2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
35 #include "rectangle.h"
39 #include "x86/h264_i386.h"
46 * Value of Picture.reference when Picture is not a reference picture, but
47 * is held for delayed output.
49 #define DELAYED_PIC_REF 4
51 static VLC coeff_token_vlc
[4];
52 static VLC_TYPE coeff_token_vlc_tables
[520+332+280+256][2];
53 static const int coeff_token_vlc_tables_size
[4]={520,332,280,256};
55 static VLC chroma_dc_coeff_token_vlc
;
56 static VLC_TYPE chroma_dc_coeff_token_vlc_table
[256][2];
57 static const int chroma_dc_coeff_token_vlc_table_size
= 256;
59 static VLC total_zeros_vlc
[15];
60 static VLC_TYPE total_zeros_vlc_tables
[15][512][2];
61 static const int total_zeros_vlc_tables_size
= 512;
63 static VLC chroma_dc_total_zeros_vlc
[3];
64 static VLC_TYPE chroma_dc_total_zeros_vlc_tables
[3][8][2];
65 static const int chroma_dc_total_zeros_vlc_tables_size
= 8;
67 static VLC run_vlc
[6];
68 static VLC_TYPE run_vlc_tables
[6][8][2];
69 static const int run_vlc_tables_size
= 8;
72 static VLC_TYPE run7_vlc_table
[96][2];
73 static const int run7_vlc_table_size
= 96;
75 static void svq3_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
);
76 static void svq3_add_idct_c(uint8_t *dst
, DCTELEM
*block
, int stride
, int qp
, int dc
);
77 static void filter_mb( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
78 static void filter_mb_fast( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
79 static Picture
* remove_long(H264Context
*h
, int i
, int ref_mask
);
81 static av_always_inline
uint32_t pack16to32(int a
, int b
){
82 #ifdef WORDS_BIGENDIAN
83 return (b
&0xFFFF) + (a
<<16);
85 return (a
&0xFFFF) + (b
<<16);
89 static const uint8_t rem6
[52]={
90 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
93 static const uint8_t div6
[52]={
94 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
97 static const int left_block_options
[4][8]={
104 #define LEVEL_TAB_BITS 8
105 static int8_t cavlc_level_tab
[7][1<<LEVEL_TAB_BITS
][2];
107 static void fill_caches(H264Context
*h
, int mb_type
, int for_deblock
){
108 MpegEncContext
* const s
= &h
->s
;
109 const int mb_xy
= h
->mb_xy
;
110 int topleft_xy
, top_xy
, topright_xy
, left_xy
[2];
111 int topleft_type
, top_type
, topright_type
, left_type
[2];
112 const int * left_block
;
113 int topleft_partition
= -1;
116 top_xy
= mb_xy
- (s
->mb_stride
<< FIELD_PICTURE
);
118 //FIXME deblocking could skip the intra and nnz parts.
119 if(for_deblock
&& (h
->slice_num
== 1 || h
->slice_table
[mb_xy
] == h
->slice_table
[top_xy
]) && !FRAME_MBAFF
)
122 /* Wow, what a mess, why didn't they simplify the interlacing & intra
123 * stuff, I can't imagine that these complex rules are worth it. */
125 topleft_xy
= top_xy
- 1;
126 topright_xy
= top_xy
+ 1;
127 left_xy
[1] = left_xy
[0] = mb_xy
-1;
128 left_block
= left_block_options
[0];
130 const int pair_xy
= s
->mb_x
+ (s
->mb_y
& ~1)*s
->mb_stride
;
131 const int top_pair_xy
= pair_xy
- s
->mb_stride
;
132 const int topleft_pair_xy
= top_pair_xy
- 1;
133 const int topright_pair_xy
= top_pair_xy
+ 1;
134 const int topleft_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[topleft_pair_xy
]);
135 const int top_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[top_pair_xy
]);
136 const int topright_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[topright_pair_xy
]);
137 const int left_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[pair_xy
-1]);
138 const int curr_mb_field_flag
= IS_INTERLACED(mb_type
);
139 const int bottom
= (s
->mb_y
& 1);
140 tprintf(s
->avctx
, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag
, left_mb_field_flag
, topleft_mb_field_flag
, top_mb_field_flag
, topright_mb_field_flag
);
142 if (curr_mb_field_flag
&& (bottom
|| top_mb_field_flag
)){
143 top_xy
-= s
->mb_stride
;
145 if (curr_mb_field_flag
&& (bottom
|| topleft_mb_field_flag
)){
146 topleft_xy
-= s
->mb_stride
;
147 } else if(bottom
&& !curr_mb_field_flag
&& left_mb_field_flag
) {
148 topleft_xy
+= s
->mb_stride
;
149 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
150 topleft_partition
= 0;
152 if (curr_mb_field_flag
&& (bottom
|| topright_mb_field_flag
)){
153 topright_xy
-= s
->mb_stride
;
155 if (left_mb_field_flag
!= curr_mb_field_flag
) {
156 left_xy
[1] = left_xy
[0] = pair_xy
- 1;
157 if (curr_mb_field_flag
) {
158 left_xy
[1] += s
->mb_stride
;
159 left_block
= left_block_options
[3];
161 left_block
= left_block_options
[2 - bottom
];
166 h
->top_mb_xy
= top_xy
;
167 h
->left_mb_xy
[0] = left_xy
[0];
168 h
->left_mb_xy
[1] = left_xy
[1];
172 top_type
= h
->slice_table
[top_xy
] < 0xFFFF ? s
->current_picture
.mb_type
[top_xy
] : 0;
173 left_type
[0] = h
->slice_table
[left_xy
[0] ] < 0xFFFF ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
174 left_type
[1] = h
->slice_table
[left_xy
[1] ] < 0xFFFF ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
176 if(MB_MBAFF
&& !IS_INTRA(mb_type
)){
178 for(list
=0; list
<h
->list_count
; list
++){
179 //These values where changed for ease of performing MC, we need to change them back
180 //FIXME maybe we can make MC and loop filter use the same values or prevent
181 //the MC code from changing ref_cache and rather use a temporary array.
182 if(USES_LIST(mb_type
,list
)){
183 int8_t *ref
= &s
->current_picture
.ref_index
[list
][h
->mb2b8_xy
[mb_xy
]];
184 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 0]] =
185 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 2]] = (pack16to32(ref
[0],ref
[1])&0x00FF00FF)*0x0101;
187 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 8]] =
188 *(uint32_t*)&h
->ref_cache
[list
][scan8
[10]] = (pack16to32(ref
[0],ref
[1])&0x00FF00FF)*0x0101;
193 topleft_type
= h
->slice_table
[topleft_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topleft_xy
] : 0;
194 top_type
= h
->slice_table
[top_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[top_xy
] : 0;
195 topright_type
= h
->slice_table
[topright_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topright_xy
]: 0;
196 left_type
[0] = h
->slice_table
[left_xy
[0] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
197 left_type
[1] = h
->slice_table
[left_xy
[1] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
199 if(IS_INTRA(mb_type
)){
200 int type_mask
= h
->pps
.constrained_intra_pred ?
IS_INTRA(-1) : -1;
201 h
->topleft_samples_available
=
202 h
->top_samples_available
=
203 h
->left_samples_available
= 0xFFFF;
204 h
->topright_samples_available
= 0xEEEA;
206 if(!(top_type
& type_mask
)){
207 h
->topleft_samples_available
= 0xB3FF;
208 h
->top_samples_available
= 0x33FF;
209 h
->topright_samples_available
= 0x26EA;
211 if(IS_INTERLACED(mb_type
) != IS_INTERLACED(left_type
[0])){
212 if(IS_INTERLACED(mb_type
)){
213 if(!(left_type
[0] & type_mask
)){
214 h
->topleft_samples_available
&= 0xDFFF;
215 h
->left_samples_available
&= 0x5FFF;
217 if(!(left_type
[1] & type_mask
)){
218 h
->topleft_samples_available
&= 0xFF5F;
219 h
->left_samples_available
&= 0xFF5F;
222 int left_typei
= h
->slice_table
[left_xy
[0] + s
->mb_stride
] == h
->slice_num
223 ? s
->current_picture
.mb_type
[left_xy
[0] + s
->mb_stride
] : 0;
224 assert(left_xy
[0] == left_xy
[1]);
225 if(!((left_typei
& type_mask
) && (left_type
[0] & type_mask
))){
226 h
->topleft_samples_available
&= 0xDF5F;
227 h
->left_samples_available
&= 0x5F5F;
231 if(!(left_type
[0] & type_mask
)){
232 h
->topleft_samples_available
&= 0xDF5F;
233 h
->left_samples_available
&= 0x5F5F;
237 if(!(topleft_type
& type_mask
))
238 h
->topleft_samples_available
&= 0x7FFF;
240 if(!(topright_type
& type_mask
))
241 h
->topright_samples_available
&= 0xFBFF;
243 if(IS_INTRA4x4(mb_type
)){
244 if(IS_INTRA4x4(top_type
)){
245 h
->intra4x4_pred_mode_cache
[4+8*0]= h
->intra4x4_pred_mode
[top_xy
][4];
246 h
->intra4x4_pred_mode_cache
[5+8*0]= h
->intra4x4_pred_mode
[top_xy
][5];
247 h
->intra4x4_pred_mode_cache
[6+8*0]= h
->intra4x4_pred_mode
[top_xy
][6];
248 h
->intra4x4_pred_mode_cache
[7+8*0]= h
->intra4x4_pred_mode
[top_xy
][3];
251 if(!(top_type
& type_mask
))
256 h
->intra4x4_pred_mode_cache
[4+8*0]=
257 h
->intra4x4_pred_mode_cache
[5+8*0]=
258 h
->intra4x4_pred_mode_cache
[6+8*0]=
259 h
->intra4x4_pred_mode_cache
[7+8*0]= pred
;
262 if(IS_INTRA4x4(left_type
[i
])){
263 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[0+2*i
]];
264 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[1+2*i
]];
267 if(!(left_type
[i
] & type_mask
))
272 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]=
273 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= pred
;
289 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
291 h
->non_zero_count_cache
[4+8*0]= h
->non_zero_count
[top_xy
][4];
292 h
->non_zero_count_cache
[5+8*0]= h
->non_zero_count
[top_xy
][5];
293 h
->non_zero_count_cache
[6+8*0]= h
->non_zero_count
[top_xy
][6];
294 h
->non_zero_count_cache
[7+8*0]= h
->non_zero_count
[top_xy
][3];
296 h
->non_zero_count_cache
[1+8*0]= h
->non_zero_count
[top_xy
][9];
297 h
->non_zero_count_cache
[2+8*0]= h
->non_zero_count
[top_xy
][8];
299 h
->non_zero_count_cache
[1+8*3]= h
->non_zero_count
[top_xy
][12];
300 h
->non_zero_count_cache
[2+8*3]= h
->non_zero_count
[top_xy
][11];
303 h
->non_zero_count_cache
[4+8*0]=
304 h
->non_zero_count_cache
[5+8*0]=
305 h
->non_zero_count_cache
[6+8*0]=
306 h
->non_zero_count_cache
[7+8*0]=
308 h
->non_zero_count_cache
[1+8*0]=
309 h
->non_zero_count_cache
[2+8*0]=
311 h
->non_zero_count_cache
[1+8*3]=
312 h
->non_zero_count_cache
[2+8*3]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
316 for (i
=0; i
<2; i
++) {
318 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[0+2*i
]];
319 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[1+2*i
]];
320 h
->non_zero_count_cache
[0+8*1 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[4+2*i
]];
321 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[5+2*i
]];
323 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]=
324 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]=
325 h
->non_zero_count_cache
[0+8*1 + 8*i
]=
326 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
333 h
->top_cbp
= h
->cbp_table
[top_xy
];
334 } else if(IS_INTRA(mb_type
)) {
341 h
->left_cbp
= h
->cbp_table
[left_xy
[0]] & 0x1f0;
342 } else if(IS_INTRA(mb_type
)) {
348 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[0]]>>((left_block
[0]&(~1))+1))&0x1) << 1;
351 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[1]]>>((left_block
[2]&(~1))+1))&0x1) << 3;
356 if(IS_INTER(mb_type
) || IS_DIRECT(mb_type
)){
358 for(list
=0; list
<h
->list_count
; list
++){
359 if(!USES_LIST(mb_type
, list
) && !IS_DIRECT(mb_type
) && !h
->deblocking_filter
){
360 /*if(!h->mv_cache_clean[list]){
361 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
362 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
363 h->mv_cache_clean[list]= 1;
367 h
->mv_cache_clean
[list
]= 0;
369 if(USES_LIST(top_type
, list
)){
370 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
371 const int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
372 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0];
373 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 1];
374 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2];
375 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 3];
376 h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]=
377 h
->ref_cache
[list
][scan8
[0] + 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 0];
378 h
->ref_cache
[list
][scan8
[0] + 2 - 1*8]=
379 h
->ref_cache
[list
][scan8
[0] + 3 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 1];
381 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]=
382 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]=
383 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]=
384 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
385 *(uint32_t*)&h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
)&0xFF)*0x01010101;
389 int cache_idx
= scan8
[0] - 1 + i
*2*8;
390 if(USES_LIST(left_type
[i
], list
)){
391 const int b_xy
= h
->mb2b_xy
[left_xy
[i
]] + 3;
392 const int b8_xy
= h
->mb2b8_xy
[left_xy
[i
]] + 1;
393 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[0+i
*2]];
394 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[1+i
*2]];
395 h
->ref_cache
[list
][cache_idx
]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[0+i
*2]>>1)];
396 h
->ref_cache
[list
][cache_idx
+8]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[1+i
*2]>>1)];
398 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]=
399 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= 0;
400 h
->ref_cache
[list
][cache_idx
]=
401 h
->ref_cache
[list
][cache_idx
+8]= left_type
[i
] ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
405 if(for_deblock
|| ((IS_DIRECT(mb_type
) && !h
->direct_spatial_mv_pred
) && !FRAME_MBAFF
))
408 if(USES_LIST(topleft_type
, list
)){
409 const int b_xy
= h
->mb2b_xy
[topleft_xy
] + 3 + h
->b_stride
+ (topleft_partition
& 2*h
->b_stride
);
410 const int b8_xy
= h
->mb2b8_xy
[topleft_xy
] + 1 + (topleft_partition
& h
->b8_stride
);
411 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
412 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
414 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= 0;
415 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
418 if(USES_LIST(topright_type
, list
)){
419 const int b_xy
= h
->mb2b_xy
[topright_xy
] + 3*h
->b_stride
;
420 const int b8_xy
= h
->mb2b8_xy
[topright_xy
] + h
->b8_stride
;
421 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
422 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
424 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= 0;
425 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
428 if((IS_SKIP(mb_type
) || IS_DIRECT(mb_type
)) && !FRAME_MBAFF
)
431 h
->ref_cache
[list
][scan8
[5 ]+1] =
432 h
->ref_cache
[list
][scan8
[7 ]+1] =
433 h
->ref_cache
[list
][scan8
[13]+1] = //FIXME remove past 3 (init somewhere else)
434 h
->ref_cache
[list
][scan8
[4 ]] =
435 h
->ref_cache
[list
][scan8
[12]] = PART_NOT_AVAILABLE
;
436 *(uint32_t*)h
->mv_cache
[list
][scan8
[5 ]+1]=
437 *(uint32_t*)h
->mv_cache
[list
][scan8
[7 ]+1]=
438 *(uint32_t*)h
->mv_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
439 *(uint32_t*)h
->mv_cache
[list
][scan8
[4 ]]=
440 *(uint32_t*)h
->mv_cache
[list
][scan8
[12]]= 0;
443 /* XXX beurk, Load mvd */
444 if(USES_LIST(top_type
, list
)){
445 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
446 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 0];
447 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 1];
448 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 2];
449 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 3];
451 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]=
452 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]=
453 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]=
454 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
456 if(USES_LIST(left_type
[0], list
)){
457 const int b_xy
= h
->mb2b_xy
[left_xy
[0]] + 3;
458 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[0]];
459 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[1]];
461 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]=
462 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= 0;
464 if(USES_LIST(left_type
[1], list
)){
465 const int b_xy
= h
->mb2b_xy
[left_xy
[1]] + 3;
466 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[2]];
467 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[3]];
469 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]=
470 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= 0;
472 *(uint32_t*)h
->mvd_cache
[list
][scan8
[5 ]+1]=
473 *(uint32_t*)h
->mvd_cache
[list
][scan8
[7 ]+1]=
474 *(uint32_t*)h
->mvd_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
475 *(uint32_t*)h
->mvd_cache
[list
][scan8
[4 ]]=
476 *(uint32_t*)h
->mvd_cache
[list
][scan8
[12]]= 0;
478 if(h
->slice_type_nos
== FF_B_TYPE
){
479 fill_rectangle(&h
->direct_cache
[scan8
[0]], 4, 4, 8, 0, 1);
481 if(IS_DIRECT(top_type
)){
482 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0x01010101;
483 }else if(IS_8X8(top_type
)){
484 int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
485 h
->direct_cache
[scan8
[0] + 0 - 1*8]= h
->direct_table
[b8_xy
];
486 h
->direct_cache
[scan8
[0] + 2 - 1*8]= h
->direct_table
[b8_xy
+ 1];
488 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0;
491 if(IS_DIRECT(left_type
[0]))
492 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 1;
493 else if(IS_8X8(left_type
[0]))
494 h
->direct_cache
[scan8
[0] - 1 + 0*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[0]] + 1 + h
->b8_stride
*(left_block
[0]>>1)];
496 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 0;
498 if(IS_DIRECT(left_type
[1]))
499 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 1;
500 else if(IS_8X8(left_type
[1]))
501 h
->direct_cache
[scan8
[0] - 1 + 2*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[1]] + 1 + h
->b8_stride
*(left_block
[2]>>1)];
503 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 0;
509 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
510 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
511 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
512 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
513 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
514 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
515 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
516 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
517 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
518 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
520 #define MAP_F2F(idx, mb_type)\
521 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
522 h->ref_cache[list][idx] <<= 1;\
523 h->mv_cache[list][idx][1] /= 2;\
524 h->mvd_cache[list][idx][1] /= 2;\
529 #define MAP_F2F(idx, mb_type)\
530 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
531 h->ref_cache[list][idx] >>= 1;\
532 h->mv_cache[list][idx][1] <<= 1;\
533 h->mvd_cache[list][idx][1] <<= 1;\
543 h
->neighbor_transform_size
= !!IS_8x8DCT(top_type
) + !!IS_8x8DCT(left_type
[0]);
546 static inline void write_back_intra_pred_mode(H264Context
*h
){
547 const int mb_xy
= h
->mb_xy
;
549 h
->intra4x4_pred_mode
[mb_xy
][0]= h
->intra4x4_pred_mode_cache
[7+8*1];
550 h
->intra4x4_pred_mode
[mb_xy
][1]= h
->intra4x4_pred_mode_cache
[7+8*2];
551 h
->intra4x4_pred_mode
[mb_xy
][2]= h
->intra4x4_pred_mode_cache
[7+8*3];
552 h
->intra4x4_pred_mode
[mb_xy
][3]= h
->intra4x4_pred_mode_cache
[7+8*4];
553 h
->intra4x4_pred_mode
[mb_xy
][4]= h
->intra4x4_pred_mode_cache
[4+8*4];
554 h
->intra4x4_pred_mode
[mb_xy
][5]= h
->intra4x4_pred_mode_cache
[5+8*4];
555 h
->intra4x4_pred_mode
[mb_xy
][6]= h
->intra4x4_pred_mode_cache
[6+8*4];
559 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
561 static inline int check_intra4x4_pred_mode(H264Context
*h
){
562 MpegEncContext
* const s
= &h
->s
;
563 static const int8_t top
[12]= {-1, 0,LEFT_DC_PRED
,-1,-1,-1,-1,-1, 0};
564 static const int8_t left
[12]= { 0,-1, TOP_DC_PRED
, 0,-1,-1,-1, 0,-1,DC_128_PRED
};
567 if(!(h
->top_samples_available
&0x8000)){
569 int status
= top
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + i
] ];
571 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
574 h
->intra4x4_pred_mode_cache
[scan8
[0] + i
]= status
;
579 if((h
->left_samples_available
&0x8888)!=0x8888){
580 static const int mask
[4]={0x8000,0x2000,0x80,0x20};
582 if(!(h
->left_samples_available
&mask
[i
])){
583 int status
= left
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
] ];
585 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
588 h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
]= status
;
595 } //FIXME cleanup like next
598 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
600 static inline int check_intra_pred_mode(H264Context
*h
, int mode
){
601 MpegEncContext
* const s
= &h
->s
;
602 static const int8_t top
[7]= {LEFT_DC_PRED8x8
, 1,-1,-1};
603 static const int8_t left
[7]= { TOP_DC_PRED8x8
,-1, 2,-1,DC_128_PRED8x8
};
606 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "out of range intra chroma pred mode at %d %d\n", s
->mb_x
, s
->mb_y
);
610 if(!(h
->top_samples_available
&0x8000)){
613 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
618 if((h
->left_samples_available
&0x8080) != 0x8080){
620 if(h
->left_samples_available
&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
621 mode
= ALZHEIMER_DC_L0T_PRED8x8
+ (!(h
->left_samples_available
&0x8000)) + 2*(mode
== DC_128_PRED8x8
);
624 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
633 * gets the predicted intra4x4 prediction mode.
635 static inline int pred_intra_mode(H264Context
*h
, int n
){
636 const int index8
= scan8
[n
];
637 const int left
= h
->intra4x4_pred_mode_cache
[index8
- 1];
638 const int top
= h
->intra4x4_pred_mode_cache
[index8
- 8];
639 const int min
= FFMIN(left
, top
);
641 tprintf(h
->s
.avctx
, "mode:%d %d min:%d\n", left
,top
, min
);
643 if(min
<0) return DC_PRED
;
647 static inline void write_back_non_zero_count(H264Context
*h
){
648 const int mb_xy
= h
->mb_xy
;
650 h
->non_zero_count
[mb_xy
][0]= h
->non_zero_count_cache
[7+8*1];
651 h
->non_zero_count
[mb_xy
][1]= h
->non_zero_count_cache
[7+8*2];
652 h
->non_zero_count
[mb_xy
][2]= h
->non_zero_count_cache
[7+8*3];
653 h
->non_zero_count
[mb_xy
][3]= h
->non_zero_count_cache
[7+8*4];
654 h
->non_zero_count
[mb_xy
][4]= h
->non_zero_count_cache
[4+8*4];
655 h
->non_zero_count
[mb_xy
][5]= h
->non_zero_count_cache
[5+8*4];
656 h
->non_zero_count
[mb_xy
][6]= h
->non_zero_count_cache
[6+8*4];
658 h
->non_zero_count
[mb_xy
][9]= h
->non_zero_count_cache
[1+8*2];
659 h
->non_zero_count
[mb_xy
][8]= h
->non_zero_count_cache
[2+8*2];
660 h
->non_zero_count
[mb_xy
][7]= h
->non_zero_count_cache
[2+8*1];
662 h
->non_zero_count
[mb_xy
][12]=h
->non_zero_count_cache
[1+8*5];
663 h
->non_zero_count
[mb_xy
][11]=h
->non_zero_count_cache
[2+8*5];
664 h
->non_zero_count
[mb_xy
][10]=h
->non_zero_count_cache
[2+8*4];
668 * gets the predicted number of non-zero coefficients.
669 * @param n block index
671 static inline int pred_non_zero_count(H264Context
*h
, int n
){
672 const int index8
= scan8
[n
];
673 const int left
= h
->non_zero_count_cache
[index8
- 1];
674 const int top
= h
->non_zero_count_cache
[index8
- 8];
677 if(i
<64) i
= (i
+1)>>1;
679 tprintf(h
->s
.avctx
, "pred_nnz L%X T%X n%d s%d P%X\n", left
, top
, n
, scan8
[n
], i
&31);
684 static inline int fetch_diagonal_mv(H264Context
*h
, const int16_t **C
, int i
, int list
, int part_width
){
685 const int topright_ref
= h
->ref_cache
[list
][ i
- 8 + part_width
];
686 MpegEncContext
*s
= &h
->s
;
688 /* there is no consistent mapping of mvs to neighboring locations that will
689 * make mbaff happy, so we can't move all this logic to fill_caches */
691 const uint32_t *mb_types
= s
->current_picture_ptr
->mb_type
;
693 *(uint32_t*)h
->mv_cache
[list
][scan8
[0]-2] = 0;
694 *C
= h
->mv_cache
[list
][scan8
[0]-2];
697 && (s
->mb_y
&1) && i
< scan8
[0]+8 && topright_ref
!= PART_NOT_AVAILABLE
){
698 int topright_xy
= s
->mb_x
+ (s
->mb_y
-1)*s
->mb_stride
+ (i
== scan8
[0]+3);
699 if(IS_INTERLACED(mb_types
[topright_xy
])){
700 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
701 const int x4 = X4, y4 = Y4;\
702 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
703 if(!USES_LIST(mb_type,list))\
704 return LIST_NOT_USED;\
705 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
706 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
707 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
708 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
710 SET_DIAG_MV(*2, >>1, s
->mb_x
*4+(i
&7)-4+part_width
, s
->mb_y
*4-1);
713 if(topright_ref
== PART_NOT_AVAILABLE
714 && ((s
->mb_y
&1) || i
>= scan8
[0]+8) && (i
&7)==4
715 && h
->ref_cache
[list
][scan8
[0]-1] != PART_NOT_AVAILABLE
){
717 && IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])){
718 SET_DIAG_MV(*2, >>1, s
->mb_x
*4-1, (s
->mb_y
|1)*4+(s
->mb_y
&1)*2+(i
>>4)-1);
721 && !IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])
723 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
724 SET_DIAG_MV(/2, <<1, s
->mb_x
*4-1, (s
->mb_y
&~1)*4 - 1 + ((i
-scan8
[0])>>3)*2);
730 if(topright_ref
!= PART_NOT_AVAILABLE
){
731 *C
= h
->mv_cache
[list
][ i
- 8 + part_width
];
734 tprintf(s
->avctx
, "topright MV not available\n");
736 *C
= h
->mv_cache
[list
][ i
- 8 - 1 ];
737 return h
->ref_cache
[list
][ i
- 8 - 1 ];
742 * gets the predicted MV.
743 * @param n the block index
744 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
745 * @param mx the x component of the predicted motion vector
746 * @param my the y component of the predicted motion vector
748 static inline void pred_motion(H264Context
* const h
, int n
, int part_width
, int list
, int ref
, int * const mx
, int * const my
){
749 const int index8
= scan8
[n
];
750 const int top_ref
= h
->ref_cache
[list
][ index8
- 8 ];
751 const int left_ref
= h
->ref_cache
[list
][ index8
- 1 ];
752 const int16_t * const A
= h
->mv_cache
[list
][ index8
- 1 ];
753 const int16_t * const B
= h
->mv_cache
[list
][ index8
- 8 ];
755 int diagonal_ref
, match_count
;
757 assert(part_width
==1 || part_width
==2 || part_width
==4);
767 diagonal_ref
= fetch_diagonal_mv(h
, &C
, index8
, list
, part_width
);
768 match_count
= (diagonal_ref
==ref
) + (top_ref
==ref
) + (left_ref
==ref
);
769 tprintf(h
->s
.avctx
, "pred_motion match_count=%d\n", match_count
);
770 if(match_count
> 1){ //most common
771 *mx
= mid_pred(A
[0], B
[0], C
[0]);
772 *my
= mid_pred(A
[1], B
[1], C
[1]);
773 }else if(match_count
==1){
777 }else if(top_ref
==ref
){
785 if(top_ref
== PART_NOT_AVAILABLE
&& diagonal_ref
== PART_NOT_AVAILABLE
&& left_ref
!= PART_NOT_AVAILABLE
){
789 *mx
= mid_pred(A
[0], B
[0], C
[0]);
790 *my
= mid_pred(A
[1], B
[1], C
[1]);
794 tprintf(h
->s
.avctx
, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], diagonal_ref
, C
[0], C
[1], left_ref
, A
[0], A
[1], ref
, *mx
, *my
, h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
798 * gets the directionally predicted 16x8 MV.
799 * @param n the block index
800 * @param mx the x component of the predicted motion vector
801 * @param my the y component of the predicted motion vector
803 static inline void pred_16x8_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
805 const int top_ref
= h
->ref_cache
[list
][ scan8
[0] - 8 ];
806 const int16_t * const B
= h
->mv_cache
[list
][ scan8
[0] - 8 ];
808 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
816 const int left_ref
= h
->ref_cache
[list
][ scan8
[8] - 1 ];
817 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[8] - 1 ];
819 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
829 pred_motion(h
, n
, 4, list
, ref
, mx
, my
);
833 * gets the directionally predicted 8x16 MV.
834 * @param n the block index
835 * @param mx the x component of the predicted motion vector
836 * @param my the y component of the predicted motion vector
838 static inline void pred_8x16_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
840 const int left_ref
= h
->ref_cache
[list
][ scan8
[0] - 1 ];
841 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[0] - 1 ];
843 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
854 diagonal_ref
= fetch_diagonal_mv(h
, &C
, scan8
[4], list
, 2);
856 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref
, C
[0], C
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
858 if(diagonal_ref
== ref
){
866 pred_motion(h
, n
, 2, list
, ref
, mx
, my
);
869 static inline void pred_pskip_motion(H264Context
* const h
, int * const mx
, int * const my
){
870 const int top_ref
= h
->ref_cache
[0][ scan8
[0] - 8 ];
871 const int left_ref
= h
->ref_cache
[0][ scan8
[0] - 1 ];
873 tprintf(h
->s
.avctx
, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref
, left_ref
, h
->s
.mb_x
, h
->s
.mb_y
);
875 if(top_ref
== PART_NOT_AVAILABLE
|| left_ref
== PART_NOT_AVAILABLE
876 || !( top_ref
| *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 8 ])
877 || !(left_ref
| *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 1 ])){
883 pred_motion(h
, 0, 4, 0, 0, mx
, my
);
888 static int get_scale_factor(H264Context
* const h
, int poc
, int poc1
, int i
){
889 int poc0
= h
->ref_list
[0][i
].poc
;
890 int td
= av_clip(poc1
- poc0
, -128, 127);
891 if(td
== 0 || h
->ref_list
[0][i
].long_ref
){
894 int tb
= av_clip(poc
- poc0
, -128, 127);
895 int tx
= (16384 + (FFABS(td
) >> 1)) / td
;
896 return av_clip((tb
*tx
+ 32) >> 6, -1024, 1023);
900 static inline void direct_dist_scale_factor(H264Context
* const h
){
901 MpegEncContext
* const s
= &h
->s
;
902 const int poc
= h
->s
.current_picture_ptr
->field_poc
[ s
->picture_structure
== PICT_BOTTOM_FIELD
];
903 const int poc1
= h
->ref_list
[1][0].poc
;
905 for(field
=0; field
<2; field
++){
906 const int poc
= h
->s
.current_picture_ptr
->field_poc
[field
];
907 const int poc1
= h
->ref_list
[1][0].field_poc
[field
];
908 for(i
=0; i
< 2*h
->ref_count
[0]; i
++)
909 h
->dist_scale_factor_field
[field
][i
^field
] = get_scale_factor(h
, poc
, poc1
, i
+16);
912 for(i
=0; i
<h
->ref_count
[0]; i
++){
913 h
->dist_scale_factor
[i
] = get_scale_factor(h
, poc
, poc1
, i
);
917 static void fill_colmap(H264Context
*h
, int map
[2][16+32], int list
, int field
, int colfield
, int mbafi
){
918 MpegEncContext
* const s
= &h
->s
;
919 Picture
* const ref1
= &h
->ref_list
[1][0];
920 int j
, old_ref
, rfield
;
921 int start
= mbafi ?
16 : 0;
922 int end
= mbafi ?
16+2*h
->ref_count
[list
] : h
->ref_count
[list
];
923 int interl
= mbafi
|| s
->picture_structure
!= PICT_FRAME
;
925 /* bogus; fills in for missing frames */
926 memset(map
[list
], 0, sizeof(map
[list
]));
928 for(rfield
=0; rfield
<2; rfield
++){
929 for(old_ref
=0; old_ref
<ref1
->ref_count
[colfield
][list
]; old_ref
++){
930 int poc
= ref1
->ref_poc
[colfield
][list
][old_ref
];
934 else if( interl
&& (poc
&3) == 3) //FIXME store all MBAFF references so this isnt needed
935 poc
= (poc
&~3) + rfield
+ 1;
937 for(j
=start
; j
<end
; j
++){
938 if(4*h
->ref_list
[list
][j
].frame_num
+ (h
->ref_list
[list
][j
].reference
&3) == poc
){
939 int cur_ref
= mbafi ?
(j
-16)^field
: j
;
940 map
[list
][2*old_ref
+ (rfield
^field
) + 16] = cur_ref
;
942 map
[list
][old_ref
] = cur_ref
;
950 static inline void direct_ref_list_init(H264Context
* const h
){
951 MpegEncContext
* const s
= &h
->s
;
952 Picture
* const ref1
= &h
->ref_list
[1][0];
953 Picture
* const cur
= s
->current_picture_ptr
;
955 int sidx
= (s
->picture_structure
&1)^1;
956 int ref1sidx
= (ref1
->reference
&1)^1;
958 for(list
=0; list
<2; list
++){
959 cur
->ref_count
[sidx
][list
] = h
->ref_count
[list
];
960 for(j
=0; j
<h
->ref_count
[list
]; j
++)
961 cur
->ref_poc
[sidx
][list
][j
] = 4*h
->ref_list
[list
][j
].frame_num
+ (h
->ref_list
[list
][j
].reference
&3);
964 if(s
->picture_structure
== PICT_FRAME
){
965 memcpy(cur
->ref_count
[1], cur
->ref_count
[0], sizeof(cur
->ref_count
[0]));
966 memcpy(cur
->ref_poc
[1], cur
->ref_poc
[0], sizeof(cur
->ref_poc
[0]));
969 cur
->mbaff
= FRAME_MBAFF
;
971 if(cur
->pict_type
!= FF_B_TYPE
|| h
->direct_spatial_mv_pred
)
974 for(list
=0; list
<2; list
++){
975 fill_colmap(h
, h
->map_col_to_list0
, list
, sidx
, ref1sidx
, 0);
976 for(field
=0; field
<2; field
++)
977 fill_colmap(h
, h
->map_col_to_list0_field
[field
], list
, field
, field
, 1);
981 static inline void pred_direct_motion(H264Context
* const h
, int *mb_type
){
982 MpegEncContext
* const s
= &h
->s
;
983 int b8_stride
= h
->b8_stride
;
984 int b4_stride
= h
->b_stride
;
985 int mb_xy
= h
->mb_xy
;
987 const int16_t (*l1mv0
)[2], (*l1mv1
)[2];
988 const int8_t *l1ref0
, *l1ref1
;
989 const int is_b8x8
= IS_8X8(*mb_type
);
990 unsigned int sub_mb_type
;
993 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
995 if(IS_INTERLACED(h
->ref_list
[1][0].mb_type
[mb_xy
])){ // AFL/AFR/FR/FL -> AFL/FL
996 if(!IS_INTERLACED(*mb_type
)){ // AFR/FR -> AFL/FL
997 int cur_poc
= s
->current_picture_ptr
->poc
;
998 int *col_poc
= h
->ref_list
[1]->field_poc
;
999 int col_parity
= FFABS(col_poc
[0] - cur_poc
) >= FFABS(col_poc
[1] - cur_poc
);
1000 mb_xy
= s
->mb_x
+ ((s
->mb_y
&~1) + col_parity
)*s
->mb_stride
;
1002 }else if(!(s
->picture_structure
& h
->ref_list
[1][0].reference
) && !h
->ref_list
[1][0].mbaff
){// FL -> FL & differ parity
1003 int fieldoff
= 2*(h
->ref_list
[1][0].reference
)-3;
1004 mb_xy
+= s
->mb_stride
*fieldoff
;
1007 }else{ // AFL/AFR/FR/FL -> AFR/FR
1008 if(IS_INTERLACED(*mb_type
)){ // AFL /FL -> AFR/FR
1009 mb_xy
= s
->mb_x
+ (s
->mb_y
&~1)*s
->mb_stride
;
1010 mb_type_col
[0] = h
->ref_list
[1][0].mb_type
[mb_xy
];
1011 mb_type_col
[1] = h
->ref_list
[1][0].mb_type
[mb_xy
+ s
->mb_stride
];
1014 //FIXME IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag
1015 if( (mb_type_col
[0] & MB_TYPE_16x16_OR_INTRA
)
1016 && (mb_type_col
[1] & MB_TYPE_16x16_OR_INTRA
)
1018 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1019 *mb_type
|= MB_TYPE_16x8
|MB_TYPE_L0L1
|MB_TYPE_DIRECT2
; /* B_16x8 */
1021 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1022 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1024 }else{ // AFR/FR -> AFR/FR
1027 mb_type_col
[1] = h
->ref_list
[1][0].mb_type
[mb_xy
];
1028 if(IS_8X8(mb_type_col
[0]) && !h
->sps
.direct_8x8_inference_flag
){
1029 /* FIXME save sub mb types from previous frames (or derive from MVs)
1030 * so we know exactly what block size to use */
1031 sub_mb_type
= MB_TYPE_8x8
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_4x4 */
1032 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1033 }else if(!is_b8x8
&& (mb_type_col
[0] & MB_TYPE_16x16_OR_INTRA
)){
1034 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1035 *mb_type
|= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_16x16 */
1037 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1038 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1043 l1mv0
= &h
->ref_list
[1][0].motion_val
[0][h
->mb2b_xy
[mb_xy
]];
1044 l1mv1
= &h
->ref_list
[1][0].motion_val
[1][h
->mb2b_xy
[mb_xy
]];
1045 l1ref0
= &h
->ref_list
[1][0].ref_index
[0][h
->mb2b8_xy
[mb_xy
]];
1046 l1ref1
= &h
->ref_list
[1][0].ref_index
[1][h
->mb2b8_xy
[mb_xy
]];
1049 l1ref0
+= h
->b8_stride
;
1050 l1ref1
+= h
->b8_stride
;
1051 l1mv0
+= 2*b4_stride
;
1052 l1mv1
+= 2*b4_stride
;
1056 if(h
->direct_spatial_mv_pred
){
1061 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1063 /* ref = min(neighbors) */
1064 for(list
=0; list
<2; list
++){
1065 int refa
= h
->ref_cache
[list
][scan8
[0] - 1];
1066 int refb
= h
->ref_cache
[list
][scan8
[0] - 8];
1067 int refc
= h
->ref_cache
[list
][scan8
[0] - 8 + 4];
1068 if(refc
== PART_NOT_AVAILABLE
)
1069 refc
= h
->ref_cache
[list
][scan8
[0] - 8 - 1];
1070 ref
[list
] = FFMIN3((unsigned)refa
, (unsigned)refb
, (unsigned)refc
);
1075 if(ref
[0] < 0 && ref
[1] < 0){
1076 ref
[0] = ref
[1] = 0;
1077 mv
[0][0] = mv
[0][1] =
1078 mv
[1][0] = mv
[1][1] = 0;
1080 for(list
=0; list
<2; list
++){
1082 pred_motion(h
, 0, 4, list
, ref
[list
], &mv
[list
][0], &mv
[list
][1]);
1084 mv
[list
][0] = mv
[list
][1] = 0;
1090 *mb_type
&= ~MB_TYPE_L1
;
1091 sub_mb_type
&= ~MB_TYPE_L1
;
1092 }else if(ref
[0] < 0){
1094 *mb_type
&= ~MB_TYPE_L0
;
1095 sub_mb_type
&= ~MB_TYPE_L0
;
1098 if(IS_INTERLACED(*mb_type
) != IS_INTERLACED(mb_type_col
[0])){
1099 for(i8
=0; i8
<4; i8
++){
1102 int xy8
= x8
+y8
*b8_stride
;
1103 int xy4
= 3*x8
+y8
*b4_stride
;
1106 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1108 h
->sub_mb_type
[i8
] = sub_mb_type
;
1110 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[0], 1);
1111 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[1], 1);
1112 if(!IS_INTRA(mb_type_col
[y8
])
1113 && ( (l1ref0
[xy8
] == 0 && FFABS(l1mv0
[xy4
][0]) <= 1 && FFABS(l1mv0
[xy4
][1]) <= 1)
1114 || (l1ref0
[xy8
] < 0 && l1ref1
[xy8
] == 0 && FFABS(l1mv1
[xy4
][0]) <= 1 && FFABS(l1mv1
[xy4
][1]) <= 1))){
1116 a
= pack16to32(mv
[0][0],mv
[0][1]);
1118 b
= pack16to32(mv
[1][0],mv
[1][1]);
1120 a
= pack16to32(mv
[0][0],mv
[0][1]);
1121 b
= pack16to32(mv
[1][0],mv
[1][1]);
1123 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, a
, 4);
1124 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, b
, 4);
1126 }else if(IS_16X16(*mb_type
)){
1129 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, (uint8_t)ref
[0], 1);
1130 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, (uint8_t)ref
[1], 1);
1131 if(!IS_INTRA(mb_type_col
[0])
1132 && ( (l1ref0
[0] == 0 && FFABS(l1mv0
[0][0]) <= 1 && FFABS(l1mv0
[0][1]) <= 1)
1133 || (l1ref0
[0] < 0 && l1ref1
[0] == 0 && FFABS(l1mv1
[0][0]) <= 1 && FFABS(l1mv1
[0][1]) <= 1
1134 && (h
->x264_build
>33 || !h
->x264_build
)))){
1136 a
= pack16to32(mv
[0][0],mv
[0][1]);
1138 b
= pack16to32(mv
[1][0],mv
[1][1]);
1140 a
= pack16to32(mv
[0][0],mv
[0][1]);
1141 b
= pack16to32(mv
[1][0],mv
[1][1]);
1143 fill_rectangle(&h
->mv_cache
[0][scan8
[0]], 4, 4, 8, a
, 4);
1144 fill_rectangle(&h
->mv_cache
[1][scan8
[0]], 4, 4, 8, b
, 4);
1146 for(i8
=0; i8
<4; i8
++){
1147 const int x8
= i8
&1;
1148 const int y8
= i8
>>1;
1150 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1152 h
->sub_mb_type
[i8
] = sub_mb_type
;
1154 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[0][0],mv
[0][1]), 4);
1155 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[1][0],mv
[1][1]), 4);
1156 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[0], 1);
1157 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[1], 1);
1160 if(!IS_INTRA(mb_type_col
[0]) && ( l1ref0
[x8
+ y8
*b8_stride
] == 0
1161 || (l1ref0
[x8
+ y8
*b8_stride
] < 0 && l1ref1
[x8
+ y8
*b8_stride
] == 0
1162 && (h
->x264_build
>33 || !h
->x264_build
)))){
1163 const int16_t (*l1mv
)[2]= l1ref0
[x8
+ y8
*b8_stride
] == 0 ? l1mv0
: l1mv1
;
1164 if(IS_SUB_8X8(sub_mb_type
)){
1165 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*b4_stride
];
1166 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1168 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1170 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1173 for(i4
=0; i4
<4; i4
++){
1174 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*b4_stride
];
1175 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1177 *(uint32_t*)h
->mv_cache
[0][scan8
[i8
*4+i4
]] = 0;
1179 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] = 0;
1185 }else{ /* direct temporal mv pred */
1186 const int *map_col_to_list0
[2] = {h
->map_col_to_list0
[0], h
->map_col_to_list0
[1]};
1187 const int *dist_scale_factor
= h
->dist_scale_factor
;
1190 if(FRAME_MBAFF
&& IS_INTERLACED(*mb_type
)){
1191 map_col_to_list0
[0] = h
->map_col_to_list0_field
[s
->mb_y
&1][0];
1192 map_col_to_list0
[1] = h
->map_col_to_list0_field
[s
->mb_y
&1][1];
1193 dist_scale_factor
=h
->dist_scale_factor_field
[s
->mb_y
&1];
1195 if(h
->ref_list
[1][0].mbaff
&& IS_INTERLACED(mb_type_col
[0]))
1198 if(IS_INTERLACED(*mb_type
) != IS_INTERLACED(mb_type_col
[0])){
1199 /* FIXME assumes direct_8x8_inference == 1 */
1200 int y_shift
= 2*!IS_INTERLACED(*mb_type
);
1202 for(i8
=0; i8
<4; i8
++){
1203 const int x8
= i8
&1;
1204 const int y8
= i8
>>1;
1206 const int16_t (*l1mv
)[2]= l1mv0
;
1208 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1210 h
->sub_mb_type
[i8
] = sub_mb_type
;
1212 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1213 if(IS_INTRA(mb_type_col
[y8
])){
1214 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1215 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1216 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1220 ref0
= l1ref0
[x8
+ y8
*b8_stride
];
1222 ref0
= map_col_to_list0
[0][ref0
+ ref_offset
];
1224 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ y8
*b8_stride
] + ref_offset
];
1227 scale
= dist_scale_factor
[ref0
];
1228 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1231 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*b4_stride
];
1232 int my_col
= (mv_col
[1]<<y_shift
)/2;
1233 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1234 int my
= (scale
* my_col
+ 128) >> 8;
1235 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1236 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-my_col
), 4);
1242 /* one-to-one mv scaling */
1244 if(IS_16X16(*mb_type
)){
1247 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, 0, 1);
1248 if(IS_INTRA(mb_type_col
[0])){
1251 const int ref0
= l1ref0
[0] >= 0 ? map_col_to_list0
[0][l1ref0
[0] + ref_offset
]
1252 : map_col_to_list0
[1][l1ref1
[0] + ref_offset
];
1253 const int scale
= dist_scale_factor
[ref0
];
1254 const int16_t *mv_col
= l1ref0
[0] >= 0 ? l1mv0
[0] : l1mv1
[0];
1256 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1257 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1259 mv0
= pack16to32(mv_l0
[0],mv_l0
[1]);
1260 mv1
= pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1262 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, ref
, 1);
1263 fill_rectangle(&h
-> mv_cache
[0][scan8
[0]], 4, 4, 8, mv0
, 4);
1264 fill_rectangle(&h
-> mv_cache
[1][scan8
[0]], 4, 4, 8, mv1
, 4);
1266 for(i8
=0; i8
<4; i8
++){
1267 const int x8
= i8
&1;
1268 const int y8
= i8
>>1;
1270 const int16_t (*l1mv
)[2]= l1mv0
;
1272 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1274 h
->sub_mb_type
[i8
] = sub_mb_type
;
1275 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1276 if(IS_INTRA(mb_type_col
[0])){
1277 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1278 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1279 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1283 ref0
= l1ref0
[x8
+ y8
*b8_stride
] + ref_offset
;
1285 ref0
= map_col_to_list0
[0][ref0
];
1287 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ y8
*b8_stride
] + ref_offset
];
1290 scale
= dist_scale_factor
[ref0
];
1292 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1293 if(IS_SUB_8X8(sub_mb_type
)){
1294 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*b4_stride
];
1295 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1296 int my
= (scale
* mv_col
[1] + 128) >> 8;
1297 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1298 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-mv_col
[1]), 4);
1300 for(i4
=0; i4
<4; i4
++){
1301 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*b4_stride
];
1302 int16_t *mv_l0
= h
->mv_cache
[0][scan8
[i8
*4+i4
]];
1303 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1304 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1305 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] =
1306 pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1313 static inline void write_back_motion(H264Context
*h
, int mb_type
){
1314 MpegEncContext
* const s
= &h
->s
;
1315 const int b_xy
= 4*s
->mb_x
+ 4*s
->mb_y
*h
->b_stride
;
1316 const int b8_xy
= 2*s
->mb_x
+ 2*s
->mb_y
*h
->b8_stride
;
1319 if(!USES_LIST(mb_type
, 0))
1320 fill_rectangle(&s
->current_picture
.ref_index
[0][b8_xy
], 2, 2, h
->b8_stride
, (uint8_t)LIST_NOT_USED
, 1);
1322 for(list
=0; list
<h
->list_count
; list
++){
1324 if(!USES_LIST(mb_type
, list
))
1328 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+0 + 8*y
];
1329 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+2 + 8*y
];
1331 if( h
->pps
.cabac
) {
1332 if(IS_SKIP(mb_type
))
1333 fill_rectangle(h
->mvd_table
[list
][b_xy
], 4, 4, h
->b_stride
, 0, 4);
1336 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+0 + 8*y
];
1337 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+2 + 8*y
];
1342 int8_t *ref_index
= &s
->current_picture
.ref_index
[list
][b8_xy
];
1343 ref_index
[0+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[0]];
1344 ref_index
[1+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[4]];
1345 ref_index
[0+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[8]];
1346 ref_index
[1+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[12]];
1350 if(h
->slice_type_nos
== FF_B_TYPE
&& h
->pps
.cabac
){
1351 if(IS_8X8(mb_type
)){
1352 uint8_t *direct_table
= &h
->direct_table
[b8_xy
];
1353 direct_table
[1+0*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[1]) ?
1 : 0;
1354 direct_table
[0+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[2]) ?
1 : 0;
1355 direct_table
[1+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[3]) ?
1 : 0;
1361 * Decodes a network abstraction layer unit.
1362 * @param consumed is the number of bytes used as input
1363 * @param length is the length of the array
1364 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1365 * @returns decoded bytes, might be src+1 if no escapes
1367 static const uint8_t *decode_nal(H264Context
*h
, const uint8_t *src
, int *dst_length
, int *consumed
, int length
){
1372 // src[0]&0x80; //forbidden bit
1373 h
->nal_ref_idc
= src
[0]>>5;
1374 h
->nal_unit_type
= src
[0]&0x1F;
1378 for(i
=0; i
<length
; i
++)
1379 printf("%2X ", src
[i
]);
1382 #ifdef HAVE_FAST_UNALIGNED
1383 # ifdef HAVE_FAST_64BIT
1385 for(i
=0; i
+1<length
; i
+=9){
1386 if(!((~*(uint64_t*)(src
+i
) & (*(uint64_t*)(src
+i
) - 0x0100010001000101ULL
)) & 0x8000800080008080ULL
))
1389 for(i
=0; i
+1<length
; i
+=5){
1390 if(!((~*(uint32_t*)(src
+i
) & (*(uint32_t*)(src
+i
) - 0x01000101U
)) & 0x80008080U
))
1393 if(i
>0 && !src
[i
]) i
--;
1397 for(i
=0; i
+1<length
; i
+=2){
1398 if(src
[i
]) continue;
1399 if(i
>0 && src
[i
-1]==0) i
--;
1401 if(i
+2<length
&& src
[i
+1]==0 && src
[i
+2]<=3){
1403 /* startcode, so we must be past the end */
1411 if(i
>=length
-1){ //no escaped 0
1412 *dst_length
= length
;
1413 *consumed
= length
+1; //+1 for the header
1417 bufidx
= h
->nal_unit_type
== NAL_DPC ?
1 : 0; // use second escape buffer for inter data
1418 h
->rbsp_buffer
[bufidx
]= av_fast_realloc(h
->rbsp_buffer
[bufidx
], &h
->rbsp_buffer_size
[bufidx
], length
+FF_INPUT_BUFFER_PADDING_SIZE
);
1419 dst
= h
->rbsp_buffer
[bufidx
];
1425 //printf("decoding esc\n");
1426 memcpy(dst
, src
, i
);
1429 //remove escapes (very rare 1:2^22)
1431 dst
[di
++]= src
[si
++];
1432 dst
[di
++]= src
[si
++];
1433 }else if(src
[si
]==0 && src
[si
+1]==0){
1434 if(src
[si
+2]==3){ //escape
1439 }else //next start code
1443 dst
[di
++]= src
[si
++];
1446 dst
[di
++]= src
[si
++];
1449 memset(dst
+di
, 0, FF_INPUT_BUFFER_PADDING_SIZE
);
1452 *consumed
= si
+ 1;//+1 for the header
1453 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1458 * identifies the exact end of the bitstream
1459 * @return the length of the trailing, or 0 if damaged
1461 static int decode_rbsp_trailing(H264Context
*h
, const uint8_t *src
){
1465 tprintf(h
->s
.avctx
, "rbsp trailing %X\n", v
);
1475 * IDCT transforms the 16 dc values and dequantizes them.
1476 * @param qp quantization parameter
1478 static void h264_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1481 int temp
[16]; //FIXME check if this is a good idea
1482 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1483 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1485 //memset(block, 64, 2*256);
1488 const int offset
= y_offset
[i
];
1489 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1490 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1491 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1492 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1501 const int offset
= x_offset
[i
];
1502 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1503 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1504 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1505 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1507 block
[stride
*0 +offset
]= ((((z0
+ z3
)*qmul
+ 128 ) >> 8)); //FIXME think about merging this into decode_residual
1508 block
[stride
*2 +offset
]= ((((z1
+ z2
)*qmul
+ 128 ) >> 8));
1509 block
[stride
*8 +offset
]= ((((z1
- z2
)*qmul
+ 128 ) >> 8));
1510 block
[stride
*10+offset
]= ((((z0
- z3
)*qmul
+ 128 ) >> 8));
1516 * DCT transforms the 16 dc values.
1517 * @param qp quantization parameter ??? FIXME
1519 static void h264_luma_dc_dct_c(DCTELEM
*block
/*, int qp*/){
1520 // const int qmul= dequant_coeff[qp][0];
1522 int temp
[16]; //FIXME check if this is a good idea
1523 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1524 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1527 const int offset
= y_offset
[i
];
1528 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1529 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1530 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1531 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1540 const int offset
= x_offset
[i
];
1541 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1542 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1543 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1544 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1546 block
[stride
*0 +offset
]= (z0
+ z3
)>>1;
1547 block
[stride
*2 +offset
]= (z1
+ z2
)>>1;
1548 block
[stride
*8 +offset
]= (z1
- z2
)>>1;
1549 block
[stride
*10+offset
]= (z0
- z3
)>>1;
1557 static void chroma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1558 const int stride
= 16*2;
1559 const int xStride
= 16;
1562 a
= block
[stride
*0 + xStride
*0];
1563 b
= block
[stride
*0 + xStride
*1];
1564 c
= block
[stride
*1 + xStride
*0];
1565 d
= block
[stride
*1 + xStride
*1];
1572 block
[stride
*0 + xStride
*0]= ((a
+c
)*qmul
) >> 7;
1573 block
[stride
*0 + xStride
*1]= ((e
+b
)*qmul
) >> 7;
1574 block
[stride
*1 + xStride
*0]= ((a
-c
)*qmul
) >> 7;
1575 block
[stride
*1 + xStride
*1]= ((e
-b
)*qmul
) >> 7;
1579 static void chroma_dc_dct_c(DCTELEM
*block
){
1580 const int stride
= 16*2;
1581 const int xStride
= 16;
1584 a
= block
[stride
*0 + xStride
*0];
1585 b
= block
[stride
*0 + xStride
*1];
1586 c
= block
[stride
*1 + xStride
*0];
1587 d
= block
[stride
*1 + xStride
*1];
1594 block
[stride
*0 + xStride
*0]= (a
+c
);
1595 block
[stride
*0 + xStride
*1]= (e
+b
);
1596 block
[stride
*1 + xStride
*0]= (a
-c
);
1597 block
[stride
*1 + xStride
*1]= (e
-b
);
1602 * gets the chroma qp.
1604 static inline int get_chroma_qp(H264Context
*h
, int t
, int qscale
){
1605 return h
->pps
.chroma_qp_table
[t
][qscale
];
1608 static inline void mc_dir_part(H264Context
*h
, Picture
*pic
, int n
, int square
, int chroma_height
, int delta
, int list
,
1609 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1610 int src_x_offset
, int src_y_offset
,
1611 qpel_mc_func
*qpix_op
, h264_chroma_mc_func chroma_op
){
1612 MpegEncContext
* const s
= &h
->s
;
1613 const int mx
= h
->mv_cache
[list
][ scan8
[n
] ][0] + src_x_offset
*8;
1614 int my
= h
->mv_cache
[list
][ scan8
[n
] ][1] + src_y_offset
*8;
1615 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
1616 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->mb_linesize
;
1617 uint8_t * src_cb
, * src_cr
;
1618 int extra_width
= h
->emu_edge_width
;
1619 int extra_height
= h
->emu_edge_height
;
1621 const int full_mx
= mx
>>2;
1622 const int full_my
= my
>>2;
1623 const int pic_width
= 16*s
->mb_width
;
1624 const int pic_height
= 16*s
->mb_height
>> MB_FIELD
;
1626 if(mx
&7) extra_width
-= 3;
1627 if(my
&7) extra_height
-= 3;
1629 if( full_mx
< 0-extra_width
1630 || full_my
< 0-extra_height
1631 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
1632 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
1633 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->mb_linesize
, h
->mb_linesize
, 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
1634 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->mb_linesize
;
1638 qpix_op
[luma_xy
](dest_y
, src_y
, h
->mb_linesize
); //FIXME try variable height perhaps?
1640 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->mb_linesize
);
1643 if(ENABLE_GRAY
&& s
->flags
&CODEC_FLAG_GRAY
) return;
1646 // chroma offset when predicting from a field of opposite parity
1647 my
+= 2 * ((s
->mb_y
& 1) - (pic
->reference
- 1));
1648 emu
|= (my
>>3) < 0 || (my
>>3) + 8 >= (pic_height
>>1);
1650 src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1651 src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1654 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1655 src_cb
= s
->edge_emu_buffer
;
1657 chroma_op(dest_cb
, src_cb
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1660 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1661 src_cr
= s
->edge_emu_buffer
;
1663 chroma_op(dest_cr
, src_cr
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1666 static inline void mc_part_std(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1667 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1668 int x_offset
, int y_offset
,
1669 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1670 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1671 int list0
, int list1
){
1672 MpegEncContext
* const s
= &h
->s
;
1673 qpel_mc_func
*qpix_op
= qpix_put
;
1674 h264_chroma_mc_func chroma_op
= chroma_put
;
1676 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1677 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1678 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1679 x_offset
+= 8*s
->mb_x
;
1680 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1683 Picture
*ref
= &h
->ref_list
[0][ h
->ref_cache
[0][ scan8
[n
] ] ];
1684 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 0,
1685 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1686 qpix_op
, chroma_op
);
1689 chroma_op
= chroma_avg
;
1693 Picture
*ref
= &h
->ref_list
[1][ h
->ref_cache
[1][ scan8
[n
] ] ];
1694 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 1,
1695 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1696 qpix_op
, chroma_op
);
1700 static inline void mc_part_weighted(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1701 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1702 int x_offset
, int y_offset
,
1703 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1704 h264_weight_func luma_weight_op
, h264_weight_func chroma_weight_op
,
1705 h264_biweight_func luma_weight_avg
, h264_biweight_func chroma_weight_avg
,
1706 int list0
, int list1
){
1707 MpegEncContext
* const s
= &h
->s
;
1709 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1710 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1711 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1712 x_offset
+= 8*s
->mb_x
;
1713 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1716 /* don't optimize for luma-only case, since B-frames usually
1717 * use implicit weights => chroma too. */
1718 uint8_t *tmp_cb
= s
->obmc_scratchpad
;
1719 uint8_t *tmp_cr
= s
->obmc_scratchpad
+ 8;
1720 uint8_t *tmp_y
= s
->obmc_scratchpad
+ 8*h
->mb_uvlinesize
;
1721 int refn0
= h
->ref_cache
[0][ scan8
[n
] ];
1722 int refn1
= h
->ref_cache
[1][ scan8
[n
] ];
1724 mc_dir_part(h
, &h
->ref_list
[0][refn0
], n
, square
, chroma_height
, delta
, 0,
1725 dest_y
, dest_cb
, dest_cr
,
1726 x_offset
, y_offset
, qpix_put
, chroma_put
);
1727 mc_dir_part(h
, &h
->ref_list
[1][refn1
], n
, square
, chroma_height
, delta
, 1,
1728 tmp_y
, tmp_cb
, tmp_cr
,
1729 x_offset
, y_offset
, qpix_put
, chroma_put
);
1731 if(h
->use_weight
== 2){
1732 int weight0
= h
->implicit_weight
[refn0
][refn1
];
1733 int weight1
= 64 - weight0
;
1734 luma_weight_avg( dest_y
, tmp_y
, h
-> mb_linesize
, 5, weight0
, weight1
, 0);
1735 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1736 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1738 luma_weight_avg(dest_y
, tmp_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1739 h
->luma_weight
[0][refn0
], h
->luma_weight
[1][refn1
],
1740 h
->luma_offset
[0][refn0
] + h
->luma_offset
[1][refn1
]);
1741 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1742 h
->chroma_weight
[0][refn0
][0], h
->chroma_weight
[1][refn1
][0],
1743 h
->chroma_offset
[0][refn0
][0] + h
->chroma_offset
[1][refn1
][0]);
1744 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1745 h
->chroma_weight
[0][refn0
][1], h
->chroma_weight
[1][refn1
][1],
1746 h
->chroma_offset
[0][refn0
][1] + h
->chroma_offset
[1][refn1
][1]);
1749 int list
= list1 ?
1 : 0;
1750 int refn
= h
->ref_cache
[list
][ scan8
[n
] ];
1751 Picture
*ref
= &h
->ref_list
[list
][refn
];
1752 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, list
,
1753 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1754 qpix_put
, chroma_put
);
1756 luma_weight_op(dest_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1757 h
->luma_weight
[list
][refn
], h
->luma_offset
[list
][refn
]);
1758 if(h
->use_weight_chroma
){
1759 chroma_weight_op(dest_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1760 h
->chroma_weight
[list
][refn
][0], h
->chroma_offset
[list
][refn
][0]);
1761 chroma_weight_op(dest_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1762 h
->chroma_weight
[list
][refn
][1], h
->chroma_offset
[list
][refn
][1]);
1767 static inline void mc_part(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1768 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1769 int x_offset
, int y_offset
,
1770 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1771 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1772 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
,
1773 int list0
, int list1
){
1774 if((h
->use_weight
==2 && list0
&& list1
1775 && (h
->implicit_weight
[ h
->ref_cache
[0][scan8
[n
]] ][ h
->ref_cache
[1][scan8
[n
]] ] != 32))
1776 || h
->use_weight
==1)
1777 mc_part_weighted(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1778 x_offset
, y_offset
, qpix_put
, chroma_put
,
1779 weight_op
[0], weight_op
[3], weight_avg
[0], weight_avg
[3], list0
, list1
);
1781 mc_part_std(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1782 x_offset
, y_offset
, qpix_put
, chroma_put
, qpix_avg
, chroma_avg
, list0
, list1
);
1785 static inline void prefetch_motion(H264Context
*h
, int list
){
1786 /* fetch pixels for estimated mv 4 macroblocks ahead
1787 * optimized for 64byte cache lines */
1788 MpegEncContext
* const s
= &h
->s
;
1789 const int refn
= h
->ref_cache
[list
][scan8
[0]];
1791 const int mx
= (h
->mv_cache
[list
][scan8
[0]][0]>>2) + 16*s
->mb_x
+ 8;
1792 const int my
= (h
->mv_cache
[list
][scan8
[0]][1]>>2) + 16*s
->mb_y
;
1793 uint8_t **src
= h
->ref_list
[list
][refn
].data
;
1794 int off
= mx
+ (my
+ (s
->mb_x
&3)*4)*h
->mb_linesize
+ 64;
1795 s
->dsp
.prefetch(src
[0]+off
, s
->linesize
, 4);
1796 off
= (mx
>>1) + ((my
>>1) + (s
->mb_x
&7))*s
->uvlinesize
+ 64;
1797 s
->dsp
.prefetch(src
[1]+off
, src
[2]-src
[1], 2);
1801 static void hl_motion(H264Context
*h
, uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1802 qpel_mc_func (*qpix_put
)[16], h264_chroma_mc_func (*chroma_put
),
1803 qpel_mc_func (*qpix_avg
)[16], h264_chroma_mc_func (*chroma_avg
),
1804 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
){
1805 MpegEncContext
* const s
= &h
->s
;
1806 const int mb_xy
= h
->mb_xy
;
1807 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
1809 assert(IS_INTER(mb_type
));
1811 prefetch_motion(h
, 0);
1813 if(IS_16X16(mb_type
)){
1814 mc_part(h
, 0, 1, 8, 0, dest_y
, dest_cb
, dest_cr
, 0, 0,
1815 qpix_put
[0], chroma_put
[0], qpix_avg
[0], chroma_avg
[0],
1816 &weight_op
[0], &weight_avg
[0],
1817 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1818 }else if(IS_16X8(mb_type
)){
1819 mc_part(h
, 0, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 0,
1820 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1821 &weight_op
[1], &weight_avg
[1],
1822 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1823 mc_part(h
, 8, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 4,
1824 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1825 &weight_op
[1], &weight_avg
[1],
1826 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1827 }else if(IS_8X16(mb_type
)){
1828 mc_part(h
, 0, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 0, 0,
1829 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1830 &weight_op
[2], &weight_avg
[2],
1831 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1832 mc_part(h
, 4, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 4, 0,
1833 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1834 &weight_op
[2], &weight_avg
[2],
1835 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1839 assert(IS_8X8(mb_type
));
1842 const int sub_mb_type
= h
->sub_mb_type
[i
];
1844 int x_offset
= (i
&1)<<2;
1845 int y_offset
= (i
&2)<<1;
1847 if(IS_SUB_8X8(sub_mb_type
)){
1848 mc_part(h
, n
, 1, 4, 0, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1849 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1850 &weight_op
[3], &weight_avg
[3],
1851 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1852 }else if(IS_SUB_8X4(sub_mb_type
)){
1853 mc_part(h
, n
, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1854 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1855 &weight_op
[4], &weight_avg
[4],
1856 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1857 mc_part(h
, n
+2, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
+2,
1858 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1859 &weight_op
[4], &weight_avg
[4],
1860 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1861 }else if(IS_SUB_4X8(sub_mb_type
)){
1862 mc_part(h
, n
, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1863 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1864 &weight_op
[5], &weight_avg
[5],
1865 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1866 mc_part(h
, n
+1, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
+2, y_offset
,
1867 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1868 &weight_op
[5], &weight_avg
[5],
1869 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1872 assert(IS_SUB_4X4(sub_mb_type
));
1874 int sub_x_offset
= x_offset
+ 2*(j
&1);
1875 int sub_y_offset
= y_offset
+ (j
&2);
1876 mc_part(h
, n
+j
, 1, 2, 0, dest_y
, dest_cb
, dest_cr
, sub_x_offset
, sub_y_offset
,
1877 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1878 &weight_op
[6], &weight_avg
[6],
1879 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1885 prefetch_motion(h
, 1);
1888 static av_cold
void init_cavlc_level_tab(void){
1889 int suffix_length
, mask
;
1892 for(suffix_length
=0; suffix_length
<7; suffix_length
++){
1893 for(i
=0; i
<(1<<LEVEL_TAB_BITS
); i
++){
1894 int prefix
= LEVEL_TAB_BITS
- av_log2(2*i
);
1895 int level_code
= (prefix
<<suffix_length
) + (i
>>(LEVEL_TAB_BITS
-prefix
-1-suffix_length
)) - (1<<suffix_length
);
1897 mask
= -(level_code
&1);
1898 level_code
= (((2+level_code
)>>1) ^ mask
) - mask
;
1899 if(prefix
+ 1 + suffix_length
<= LEVEL_TAB_BITS
){
1900 cavlc_level_tab
[suffix_length
][i
][0]= level_code
;
1901 cavlc_level_tab
[suffix_length
][i
][1]= prefix
+ 1 + suffix_length
;
1902 }else if(prefix
+ 1 <= LEVEL_TAB_BITS
){
1903 cavlc_level_tab
[suffix_length
][i
][0]= prefix
+100;
1904 cavlc_level_tab
[suffix_length
][i
][1]= prefix
+ 1;
1906 cavlc_level_tab
[suffix_length
][i
][0]= LEVEL_TAB_BITS
+100;
1907 cavlc_level_tab
[suffix_length
][i
][1]= LEVEL_TAB_BITS
;
1913 static av_cold
void decode_init_vlc(void){
1914 static int done
= 0;
1921 chroma_dc_coeff_token_vlc
.table
= chroma_dc_coeff_token_vlc_table
;
1922 chroma_dc_coeff_token_vlc
.table_allocated
= chroma_dc_coeff_token_vlc_table_size
;
1923 init_vlc(&chroma_dc_coeff_token_vlc
, CHROMA_DC_COEFF_TOKEN_VLC_BITS
, 4*5,
1924 &chroma_dc_coeff_token_len
[0], 1, 1,
1925 &chroma_dc_coeff_token_bits
[0], 1, 1,
1926 INIT_VLC_USE_NEW_STATIC
);
1930 coeff_token_vlc
[i
].table
= coeff_token_vlc_tables
+offset
;
1931 coeff_token_vlc
[i
].table_allocated
= coeff_token_vlc_tables_size
[i
];
1932 init_vlc(&coeff_token_vlc
[i
], COEFF_TOKEN_VLC_BITS
, 4*17,
1933 &coeff_token_len
[i
][0], 1, 1,
1934 &coeff_token_bits
[i
][0], 1, 1,
1935 INIT_VLC_USE_NEW_STATIC
);
1936 offset
+= coeff_token_vlc_tables_size
[i
];
1939 * This is a one time safety check to make sure that
1940 * the packed static coeff_token_vlc table sizes
1941 * were initialized correctly.
1943 assert(offset
== FF_ARRAY_ELEMS(coeff_token_vlc_tables
));
1946 chroma_dc_total_zeros_vlc
[i
].table
= chroma_dc_total_zeros_vlc_tables
[i
];
1947 chroma_dc_total_zeros_vlc
[i
].table_allocated
= chroma_dc_total_zeros_vlc_tables_size
;
1948 init_vlc(&chroma_dc_total_zeros_vlc
[i
],
1949 CHROMA_DC_TOTAL_ZEROS_VLC_BITS
, 4,
1950 &chroma_dc_total_zeros_len
[i
][0], 1, 1,
1951 &chroma_dc_total_zeros_bits
[i
][0], 1, 1,
1952 INIT_VLC_USE_NEW_STATIC
);
1954 for(i
=0; i
<15; i
++){
1955 total_zeros_vlc
[i
].table
= total_zeros_vlc_tables
[i
];
1956 total_zeros_vlc
[i
].table_allocated
= total_zeros_vlc_tables_size
;
1957 init_vlc(&total_zeros_vlc
[i
],
1958 TOTAL_ZEROS_VLC_BITS
, 16,
1959 &total_zeros_len
[i
][0], 1, 1,
1960 &total_zeros_bits
[i
][0], 1, 1,
1961 INIT_VLC_USE_NEW_STATIC
);
1965 run_vlc
[i
].table
= run_vlc_tables
[i
];
1966 run_vlc
[i
].table_allocated
= run_vlc_tables_size
;
1967 init_vlc(&run_vlc
[i
],
1969 &run_len
[i
][0], 1, 1,
1970 &run_bits
[i
][0], 1, 1,
1971 INIT_VLC_USE_NEW_STATIC
);
1973 run7_vlc
.table
= run7_vlc_table
,
1974 run7_vlc
.table_allocated
= run7_vlc_table_size
;
1975 init_vlc(&run7_vlc
, RUN7_VLC_BITS
, 16,
1976 &run_len
[6][0], 1, 1,
1977 &run_bits
[6][0], 1, 1,
1978 INIT_VLC_USE_NEW_STATIC
);
1980 init_cavlc_level_tab();
1984 static void free_tables(H264Context
*h
){
1987 av_freep(&h
->intra4x4_pred_mode
);
1988 av_freep(&h
->chroma_pred_mode_table
);
1989 av_freep(&h
->cbp_table
);
1990 av_freep(&h
->mvd_table
[0]);
1991 av_freep(&h
->mvd_table
[1]);
1992 av_freep(&h
->direct_table
);
1993 av_freep(&h
->non_zero_count
);
1994 av_freep(&h
->slice_table_base
);
1995 h
->slice_table
= NULL
;
1997 av_freep(&h
->mb2b_xy
);
1998 av_freep(&h
->mb2b8_xy
);
2000 for(i
= 0; i
< h
->s
.avctx
->thread_count
; i
++) {
2001 hx
= h
->thread_context
[i
];
2003 av_freep(&hx
->top_borders
[1]);
2004 av_freep(&hx
->top_borders
[0]);
2005 av_freep(&hx
->s
.obmc_scratchpad
);
2009 static void init_dequant8_coeff_table(H264Context
*h
){
2011 const int transpose
= (h
->s
.dsp
.h264_idct8_add
!= ff_h264_idct8_add_c
); //FIXME ugly
2012 h
->dequant8_coeff
[0] = h
->dequant8_buffer
[0];
2013 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[1];
2015 for(i
=0; i
<2; i
++ ){
2016 if(i
&& !memcmp(h
->pps
.scaling_matrix8
[0], h
->pps
.scaling_matrix8
[1], 64*sizeof(uint8_t))){
2017 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[0];
2021 for(q
=0; q
<52; q
++){
2022 int shift
= div6
[q
];
2025 h
->dequant8_coeff
[i
][q
][transpose ?
(x
>>3)|((x
&7)<<3) : x
] =
2026 ((uint32_t)dequant8_coeff_init
[idx
][ dequant8_coeff_init_scan
[((x
>>1)&12) | (x
&3)] ] *
2027 h
->pps
.scaling_matrix8
[i
][x
]) << shift
;
2032 static void init_dequant4_coeff_table(H264Context
*h
){
2034 const int transpose
= (h
->s
.dsp
.h264_idct_add
!= ff_h264_idct_add_c
); //FIXME ugly
2035 for(i
=0; i
<6; i
++ ){
2036 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[i
];
2038 if(!memcmp(h
->pps
.scaling_matrix4
[j
], h
->pps
.scaling_matrix4
[i
], 16*sizeof(uint8_t))){
2039 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[j
];
2046 for(q
=0; q
<52; q
++){
2047 int shift
= div6
[q
] + 2;
2050 h
->dequant4_coeff
[i
][q
][transpose ?
(x
>>2)|((x
<<2)&0xF) : x
] =
2051 ((uint32_t)dequant4_coeff_init
[idx
][(x
&1) + ((x
>>2)&1)] *
2052 h
->pps
.scaling_matrix4
[i
][x
]) << shift
;
2057 static void init_dequant_tables(H264Context
*h
){
2059 init_dequant4_coeff_table(h
);
2060 if(h
->pps
.transform_8x8_mode
)
2061 init_dequant8_coeff_table(h
);
2062 if(h
->sps
.transform_bypass
){
2065 h
->dequant4_coeff
[i
][0][x
] = 1<<6;
2066 if(h
->pps
.transform_8x8_mode
)
2069 h
->dequant8_coeff
[i
][0][x
] = 1<<6;
2076 * needs width/height
2078 static int alloc_tables(H264Context
*h
){
2079 MpegEncContext
* const s
= &h
->s
;
2080 const int big_mb_num
= s
->mb_stride
* (s
->mb_height
+1);
2083 CHECKED_ALLOCZ(h
->intra4x4_pred_mode
, big_mb_num
* 8 * sizeof(uint8_t))
2085 CHECKED_ALLOCZ(h
->non_zero_count
, big_mb_num
* 16 * sizeof(uint8_t))
2086 CHECKED_ALLOCZ(h
->slice_table_base
, (big_mb_num
+s
->mb_stride
) * sizeof(*h
->slice_table_base
))
2087 CHECKED_ALLOCZ(h
->cbp_table
, big_mb_num
* sizeof(uint16_t))
2089 CHECKED_ALLOCZ(h
->chroma_pred_mode_table
, big_mb_num
* sizeof(uint8_t))
2090 CHECKED_ALLOCZ(h
->mvd_table
[0], 32*big_mb_num
* sizeof(uint16_t));
2091 CHECKED_ALLOCZ(h
->mvd_table
[1], 32*big_mb_num
* sizeof(uint16_t));
2092 CHECKED_ALLOCZ(h
->direct_table
, 32*big_mb_num
* sizeof(uint8_t));
2094 memset(h
->slice_table_base
, -1, (big_mb_num
+s
->mb_stride
) * sizeof(*h
->slice_table_base
));
2095 h
->slice_table
= h
->slice_table_base
+ s
->mb_stride
*2 + 1;
2097 CHECKED_ALLOCZ(h
->mb2b_xy
, big_mb_num
* sizeof(uint32_t));
2098 CHECKED_ALLOCZ(h
->mb2b8_xy
, big_mb_num
* sizeof(uint32_t));
2099 for(y
=0; y
<s
->mb_height
; y
++){
2100 for(x
=0; x
<s
->mb_width
; x
++){
2101 const int mb_xy
= x
+ y
*s
->mb_stride
;
2102 const int b_xy
= 4*x
+ 4*y
*h
->b_stride
;
2103 const int b8_xy
= 2*x
+ 2*y
*h
->b8_stride
;
2105 h
->mb2b_xy
[mb_xy
]= b_xy
;
2106 h
->mb2b8_xy
[mb_xy
]= b8_xy
;
2110 s
->obmc_scratchpad
= NULL
;
2112 if(!h
->dequant4_coeff
[0])
2113 init_dequant_tables(h
);
2122 * Mimic alloc_tables(), but for every context thread.
2124 static void clone_tables(H264Context
*dst
, H264Context
*src
){
2125 dst
->intra4x4_pred_mode
= src
->intra4x4_pred_mode
;
2126 dst
->non_zero_count
= src
->non_zero_count
;
2127 dst
->slice_table
= src
->slice_table
;
2128 dst
->cbp_table
= src
->cbp_table
;
2129 dst
->mb2b_xy
= src
->mb2b_xy
;
2130 dst
->mb2b8_xy
= src
->mb2b8_xy
;
2131 dst
->chroma_pred_mode_table
= src
->chroma_pred_mode_table
;
2132 dst
->mvd_table
[0] = src
->mvd_table
[0];
2133 dst
->mvd_table
[1] = src
->mvd_table
[1];
2134 dst
->direct_table
= src
->direct_table
;
2136 dst
->s
.obmc_scratchpad
= NULL
;
2137 ff_h264_pred_init(&dst
->hpc
, src
->s
.codec_id
);
2142 * Allocate buffers which are not shared amongst multiple threads.
2144 static int context_init(H264Context
*h
){
2145 CHECKED_ALLOCZ(h
->top_borders
[0], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2146 CHECKED_ALLOCZ(h
->top_borders
[1], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2150 return -1; // free_tables will clean up for us
2153 static av_cold
void common_init(H264Context
*h
){
2154 MpegEncContext
* const s
= &h
->s
;
2156 s
->width
= s
->avctx
->width
;
2157 s
->height
= s
->avctx
->height
;
2158 s
->codec_id
= s
->avctx
->codec
->id
;
2160 ff_h264_pred_init(&h
->hpc
, s
->codec_id
);
2162 h
->dequant_coeff_pps
= -1;
2163 s
->unrestricted_mv
=1;
2164 s
->decode
=1; //FIXME
2166 dsputil_init(&s
->dsp
, s
->avctx
); // needed so that idct permutation is known early
2168 memset(h
->pps
.scaling_matrix4
, 16, 6*16*sizeof(uint8_t));
2169 memset(h
->pps
.scaling_matrix8
, 16, 2*64*sizeof(uint8_t));
2172 static av_cold
int decode_init(AVCodecContext
*avctx
){
2173 H264Context
*h
= avctx
->priv_data
;
2174 MpegEncContext
* const s
= &h
->s
;
2176 MPV_decode_defaults(s
);
2181 s
->out_format
= FMT_H264
;
2182 s
->workaround_bugs
= avctx
->workaround_bugs
;
2185 // s->decode_mb= ff_h263_decode_mb;
2186 s
->quarter_sample
= 1;
2189 if(avctx
->codec_id
== CODEC_ID_SVQ3
)
2190 avctx
->pix_fmt
= PIX_FMT_YUVJ420P
;
2192 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
2196 if(avctx
->extradata_size
> 0 && avctx
->extradata
&&
2197 *(char *)avctx
->extradata
== 1){
2204 h
->thread_context
[0] = h
;
2205 h
->outputed_poc
= INT_MIN
;
2206 h
->prev_poc_msb
= 1<<16;
2210 static int frame_start(H264Context
*h
){
2211 MpegEncContext
* const s
= &h
->s
;
2214 if(MPV_frame_start(s
, s
->avctx
) < 0)
2216 ff_er_frame_start(s
);
2218 * MPV_frame_start uses pict_type to derive key_frame.
2219 * This is incorrect for H.264; IDR markings must be used.
2220 * Zero here; IDR markings per slice in frame or fields are ORed in later.
2221 * See decode_nal_units().
2223 s
->current_picture_ptr
->key_frame
= 0;
2225 assert(s
->linesize
&& s
->uvlinesize
);
2227 for(i
=0; i
<16; i
++){
2228 h
->block_offset
[i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2229 h
->block_offset
[24+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2232 h
->block_offset
[16+i
]=
2233 h
->block_offset
[20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2234 h
->block_offset
[24+16+i
]=
2235 h
->block_offset
[24+20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2238 /* can't be in alloc_tables because linesize isn't known there.
2239 * FIXME: redo bipred weight to not require extra buffer? */
2240 for(i
= 0; i
< s
->avctx
->thread_count
; i
++)
2241 if(!h
->thread_context
[i
]->s
.obmc_scratchpad
)
2242 h
->thread_context
[i
]->s
.obmc_scratchpad
= av_malloc(16*2*s
->linesize
+ 8*2*s
->uvlinesize
);
2244 /* some macroblocks will be accessed before they're available */
2245 if(FRAME_MBAFF
|| s
->avctx
->thread_count
> 1)
2246 memset(h
->slice_table
, -1, (s
->mb_height
*s
->mb_stride
-1) * sizeof(*h
->slice_table
));
2248 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2250 // We mark the current picture as non-reference after allocating it, so
2251 // that if we break out due to an error it can be released automatically
2252 // in the next MPV_frame_start().
2253 // SVQ3 as well as most other codecs have only last/next/current and thus
2254 // get released even with set reference, besides SVQ3 and others do not
2255 // mark frames as reference later "naturally".
2256 if(s
->codec_id
!= CODEC_ID_SVQ3
)
2257 s
->current_picture_ptr
->reference
= 0;
2259 s
->current_picture_ptr
->field_poc
[0]=
2260 s
->current_picture_ptr
->field_poc
[1]= INT_MAX
;
2261 assert(s
->current_picture_ptr
->long_ref
==0);
2266 static inline void backup_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int simple
){
2267 MpegEncContext
* const s
= &h
->s
;
2276 src_cb
-= uvlinesize
;
2277 src_cr
-= uvlinesize
;
2279 if(!simple
&& FRAME_MBAFF
){
2281 offset
= MB_MBAFF ?
1 : 17;
2282 uvoffset
= MB_MBAFF ?
1 : 9;
2284 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+ 0)= *(uint64_t*)(src_y
+ 15*linesize
);
2285 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+ 8)= *(uint64_t*)(src_y
+8+15*linesize
);
2286 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2287 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+7*uvlinesize
);
2288 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+7*uvlinesize
);
2293 h
->left_border
[0]= h
->top_borders
[0][s
->mb_x
][15];
2294 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2295 h
->left_border
[34 ]= h
->top_borders
[0][s
->mb_x
][16+7 ];
2296 h
->left_border
[34+18]= h
->top_borders
[0][s
->mb_x
][16+8+7];
2302 top_idx
= MB_MBAFF ?
0 : 1;
2304 step
= MB_MBAFF ?
2 : 1;
2307 // There are two lines saved, the line above the the top macroblock of a pair,
2308 // and the line above the bottom macroblock
2309 h
->left_border
[offset
]= h
->top_borders
[top_idx
][s
->mb_x
][15];
2310 for(i
=1; i
<17 - skiplast
; i
++){
2311 h
->left_border
[offset
+i
*step
]= src_y
[15+i
* linesize
];
2314 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+0)= *(uint64_t*)(src_y
+ 16*linesize
);
2315 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+8)= *(uint64_t*)(src_y
+8+16*linesize
);
2317 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2318 h
->left_border
[uvoffset
+34 ]= h
->top_borders
[top_idx
][s
->mb_x
][16+7];
2319 h
->left_border
[uvoffset
+34+18]= h
->top_borders
[top_idx
][s
->mb_x
][24+7];
2320 for(i
=1; i
<9 - skiplast
; i
++){
2321 h
->left_border
[uvoffset
+34 +i
*step
]= src_cb
[7+i
*uvlinesize
];
2322 h
->left_border
[uvoffset
+34+18+i
*step
]= src_cr
[7+i
*uvlinesize
];
2324 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+8*uvlinesize
);
2325 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+8*uvlinesize
);
2329 static inline void xchg_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int xchg
, int simple
){
2330 MpegEncContext
* const s
= &h
->s
;
2341 if(!simple
&& FRAME_MBAFF
){
2343 offset
= MB_MBAFF ?
1 : 17;
2344 uvoffset
= MB_MBAFF ?
1 : 9;
2348 top_idx
= MB_MBAFF ?
0 : 1;
2350 step
= MB_MBAFF ?
2 : 1;
2353 if(h
->deblocking_filter
== 2) {
2355 deblock_left
= h
->slice_table
[mb_xy
] == h
->slice_table
[mb_xy
- 1];
2356 deblock_top
= h
->slice_table
[mb_xy
] == h
->slice_table
[h
->top_mb_xy
];
2358 deblock_left
= (s
->mb_x
> 0);
2359 deblock_top
= (s
->mb_y
> !!MB_FIELD
);
2362 src_y
-= linesize
+ 1;
2363 src_cb
-= uvlinesize
+ 1;
2364 src_cr
-= uvlinesize
+ 1;
2366 #define XCHG(a,b,t,xchg)\
2373 for(i
= !deblock_top
; i
<16; i
++){
2374 XCHG(h
->left_border
[offset
+i
*step
], src_y
[i
* linesize
], temp8
, xchg
);
2376 XCHG(h
->left_border
[offset
+i
*step
], src_y
[i
* linesize
], temp8
, 1);
2380 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+0), *(uint64_t*)(src_y
+1), temp64
, xchg
);
2381 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+8), *(uint64_t*)(src_y
+9), temp64
, 1);
2382 if(s
->mb_x
+1 < s
->mb_width
){
2383 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
+1]), *(uint64_t*)(src_y
+17), temp64
, 1);
2387 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2389 for(i
= !deblock_top
; i
<8; i
++){
2390 XCHG(h
->left_border
[uvoffset
+34 +i
*step
], src_cb
[i
*uvlinesize
], temp8
, xchg
);
2391 XCHG(h
->left_border
[uvoffset
+34+18+i
*step
], src_cr
[i
*uvlinesize
], temp8
, xchg
);
2393 XCHG(h
->left_border
[uvoffset
+34 +i
*step
], src_cb
[i
*uvlinesize
], temp8
, 1);
2394 XCHG(h
->left_border
[uvoffset
+34+18+i
*step
], src_cr
[i
*uvlinesize
], temp8
, 1);
2397 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+16), *(uint64_t*)(src_cb
+1), temp64
, 1);
2398 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+24), *(uint64_t*)(src_cr
+1), temp64
, 1);
2403 static av_always_inline
void hl_decode_mb_internal(H264Context
*h
, int simple
){
2404 MpegEncContext
* const s
= &h
->s
;
2405 const int mb_x
= s
->mb_x
;
2406 const int mb_y
= s
->mb_y
;
2407 const int mb_xy
= h
->mb_xy
;
2408 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
2409 uint8_t *dest_y
, *dest_cb
, *dest_cr
;
2410 int linesize
, uvlinesize
/*dct_offset*/;
2412 int *block_offset
= &h
->block_offset
[0];
2413 const int transform_bypass
= !simple
&& (s
->qscale
== 0 && h
->sps
.transform_bypass
);
2414 const int is_h264
= simple
|| s
->codec_id
== CODEC_ID_H264
;
2415 void (*idct_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2416 void (*idct_dc_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2418 dest_y
= s
->current_picture
.data
[0] + (mb_x
+ mb_y
* s
->linesize
) * 16;
2419 dest_cb
= s
->current_picture
.data
[1] + (mb_x
+ mb_y
* s
->uvlinesize
) * 8;
2420 dest_cr
= s
->current_picture
.data
[2] + (mb_x
+ mb_y
* s
->uvlinesize
) * 8;
2422 s
->dsp
.prefetch(dest_y
+ (s
->mb_x
&3)*4*s
->linesize
+ 64, s
->linesize
, 4);
2423 s
->dsp
.prefetch(dest_cb
+ (s
->mb_x
&7)*s
->uvlinesize
+ 64, dest_cr
- dest_cb
, 2);
2425 if (!simple
&& MB_FIELD
) {
2426 linesize
= h
->mb_linesize
= s
->linesize
* 2;
2427 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
* 2;
2428 block_offset
= &h
->block_offset
[24];
2429 if(mb_y
&1){ //FIXME move out of this function?
2430 dest_y
-= s
->linesize
*15;
2431 dest_cb
-= s
->uvlinesize
*7;
2432 dest_cr
-= s
->uvlinesize
*7;
2436 for(list
=0; list
<h
->list_count
; list
++){
2437 if(!USES_LIST(mb_type
, list
))
2439 if(IS_16X16(mb_type
)){
2440 int8_t *ref
= &h
->ref_cache
[list
][scan8
[0]];
2441 fill_rectangle(ref
, 4, 4, 8, (16+*ref
)^(s
->mb_y
&1), 1);
2443 for(i
=0; i
<16; i
+=4){
2444 int ref
= h
->ref_cache
[list
][scan8
[i
]];
2446 fill_rectangle(&h
->ref_cache
[list
][scan8
[i
]], 2, 2, 8, (16+ref
)^(s
->mb_y
&1), 1);
2452 linesize
= h
->mb_linesize
= s
->linesize
;
2453 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
;
2454 // dct_offset = s->linesize * 16;
2457 if (!simple
&& IS_INTRA_PCM(mb_type
)) {
2458 for (i
=0; i
<16; i
++) {
2459 memcpy(dest_y
+ i
* linesize
, h
->mb
+ i
*8, 16);
2461 for (i
=0; i
<8; i
++) {
2462 memcpy(dest_cb
+ i
*uvlinesize
, h
->mb
+ 128 + i
*4, 8);
2463 memcpy(dest_cr
+ i
*uvlinesize
, h
->mb
+ 160 + i
*4, 8);
2466 if(IS_INTRA(mb_type
)){
2467 if(h
->deblocking_filter
)
2468 xchg_mb_border(h
, dest_y
, dest_cb
, dest_cr
, linesize
, uvlinesize
, 1, simple
);
2470 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2471 h
->hpc
.pred8x8
[ h
->chroma_pred_mode
](dest_cb
, uvlinesize
);
2472 h
->hpc
.pred8x8
[ h
->chroma_pred_mode
](dest_cr
, uvlinesize
);
2475 if(IS_INTRA4x4(mb_type
)){
2476 if(simple
|| !s
->encoding
){
2477 if(IS_8x8DCT(mb_type
)){
2478 if(transform_bypass
){
2480 idct_add
= s
->dsp
.add_pixels8
;
2482 idct_dc_add
= s
->dsp
.h264_idct8_dc_add
;
2483 idct_add
= s
->dsp
.h264_idct8_add
;
2485 for(i
=0; i
<16; i
+=4){
2486 uint8_t * const ptr
= dest_y
+ block_offset
[i
];
2487 const int dir
= h
->intra4x4_pred_mode_cache
[ scan8
[i
] ];
2488 if(transform_bypass
&& h
->sps
.profile_idc
==244 && dir
<=1){
2489 h
->hpc
.pred8x8l_add
[dir
](ptr
, h
->mb
+ i
*16, linesize
);
2491 const int nnz
= h
->non_zero_count_cache
[ scan8
[i
] ];
2492 h
->hpc
.pred8x8l
[ dir
](ptr
, (h
->topleft_samples_available
<<i
)&0x8000,
2493 (h
->topright_samples_available
<<i
)&0x4000, linesize
);
2495 if(nnz
== 1 && h
->mb
[i
*16])
2496 idct_dc_add(ptr
, h
->mb
+ i
*16, linesize
);
2498 idct_add (ptr
, h
->mb
+ i
*16, linesize
);
2503 if(transform_bypass
){
2505 idct_add
= s
->dsp
.add_pixels4
;
2507 idct_dc_add
= s
->dsp
.h264_idct_dc_add
;
2508 idct_add
= s
->dsp
.h264_idct_add
;
2510 for(i
=0; i
<16; i
++){
2511 uint8_t * const ptr
= dest_y
+ block_offset
[i
];
2512 const int dir
= h
->intra4x4_pred_mode_cache
[ scan8
[i
] ];
2514 if(transform_bypass
&& h
->sps
.profile_idc
==244 && dir
<=1){
2515 h
->hpc
.pred4x4_add
[dir
](ptr
, h
->mb
+ i
*16, linesize
);
2519 if(dir
== DIAG_DOWN_LEFT_PRED
|| dir
== VERT_LEFT_PRED
){
2520 const int topright_avail
= (h
->topright_samples_available
<<i
)&0x8000;
2521 assert(mb_y
|| linesize
<= block_offset
[i
]);
2522 if(!topright_avail
){
2523 tr
= ptr
[3 - linesize
]*0x01010101;
2524 topright
= (uint8_t*) &tr
;
2526 topright
= ptr
+ 4 - linesize
;
2530 h
->hpc
.pred4x4
[ dir
](ptr
, topright
, linesize
);
2531 nnz
= h
->non_zero_count_cache
[ scan8
[i
] ];
2534 if(nnz
== 1 && h
->mb
[i
*16])
2535 idct_dc_add(ptr
, h
->mb
+ i
*16, linesize
);
2537 idct_add (ptr
, h
->mb
+ i
*16, linesize
);
2539 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
, s
->qscale
, 0);
2546 h
->hpc
.pred16x16
[ h
->i