264Context
*h
, const int16_t **C
, int i
, int list
, int part_width
){
772 const int topright_ref
= h
->ref_cache
[list
][ i
- 8 + part_width
];
773 MpegEncContext
*s
= &h
->s
;
775 /* there is no consistent mapping of mvs to neighboring locations that will
776 * make mbaff happy, so we can't move all this logic to fill_caches */
778 const uint32_t *mb_types
= s
->current_picture_ptr
->mb_type
;
780 *(uint32_t*)h
->mv_cache
[list
][scan8
[0]-2] = 0;
781 *C
= h
->mv_cache
[list
][scan8
[0]-2];
784 && (s
->mb_y
&1) && i
< scan8
[0]+8 && topright_ref
!= PART_NOT_AVAILABLE
){
785 int topright_xy
= s
->mb_x
+ (s
->mb_y
-1)*s
->mb_stride
+ (i
== scan8
[0]+3);
786 if(IS_INTERLACED(mb_types
[topright_xy
])){
787 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
788 const int x4 = X4, y4 = Y4;\
789 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
790 if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
791 return LIST_NOT_USED;\
792 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
793 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
794 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
795 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
797 SET_DIAG_MV(*2, >>1, s
->mb_x
*4+(i
&7)-4+part_width
, s
->mb_y
*4-1);
800 if(topright_ref
== PART_NOT_AVAILABLE
801 && ((s
->mb_y
&1) || i
>= scan8
[0]+8) && (i
&7)==4
802 && h
->ref_cache
[list
][scan8
[0]-1] != PART_NOT_AVAILABLE
){
804 && IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])){
805 SET_DIAG_MV(*2, >>1, s
->mb_x
*4-1, (s
->mb_y
|1)*4+(s
->mb_y
&1)*2+(i
>>4)-1);
808 && !IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])
810 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
811 SET_DIAG_MV(>>1, <<1, s
->mb_x
*4-1, (s
->mb_y
&~1)*4 - 1 + ((i
-scan8
[0])>>3)*2);
817 if(topright_ref
!= PART_NOT_AVAILABLE
){
818 *C
= h
->mv_cache
[list
][ i
- 8 + part_width
];
821 tprintf(s
->avctx
, "topright MV not available\n");
823 *C
= h
->mv_cache
[list
][ i
- 8 - 1 ];
824 return h
->ref_cache
[list
][ i
- 8 - 1 ];
829 * gets the predicted MV.
830 * @param n the block index
831 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
832 * @param mx the x component of the predicted motion vector
833 * @param my the y component of the predicted motion vector
835 static inline void pred_motion(H264Context
* const h
, int n
, int part_width
, int list
, int ref
, int * const mx
, int * const my
){
836 const int index8
= scan8
[n
];
837 const int top_ref
= h
->ref_cache
[list
][ index8
- 8 ];
838 const int left_ref
= h
->ref_cache
[list
][ index8
- 1 ];
839 const int16_t * const A
= h
->mv_cache
[list
][ index8
- 1 ];
840 const int16_t * const B
= h
->mv_cache
[list
][ index8
- 8 ];
842 int diagonal_ref
, match_count
;
844 assert(part_width
==1 || part_width
==2 || part_width
==4);
854 diagonal_ref
= fetch_diagonal_mv(h
, &C
, index8
, list
, part_width
);
855 match_count
= (diagonal_ref
==ref
) + (top_ref
==ref
) + (left_ref
==ref
);
856 tprintf(h
->s
.avctx
, "pred_motion match_count=%d\n", match_count
);
857 if(match_count
> 1){ //most common
858 *mx
= mid_pred(A
[0], B
[0], C
[0]);
859 *my
= mid_pred(A
[1], B
[1], C
[1]);
860 }else if(match_count
==1){
864 }else if(top_ref
==ref
){
872 if(top_ref
== PART_NOT_AVAILABLE
&& diagonal_ref
== PART_NOT_AVAILABLE
&& left_ref
!= PART_NOT_AVAILABLE
){
876 *mx
= mid_pred(A
[0], B
[0], C
[0]);
877 *my
= mid_pred(A
[1], B
[1], C
[1]);
881 tprintf(h
->s
.avctx
, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], diagonal_ref
, C
[0], C
[1], left_ref
, A
[0], A
[1], ref
, *mx
, *my
, h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
885 * gets the directionally predicted 16x8 MV.
886 * @param n the block index
887 * @param mx the x component of the predicted motion vector
888 * @param my the y component of the predicted motion vector
890 static inline void pred_16x8_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
892 const int top_ref
= h
->ref_cache
[list
][ scan8
[0] - 8 ];
893 const int16_t * const B
= h
->mv_cache
[list
][ scan8
[0] - 8 ];
895 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
903 const int left_ref
= h
->ref_cache
[list
][ scan8
[8] - 1 ];
904 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[8] - 1 ];
906 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
916 pred_motion(h
, n
, 4, list
, ref
, mx
, my
);
920 * gets the directionally predicted 8x16 MV.
921 * @param n the block index
922 * @param mx the x component of the predicted motion vector
923 * @param my the y component of the predicted motion vector
925 static inline void pred_8x16_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
927 const int left_ref
= h
->ref_cache
[list
][ scan8
[0] - 1 ];
928 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[0] - 1 ];
930 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
941 diagonal_ref
= fetch_diagonal_mv(h
, &C
, scan8
[4], list
, 2);
943 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref
, C
[0], C
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
945 if(diagonal_ref
== ref
){
953 pred_motion(h
, n
, 2, list
, ref
, mx
, my
);
956 static inline void pred_pskip_motion(H264Context
* const h
, int * const mx
, int * const my
){
957 const int top_ref
= h
->ref_cache
[0][ scan8
[0] - 8 ];
958 const int left_ref
= h
->ref_cache
[0][ scan8
[0] - 1 ];
960 tprintf(h
->s
.avctx
, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref
, left_ref
, h
->s
.mb_x
, h
->s
.mb_y
);
962 if(top_ref
== PART_NOT_AVAILABLE
|| left_ref
== PART_NOT_AVAILABLE
963 || (top_ref
== 0 && *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 8 ] == 0)
964 || (left_ref
== 0 && *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 1 ] == 0)){
970 pred_motion(h
, 0, 4, 0, 0, mx
, my
);
975 static inline void direct_dist_scale_factor(H264Context
* const h
){
976 const int poc
= h
->s
.current_picture_ptr
->poc
;
977 const int poc1
= h
->ref_list
[1][0].poc
;
979 for(i
=0; i
<h
->ref_count
[0]; i
++){
980 int poc0
= h
->ref_list
[0][i
].poc
;
981 int td
= av_clip(poc1
- poc0
, -128, 127);
982 if(td
== 0 /* FIXME || pic0 is a long-term ref */){
983 h
->dist_scale_factor
[i
] = 256;
985 int tb
= av_clip(poc
- poc0
, -128, 127);
986 int tx
= (16384 + (FFABS(td
) >> 1)) / td
;
987 h
->dist_scale_factor
[i
] = av_clip((tb
*tx
+ 32) >> 6, -1024, 1023);
991 for(i
=0; i
<h
->ref_count
[0]; i
++){
992 h
->dist_scale_factor_field
[2*i
] =
993 h
->dist_scale_factor_field
[2*i
+1] = h
->dist_scale_factor
[i
];
997 static inline void direct_ref_list_init(H264Context
* const h
){
998 MpegEncContext
* const s
= &h
->s
;
999 Picture
* const ref1
= &h
->ref_list
[1][0];
1000 Picture
* const cur
= s
->current_picture_ptr
;
1002 if(cur
->pict_type
== I_TYPE
)
1003 cur
->ref_count
[0] = 0;
1004 if(cur
->pict_type
!= B_TYPE
)
1005 cur
->ref_count
[1] = 0;
1006 for(list
=0; list
<2; list
++){
1007 cur
->ref_count
[list
] = h
->ref_count
[list
];
1008 for(j
=0; j
<h
->ref_count
[list
]; j
++)
1009 cur
->ref_poc
[list
][j
] = h
->ref_list
[list
][j
].poc
;
1011 if(cur
->pict_type
!= B_TYPE
|| h
->direct_spatial_mv_pred
)
1013 for(list
=0; list
<2; list
++){
1014 for(i
=0; i
<ref1
->ref_count
[list
]; i
++){
1015 const int poc
= ref1
->ref_poc
[list
][i
];
1016 h
->map_col_to_list0
[list
][i
] = 0; /* bogus; fills in for missing frames */
1017 for(j
=0; j
<h
->ref_count
[list
]; j
++)
1018 if(h
->ref_list
[list
][j
].poc
== poc
){
1019 h
->map_col_to_list0
[list
][i
] = j
;
1025 for(list
=0; list
<2; list
++){
1026 for(i
=0; i
<ref1
->ref_count
[list
]; i
++){
1027 j
= h
->map_col_to_list0
[list
][i
];
1028 h
->map_col_to_list0_field
[list
][2*i
] = 2*j
;
1029 h
->map_col_to_list0_field
[list
][2*i
+1] = 2*j
+1;
1035 static inline void pred_direct_motion(H264Context
* const h
, int *mb_type
){
1036 MpegEncContext
* const s
= &h
->s
;
1037 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
1038 const int b8_xy
= 2*s
->mb_x
+ 2*s
->mb_y
*h
->b8_stride
;
1039 const int b4_xy
= 4*s
->mb_x
+ 4*s
->mb_y
*h
->b_stride
;
1040 const int mb_type_col
= h
->ref_list
[1][0].mb_type
[mb_xy
];
1041 const int16_t (*l1mv0
)[2] = (const int16_t (*)[2]) &h
->ref_list
[1][0].motion_val
[0][b4_xy
];
1042 const int16_t (*l1mv1
)[2] = (const int16_t (*)[2]) &h
->ref_list
[1][0].motion_val
[1][b4_xy
];
1043 const int8_t *l1ref0
= &h
->ref_list
[1][0].ref_index
[0][b8_xy
];
1044 const int8_t *l1ref1
= &h
->ref_list
[1][0].ref_index
[1][b8_xy
];
1045 const int is_b8x8
= IS_8X8(*mb_type
);
1046 unsigned int sub_mb_type
;
1049 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
1050 if(IS_8X8(mb_type_col
) && !h
->sps
.direct_8x8_inference_flag
){
1051 /* FIXME save sub mb types from previous frames (or derive from MVs)
1052 * so we know exactly what block size to use */
1053 sub_mb_type
= MB_TYPE_8x8
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_4x4 */
1054 *mb_type
= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1055 }else if(!is_b8x8
&& (mb_type_col
& MB_TYPE_16x16_OR_INTRA
)){
1056 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1057 *mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_16x16 */
1059 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1060 *mb_type
= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1063 *mb_type
|= MB_TYPE_DIRECT2
;
1065 *mb_type
|= MB_TYPE_INTERLACED
;
1067 tprintf(s
->avctx
, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type
, sub_mb_type
, is_b8x8
, mb_type_col
);
1069 if(h
->direct_spatial_mv_pred
){
1074 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1076 /* ref = min(neighbors) */
1077 for(list
=0; list
<2; list
++){
1078 int refa
= h
->ref_cache
[list
][scan8
[0] - 1];
1079 int refb
= h
->ref_cache
[list
][scan8
[0] - 8];
1080 int refc
= h
->ref_cache
[list
][scan8
[0] - 8 + 4];
1082 refc
= h
->ref_cache
[list
][scan8
[0] - 8 - 1];
1084 if(ref
[list
] < 0 || (refb
< ref
[list
] && refb
>= 0))
1086 if(ref
[list
] < 0 || (refc
< ref
[list
] && refc
>= 0))
1092 if(ref
[0] < 0 && ref
[1] < 0){
1093 ref
[0] = ref
[1] = 0;
1094 mv
[0][0] = mv
[0][1] =
1095 mv
[1][0] = mv
[1][1] = 0;
1097 for(list
=0; list
<2; list
++){
1099 pred_motion(h
, 0, 4, list
, ref
[list
], &mv
[list
][0], &mv
[list
][1]);
1101 mv
[list
][0] = mv
[list
][1] = 0;
1106 *mb_type
&= ~MB_TYPE_P0L1
;
1107 sub_mb_type
&= ~MB_TYPE_P0L1
;
1108 }else if(ref
[0] < 0){
1109 *mb_type
&= ~MB_TYPE_P0L0
;
1110 sub_mb_type
&= ~MB_TYPE_P0L0
;
1113 if(IS_16X16(*mb_type
)){
1116 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, (uint8_t)ref
[0], 1);
1117 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, (uint8_t)ref
[1], 1);
1118 if(!IS_INTRA(mb_type_col
)
1119 && ( (l1ref0
[0] == 0 && FFABS(l1mv0
[0][0]) <= 1 && FFABS(l1mv0
[0][1]) <= 1)
1120 || (l1ref0
[0] < 0 && l1ref1
[0] == 0 && FFABS(l1mv1
[0][0]) <= 1 && FFABS(l1mv1
[0][1]) <= 1
1121 && (h
->x264_build
>33 || !h
->x264_build
)))){
1123 a
= pack16to32(mv
[0][0],mv
[0][1]);
1125 b
= pack16to32(mv
[1][0],mv
[1][1]);
1127 a
= pack16to32(mv
[0][0],mv
[0][1]);
1128 b
= pack16to32(mv
[1][0],mv
[1][1]);
1130 fill_rectangle(&h
->mv_cache
[0][scan8
[0]], 4, 4, 8, a
, 4);
1131 fill_rectangle(&h
->mv_cache
[1][scan8
[0]], 4, 4, 8, b
, 4);
1133 for(i8
=0; i8
<4; i8
++){
1134 const int x8
= i8
&1;
1135 const int y8
= i8
>>1;
1137 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1139 h
->sub_mb_type
[i8
] = sub_mb_type
;
1141 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[0][0],mv
[0][1]), 4);
1142 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[1][0],mv
[1][1]), 4);
1143 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[0], 1);
1144 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[1], 1);
1147 if(!IS_INTRA(mb_type_col
) && ( l1ref0
[x8
+ y8
*h
->b8_stride
] == 0
1148 || (l1ref0
[x8
+ y8
*h
->b8_stride
] < 0 && l1ref1
[x8
+ y8
*h
->b8_stride
] == 0
1149 && (h
->x264_build
>33 || !h
->x264_build
)))){
1150 const int16_t (*l1mv
)[2]= l1ref0
[x8
+ y8
*h
->b8_stride
] == 0 ? l1mv0
: l1mv1
;
1151 if(IS_SUB_8X8(sub_mb_type
)){
1152 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*h
->b_stride
];
1153 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1155 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1157 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1160 for(i4
=0; i4
<4; i4
++){
1161 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*h
->b_stride
];
1162 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1164 *(uint32_t*)h
->mv_cache
[0][scan8
[i8
*4+i4
]] = 0;
1166 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] = 0;
1172 }else{ /* direct temporal mv pred */
1173 const int *map_col_to_list0
[2] = {h
->map_col_to_list0
[0], h
->map_col_to_list0
[1]};
1174 const int *dist_scale_factor
= h
->dist_scale_factor
;
1177 if(IS_INTERLACED(*mb_type
)){
1178 map_col_to_list0
[0] = h
->map_col_to_list0_field
[0];
1179 map_col_to_list0
[1] = h
->map_col_to_list0_field
[1];
1180 dist_scale_factor
= h
->dist_scale_factor_field
;
1182 if(IS_INTERLACED(*mb_type
) != IS_INTERLACED(mb_type_col
)){
1183 /* FIXME assumes direct_8x8_inference == 1 */
1184 const int pair_xy
= s
->mb_x
+ (s
->mb_y
&~1)*s
->mb_stride
;
1185 int mb_types_col
[2];
1188 *mb_type
= MB_TYPE_8x8
|MB_TYPE_L0L1
1189 | (is_b8x8 ?
0 : MB_TYPE_DIRECT2
)
1190 | (*mb_type
& MB_TYPE_INTERLACED
);
1191 sub_mb_type
= MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
|MB_TYPE_16x16
;
1193 if(IS_INTERLACED(*mb_type
)){
1194 /* frame to field scaling */
1195 mb_types_col
[0] = h
->ref_list
[1][0].mb_type
[pair_xy
];
1196 mb_types_col
[1] = h
->ref_list
[1][0].mb_type
[pair_xy
+s
->mb_stride
];
1198 l1ref0
-= 2*h
->b8_stride
;
1199 l1ref1
-= 2*h
->b8_stride
;
1200 l1mv0
-= 4*h
->b_stride
;
1201 l1mv1
-= 4*h
->b_stride
;
1205 if( (mb_types_col
[0] & MB_TYPE_16x16_OR_INTRA
)
1206 && (mb_types_col
[1] & MB_TYPE_16x16_OR_INTRA
)
1208 *mb_type
|= MB_TYPE_16x8
;
1210 *mb_type
|= MB_TYPE_8x8
;
1212 /* field to frame scaling */
1213 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1214 * but in MBAFF, top and bottom POC are equal */
1215 int dy
= (s
->mb_y
&1) ?
1 : 2;
1217 mb_types_col
[1] = h
->ref_list
[1][0].mb_type
[pair_xy
+s
->mb_stride
];
1218 l1ref0
+= dy
*h
->b8_stride
;
1219 l1ref1
+= dy
*h
->b8_stride
;
1220 l1mv0
+= 2*dy
*h
->b_stride
;
1221 l1mv1
+= 2*dy
*h
->b_stride
;
1224 if((mb_types_col
[0] & (MB_TYPE_16x16_OR_INTRA
|MB_TYPE_16x8
))
1226 *mb_type
|= MB_TYPE_16x16
;
1228 *mb_type
|= MB_TYPE_8x8
;
1231 for(i8
=0; i8
<4; i8
++){
1232 const int x8
= i8
&1;
1233 const int y8
= i8
>>1;
1235 const int16_t (*l1mv
)[2]= l1mv0
;
1237 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1239 h
->sub_mb_type
[i8
] = sub_mb_type
;
1241 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1242 if(IS_INTRA(mb_types_col
[y8
])){
1243 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1244 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1245 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1249 ref0
= l1ref0
[x8
+ (y8
*2>>y_shift
)*h
->b8_stride
];
1251 ref0
= map_col_to_list0
[0][ref0
*2>>y_shift
];
1253 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ (y8
*2>>y_shift
)*h
->b8_stride
]*2>>y_shift
];
1256 scale
= dist_scale_factor
[ref0
];
1257 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1260 const int16_t *mv_col
= l1mv
[x8
*3 + (y8
*6>>y_shift
)*h
->b_stride
];
1261 int my_col
= (mv_col
[1]<<y_shift
)/2;
1262 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1263 int my
= (scale
* my_col
+ 128) >> 8;
1264 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1265 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-my_col
), 4);
1272 /* one-to-one mv scaling */
1274 if(IS_16X16(*mb_type
)){
1277 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, 0, 1);
1278 if(IS_INTRA(mb_type_col
)){
1281 const int ref0
= l1ref0
[0] >= 0 ? map_col_to_list0
[0][l1ref0
[0]]
1282 : map_col_to_list0
[1][l1ref1
[0]];
1283 const int scale
= dist_scale_factor
[ref0
];
1284 const int16_t *mv_col
= l1ref0
[0] >= 0 ? l1mv0
[0] : l1mv1
[0];
1286 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1287 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1289 mv0
= pack16to32(mv_l0
[0],mv_l0
[1]);
1290 mv1
= pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1292 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, ref
, 1);
1293 fill_rectangle(&h
-> mv_cache
[0][scan8
[0]], 4, 4, 8, mv0
, 4);
1294 fill_rectangle(&h
-> mv_cache
[1][scan8
[0]], 4, 4, 8, mv1
, 4);
1296 for(i8
=0; i8
<4; i8
++){
1297 const int x8
= i8
&1;
1298 const int y8
= i8
>>1;
1300 const int16_t (*l1mv
)[2]= l1mv0
;
1302 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1304 h
->sub_mb_type
[i8
] = sub_mb_type
;
1305 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1306 if(IS_INTRA(mb_type_col
)){
1307 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1308 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1309 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1313 ref0
= l1ref0
[x8
+ y8
*h
->b8_stride
];
1315 ref0
= map_col_to_list0
[0][ref0
];
1317 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ y8
*h
->b8_stride
]];
1320 scale
= dist_scale_factor
[ref0
];
1322 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1323 if(IS_SUB_8X8(sub_mb_type
)){
1324 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*h
->b_stride
];
1325 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1326 int my
= (scale
* mv_col
[1] + 128) >> 8;
1327 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1328 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-mv_col
[1]), 4);
1330 for(i4
=0; i4
<4; i4
++){
1331 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*h
->b_stride
];
1332 int16_t *mv_l0
= h
->mv_cache
[0][scan8
[i8
*4+i4
]];
1333 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1334 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1335 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] =
1336 pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1343 static inline void write_back_motion(H264Context
*h
, int mb_type
){
1344 MpegEncContext
* const s
= &h
->s
;
1345 const int b_xy
= 4*s
->mb_x
+ 4*s
->mb_y
*h
->b_stride
;
1346 const int b8_xy
= 2*s
->mb_x
+ 2*s
->mb_y
*h
->b8_stride
;
1349 if(!USES_LIST(mb_type
, 0))
1350 fill_rectangle(&s
->current_picture
.ref_index
[0][b8_xy
], 2, 2, h
->b8_stride
, (uint8_t)LIST_NOT_USED
, 1);
1352 for(list
=0; list
<h
->list_count
; list
++){
1354 if(!USES_LIST(mb_type
, list
))
1358 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+0 + 8*y
];
1359 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+2 + 8*y
];
1361 if( h
->pps
.cabac
) {
1362 if(IS_SKIP(mb_type
))
1363 fill_rectangle(h
->mvd_table
[list
][b_xy
], 4, 4, h
->b_stride
, 0, 4);
1366 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+0 + 8*y
];
1367 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+2 + 8*y
];
1372 int8_t *ref_index
= &s
->current_picture
.ref_index
[list
][b8_xy
];
1373 ref_index
[0+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[0]];
1374 ref_index
[1+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[4]];
1375 ref_index
[0+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[8]];
1376 ref_index
[1+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[12]];
1380 if(h
->slice_type
== B_TYPE
&& h
->pps
.cabac
){
1381 if(IS_8X8(mb_type
)){
1382 uint8_t *direct_table
= &h
->direct_table
[b8_xy
];
1383 direct_table
[1+0*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[1]) ?
1 : 0;
1384 direct_table
[0+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[2]) ?
1 : 0;
1385 direct_table
[1+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[3]) ?
1 : 0;
1391 * Decodes a network abstraction layer unit.
1392 * @param consumed is the number of bytes used as input
1393 * @param length is the length of the array
1394 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1395 * @returns decoded bytes, might be src+1 if no escapes
1397 static uint8_t *decode_nal(H264Context
*h
, uint8_t *src
, int *dst_length
, int *consumed
, int length
){
1402 // src[0]&0x80; //forbidden bit
1403 h
->nal_ref_idc
= src
[0]>>5;
1404 h
->nal_unit_type
= src
[0]&0x1F;
1408 for(i
=0; i
<length
; i
++)
1409 printf("%2X ", src
[i
]);
1411 for(i
=0; i
+1<length
; i
+=2){
1412 if(src
[i
]) continue;
1413 if(i
>0 && src
[i
-1]==0) i
--;
1414 if(i
+2<length
&& src
[i
+1]==0 && src
[i
+2]<=3){
1416 /* startcode, so we must be past the end */
1423 if(i
>=length
-1){ //no escaped 0
1424 *dst_length
= length
;
1425 *consumed
= length
+1; //+1 for the header
1429 bufidx
= h
->nal_unit_type
== NAL_DPC ?
1 : 0; // use second escape buffer for inter data
1430 h
->rbsp_buffer
[bufidx
]= av_fast_realloc(h
->rbsp_buffer
[bufidx
], &h
->rbsp_buffer_size
[bufidx
], length
);
1431 dst
= h
->rbsp_buffer
[bufidx
];
1437 //printf("decoding esc\n");
1440 //remove escapes (very rare 1:2^22)
1441 if(si
+2<length
&& src
[si
]==0 && src
[si
+1]==0 && src
[si
+2]<=3){
1442 if(src
[si
+2]==3){ //escape
1447 }else //next start code
1451 dst
[di
++]= src
[si
++];
1455 *consumed
= si
+ 1;//+1 for the header
1456 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1461 * identifies the exact end of the bitstream
1462 * @return the length of the trailing, or 0 if damaged
1464 static int decode_rbsp_trailing(H264Context
*h
, uint8_t *src
){
1468 tprintf(h
->s
.avctx
, "rbsp trailing %X\n", v
);
1478 * idct tranforms the 16 dc values and dequantize them.
1479 * @param qp quantization parameter
1481 static void h264_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1484 int temp
[16]; //FIXME check if this is a good idea
1485 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1486 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1488 //memset(block, 64, 2*256);
1491 const int offset
= y_offset
[i
];
1492 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1493 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1494 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1495 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1504 const int offset
= x_offset
[i
];
1505 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1506 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1507 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1508 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1510 block
[stride
*0 +offset
]= ((((z0
+ z3
)*qmul
+ 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1511 block
[stride
*2 +offset
]= ((((z1
+ z2
)*qmul
+ 128 ) >> 8));
1512 block
[stride
*8 +offset
]= ((((z1
- z2
)*qmul
+ 128 ) >> 8));
1513 block
[stride
*10+offset
]= ((((z0
- z3
)*qmul
+ 128 ) >> 8));
1519 * dct tranforms the 16 dc values.
1520 * @param qp quantization parameter ??? FIXME
1522 static void h264_luma_dc_dct_c(DCTELEM
*block
/*, int qp*/){
1523 // const int qmul= dequant_coeff[qp][0];
1525 int temp
[16]; //FIXME check if this is a good idea
1526 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1527 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1530 const int offset
= y_offset
[i
];
1531 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1532 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1533 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1534 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1543 const int offset
= x_offset
[i
];
1544 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1545 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1546 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1547 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1549 block
[stride
*0 +offset
]= (z0
+ z3
)>>1;
1550 block
[stride
*2 +offset
]= (z1
+ z2
)>>1;
1551 block
[stride
*8 +offset
]= (z1
- z2
)>>1;
1552 block
[stride
*10+offset
]= (z0
- z3
)>>1;
1560 static void chroma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1561 const int stride
= 16*2;
1562 const int xStride
= 16;
1565 a
= block
[stride
*0 + xStride
*0];
1566 b
= block
[stride
*0 + xStride
*1];
1567 c
= block
[stride
*1 + xStride
*0];
1568 d
= block
[stride
*1 + xStride
*1];
1575 block
[stride
*0 + xStride
*0]= ((a
+c
)*qmul
) >> 7;
1576 block
[stride
*0 + xStride
*1]= ((e
+b
)*qmul
) >> 7;
1577 block
[stride
*1 + xStride
*0]= ((a
-c
)*qmul
) >> 7;
1578 block
[stride
*1 + xStride
*1]= ((e
-b
)*qmul
) >> 7;
1582 static void chroma_dc_dct_c(DCTELEM
*block
){
1583 const int stride
= 16*2;
1584 const int xStride
= 16;
1587 a
= block
[stride
*0 + xStride
*0];
1588 b
= block
[stride
*0 + xStride
*1];
1589 c
= block
[stride
*1 + xStride
*0];
1590 d
= block
[stride
*1 + xStride
*1];
1597 block
[stride
*0 + xStride
*0]= (a
+c
);
1598 block
[stride
*0 + xStride
*1]= (e
+b
);
1599 block
[stride
*1 + xStride
*0]= (a
-c
);
1600 block
[stride
*1 + xStride
*1]= (e
-b
);
1605 * gets the chroma qp.
1607 static inline int get_chroma_qp(H264Context
*h
, int t
, int qscale
){
1608 return h
->pps
.chroma_qp_table
[t
][qscale
& 0xff];
1611 //FIXME need to check that this does not overflow signed 32 bit for low qp, i am not sure, it's very close
1612 //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
1613 static inline int quantize_c(DCTELEM
*block
, uint8_t *scantable
, int qscale
, int intra
, int separate_dc
){
1615 const int * const quant_table
= quant_coeff
[qscale
];
1616 const int bias
= intra ?
(1<<QUANT_SHIFT
)/3 : (1<<QUANT_SHIFT
)/6;
1617 const unsigned int threshold1
= (1<<QUANT_SHIFT
) - bias
- 1;
1618 const unsigned int threshold2
= (threshold1
<<1);
1624 const int dc_bias
= intra ?
(1<<(QUANT_SHIFT
-2))/3 : (1<<(QUANT_SHIFT
-2))/6;
1625 const unsigned int dc_threshold1
= (1<<(QUANT_SHIFT
-2)) - dc_bias
- 1;
1626 const unsigned int dc_threshold2
= (dc_threshold1
<<1);
1628 int level
= block
[0]*quant_coeff
[qscale
+18][0];
1629 if(((unsigned)(level
+dc_threshold1
))>dc_threshold2
){
1631 level
= (dc_bias
+ level
)>>(QUANT_SHIFT
-2);
1634 level
= (dc_bias
- level
)>>(QUANT_SHIFT
-2);
1637 // last_non_zero = i;
1642 const int dc_bias
= intra ?
(1<<(QUANT_SHIFT
+1))/3 : (1<<(QUANT_SHIFT
+1))/6;
1643 const unsigned int dc_threshold1
= (1<<(QUANT_SHIFT
+1)) - dc_bias
- 1;
1644 const unsigned int dc_threshold2
= (dc_threshold1
<<1);
1646 int level
= block
[0]*quant_table
[0];
1647 if(((unsigned)(level
+dc_threshold1
))>dc_threshold2
){
1649 level
= (dc_bias
+ level
)>>(QUANT_SHIFT
+1);
1652 level
= (dc_bias
- level
)>>(QUANT_SHIFT
+1);
1655 // last_non_zero = i;
1668 const int j
= scantable
[i
];
1669 int level
= block
[j
]*quant_table
[j
];
1671 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1672 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1673 if(((unsigned)(level
+threshold1
))>threshold2
){
1675 level
= (bias
+ level
)>>QUANT_SHIFT
;
1678 level
= (bias
- level
)>>QUANT_SHIFT
;
1687 return last_non_zero
;
1690 static inline void mc_dir_part(H264Context
*h
, Picture
*pic
, int n
, int square
, int chroma_height
, int delta
, int list
,
1691 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1692 int src_x_offset
, int src_y_offset
,
1693 qpel_mc_func
*qpix_op
, h264_chroma_mc_func chroma_op
){
1694 MpegEncContext
* const s
= &h
->s
;
1695 const int mx
= h
->mv_cache
[list
][ scan8
[n
] ][0] + src_x_offset
*8;
1696 int my
= h
->mv_cache
[list
][ scan8
[n
] ][1] + src_y_offset
*8;
1697 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
1698 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->mb_linesize
;
1699 uint8_t * src_cb
, * src_cr
;
1700 int extra_width
= h
->emu_edge_width
;
1701 int extra_height
= h
->emu_edge_height
;
1703 const int full_mx
= mx
>>2;
1704 const int full_my
= my
>>2;
1705 const int pic_width
= 16*s
->mb_width
;
1706 const int pic_height
= 16*s
->mb_height
>> MB_FIELD
;
1708 if(!pic
->data
[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
1711 if(mx
&7) extra_width
-= 3;
1712 if(my
&7) extra_height
-= 3;
1714 if( full_mx
< 0-extra_width
1715 || full_my
< 0-extra_height
1716 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
1717 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
1718 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->mb_linesize
, h
->mb_linesize
, 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
1719 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->mb_linesize
;
1723 qpix_op
[luma_xy
](dest_y
, src_y
, h
->mb_linesize
); //FIXME try variable height perhaps?
1725 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->mb_linesize
);
1728 if(ENABLE_GRAY
&& s
->flags
&CODEC_FLAG_GRAY
) return;
1731 // chroma offset when predicting from a field of opposite parity
1732 my
+= 2 * ((s
->mb_y
& 1) - (pic
->reference
- 1));
1733 emu
|= (my
>>3) < 0 || (my
>>3) + 8 >= (pic_height
>>1);
1735 src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1736 src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1739 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1740 src_cb
= s
->edge_emu_buffer
;
1742 chroma_op(dest_cb
, src_cb
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1745 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1746 src_cr
= s
->edge_emu_buffer
;
1748 chroma_op(dest_cr
, src_cr
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1751 static inline void mc_part_std(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1752 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1753 int x_offset
, int y_offset
,
1754 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1755 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1756 int list0
, int list1
){
1757 MpegEncContext
* const s
= &h
->s
;
1758 qpel_mc_func
*qpix_op
= qpix_put
;
1759 h264_chroma_mc_func chroma_op
= chroma_put
;
1761 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1762 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1763 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1764 x_offset
+= 8*s
->mb_x
;
1765 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1768 Picture
*ref
= &h
->ref_list
[0][ h
->ref_cache
[0][ scan8
[n
] ] ];
1769 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 0,
1770 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1771 qpix_op
, chroma_op
);
1774 chroma_op
= chroma_avg
;
1778 Picture
*ref
= &h
->ref_list
[1][ h
->ref_cache
[1][ scan8
[n
] ] ];
1779 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 1,
1780 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1781 qpix_op
, chroma_op
);
1785 static inline void mc_part_weighted(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1786 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1787 int x_offset
, int y_offset
,
1788 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1789 h264_weight_func luma_weight_op
, h264_weight_func chroma_weight_op
,
1790 h264_biweight_func luma_weight_avg
, h264_biweight_func chroma_weight_avg
,
1791 int list0
, int list1
){
1792 MpegEncContext
* const s
= &h
->s
;
1794 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1795 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1796 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1797 x_offset
+= 8*s
->mb_x
;
1798 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1801 /* don't optimize for luma-only case, since B-frames usually
1802 * use implicit weights => chroma too. */
1803 uint8_t *tmp_cb
= s
->obmc_scratchpad
;
1804 uint8_t *tmp_cr
= s
->obmc_scratchpad
+ 8;
1805 uint8_t *tmp_y
= s
->obmc_scratchpad
+ 8*h
->mb_uvlinesize
;
1806 int refn0
= h
->ref_cache
[0][ scan8
[n
] ];
1807 int refn1
= h
->ref_cache
[1][ scan8
[n
] ];
1809 mc_dir_part(h
, &h
->ref_list
[0][refn0
], n
, square
, chroma_height
, delta
, 0,
1810 dest_y
, dest_cb
, dest_cr
,
1811 x_offset
, y_offset
, qpix_put
, chroma_put
);
1812 mc_dir_part(h
, &h
->ref_list
[1][refn1
], n
, square
, chroma_height
, delta
, 1,
1813 tmp_y
, tmp_cb
, tmp_cr
,
1814 x_offset
, y_offset
, qpix_put
, chroma_put
);
1816 if(h
->use_weight
== 2){
1817 int weight0
= h
->implicit_weight
[refn0
][refn1
];
1818 int weight1
= 64 - weight0
;
1819 luma_weight_avg( dest_y
, tmp_y
, h
-> mb_linesize
, 5, weight0
, weight1
, 0);
1820 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1821 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1823 luma_weight_avg(dest_y
, tmp_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1824 h
->luma_weight
[0][refn0
], h
->luma_weight
[1][refn1
],
1825 h
->luma_offset
[0][refn0
] + h
->luma_offset
[1][refn1
]);
1826 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1827 h
->chroma_weight
[0][refn0
][0], h
->chroma_weight
[1][refn1
][0],
1828 h
->chroma_offset
[0][refn0
][0] + h
->chroma_offset
[1][refn1
][0]);
1829 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1830 h
->chroma_weight
[0][refn0
][1], h
->chroma_weight
[1][refn1
][1],
1831 h
->chroma_offset
[0][refn0
][1] + h
->chroma_offset
[1][refn1
][1]);
1834 int list
= list1 ?
1 : 0;
1835 int refn
= h
->ref_cache
[list
][ scan8
[n
] ];
1836 Picture
*ref
= &h
->ref_list
[list
][refn
];
1837 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, list
,
1838 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1839 qpix_put
, chroma_put
);
1841 luma_weight_op(dest_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1842 h
->luma_weight
[list
][refn
], h
->luma_offset
[list
][refn
]);
1843 if(h
->use_weight_chroma
){
1844 chroma_weight_op(dest_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1845 h
->chroma_weight
[list
][refn
][0], h
->chroma_offset
[list
][refn
][0]);
1846 chroma_weight_op(dest_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1847 h
->chroma_weight
[list
][refn
][1], h
->chroma_offset
[list
][refn
][1]);
1852 static inline void mc_part(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1853 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1854 int x_offset
, int y_offset
,
1855 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1856 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1857 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
,
1858 int list0
, int list1
){
1859 if((h
->use_weight
==2 && list0
&& list1
1860 && (h
->implicit_weight
[ h
->ref_cache
[0][scan8
[n
]] ][ h
->ref_cache
[1][scan8
[n
]] ] != 32))
1861 || h
->use_weight
==1)
1862 mc_part_weighted(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1863 x_offset
, y_offset
, qpix_put
, chroma_put
,
1864 weight_op
[0], weight_op
[3], weight_avg
[0], weight_avg
[3], list0
, list1
);
1866 mc_part_std(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1867 x_offset
, y_offset
, qpix_put
, chroma_put
, qpix_avg
, chroma_avg
, list0
, list1
);
1870 static inline void prefetch_motion(H264Context
*h
, int list
){
1871 /* fetch pixels for estimated mv 4 macroblocks ahead
1872 * optimized for 64byte cache lines */
1873 MpegEncContext
* const s
= &h
->s
;
1874 const int refn
= h
->ref_cache
[list
][scan8
[0]];
1876 const int mx
= (h
->mv_cache
[list
][scan8
[0]][0]>>2) + 16*s
->mb_x
+ 8;
1877 const int my
= (h
->mv_cache
[list
][scan8
[0]][1]>>2) + 16*s
->mb_y
;
1878 uint8_t **src
= h
->ref_list
[list
][refn
].data
;
1879 int off
= mx
+ (my
+ (s
->mb_x
&3)*4)*h
->mb_linesize
+ 64;
1880 s
->dsp
.prefetch(src
[0]+off
, s
->linesize
, 4);
1881 off
= (mx
>>1) + ((my
>>1) + (s
->mb_x
&7))*s
->uvlinesize
+ 64;
1882 s
->dsp
.prefetch(src
[1]+off
, src
[2]-src
[1], 2);
1886 static void hl_motion(H264Context
*h
, uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1887 qpel_mc_func (*qpix_put
)[16], h264_chroma_mc_func (*chroma_put
),
1888 qpel_mc_func (*qpix_avg
)[16], h264_chroma_mc_func (*chroma_avg
),
1889 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
){
1890 MpegEncContext
* const s
= &h
->s
;
1891 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
1892 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
1894 assert(IS_INTER(mb_type
));
1896 prefetch_motion(h
, 0);
1898 if(IS_16X16(mb_type
)){
1899 mc_part(h
, 0, 1, 8, 0, dest_y
, dest_cb
, dest_cr
, 0, 0,
1900 qpix_put
[0], chroma_put
[0], qpix_avg
[0], chroma_avg
[0],
1901 &weight_op
[0], &weight_avg
[0],
1902 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1903 }else if(IS_16X8(mb_type
)){
1904 mc_part(h
, 0, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 0,
1905 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1906 &weight_op
[1], &weight_avg
[1],
1907 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1908 mc_part(h
, 8, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 4,
1909 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1910 &weight_op
[1], &weight_avg
[1],
1911 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1912 }else if(IS_8X16(mb_type
)){
1913 mc_part(h
, 0, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 0, 0,
1914 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1915 &weight_op
[2], &weight_avg
[2],
1916 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1917 mc_part(h
, 4, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 4, 0,
1918 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1919 &weight_op
[2], &weight_avg
[2],
1920 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1924 assert(IS_8X8(mb_type
));
1927 const int sub_mb_type
= h
->sub_mb_type
[i
];
1929 int x_offset
= (i
&1)<<2;
1930 int y_offset
= (i
&2)<<1;
1932 if(IS_SUB_8X8(sub_mb_type
)){
1933 mc_part(h
, n
, 1, 4, 0, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1934 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1935 &weight_op
[3], &weight_avg
[3],
1936 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1937 }else if(IS_SUB_8X4(sub_mb_type
)){
1938 mc_part(h
, n
, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1939 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1940 &weight_op
[4], &weight_avg
[4],
1941 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1942 mc_part(h
, n
+2, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
+2,
1943 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1944 &weight_op
[4], &weight_avg
[4],
1945 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1946 }else if(IS_SUB_4X8(sub_mb_type
)){
1947 mc_part(h
, n
, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1948 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1949 &weight_op
[5], &weight_avg
[5],
1950 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1951 mc_part(h
, n
+1, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
+2, y_offset
,
1952 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1953 &weight_op
[5], &weight_avg
[5],
1954 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1957 assert(IS_SUB_4X4(sub_mb_type
));
1959 int sub_x_offset
= x_offset
+ 2*(j
&1);
1960 int sub_y_offset
= y_offset
+ (j
&2);
1961 mc_part(h
, n
+j
, 1, 2, 0, dest_y
, dest_cb
, dest_cr
, sub_x_offset
, sub_y_offset
,
1962 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1963 &weight_op
[6], &weight_avg
[6],
1964 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1970 prefetch_motion(h
, 1);
1973 static void decode_init_vlc(void){
1974 static int done
= 0;
1980 init_vlc(&chroma_dc_coeff_token_vlc
, CHROMA_DC_COEFF_TOKEN_VLC_BITS
, 4*5,
1981 &chroma_dc_coeff_token_len
[0], 1, 1,
1982 &chroma_dc_coeff_token_bits
[0], 1, 1, 1);
1985 init_vlc(&coeff_token_vlc
[i
], COEFF_TOKEN_VLC_BITS
, 4*17,
1986 &coeff_token_len
[i
][0], 1, 1,
1987 &coeff_token_bits
[i
][0], 1, 1, 1);
1991 init_vlc(&chroma_dc_total_zeros_vlc
[i
], CHROMA_DC_TOTAL_ZEROS_VLC_BITS
, 4,
1992 &chroma_dc_total_zeros_len
[i
][0], 1, 1,
1993 &chroma_dc_total_zeros_bits
[i
][0], 1, 1, 1);
1995 for(i
=0; i
<15; i
++){
1996 init_vlc(&total_zeros_vlc
[i
], TOTAL_ZEROS_VLC_BITS
, 16,
1997 &total_zeros_len
[i
][0], 1, 1,
1998 &total_zeros_bits
[i
][0], 1, 1, 1);
2002 init_vlc(&run_vlc
[i
], RUN_VLC_BITS
, 7,
2003 &run_len
[i
][0], 1, 1,
2004 &run_bits
[i
][0], 1, 1, 1);
2006 init_vlc(&run7_vlc
, RUN7_VLC_BITS
, 16,
2007 &run_len
[6][0], 1, 1,
2008 &run_bits
[6][0], 1, 1, 1);
2012 static void free_tables(H264Context
*h
){
2015 av_freep(&h
->intra4x4_pred_mode
);
2016 av_freep(&h
->chroma_pred_mode_table
);
2017 av_freep(&h
->cbp_table
);
2018 av_freep(&h
->mvd_table
[0]);
2019 av_freep(&h
->mvd_table
[1]);
2020 av_freep(&h
->direct_table
);
2021 av_freep(&h
->non_zero_count
);
2022 av_freep(&h
->slice_table_base
);
2023 h
->slice_table
= NULL
;
2025 av_freep(&h
->mb2b_xy
);
2026 av_freep(&h
->mb2b8_xy
);
2028 for(i
= 0; i
< MAX_SPS_COUNT
; i
++)
2029 av_freep(h
->sps_buffers
+ i
);
2031 for(i
= 0; i
< MAX_PPS_COUNT
; i
++)
2032 av_freep(h
->pps_buffers
+ i
);
2034 for(i
= 0; i
< h
->s
.avctx
->thread_count
; i
++) {
2035 hx
= h
->thread_context
[i
];
2037 av_freep(&hx
->top_borders
[1]);
2038 av_freep(&hx
->top_borders
[0]);
2039 av_freep(&hx
->s
.obmc_scratchpad
);
2040 av_freep(&hx
->s
.allocated_edge_emu_buffer
);
2044 static void init_dequant8_coeff_table(H264Context
*h
){
2046 const int transpose
= (h
->s
.dsp
.h264_idct8_add
!= ff_h264_idct8_add_c
); //FIXME ugly
2047 h
->dequant8_coeff
[0] = h
->dequant8_buffer
[0];
2048 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[1];
2050 for(i
=0; i
<2; i
++ ){
2051 if(i
&& !memcmp(h
->pps
.scaling_matrix8
[0], h
->pps
.scaling_matrix8
[1], 64*sizeof(uint8_t))){
2052 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[0];
2056 for(q
=0; q
<52; q
++){
2057 int shift
= ff_div6
[q
];
2058 int idx
= ff_rem6
[q
];
2060 h
->dequant8_coeff
[i
][q
][transpose ?
(x
>>3)|((x
&7)<<3) : x
] =
2061 ((uint32_t)dequant8_coeff_init
[idx
][ dequant8_coeff_init_scan
[((x
>>1)&12) | (x
&3)] ] *
2062 h
->pps
.scaling_matrix8
[i
][x
]) << shift
;
2067 static void init_dequant4_coeff_table(H264Context
*h
){
2069 const int transpose
= (h
->s
.dsp
.h264_idct_add
!= ff_h264_idct_add_c
); //FIXME ugly
2070 for(i
=0; i
<6; i
++ ){
2071 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[i
];
2073 if(!memcmp(h
->pps
.scaling_matrix4
[j
], h
->pps
.scaling_matrix4
[i
], 16*sizeof(uint8_t))){
2074 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[j
];
2081 for(q
=0; q
<52; q
++){
2082 int shift
= ff_div6
[q
] + 2;
2083 int idx
= ff_rem6
[q
];
2085 h
->dequant4_coeff
[i
][q
][transpose ?
(x
>>2)|((x
<<2)&0xF) : x
] =
2086 ((uint32_t)dequant4_coeff_init
[idx
][(x
&1) + ((x
>>2)&1)] *
2087 h
->pps
.scaling_matrix4
[i
][x
]) << shift
;
2092 static void init_dequant_tables(H264Context
*h
){
2094 init_dequant4_coeff_table(h
);
2095 if(h
->pps
.transform_8x8_mode
)
2096 init_dequant8_coeff_table(h
);
2097 if(h
->sps
.transform_bypass
){
2100 h
->dequant4_coeff
[i
][0][x
] = 1<<6;
2101 if(h
->pps
.transform_8x8_mode
)
2104 h
->dequant8_coeff
[i
][0][x
] = 1<<6;
2111 * needs width/height
2113 static int alloc_tables(H264Context
*h
){
2114 MpegEncContext
* const s
= &h
->s
;
2115 const int big_mb_num
= s
->mb_stride
* (s
->mb_height
+1);
2118 CHECKED_ALLOCZ(h
->intra4x4_pred_mode
, big_mb_num
* 8 * sizeof(uint8_t))
2120 CHECKED_ALLOCZ(h
->non_zero_count
, big_mb_num
* 16 * sizeof(uint8_t))
2121 CHECKED_ALLOCZ(h
->slice_table_base
, (big_mb_num
+s
->mb_stride
) * sizeof(uint8_t))
2122 CHECKED_ALLOCZ(h
->cbp_table
, big_mb_num
* sizeof(uint16_t))
2124 if( h
->pps
.cabac
) {
2125 CHECKED_ALLOCZ(h
->chroma_pred_mode_table
, big_mb_num
* sizeof(uint8_t))
2126 CHECKED_ALLOCZ(h
->mvd_table
[0], 32*big_mb_num
* sizeof(uint16_t));
2127 CHECKED_ALLOCZ(h
->mvd_table
[1], 32*big_mb_num
* sizeof(uint16_t));
2128 CHECKED_ALLOCZ(h
->direct_table
, 32*big_mb_num
* sizeof(uint8_t));
2131 memset(h
->slice_table_base
, -1, (big_mb_num
+s
->mb_stride
) * sizeof(uint8_t));
2132 h
->slice_table
= h
->slice_table_base
+ s
->mb_stride
*2 + 1;
2134 CHECKED_ALLOCZ(h
->mb2b_xy
, big_mb_num
* sizeof(uint32_t));
2135 CHECKED_ALLOCZ(h
->mb2b8_xy
, big_mb_num
* sizeof(uint32_t));
2136 for(y
=0; y
<s
->mb_height
; y
++){
2137 for(x
=0; x
<s
->mb_width
; x
++){
2138 const int mb_xy
= x
+ y
*s
->mb_stride
;
2139 const int b_xy
= 4*x
+ 4*y
*h
->b_stride
;
2140 const int b8_xy
= 2*x
+ 2*y
*h
->b8_stride
;
2142 h
->mb2b_xy
[mb_xy
]= b_xy
;
2143 h
->mb2b8_xy
[mb_xy
]= b8_xy
;
2147 s
->obmc_scratchpad
= NULL
;
2149 if(!h
->dequant4_coeff
[0])
2150 init_dequant_tables(h
);
2159 * Mimic alloc_tables(), but for every context thread.
2161 static void clone_tables(H264Context
*dst
, H264Context
*src
){
2162 dst
->intra4x4_pred_mode
= src
->intra4x4_pred_mode
;
2163 dst
->non_zero_count
= src
->non_zero_count
;
2164 dst
->slice_table
= src
->slice_table
;
2165 dst
->cbp_table
= src
->cbp_table
;
2166 dst
->mb2b_xy
= src
->mb2b_xy
;
2167 dst
->mb2b8_xy
= src
->mb2b8_xy
;
2168 dst
->chroma_pred_mode_table
= src
->chroma_pred_mode_table
;
2169 dst
->mvd_table
[0] = src
->mvd_table
[0];
2170 dst
->mvd_table
[1] = src
->mvd_table
[1];
2171 dst
->direct_table
= src
->direct_table
;
2173 dst
->s
.obmc_scratchpad
= NULL
;
2174 ff_h264_pred_init(&dst
->hpc
, src
->s
.codec_id
);
2179 * Allocate buffers which are not shared amongst multiple threads.
2181 static int context_init(H264Context
*h
){
2182 MpegEncContext
* const s
= &h
->s
;
2184 CHECKED_ALLOCZ(h
->top_borders
[0], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2185 CHECKED_ALLOCZ(h
->top_borders
[1], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2187 // edge emu needs blocksize + filter length - 1 (=17x17 for halfpel / 21x21 for h264)
2188 CHECKED_ALLOCZ(s
->allocated_edge_emu_buffer
,
2189 (s
->width
+64)*2*21*2); //(width + edge + align)*interlaced*MBsize*tolerance
2190 s
->edge_emu_buffer
= s
->allocated_edge_emu_buffer
+ (s
->width
+64)*2*21;
2193 return -1; // free_tables will clean up for us
2196 static void common_init(H264Context
*h
){
2197 MpegEncContext
* const s
= &h
->s
;
2199 s
->width
= s
->avctx
->width
;
2200 s
->height
= s
->avctx
->height
;
2201 s
->codec_id
= s
->avctx
->codec
->id
;
2203 ff_h264_pred_init(&h
->hpc
, s
->codec_id
);
2205 h
->dequant_coeff_pps
= -1;
2206 s
->unrestricted_mv
=1;
2207 s
->decode
=1; //FIXME
2209 memset(h
->pps
.scaling_matrix4
, 16, 6*16*sizeof(uint8_t));
2210 memset(h
->pps
.scaling_matrix8
, 16, 2*64*sizeof(uint8_t));
2213 static int decode_init(AVCodecContext
*avctx
){
2214 H264Context
*h
= avctx
->priv_data
;
2215 MpegEncContext
* const s
= &h
->s
;
2217 MPV_decode_defaults(s
);
2222 s
->out_format
= FMT_H264
;
2223 s
->workaround_bugs
= avctx
->workaround_bugs
;
2226 // s->decode_mb= ff_h263_decode_mb;
2227 s
->quarter_sample
= 1;
2229 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
2233 if(avctx
->extradata_size
> 0 && avctx
->extradata
&&
2234 *(char *)avctx
->extradata
== 1){
2241 h
->thread_context
[0] = h
;
2245 static int frame_start(H264Context
*h
){
2246 MpegEncContext
* const s
= &h
->s
;
2249 if(MPV_frame_start(s
, s
->avctx
) < 0)
2251 ff_er_frame_start(s
);
2253 * MPV_frame_start uses pict_type to derive key_frame.
2254 * This is incorrect for H.264; IDR markings must be used.
2255 * Zero here; IDR markings per slice in frame or fields are OR'd in later.
2256 * See decode_nal_units().
2258 s
->current_picture_ptr
->key_frame
= 0;
2260 assert(s
->linesize
&& s
->uvlinesize
);
2262 for(i
=0; i
<16; i
++){
2263 h
->block_offset
[i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2264 h
->block_offset
[24+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2267 h
->block_offset
[16+i
]=
2268 h
->block_offset
[20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2269 h
->block_offset
[24+16+i
]=
2270 h
->block_offset
[24+20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2273 /* can't be in alloc_tables because linesize isn't known there.
2274 * FIXME: redo bipred weight to not require extra buffer? */
2275 for(i
= 0; i
< s
->avctx
->thread_count
; i
++)
2276 if(!h
->thread_context
[i
]->s
.obmc_scratchpad
)
2277 h
->thread_context
[i
]->s
.obmc_scratchpad
= av_malloc(16*2*s
->linesize
+ 8*2*s
->uvlinesize
);
2279 /* some macroblocks will be accessed before they're available */
2280 if(FRAME_MBAFF
|| s
->avctx
->thread_count
> 1)
2281 memset(h
->slice_table
, -1, (s
->mb_height
*s
->mb_stride
-1) * sizeof(uint8_t));
2283 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2287 static inline void backup_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int simple
){
2288 MpegEncContext
* const s
= &h
->s
;
2292 src_cb
-= uvlinesize
;
2293 src_cr
-= uvlinesize
;
2295 // There are two lines saved, the line above the the top macroblock of a pair,
2296 // and the line above the bottom macroblock
2297 h
->left_border
[0]= h
->top_borders
[0][s
->mb_x
][15];
2298 for(i
=1; i
<17; i
++){
2299 h
->left_border
[i
]= src_y
[15+i
* linesize
];
2302 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+0)= *(uint64_t*)(src_y
+ 16*linesize
);
2303 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+8)= *(uint64_t*)(src_y
+8+16*linesize
);
2305 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2306 h
->left_border
[17 ]= h
->top_borders
[0][s
->mb_x
][16+7];
2307 h
->left_border
[17+9]= h
->top_borders
[0][s
->mb_x
][24+7];
2309 h
->left_border
[i
+17 ]= src_cb
[7+i
*uvlinesize
];
2310 h
->left_border
[i
+17+9]= src_cr
[7+i
*uvlinesize
];
2312 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+8*uvlinesize
);
2313 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+8*uvlinesize
);
2317 static inline void xchg_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int xchg
, int simple
){
2318 MpegEncContext
* const s
= &h
->s
;
2325 if(h
->deblocking_filter
== 2) {
2326 mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
2327 deblock_left
= h
->slice_table
[mb_xy
] == h
->slice_table
[mb_xy
- 1];
2328 deblock_top
= h
->slice_table
[mb_xy
] == h
->slice_table
[h
->top_mb_xy
];
2330 deblock_left
= (s
->mb_x
> 0);
2331 deblock_top
= (s
->mb_y
> 0);
2334 src_y
-= linesize
+ 1;
2335 src_cb
-= uvlinesize
+ 1;
2336 src_cr
-= uvlinesize
+ 1;
2338 #define XCHG(a,b,t,xchg)\
2345 for(i
= !deblock_top
; i
<17; i
++){
2346 XCHG(h
->left_border
[i
], src_y
[i
* linesize
], temp8
, xchg
);
2351 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+0), *(uint64_t*)(src_y
+1), temp64
, xchg
);
2352 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+8), *(uint64_t*)(src_y
+9), temp64
, 1);
2353 if(s
->mb_x
+1 < s
->mb_width
){
2354 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
+1]), *(uint64_t*)(src_y
+17), temp64
, 1);
2358 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2360 for(i
= !deblock_top
; i
<9; i
++){
2361 XCHG(h
->left_border
[i
+17 ], src_cb
[i
*uvlinesize
], temp8
, xchg
);
2362 XCHG(h
->left_border
[i
+17+9], src_cr
[i
*uvlinesize
], temp8
, xchg
);
2366 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+16), *(uint64_t*)(src_cb
+1), temp64
, 1);
2367 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+24), *(uint64_t*)(src_cr
+1), temp64
, 1);
2372 static inline void backup_pair_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
){
2373 MpegEncContext
* const s
= &h
->s
;
2376 src_y
-= 2 * linesize
;
2377 src_cb
-= 2 * uvlinesize
;
2378 src_cr
-= 2 * uvlinesize
;
2380 // There are two lines saved, the line above the the top macroblock of a pair,
2381 // and the line above the bottom macroblock
2382 h
->left_border
[0]= h
->top_borders
[0][s
->mb_x
][15];
2383 h
->left_border
[1]= h
->top_borders
[1][s
->mb_x
][15];
2384 for(i
=2; i
<34; i
++){
2385 h
->left_border
[i
]= src_y
[15+i
* linesize
];
2388 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+0)= *(uint64_t*)(src_y
+ 32*linesize
);
2389 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+8)= *(uint64_t*)(src_y
+8+32*linesize
);
2390 *(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+0)= *(uint64_t*)(src_y
+ 33*linesize
);
2391 *(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+8)= *(uint64_t*)(src_y
+8+33*linesize
);
2393 if(!ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2394 h
->left_border
[34 ]= h
->top_borders
[0][s
->mb_x
][16+7];
2395 h
->left_border
[34+ 1]= h
->top_borders
[1][s
->mb_x
][16+7];
2396 h
->left_border
[34+18 ]= h
->top_borders
[0][s
->mb_x
][24+7];
2397 h
->left_border
[34+18+1]= h
->top_borders
[1][s
->mb_x
][24+7];
2398 for(i
=2; i
<18; i
++){
2399 h
->left_border
[i
+34 ]= src_cb
[7+i
*uvlinesize
];
2400 h
->left_border
[i
+34+18]= src_cr
[7+i
*uvlinesize
];
2402 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+16*uvlinesize
);
2403 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+16*uvlinesize
);
2404 *(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+17*uvlinesize
);
2405 *(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+17*uvlinesize
);
2409 static inline void xchg_pair_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int xchg
){
2410 MpegEncContext
* const s
= &h
->s
;
2413 int deblock_left
= (s
->mb_x
> 0);
2414 int deblock_top
= (s
->mb_y
> 1);
2416 tprintf(s
->avctx
, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y
, src_cb
, src_cr
, linesize
, uvlinesize
);
2418 src_y
-= 2 * linesize
+ 1;
2419 src_cb
-= 2 * uvlinesize
+ 1;
2420 src_cr
-= 2 * uvlinesize
+ 1;
2422 #define XCHG(a,b,t,xchg)\
2429 for(i
= (!deblock_top
)<<1; i
<34; i
++){
2430 XCHG(h
->left_border
[i
], src_y
[i
* linesize
], temp8
, xchg
);
2435 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+0), *(uint64_t*)(src_y
+1), temp64
, xchg
);
2436 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+8), *(uint64_t*)(src_y
+9), temp64
, 1);
2437 XCHG(*(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+0), *(uint64_t*)(src_y
+1 +linesize
), temp64
, xchg
);
2438 XCHG(*(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+8), *(uint64_t*)(src_y
+9 +linesize
), temp64
, 1);
2439 if(s
->mb_x
+1 < s
->mb_width
){
2440 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
+1]), *(uint64_t*)(src_y
+17), temp64
, 1);
2441 XCHG(*(uint64_t*)(h
->top_borders
[1][s
->mb_x
+1]), *(uint64_t*)(src_y
+17 +linesize
), temp64
, 1);
2445 if(!ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2447 for(i
= (!deblock_top
) << 1; i
<18; i
++){
2448 XCHG(h
->left_border
[i
+34 ], src_cb
[i
*uvlinesize
], temp8
, xchg
);
2449 XCHG(h
->left_border
[i
+34+18], src_cr
[i
*uvlinesize
], temp8
, xchg
);
2453 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+16), *(uint64_t*)(src_cb
+1), temp64
, 1);
2454 XCHG(*(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+24), *(uint64_t*)(src_cr
+1), temp64
, 1);
2455 XCHG(*(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+16), *(uint64_t*)(src_cb
+1 +uvlinesize
), temp64
, 1);
2456 XCHG(*(uint64_t*)(h
->top_borders
[1][s
->mb_x
]+24), *(uint64_t*)(src_cr
+1 +uvlinesize
), temp64
, 1);
2461 static av_always_inline
void hl_decode_mb_internal(H264Context
*h
, int simple
){
2462 MpegEncContext
* const s
= &h
->s
;
2463 const int mb_x
= s
->mb_x
;
2464 const int mb_y
= s
->mb_y
;
2465 const int mb_xy
= mb_x
+ mb_y
*s
->mb_stride
;
2466 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
2467 uint8_t *dest_y
, *dest_cb
, *dest_cr
;
2468 int linesize
, uvlinesize
/*dct_offset*/;
2470 int *block_offset
= &h
->block_offset
[0];
2471 const unsigned int bottom
= mb_y
& 1;
2472 const int transform_bypass
= (s
->qscale
== 0 && h
->sps
.transform_bypass
), is_h264
= (simple
|| s
->codec_id
== CODEC_ID_H264
);
2473 void (*idct_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2474 void (*idct_dc_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2476 dest_y
= s
->current_picture
.data
[0] + (mb_y
* 16* s
->linesize
) + mb_x
* 16;
2477 dest_cb
= s
->current_picture
.data
[1] + (mb_y
* 8 * s
->uvlinesize
) + mb_x
* 8;
2478 dest_cr
= s
->current_picture
.data
[2] + (mb_y
* 8 * s
->uvlinesize
) + mb_x
* 8;
2480 s
->dsp
.prefetch(dest_y
+ (s
->mb_x
&3)*4*s
->linesize
+ 64, s
->linesize
, 4);
2481 s
->dsp
.prefetch(dest_cb
+ (s
->mb_x
&7)*s
->uvlinesize
+ 64, dest_cr
- dest_cb
, 2);
2483 if (!simple
&& MB_FIELD
) {
2484 linesize
= h
->mb_linesize
= s
->linesize
* 2;
2485 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
* 2;
2486 block_offset
= &h
->block_offset
[24];
2487 if(mb_y
&1){ //FIXME move out of this func?
2488 dest_y
-= s
->linesize
*15;
2489 dest_cb
-= s
->uvlinesize
*7;
2490 dest_cr
-= s
->uvlinesize
*7;
2494 for(list
=0; list
<h
->list_count
; list
++){
2495 if(!USES_LIST(mb_type
, list
))
2497 if(IS_16X16(mb_type
)){
2498 int8_t *ref
= &h
->ref_cache
[list
][scan8
[0]];
2499 fill_rectangle(ref
, 4, 4, 8, 16+*ref
^(s
->mb_y
&1), 1);
2501 for(i
=0; i
<16; i
+=4){
2502 //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
2503 int ref
= h
->ref_cache
[list
][scan8
[i
]];
2505 fill_rectangle(&h
->ref_cache
[list
][scan8
[i
]], 2, 2, 8, 16+ref
^(s
->mb_y
&1), 1);
2511 linesize
= h
->mb_linesize
= s
->linesize
;
2512 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
;
2513 // dct_offset = s->linesize * 16;
2516 if(transform_bypass
){
2518 idct_add
= IS_8x8DCT(mb_type
) ? s
->dsp
.add_pixels8
: s
->dsp
.add_pixels4
;
2519 }else if(IS_8x8DCT(mb_type
)){
2520 idct_dc_add
= s
->dsp
.h264_idct8_dc_add
;
2521 idct_add
= s
->dsp
.h264_idct8_add
;
2523 idct_dc_add
= s
->dsp
.h264_idct_dc_add
;
2524 idct_add
= s
->dsp
.h264_idct_add
;
2527 if(!simple
&& FRAME_MBAFF
&& h
->deblocking_filter
&&