9470177d3b3dcdf4325c249355097474a3355aec
[libav.git] / libavcodec / h264.c
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /**
22 * @file h264.c
23 * H.264 / AVC / MPEG4 part10 codec.
24 * @author Michael Niedermayer <michaelni@gmx.at>
25 */
26
27 #include "common.h"
28 #include "dsputil.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "h264data.h"
32 #include "golomb.h"
33
34 #include "cabac.h"
35
36 //#undef NDEBUG
37 #include <assert.h>
38
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_isnt_initalized_see_mb_type
41
42 #define LUMA_DC_BLOCK_INDEX 25
43 #define CHROMA_DC_BLOCK_INDEX 26
44
45 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46 #define COEFF_TOKEN_VLC_BITS 8
47 #define TOTAL_ZEROS_VLC_BITS 9
48 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49 #define RUN_VLC_BITS 3
50 #define RUN7_VLC_BITS 6
51
52 #define MAX_SPS_COUNT 32
53 #define MAX_PPS_COUNT 256
54
55 #define MAX_MMCO_COUNT 66
56
57 /* Compiling in interlaced support reduces the speed
58 * of progressive decoding by about 2%. */
59 #define ALLOW_INTERLACE
60
61 #ifdef ALLOW_INTERLACE
62 #define MB_MBAFF h->mb_mbaff
63 #define MB_FIELD h->mb_field_decoding_flag
64 #define FRAME_MBAFF h->mb_aff_frame
65 #else
66 #define MB_MBAFF 0
67 #define MB_FIELD 0
68 #define FRAME_MBAFF 0
69 #undef IS_INTERLACED
70 #define IS_INTERLACED(mb_type) 0
71 #endif
72
73 /**
74 * Sequence parameter set
75 */
76 typedef struct SPS{
77
78 int profile_idc;
79 int level_idc;
80 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
81 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
82 int poc_type; ///< pic_order_cnt_type
83 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
84 int delta_pic_order_always_zero_flag;
85 int offset_for_non_ref_pic;
86 int offset_for_top_to_bottom_field;
87 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
88 int ref_frame_count; ///< num_ref_frames
89 int gaps_in_frame_num_allowed_flag;
90 int mb_width; ///< frame_width_in_mbs_minus1 + 1
91 int mb_height; ///< frame_height_in_mbs_minus1 + 1
92 int frame_mbs_only_flag;
93 int mb_aff; ///<mb_adaptive_frame_field_flag
94 int direct_8x8_inference_flag;
95 int crop; ///< frame_cropping_flag
96 int crop_left; ///< frame_cropping_rect_left_offset
97 int crop_right; ///< frame_cropping_rect_right_offset
98 int crop_top; ///< frame_cropping_rect_top_offset
99 int crop_bottom; ///< frame_cropping_rect_bottom_offset
100 int vui_parameters_present_flag;
101 AVRational sar;
102 int timing_info_present_flag;
103 uint32_t num_units_in_tick;
104 uint32_t time_scale;
105 int fixed_frame_rate_flag;
106 short offset_for_ref_frame[256]; //FIXME dyn aloc?
107 int bitstream_restriction_flag;
108 int num_reorder_frames;
109 int scaling_matrix_present;
110 uint8_t scaling_matrix4[6][16];
111 uint8_t scaling_matrix8[2][64];
112 }SPS;
113
114 /**
115 * Picture parameter set
116 */
117 typedef struct PPS{
118 int sps_id;
119 int cabac; ///< entropy_coding_mode_flag
120 int pic_order_present; ///< pic_order_present_flag
121 int slice_group_count; ///< num_slice_groups_minus1 + 1
122 int mb_slice_group_map_type;
123 int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
124 int weighted_pred; ///< weighted_pred_flag
125 int weighted_bipred_idc;
126 int init_qp; ///< pic_init_qp_minus26 + 26
127 int init_qs; ///< pic_init_qs_minus26 + 26
128 int chroma_qp_index_offset;
129 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
130 int constrained_intra_pred; ///< constrained_intra_pred_flag
131 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
132 int transform_8x8_mode; ///< transform_8x8_mode_flag
133 uint8_t scaling_matrix4[6][16];
134 uint8_t scaling_matrix8[2][64];
135 }PPS;
136
137 /**
138 * Memory management control operation opcode.
139 */
140 typedef enum MMCOOpcode{
141 MMCO_END=0,
142 MMCO_SHORT2UNUSED,
143 MMCO_LONG2UNUSED,
144 MMCO_SHORT2LONG,
145 MMCO_SET_MAX_LONG,
146 MMCO_RESET,
147 MMCO_LONG,
148 } MMCOOpcode;
149
150 /**
151 * Memory management control operation.
152 */
153 typedef struct MMCO{
154 MMCOOpcode opcode;
155 int short_frame_num;
156 int long_index;
157 } MMCO;
158
159 /**
160 * H264Context
161 */
162 typedef struct H264Context{
163 MpegEncContext s;
164 int nal_ref_idc;
165 int nal_unit_type;
166 #define NAL_SLICE 1
167 #define NAL_DPA 2
168 #define NAL_DPB 3
169 #define NAL_DPC 4
170 #define NAL_IDR_SLICE 5
171 #define NAL_SEI 6
172 #define NAL_SPS 7
173 #define NAL_PPS 8
174 #define NAL_AUD 9
175 #define NAL_END_SEQUENCE 10
176 #define NAL_END_STREAM 11
177 #define NAL_FILLER_DATA 12
178 #define NAL_SPS_EXT 13
179 #define NAL_AUXILIARY_SLICE 19
180 uint8_t *rbsp_buffer;
181 unsigned int rbsp_buffer_size;
182
183 /**
184 * Used to parse AVC variant of h264
185 */
186 int is_avc; ///< this flag is != 0 if codec is avc1
187 int got_avcC; ///< flag used to parse avcC data only once
188 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
189
190 int chroma_qp; //QPc
191
192 int prev_mb_skipped;
193 int next_mb_skipped;
194
195 //prediction stuff
196 int chroma_pred_mode;
197 int intra16x16_pred_mode;
198
199 int top_mb_xy;
200 int left_mb_xy[2];
201
202 int8_t intra4x4_pred_mode_cache[5*8];
203 int8_t (*intra4x4_pred_mode)[8];
204 void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
205 void (*pred8x8l [9+3])(uint8_t *src, int topleft, int topright, int stride);
206 void (*pred8x8 [4+3])(uint8_t *src, int stride);
207 void (*pred16x16[4+3])(uint8_t *src, int stride);
208 unsigned int topleft_samples_available;
209 unsigned int top_samples_available;
210 unsigned int topright_samples_available;
211 unsigned int left_samples_available;
212 uint8_t (*top_borders[2])[16+2*8];
213 uint8_t left_border[2*(17+2*9)];
214
215 /**
216 * non zero coeff count cache.
217 * is 64 if not available.
218 */
219 DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
220 uint8_t (*non_zero_count)[16];
221
222 /**
223 * Motion vector cache.
224 */
225 DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
226 DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
227 #define LIST_NOT_USED -1 //FIXME rename?
228 #define PART_NOT_AVAILABLE -2
229
230 /**
231 * is 1 if the specific list MV&references are set to 0,0,-2.
232 */
233 int mv_cache_clean[2];
234
235 /**
236 * number of neighbors (top and/or left) that used 8x8 dct
237 */
238 int neighbor_transform_size;
239
240 /**
241 * block_offset[ 0..23] for frame macroblocks
242 * block_offset[24..47] for field macroblocks
243 */
244 int block_offset[2*(16+8)];
245
246 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
247 uint32_t *mb2b8_xy;
248 int b_stride; //FIXME use s->b4_stride
249 int b8_stride;
250
251 int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
252 int mb_uvlinesize;
253
254 int emu_edge_width;
255 int emu_edge_height;
256
257 int halfpel_flag;
258 int thirdpel_flag;
259
260 int unknown_svq3_flag;
261 int next_slice_index;
262
263 SPS sps_buffer[MAX_SPS_COUNT];
264 SPS sps; ///< current sps
265
266 PPS pps_buffer[MAX_PPS_COUNT];
267 /**
268 * current pps
269 */
270 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
271
272 uint32_t dequant4_buffer[6][52][16];
273 uint32_t dequant8_buffer[2][52][64];
274 uint32_t (*dequant4_coeff[6])[16];
275 uint32_t (*dequant8_coeff[2])[64];
276 int dequant_coeff_pps; ///< reinit tables when pps changes
277
278 int slice_num;
279 uint8_t *slice_table_base;
280 uint8_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
281 int slice_type;
282 int slice_type_fixed;
283
284 //interlacing specific flags
285 int mb_aff_frame;
286 int mb_field_decoding_flag;
287 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
288
289 int sub_mb_type[4];
290
291 //POC stuff
292 int poc_lsb;
293 int poc_msb;
294 int delta_poc_bottom;
295 int delta_poc[2];
296 int frame_num;
297 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
298 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
299 int frame_num_offset; ///< for POC type 2
300 int prev_frame_num_offset; ///< for POC type 2
301 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
302
303 /**
304 * frame_num for frames or 2*frame_num for field pics.
305 */
306 int curr_pic_num;
307
308 /**
309 * max_frame_num or 2*max_frame_num for field pics.
310 */
311 int max_pic_num;
312
313 //Weighted pred stuff
314 int use_weight;
315 int use_weight_chroma;
316 int luma_log2_weight_denom;
317 int chroma_log2_weight_denom;
318 int luma_weight[2][48];
319 int luma_offset[2][48];
320 int chroma_weight[2][48][2];
321 int chroma_offset[2][48][2];
322 int implicit_weight[48][48];
323
324 //deblock
325 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
326 int slice_alpha_c0_offset;
327 int slice_beta_offset;
328
329 int redundant_pic_count;
330
331 int direct_spatial_mv_pred;
332 int dist_scale_factor[16];
333 int dist_scale_factor_field[32];
334 int map_col_to_list0[2][16];
335 int map_col_to_list0_field[2][32];
336
337 /**
338 * num_ref_idx_l0/1_active_minus1 + 1
339 */
340 int ref_count[2]; ///< counts frames or fields, depending on current mb mode
341 Picture *short_ref[32];
342 Picture *long_ref[32];
343 Picture default_ref_list[2][32];
344 Picture ref_list[2][48]; ///< 0..15: frame refs, 16..47: mbaff field refs
345 Picture *delayed_pic[16]; //FIXME size?
346 Picture *delayed_output_pic;
347
348 /**
349 * memory management control operations buffer.
350 */
351 MMCO mmco[MAX_MMCO_COUNT];
352 int mmco_index;
353
354 int long_ref_count; ///< number of actual long term references
355 int short_ref_count; ///< number of actual short term references
356
357 //data partitioning
358 GetBitContext intra_gb;
359 GetBitContext inter_gb;
360 GetBitContext *intra_gb_ptr;
361 GetBitContext *inter_gb_ptr;
362
363 DECLARE_ALIGNED_8(DCTELEM, mb[16*24]);
364
365 /**
366 * Cabac
367 */
368 CABACContext cabac;
369 uint8_t cabac_state[460];
370 int cabac_init_idc;
371
372 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
373 uint16_t *cbp_table;
374 int top_cbp;
375 int left_cbp;
376 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
377 uint8_t *chroma_pred_mode_table;
378 int last_qscale_diff;
379 int16_t (*mvd_table[2])[2];
380 DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
381 uint8_t *direct_table;
382 uint8_t direct_cache[5*8];
383
384 uint8_t zigzag_scan[16];
385 uint8_t zigzag_scan8x8[64];
386 uint8_t zigzag_scan8x8_cavlc[64];
387 uint8_t field_scan[16];
388 uint8_t field_scan8x8[64];
389 uint8_t field_scan8x8_cavlc[64];
390 const uint8_t *zigzag_scan_q0;
391 const uint8_t *zigzag_scan8x8_q0;
392 const uint8_t *zigzag_scan8x8_cavlc_q0;
393 const uint8_t *field_scan_q0;
394 const uint8_t *field_scan8x8_q0;
395 const uint8_t *field_scan8x8_cavlc_q0;
396
397 int x264_build;
398 }H264Context;
399
400 static VLC coeff_token_vlc[4];
401 static VLC chroma_dc_coeff_token_vlc;
402
403 static VLC total_zeros_vlc[15];
404 static VLC chroma_dc_total_zeros_vlc[3];
405
406 static VLC run_vlc[6];
407 static VLC run7_vlc;
408
409 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
410 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
411 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
412
413 static always_inline uint32_t pack16to32(int a, int b){
414 #ifdef WORDS_BIGENDIAN
415 return (b&0xFFFF) + (a<<16);
416 #else
417 return (a&0xFFFF) + (b<<16);
418 #endif
419 }
420
421 /**
422 * fill a rectangle.
423 * @param h height of the rectangle, should be a constant
424 * @param w width of the rectangle, should be a constant
425 * @param size the size of val (1 or 4), should be a constant
426 */
427 static always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
428 uint8_t *p= (uint8_t*)vp;
429 assert(size==1 || size==4);
430 assert(w<=4);
431
432 w *= size;
433 stride *= size;
434
435 assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
436 assert((stride&(w-1))==0);
437 if(w==2){
438 const uint16_t v= size==4 ? val : val*0x0101;
439 *(uint16_t*)(p + 0*stride)= v;
440 if(h==1) return;
441 *(uint16_t*)(p + 1*stride)= v;
442 if(h==2) return;
443 *(uint16_t*)(p + 2*stride)=
444 *(uint16_t*)(p + 3*stride)= v;
445 }else if(w==4){
446 const uint32_t v= size==4 ? val : val*0x01010101;
447 *(uint32_t*)(p + 0*stride)= v;
448 if(h==1) return;
449 *(uint32_t*)(p + 1*stride)= v;
450 if(h==2) return;
451 *(uint32_t*)(p + 2*stride)=
452 *(uint32_t*)(p + 3*stride)= v;
453 }else if(w==8){
454 //gcc can't optimize 64bit math on x86_32
455 #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
456 const uint64_t v= val*0x0100000001ULL;
457 *(uint64_t*)(p + 0*stride)= v;
458 if(h==1) return;
459 *(uint64_t*)(p + 1*stride)= v;
460 if(h==2) return;
461 *(uint64_t*)(p + 2*stride)=
462 *(uint64_t*)(p + 3*stride)= v;
463 }else if(w==16){
464 const uint64_t v= val*0x0100000001ULL;
465 *(uint64_t*)(p + 0+0*stride)=
466 *(uint64_t*)(p + 8+0*stride)=
467 *(uint64_t*)(p + 0+1*stride)=
468 *(uint64_t*)(p + 8+1*stride)= v;
469 if(h==2) return;
470 *(uint64_t*)(p + 0+2*stride)=
471 *(uint64_t*)(p + 8+2*stride)=
472 *(uint64_t*)(p + 0+3*stride)=
473 *(uint64_t*)(p + 8+3*stride)= v;
474 #else
475 *(uint32_t*)(p + 0+0*stride)=
476 *(uint32_t*)(p + 4+0*stride)= val;
477 if(h==1) return;
478 *(uint32_t*)(p + 0+1*stride)=
479 *(uint32_t*)(p + 4+1*stride)= val;
480 if(h==2) return;
481 *(uint32_t*)(p + 0+2*stride)=
482 *(uint32_t*)(p + 4+2*stride)=
483 *(uint32_t*)(p + 0+3*stride)=
484 *(uint32_t*)(p + 4+3*stride)= val;
485 }else if(w==16){
486 *(uint32_t*)(p + 0+0*stride)=
487 *(uint32_t*)(p + 4+0*stride)=
488 *(uint32_t*)(p + 8+0*stride)=
489 *(uint32_t*)(p +12+0*stride)=
490 *(uint32_t*)(p + 0+1*stride)=
491 *(uint32_t*)(p + 4+1*stride)=
492 *(uint32_t*)(p + 8+1*stride)=
493 *(uint32_t*)(p +12+1*stride)= val;
494 if(h==2) return;
495 *(uint32_t*)(p + 0+2*stride)=
496 *(uint32_t*)(p + 4+2*stride)=
497 *(uint32_t*)(p + 8+2*stride)=
498 *(uint32_t*)(p +12+2*stride)=
499 *(uint32_t*)(p + 0+3*stride)=
500 *(uint32_t*)(p + 4+3*stride)=
501 *(uint32_t*)(p + 8+3*stride)=
502 *(uint32_t*)(p +12+3*stride)= val;
503 #endif
504 }else
505 assert(0);
506 assert(h==4);
507 }
508
509 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
510 MpegEncContext * const s = &h->s;
511 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
512 int topleft_xy, top_xy, topright_xy, left_xy[2];
513 int topleft_type, top_type, topright_type, left_type[2];
514 int left_block[8];
515 int i;
516
517 //FIXME deblocking can skip fill_caches much of the time with multiple slices too.
518 // the actual condition is whether we're on the edge of a slice,
519 // and even then the intra and nnz parts are unnecessary.
520 if(for_deblock && h->slice_num == 1 && !FRAME_MBAFF)
521 return;
522
523 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
524
525 top_xy = mb_xy - s->mb_stride;
526 topleft_xy = top_xy - 1;
527 topright_xy= top_xy + 1;
528 left_xy[1] = left_xy[0] = mb_xy-1;
529 left_block[0]= 0;
530 left_block[1]= 1;
531 left_block[2]= 2;
532 left_block[3]= 3;
533 left_block[4]= 7;
534 left_block[5]= 10;
535 left_block[6]= 8;
536 left_block[7]= 11;
537 if(FRAME_MBAFF){
538 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
539 const int top_pair_xy = pair_xy - s->mb_stride;
540 const int topleft_pair_xy = top_pair_xy - 1;
541 const int topright_pair_xy = top_pair_xy + 1;
542 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
543 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
544 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
545 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
546 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
547 const int bottom = (s->mb_y & 1);
548 tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
549 if (bottom
550 ? !curr_mb_frame_flag // bottom macroblock
551 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
552 ) {
553 top_xy -= s->mb_stride;
554 }
555 if (bottom
556 ? !curr_mb_frame_flag // bottom macroblock
557 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
558 ) {
559 topleft_xy -= s->mb_stride;
560 }
561 if (bottom
562 ? !curr_mb_frame_flag // bottom macroblock
563 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
564 ) {
565 topright_xy -= s->mb_stride;
566 }
567 if (left_mb_frame_flag != curr_mb_frame_flag) {
568 left_xy[1] = left_xy[0] = pair_xy - 1;
569 if (curr_mb_frame_flag) {
570 if (bottom) {
571 left_block[0]= 2;
572 left_block[1]= 2;
573 left_block[2]= 3;
574 left_block[3]= 3;
575 left_block[4]= 8;
576 left_block[5]= 11;
577 left_block[6]= 8;
578 left_block[7]= 11;
579 } else {
580 left_block[0]= 0;
581 left_block[1]= 0;
582 left_block[2]= 1;
583 left_block[3]= 1;
584 left_block[4]= 7;
585 left_block[5]= 10;
586 left_block[6]= 7;
587 left_block[7]= 10;
588 }
589 } else {
590 left_xy[1] += s->mb_stride;
591 //left_block[0]= 0;
592 left_block[1]= 2;
593 left_block[2]= 0;
594 left_block[3]= 2;
595 //left_block[4]= 7;
596 left_block[5]= 10;
597 left_block[6]= 7;
598 left_block[7]= 10;
599 }
600 }
601 }
602
603 h->top_mb_xy = top_xy;
604 h->left_mb_xy[0] = left_xy[0];
605 h->left_mb_xy[1] = left_xy[1];
606 if(for_deblock){
607 topleft_type = h->slice_table[topleft_xy ] < 255 ? s->current_picture.mb_type[topleft_xy] : 0;
608 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
609 topright_type= h->slice_table[topright_xy] < 255 ? s->current_picture.mb_type[topright_xy]: 0;
610 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
611 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
612
613 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
614 int list;
615 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
616 for(i=0; i<16; i++)
617 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
618 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
619 if(USES_LIST(mb_type,list)){
620 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
621 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
622 uint8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
623 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
624 dst[0] = src[0];
625 dst[1] = src[1];
626 dst[2] = src[2];
627 dst[3] = src[3];
628 }
629 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
630 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
631 ref += h->b8_stride;
632 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
633 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
634 }else{
635 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
636 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
637 }
638 }
639 }
640 }else{
641 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
642 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
643 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
644 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
645 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
646 }
647
648 if(IS_INTRA(mb_type)){
649 h->topleft_samples_available=
650 h->top_samples_available=
651 h->left_samples_available= 0xFFFF;
652 h->topright_samples_available= 0xEEEA;
653
654 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
655 h->topleft_samples_available= 0xB3FF;
656 h->top_samples_available= 0x33FF;
657 h->topright_samples_available= 0x26EA;
658 }
659 for(i=0; i<2; i++){
660 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
661 h->topleft_samples_available&= 0xDF5F;
662 h->left_samples_available&= 0x5F5F;
663 }
664 }
665
666 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
667 h->topleft_samples_available&= 0x7FFF;
668
669 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
670 h->topright_samples_available&= 0xFBFF;
671
672 if(IS_INTRA4x4(mb_type)){
673 if(IS_INTRA4x4(top_type)){
674 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
675 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
676 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
677 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
678 }else{
679 int pred;
680 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
681 pred= -1;
682 else{
683 pred= 2;
684 }
685 h->intra4x4_pred_mode_cache[4+8*0]=
686 h->intra4x4_pred_mode_cache[5+8*0]=
687 h->intra4x4_pred_mode_cache[6+8*0]=
688 h->intra4x4_pred_mode_cache[7+8*0]= pred;
689 }
690 for(i=0; i<2; i++){
691 if(IS_INTRA4x4(left_type[i])){
692 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
693 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
694 }else{
695 int pred;
696 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
697 pred= -1;
698 else{
699 pred= 2;
700 }
701 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
702 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
703 }
704 }
705 }
706 }
707
708
709 /*
710 0 . T T. T T T T
711 1 L . .L . . . .
712 2 L . .L . . . .
713 3 . T TL . . . .
714 4 L . .L . . . .
715 5 L . .. . . . .
716 */
717 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
718 if(top_type){
719 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
720 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
721 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
722 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
723
724 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
725 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
726
727 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
728 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
729
730 }else{
731 h->non_zero_count_cache[4+8*0]=
732 h->non_zero_count_cache[5+8*0]=
733 h->non_zero_count_cache[6+8*0]=
734 h->non_zero_count_cache[7+8*0]=
735
736 h->non_zero_count_cache[1+8*0]=
737 h->non_zero_count_cache[2+8*0]=
738
739 h->non_zero_count_cache[1+8*3]=
740 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
741
742 }
743
744 for (i=0; i<2; i++) {
745 if(left_type[i]){
746 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
747 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
748 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
749 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
750 }else{
751 h->non_zero_count_cache[3+8*1 + 2*8*i]=
752 h->non_zero_count_cache[3+8*2 + 2*8*i]=
753 h->non_zero_count_cache[0+8*1 + 8*i]=
754 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
755 }
756 }
757
758 if( h->pps.cabac ) {
759 // top_cbp
760 if(top_type) {
761 h->top_cbp = h->cbp_table[top_xy];
762 } else if(IS_INTRA(mb_type)) {
763 h->top_cbp = 0x1C0;
764 } else {
765 h->top_cbp = 0;
766 }
767 // left_cbp
768 if (left_type[0]) {
769 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
770 } else if(IS_INTRA(mb_type)) {
771 h->left_cbp = 0x1C0;
772 } else {
773 h->left_cbp = 0;
774 }
775 if (left_type[0]) {
776 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
777 }
778 if (left_type[1]) {
779 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
780 }
781 }
782
783 #if 1
784 //FIXME direct mb can skip much of this
785 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
786 int list;
787 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
788 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
789 /*if(!h->mv_cache_clean[list]){
790 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
791 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
792 h->mv_cache_clean[list]= 1;
793 }*/
794 continue;
795 }
796 h->mv_cache_clean[list]= 0;
797
798 if(USES_LIST(top_type, list)){
799 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
800 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
801 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
802 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
803 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
804 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
805 h->ref_cache[list][scan8[0] + 0 - 1*8]=
806 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
807 h->ref_cache[list][scan8[0] + 2 - 1*8]=
808 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
809 }else{
810 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
811 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
812 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
813 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
814 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
815 }
816
817 //FIXME unify cleanup or sth
818 if(USES_LIST(left_type[0], list)){
819 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
820 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
821 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
822 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
823 h->ref_cache[list][scan8[0] - 1 + 0*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
824 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1]>>1)];
825 }else{
826 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
827 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
828 h->ref_cache[list][scan8[0] - 1 + 0*8]=
829 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
830 }
831
832 if(USES_LIST(left_type[1], list)){
833 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
834 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
835 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
836 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
837 h->ref_cache[list][scan8[0] - 1 + 2*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
838 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[3]>>1)];
839 }else{
840 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
841 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
842 h->ref_cache[list][scan8[0] - 1 + 2*8]=
843 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
844 assert((!left_type[0]) == (!left_type[1]));
845 }
846
847 if(for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred))
848 continue;
849
850 if(USES_LIST(topleft_type, list)){
851 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
852 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
853 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
854 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
855 }else{
856 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
857 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
858 }
859
860 if(USES_LIST(topright_type, list)){
861 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
862 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
863 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
864 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
865 }else{
866 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
867 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
868 }
869
870
871 h->ref_cache[list][scan8[5 ]+1] =
872 h->ref_cache[list][scan8[7 ]+1] =
873 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
874 h->ref_cache[list][scan8[4 ]] =
875 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
876 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
877 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
878 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
879 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
880 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
881
882 if( h->pps.cabac ) {
883 /* XXX beurk, Load mvd */
884 if(USES_LIST(top_type, list)){
885 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
886 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
887 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
888 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
889 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
890 }else{
891 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
892 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
893 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
894 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
895 }
896 if(USES_LIST(left_type[0], list)){
897 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
898 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
899 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
900 }else{
901 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
902 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
903 }
904 if(USES_LIST(left_type[1], list)){
905 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
906 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
907 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
908 }else{
909 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
910 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
911 }
912 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
913 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
914 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
915 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
916 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
917
918 if(h->slice_type == B_TYPE){
919 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
920
921 if(IS_DIRECT(top_type)){
922 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
923 }else if(IS_8X8(top_type)){
924 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
925 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
926 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
927 }else{
928 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
929 }
930
931 if(IS_DIRECT(left_type[0]))
932 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
933 else if(IS_8X8(left_type[0]))
934 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
935 else
936 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
937
938 if(IS_DIRECT(left_type[1]))
939 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
940 else if(IS_8X8(left_type[1]))
941 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
942 else
943 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
944 }
945 }
946
947 if(FRAME_MBAFF){
948 #define MAP_MVS\
949 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
950 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
951 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
952 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
953 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
954 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
955 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
956 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
957 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
958 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
959 if(MB_FIELD){
960 #define MAP_F2F(idx, mb_type)\
961 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
962 h->ref_cache[list][idx] <<= 1;\
963 h->mv_cache[list][idx][1] /= 2;\
964 h->mvd_cache[list][idx][1] /= 2;\
965 }
966 MAP_MVS
967 #undef MAP_F2F
968 }else{
969 #define MAP_F2F(idx, mb_type)\
970 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
971 h->ref_cache[list][idx] >>= 1;\
972 h->mv_cache[list][idx][1] <<= 1;\
973 h->mvd_cache[list][idx][1] <<= 1;\
974 }
975 MAP_MVS
976 #undef MAP_F2F
977 }
978 }
979 }
980 }
981 #endif
982
983 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
984 }
985
986 static inline void write_back_intra_pred_mode(H264Context *h){
987 MpegEncContext * const s = &h->s;
988 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
989
990 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
991 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
992 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
993 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
994 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
995 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
996 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
997 }
998
999 /**
1000 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
1001 */
1002 static inline int check_intra4x4_pred_mode(H264Context *h){
1003 MpegEncContext * const s = &h->s;
1004 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
1005 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
1006 int i;
1007
1008 if(!(h->top_samples_available&0x8000)){
1009 for(i=0; i<4; i++){
1010 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
1011 if(status<0){
1012 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
1013 return -1;
1014 } else if(status){
1015 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
1016 }
1017 }
1018 }
1019
1020 if(!(h->left_samples_available&0x8000)){
1021 for(i=0; i<4; i++){
1022 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
1023 if(status<0){
1024 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
1025 return -1;
1026 } else if(status){
1027 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
1028 }
1029 }
1030 }
1031
1032 return 0;
1033 } //FIXME cleanup like next
1034
1035 /**
1036 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
1037 */
1038 static inline int check_intra_pred_mode(H264Context *h, int mode){
1039 MpegEncContext * const s = &h->s;
1040 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
1041 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
1042
1043 if(mode < 0 || mode > 6) {
1044 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
1045 return -1;
1046 }
1047
1048 if(!(h->top_samples_available&0x8000)){
1049 mode= top[ mode ];
1050 if(mode<0){
1051 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
1052 return -1;
1053 }
1054 }
1055
1056 if(!(h->left_samples_available&0x8000)){
1057 mode= left[ mode ];
1058 if(mode<0){
1059 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
1060 return -1;
1061 }
1062 }
1063
1064 return mode;
1065 }
1066
1067 /**
1068 * gets the predicted intra4x4 prediction mode.
1069 */
1070 static inline int pred_intra_mode(H264Context *h, int n){
1071 const int index8= scan8[n];
1072 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1073 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1074 const int min= FFMIN(left, top);
1075
1076 tprintf("mode:%d %d min:%d\n", left ,top, min);
1077
1078 if(min<0) return DC_PRED;
1079 else return min;
1080 }
1081
1082 static inline void write_back_non_zero_count(H264Context *h){
1083 MpegEncContext * const s = &h->s;
1084 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1085
1086 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
1087 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
1088 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
1089 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
1090 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
1091 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
1092 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
1093
1094 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
1095 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
1096 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
1097
1098 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
1099 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
1100 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
1101
1102 if(FRAME_MBAFF){
1103 // store all luma nnzs, for deblocking
1104 int v = 0, i;
1105 for(i=0; i<16; i++)
1106 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
1107 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
1108 }
1109 }
1110
1111 /**
1112 * gets the predicted number of non zero coefficients.
1113 * @param n block index
1114 */
1115 static inline int pred_non_zero_count(H264Context *h, int n){
1116 const int index8= scan8[n];
1117 const int left= h->non_zero_count_cache[index8 - 1];
1118 const int top = h->non_zero_count_cache[index8 - 8];
1119 int i= left + top;
1120
1121 if(i<64) i= (i+1)>>1;
1122
1123 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
1124
1125 return i&31;
1126 }
1127
1128 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
1129 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
1130
1131 /* there is no consistent mapping of mvs to neighboring locations that will
1132 * make mbaff happy, so we can't move all this logic to fill_caches */
1133 if(FRAME_MBAFF){
1134 MpegEncContext *s = &h->s;
1135 const int *mb_types = s->current_picture_ptr->mb_type;
1136 const int16_t *mv;
1137 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
1138 *C = h->mv_cache[list][scan8[0]-2];
1139
1140 if(!MB_FIELD
1141 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
1142 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
1143 if(IS_INTERLACED(mb_types[topright_xy])){
1144 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
1145 const int x4 = X4, y4 = Y4;\
1146 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
1147 if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
1148 return LIST_NOT_USED;\
1149 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
1150 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
1151 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
1152 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
1153
1154 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
1155 }
1156 }
1157 if(topright_ref == PART_NOT_AVAILABLE
1158 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
1159 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
1160 if(!MB_FIELD
1161 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
1162 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
1163 }
1164 if(MB_FIELD
1165 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
1166 && i >= scan8[0]+8){
1167 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
1168 SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
1169 }
1170 }
1171 #undef SET_DIAG_MV
1172 }
1173
1174 if(topright_ref != PART_NOT_AVAILABLE){
1175 *C= h->mv_cache[list][ i - 8 + part_width ];
1176 return topright_ref;
1177 }else{
1178 tprintf("topright MV not available\n");
1179
1180 *C= h->mv_cache[list][ i - 8 - 1 ];
1181 return h->ref_cache[list][ i - 8 - 1 ];
1182 }
1183 }
1184
1185 /**
1186 * gets the predicted MV.
1187 * @param n the block index
1188 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
1189 * @param mx the x component of the predicted motion vector
1190 * @param my the y component of the predicted motion vector
1191 */
1192 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
1193 const int index8= scan8[n];
1194 const int top_ref= h->ref_cache[list][ index8 - 8 ];
1195 const int left_ref= h->ref_cache[list][ index8 - 1 ];
1196 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
1197 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
1198 const int16_t * C;
1199 int diagonal_ref, match_count;
1200
1201 assert(part_width==1 || part_width==2 || part_width==4);
1202
1203 /* mv_cache
1204 B . . A T T T T
1205 U . . L . . , .
1206 U . . L . . . .
1207 U . . L . . , .
1208 . . . L . . . .
1209 */
1210
1211 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
1212 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
1213 tprintf("pred_motion match_count=%d\n", match_count);
1214 if(match_count > 1){ //most common
1215 *mx= mid_pred(A[0], B[0], C[0]);
1216 *my= mid_pred(A[1], B[1], C[1]);
1217 }else if(match_count==1){
1218 if(left_ref==ref){
1219 *mx= A[0];
1220 *my= A[1];
1221 }else if(top_ref==ref){
1222 *mx= B[0];
1223 *my= B[1];
1224 }else{
1225 *mx= C[0];
1226 *my= C[1];
1227 }
1228 }else{
1229 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
1230 *mx= A[0];
1231 *my= A[1];
1232 }else{
1233 *mx= mid_pred(A[0], B[0], C[0]);
1234 *my= mid_pred(A[1], B[1], C[1]);
1235 }
1236 }
1237
1238 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
1239 }
1240
1241 /**
1242 * gets the directionally predicted 16x8 MV.
1243 * @param n the block index
1244 * @param mx the x component of the predicted motion vector
1245 * @param my the y component of the predicted motion vector
1246 */
1247 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1248 if(n==0){
1249 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
1250 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
1251
1252 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
1253
1254 if(top_ref == ref){
1255 *mx= B[0];
1256 *my= B[1];
1257 return;
1258 }
1259 }else{
1260 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
1261 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
1262
1263 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1264
1265 if(left_ref == ref){
1266 *mx= A[0];
1267 *my= A[1];
1268 return;
1269 }
1270 }
1271
1272 //RARE
1273 pred_motion(h, n, 4, list, ref, mx, my);
1274 }
1275
1276 /**
1277 * gets the directionally predicted 8x16 MV.
1278 * @param n the block index
1279 * @param mx the x component of the predicted motion vector
1280 * @param my the y component of the predicted motion vector
1281 */
1282 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1283 if(n==0){
1284 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
1285 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
1286
1287 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1288
1289 if(left_ref == ref){
1290 *mx= A[0];
1291 *my= A[1];
1292 return;
1293 }
1294 }else{
1295 const int16_t * C;
1296 int diagonal_ref;
1297
1298 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1299
1300 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1301
1302 if(diagonal_ref == ref){
1303 *mx= C[0];
1304 *my= C[1];
1305 return;
1306 }
1307 }
1308
1309 //RARE
1310 pred_motion(h, n, 2, list, ref, mx, my);
1311 }
1312
1313 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1314 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1315 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1316
1317 tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1318
1319 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1320 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1321 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1322
1323 *mx = *my = 0;
1324 return;
1325 }
1326
1327 pred_motion(h, 0, 4, 0, 0, mx, my);
1328
1329 return;
1330 }
1331
1332 static inline void direct_dist_scale_factor(H264Context * const h){
1333 const int poc = h->s.current_picture_ptr->poc;
1334 const int poc1 = h->ref_list[1][0].poc;
1335 int i;
1336 for(i=0; i<h->ref_count[0]; i++){
1337 int poc0 = h->ref_list[0][i].poc;
1338 int td = clip(poc1 - poc0, -128, 127);
1339 if(td == 0 /* FIXME || pic0 is a long-term ref */){
1340 h->dist_scale_factor[i] = 256;
1341 }else{
1342 int tb = clip(poc - poc0, -128, 127);
1343 int tx = (16384 + (ABS(td) >> 1)) / td;
1344 h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1345 }
1346 }
1347 if(FRAME_MBAFF){
1348 for(i=0; i<h->ref_count[0]; i++){
1349 h->dist_scale_factor_field[2*i] =
1350 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
1351 }
1352 }
1353 }
1354 static inline void direct_ref_list_init(H264Context * const h){
1355 MpegEncContext * const s = &h->s;
1356 Picture * const ref1 = &h->ref_list[1][0];
1357 Picture * const cur = s->current_picture_ptr;
1358 int list, i, j;
1359 if(cur->pict_type == I_TYPE)
1360 cur->ref_count[0] = 0;
1361 if(cur->pict_type != B_TYPE)
1362 cur->ref_count[1] = 0;
1363 for(list=0; list<2; list++){
1364 cur->ref_count[list] = h->ref_count[list];
1365 for(j=0; j<h->ref_count[list]; j++)
1366 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1367 }
1368 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1369 return;
1370 for(list=0; list<2; list++){
1371 for(i=0; i<ref1->ref_count[list]; i++){
1372 const int poc = ref1->ref_poc[list][i];
1373 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
1374 for(j=0; j<h->ref_count[list]; j++)
1375 if(h->ref_list[list][j].poc == poc){
1376 h->map_col_to_list0[list][i] = j;
1377 break;
1378 }
1379 }
1380 }
1381 if(FRAME_MBAFF){
1382 for(list=0; list<2; list++){
1383 for(i=0; i<ref1->ref_count[list]; i++){
1384 j = h->map_col_to_list0[list][i];
1385 h->map_col_to_list0_field[list][2*i] = 2*j;
1386 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
1387 }
1388 }
1389 }
1390 }
1391
1392 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1393 MpegEncContext * const s = &h->s;
1394 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1395 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1396 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1397 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1398 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1399 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
1400 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1401 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1402 const int is_b8x8 = IS_8X8(*mb_type);
1403 int sub_mb_type;
1404 int i8, i4;
1405
1406 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
1407 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1408 /* FIXME save sub mb types from previous frames (or derive from MVs)
1409 * so we know exactly what block size to use */
1410 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1411 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1412 }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
1413 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1414 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1415 }else{
1416 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1417 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1418 }
1419 if(!is_b8x8)
1420 *mb_type |= MB_TYPE_DIRECT2;
1421 if(MB_FIELD)
1422 *mb_type |= MB_TYPE_INTERLACED;
1423
1424 tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1425
1426 if(h->direct_spatial_mv_pred){
1427 int ref[2];
1428 int mv[2][2];
1429 int list;
1430
1431 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1432
1433 /* ref = min(neighbors) */
1434 for(list=0; list<2; list++){
1435 int refa = h->ref_cache[list][scan8[0] - 1];
1436 int refb = h->ref_cache[list][scan8[0] - 8];
1437 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1438 if(refc == -2)
1439 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1440 ref[list] = refa;
1441 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1442 ref[list] = refb;
1443 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1444 ref[list] = refc;
1445 if(ref[list] < 0)
1446 ref[list] = -1;
1447 }
1448
1449 if(ref[0] < 0 && ref[1] < 0){
1450 ref[0] = ref[1] = 0;
1451 mv[0][0] = mv[0][1] =
1452 mv[1][0] = mv[1][1] = 0;
1453 }else{
1454 for(list=0; list<2; list++){
1455 if(ref[list] >= 0)
1456 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1457 else
1458 mv[list][0] = mv[list][1] = 0;
1459 }
1460 }
1461
1462 if(ref[1] < 0){
1463 *mb_type &= ~MB_TYPE_P0L1;
1464 sub_mb_type &= ~MB_TYPE_P0L1;
1465 }else if(ref[0] < 0){
1466 *mb_type &= ~MB_TYPE_P0L0;
1467 sub_mb_type &= ~MB_TYPE_P0L0;
1468 }
1469
1470 if(IS_16X16(*mb_type)){
1471 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1472 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1473 if(!IS_INTRA(mb_type_col)
1474 && ( (l1ref0[0] == 0 && ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1)
1475 || (l1ref0[0] < 0 && l1ref1[0] == 0 && ABS(l1mv1[0][0]) <= 1 && ABS(l1mv1[0][1]) <= 1
1476 && (h->x264_build>33 || !h->x264_build)))){
1477 if(ref[0] > 0)
1478 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1479 else
1480 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1481 if(ref[1] > 0)
1482 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1483 else
1484 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1485 }else{
1486 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1487 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1488 }
1489 }else{
1490 for(i8=0; i8<4; i8++){
1491 const int x8 = i8&1;
1492 const int y8 = i8>>1;
1493
1494 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1495 continue;
1496 h->sub_mb_type[i8] = sub_mb_type;
1497
1498 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1499 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1500 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1501 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1502
1503 /* col_zero_flag */
1504 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1505 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1506 && (h->x264_build>33 || !h->x264_build)))){
1507 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1508 if(IS_SUB_8X8(sub_mb_type)){
1509 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1510 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1511 if(ref[0] == 0)
1512 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1513 if(ref[1] == 0)
1514 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1515 }
1516 }else
1517 for(i4=0; i4<4; i4++){
1518 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1519 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1520 if(ref[0] == 0)
1521 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1522 if(ref[1] == 0)
1523 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1524 }
1525 }
1526 }
1527 }
1528 }
1529 }else{ /* direct temporal mv pred */
1530 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1531 const int *dist_scale_factor = h->dist_scale_factor;
1532
1533 if(FRAME_MBAFF){
1534 if(IS_INTERLACED(*mb_type)){
1535 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1536 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1537 dist_scale_factor = h->dist_scale_factor_field;
1538 }
1539 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1540 /* FIXME assumes direct_8x8_inference == 1 */
1541 const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1542 int mb_types_col[2];
1543 int y_shift;
1544
1545 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
1546 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
1547 | (*mb_type & MB_TYPE_INTERLACED);
1548 sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
1549
1550 if(IS_INTERLACED(*mb_type)){
1551 /* frame to field scaling */
1552 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1553 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1554 if(s->mb_y&1){
1555 l1ref0 -= 2*h->b8_stride;
1556 l1ref1 -= 2*h->b8_stride;
1557 l1mv0 -= 4*h->b_stride;
1558 l1mv1 -= 4*h->b_stride;
1559 }
1560 y_shift = 0;
1561
1562 if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
1563 && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
1564 && !is_b8x8)
1565 *mb_type |= MB_TYPE_16x8;
1566 else
1567 *mb_type |= MB_TYPE_8x8;
1568 }else{
1569 /* field to frame scaling */
1570 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1571 * but in MBAFF, top and bottom POC are equal */
1572 int dy = (s->mb_y&1) ? 1 : 2;
1573 mb_types_col[0] =
1574 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1575 l1ref0 += dy*h->b8_stride;
1576 l1ref1 += dy*h->b8_stride;
1577 l1mv0 += 2*dy*h->b_stride;
1578 l1mv1 += 2*dy*h->b_stride;
1579 y_shift = 2;
1580
1581 if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
1582 && !is_b8x8)
1583 *mb_type |= MB_TYPE_16x16;
1584 else
1585 *mb_type |= MB_TYPE_8x8;
1586 }
1587
1588 for(i8=0; i8<4; i8++){
1589 const int x8 = i8&1;
1590 const int y8 = i8>>1;
1591 int ref0, scale;
1592 const int16_t (*l1mv)[2]= l1mv0;
1593
1594 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1595 continue;
1596 h->sub_mb_type[i8] = sub_mb_type;
1597
1598 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1599 if(IS_INTRA(mb_types_col[y8])){
1600 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1601 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1602 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1603 continue;
1604 }
1605
1606 ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
1607 if(ref0 >= 0)
1608 ref0 = map_col_to_list0[0][ref0*2>>y_shift];
1609 else{
1610 ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
1611 l1mv= l1mv1;
1612 }
1613 scale = dist_scale_factor[ref0];
1614 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1615
1616 {
1617 const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
1618 int my_col = (mv_col[1]<<y_shift)/2;
1619 int mx = (scale * mv_col[0] + 128) >> 8;
1620 int my = (scale * my_col + 128) >> 8;
1621 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1622 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1623 }
1624 }
1625 return;
1626 }
1627 }
1628
1629 /* one-to-one mv scaling */
1630
1631 if(IS_16X16(*mb_type)){
1632 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1633 if(IS_INTRA(mb_type_col)){
1634 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1635 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1636 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1637 }else{
1638 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1639 : map_col_to_list0[1][l1ref1[0]];
1640 const int scale = dist_scale_factor[ref0];
1641 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1642 int mv_l0[2];
1643 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1644 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1645 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1646 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1647 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1648 }
1649 }else{
1650 for(i8=0; i8<4; i8++){
1651 const int x8 = i8&1;
1652 const int y8 = i8>>1;
1653 int ref0, scale;
1654 const int16_t (*l1mv)[2]= l1mv0;
1655
1656 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1657 continue;
1658 h->sub_mb_type[i8] = sub_mb_type;
1659 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1660 if(IS_INTRA(mb_type_col)){
1661 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1662 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1663 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1664 continue;
1665 }
1666
1667 ref0 = l1ref0[x8 + y8*h->b8_stride];
1668 if(ref0 >= 0)
1669 ref0 = map_col_to_list0[0][ref0];
1670 else{
1671 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1672 l1mv= l1mv1;
1673 }
1674 scale = dist_scale_factor[ref0];
1675
1676 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1677 if(IS_SUB_8X8(sub_mb_type)){
1678 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1679 int mx = (scale * mv_col[0] + 128) >> 8;
1680 int my = (scale * mv_col[1] + 128) >> 8;
1681 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1682 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1683 }else
1684 for(i4=0; i4<4; i4++){
1685 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1686 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1687 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1688 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1689 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1690 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1691 }
1692 }
1693 }
1694 }
1695 }
1696
1697 static inline void write_back_motion(H264Context *h, int mb_type){
1698 MpegEncContext * const s = &h->s;
1699 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1700 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1701 int list;
1702
1703 if(!USES_LIST(mb_type, 0))
1704 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1705
1706 for(list=0; list<2; list++){
1707 int y;
1708 if(!USES_LIST(mb_type, list))
1709 continue;
1710
1711 for(y=0; y<4; y++){
1712 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1713 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1714 }
1715 if( h->pps.cabac ) {
1716 for(y=0; y<4; y++){
1717 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1718 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1719 }
1720 }
1721
1722 {
1723 uint8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1724 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1725 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1726 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1727 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1728 }
1729 }
1730
1731 if(h->slice_type == B_TYPE && h->pps.cabac){
1732 if(IS_8X8(mb_type)){
1733 uint8_t *direct_table = &h->direct_table[b8_xy];
1734 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1735 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1736 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1737 }
1738 }
1739 }
1740
1741 /**
1742 * Decodes a network abstraction layer unit.
1743 * @param consumed is the number of bytes used as input
1744 * @param length is the length of the array
1745 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1746 * @returns decoded bytes, might be src+1 if no escapes
1747 */
1748 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1749 int i, si, di;
1750 uint8_t *dst;
1751
1752 // src[0]&0x80; //forbidden bit
1753 h->nal_ref_idc= src[0]>>5;
1754 h->nal_unit_type= src[0]&0x1F;
1755
1756 src++; length--;
1757 #if 0
1758 for(i=0; i<length; i++)
1759 printf("%2X ", src[i]);
1760 #endif
1761 for(i=0; i+1<length; i+=2){
1762 if(src[i]) continue;
1763 if(i>0 && src[i-1]==0) i--;
1764 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1765 if(src[i+2]!=3){
1766 /* startcode, so we must be past the end */
1767 length=i;
1768 }
1769 break;
1770 }
1771 }
1772
1773 if(i>=length-1){ //no escaped 0
1774 *dst_length= length;
1775 *consumed= length+1; //+1 for the header
1776 return src;
1777 }
1778
1779 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1780 dst= h->rbsp_buffer;
1781
1782 //printf("decoding esc\n");
1783 si=di=0;
1784 while(si<length){
1785 //remove escapes (very rare 1:2^22)
1786 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1787 if(src[si+2]==3){ //escape
1788 dst[di++]= 0;
1789 dst[di++]= 0;
1790 si+=3;
1791 continue;
1792 }else //next start code
1793 break;
1794 }
1795
1796 dst[di++]= src[si++];
1797 }
1798
1799 *dst_length= di;
1800 *consumed= si + 1;//+1 for the header
1801 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1802 return dst;
1803 }
1804
1805 #if 0
1806 /**
1807 * @param src the data which should be escaped
1808 * @param dst the target buffer, dst+1 == src is allowed as a special case
1809 * @param length the length of the src data
1810 * @param dst_length the length of the dst array
1811 * @returns length of escaped data in bytes or -1 if an error occured
1812 */
1813 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1814 int i, escape_count, si, di;
1815 uint8_t *temp;
1816
1817 assert(length>=0);
1818 assert(dst_length>0);
1819
1820 dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1821
1822 if(length==0) return 1;
1823
1824 escape_count= 0;
1825 for(i=0; i<length; i+=2){
1826 if(src[i]) continue;
1827 if(i>0 && src[i-1]==0)
1828 i--;
1829 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1830 escape_count++;
1831 i+=2;
1832 }
1833 }
1834
1835 if(escape_count==0){
1836 if(dst+1 != src)
1837 memcpy(dst+1, src, length);
1838 return length + 1;
1839 }
1840
1841 if(length + escape_count + 1> dst_length)
1842 return -1;
1843
1844 //this should be damn rare (hopefully)
1845
1846 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1847 temp= h->rbsp_buffer;
1848 //printf("encoding esc\n");
1849
1850 si= 0;
1851 di= 0;
1852 while(si < length){
1853 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1854 temp[di++]= 0; si++;
1855 temp[di++]= 0; si++;
1856 temp[di++]= 3;
1857 temp[di++]= src[si++];
1858 }
1859 else
1860 temp[di++]= src[si++];
1861 }
1862 memcpy(dst+1, temp, length+escape_count);
1863
1864 assert(di == length+escape_count);
1865
1866 return di + 1;
1867 }
1868
1869 /**
1870 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1871 */
1872 static void encode_rbsp_trailing(PutBitContext *pb){
1873 int length;
1874 put_bits(pb, 1, 1);
1875 length= (-put_bits_count(pb))&7;
1876 if(length) put_bits(pb, length, 0);
1877 }
1878 #endif
1879
1880 /**
1881 * identifies the exact end of the bitstream
1882 * @return the length of the trailing, or 0 if damaged
1883 */
1884 static int decode_rbsp_trailing(uint8_t *src){
1885 int v= *src;
1886 int r;
1887
1888 tprintf("rbsp trailing %X\n", v);
1889
1890 for(r=1; r<9; r++){
1891 if(v&1) return r;
1892 v>>=1;
1893 }
1894 return 0;
1895 }
1896
1897 /**
1898 * idct tranforms the 16 dc values and dequantize them.
1899 * @param qp quantization parameter
1900 */
1901 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1902 #define stride 16
1903 int i;
1904 int temp[16]; //FIXME check if this is a good idea
1905 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1906 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1907
1908 //memset(block, 64, 2*256);
1909 //return;
1910 for(i=0; i<4; i++){
1911 const int offset= y_offset[i];
1912 const int z0= block[offset+stride*0] + block[offset+stride*4];
1913 const int z1= block[offset+stride*0] - block[offset+stride*4];
1914 const int z2= block[offset+stride*1] - block[offset+stride*5];
1915 const int z3= block[offset+stride*1] + block[offset+stride*5];
1916
1917 temp[4*i+0]= z0+z3;
1918 temp[4*i+1]= z1+z2;
1919 temp[4*i+2]= z1-z2;
1920 temp[4*i+3]= z0-z3;
1921 }
1922
1923 for(i=0; i<4; i++){
1924 const int offset= x_offset[i];
1925 const int z0= temp[4*0+i] + temp[4*2+i];
1926 const int z1= temp[4*0+i] - temp[4*2+i];
1927 const int z2= temp[4*1+i] - temp[4*3+i];
1928 const int z3= temp[4*1+i] + temp[4*3+i];
1929
1930 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1931 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1932 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1933 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1934 }
1935 }
1936
1937 #if 0
1938 /**
1939 * dct tranforms the 16 dc values.
1940 * @param qp quantization parameter ??? FIXME
1941 */
1942 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1943 // const int qmul= dequant_coeff[qp][0];
1944 int i;
1945 int temp[16]; //FIXME check if this is a good idea
1946 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1947 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1948
1949 for(i=0; i<4; i++){
1950 const int offset= y_offset[i];
1951 const int z0= block[offset+stride*0] + block[offset+stride*4];
1952 const int z1= block[offset+stride*0] - block[offset+stride*4];
1953 const int z2= block[offset+stride*1] - block[offset+stride*5];
1954 const int z3= block[offset+stride*1] + block[offset+stride*5];
1955
1956 temp[4*i+0]= z0+z3;
1957 temp[4*i+1]= z1+z2;
1958 temp[4*i+2]= z1-z2;
1959 temp[4*i+3]= z0-z3;
1960 }
1961
1962 for(i=0; i<4; i++){
1963 const int offset= x_offset[i];
1964 const int z0= temp[4*0+i] + temp[4*2+i];
1965 const int z1= temp[4*0+i] - temp[4*2+i];
1966 const int z2= temp[4*1+i] - temp[4*3+i];
1967 const int z3= temp[4*1+i] + temp[4*3+i];
1968
1969 block[stride*0 +offset]= (z0 + z3)>>1;
1970 block[stride*2 +offset]= (z1 + z2)>>1;
1971 block[stride*8 +offset]= (z1 - z2)>>1;
1972 block[stride*10+offset]= (z0 - z3)>>1;
1973 }
1974 }
1975 #endif
1976
1977 #undef xStride
1978 #undef stride
1979
1980 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1981 const int stride= 16*2;
1982 const int xStride= 16;
1983 int a,b,c,d,e;
1984
1985 a= block[stride*0 + xStride*0];
1986 b= block[stride*0 + xStride*1];
1987 c= block[stride*1 + xStride*0];
1988 d= block[stride*1 + xStride*1];
1989
1990 e= a-b;
1991 a= a+b;
1992 b= c-d;
1993 c= c+d;
1994
1995 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1996 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1997 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1998 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1999 }
2000
2001 #if 0
2002 static void chroma_dc_dct_c(DCTELEM *block){
2003 const int stride= 16*2;
2004 const int xStride= 16;
2005 int a,b,c,d,e;
2006
2007 a= block[stride*0 + xStride*0];
2008 b= block[stride*0 + xStride*1];
2009 c= block[stride*1 + xStride*0];
2010 d= block[stride*1 + xStride*1];
2011
2012 e= a-b;
2013 a= a+b;
2014 b= c-d;
2015 c= c+d;
2016
2017 block[stride*0 + xStride*0]= (a+c);
2018 block[stride*0 + xStride*1]= (e+b);
2019 block[stride*1 + xStride*0]= (a-c);
2020 block[stride*1 + xStride*1]= (e-b);
2021 }
2022 #endif
2023
2024 /**
2025 * gets the chroma qp.
2026 */
2027 static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
2028
2029 return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
2030 }
2031
2032
2033 #if 0
2034 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
2035 int i;
2036 //FIXME try int temp instead of block
2037
2038 for(i=0; i<4; i++){
2039 const int d0= src1[0 + i*stride] - src2[0 + i*stride];
2040 const int d1= src1[1 + i*stride] - src2[1 + i*stride];
2041 const int d2= src1[2 + i*stride] - src2[2 + i*stride];
2042 const int d3= src1[3 + i*stride] - src2[3 + i*stride];
2043 const int z0= d0 + d3;
2044 const int z3= d0 - d3;
2045 const int z1= d1 + d2;
2046 const int z2= d1 - d2;
2047
2048 block[0 + 4*i]= z0 + z1;
2049 block[1 + 4*i]= 2*z3 + z2;
2050 block[2 + 4*i]= z0 - z1;
2051 block[3 + 4*i]= z3 - 2*z2;
2052 }
2053
2054 for(i=0; i<4; i++){
2055 const int z0= block[0*4 + i] + block[3*4 + i];
2056 const int z3= block[0*4 + i] - block[3*4 + i];
2057 const int z1= block[1*4 + i] + block[2*4 + i];
2058 const int z2= block[1*4 + i] - block[2*4 + i];
2059
2060 block[0*4 + i]= z0 + z1;
2061 block[1*4 + i]= 2*z3 + z2;
2062 block[2*4 + i]= z0 - z1;
2063 block[3*4 + i]= z3 - 2*z2;
2064 }
2065 }
2066 #endif
2067
2068 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close
2069 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
2070 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
2071 int i;
2072 const int * const quant_table= quant_coeff[qscale];
2073 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
2074 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
2075 const unsigned int threshold2= (threshold1<<1);
2076 int last_non_zero;
2077
2078 if(seperate_dc){
2079 if(qscale<=18){
2080 //avoid overflows
2081 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
2082 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
2083 const unsigned int dc_threshold2= (dc_threshold1<<1);
2084
2085 int level= block[0]*quant_coeff[qscale+18][0];
2086 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
2087 if(level>0){
2088 level= (dc_bias + level)>>(QUANT_SHIFT-2);
2089 block[0]= level;
2090 }else{
2091 level= (dc_bias - level)>>(QUANT_SHIFT-2);
2092 block[0]= -level;
2093 }
2094 // last_non_zero = i;
2095 }else{
2096 block[0]=0;
2097 }
2098 }else{
2099 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
2100 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
2101 const unsigned int dc_threshold2= (dc_threshold1<<1);
2102
2103 int level= block[0]*quant_table[0];
2104 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
2105 if(level>0){
2106 level= (dc_bias + level)>>(QUANT_SHIFT+1);
2107 block[0]= level;
2108 }else{
2109 level= (dc_bias - level)>>(QUANT_SHIFT+1);
2110 block[0]= -level;
2111 }
2112 // last_non_zero = i;
2113 }else{
2114 block[0]=0;
2115 }
2116 }
2117 last_non_zero= 0;
2118 i=1;
2119 }else{
2120 last_non_zero= -1;
2121 i=0;
2122 }
2123
2124 for(; i<16; i++){
2125 const int j= scantable[i];
2126 int level= block[j]*quant_table[j];
2127
2128 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
2129 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
2130 if(((unsigned)(level+threshold1))>threshold2){
2131 if(level>0){
2132 level= (bias + level)>>QUANT_SHIFT;
2133 block[j]= level;
2134 }else{
2135 level= (bias - level)>>QUANT_SHIFT;
2136 block[j]= -level;
2137 }
2138 last_non_zero = i;
2139 }else{
2140 block[j]=0;
2141 }
2142 }
2143
2144 return last_non_zero;
2145 }
2146
2147 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
2148 const uint32_t a= ((uint32_t*)(src-stride))[0];
2149 ((uint32_t*)(src+0*stride))[0]= a;
2150 ((uint32_t*)(src+1*stride))[0]= a;
2151 ((uint32_t*)(src+2*stride))[0]= a;
2152 ((uint32_t*)(src+3*stride))[0]= a;
2153 }
2154
2155 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
2156 ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
2157 ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
2158 ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
2159 ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
2160 }
2161
2162 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
2163 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
2164 + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
2165
2166 ((uint32_t*)(src+0*stride))[0]=
2167 ((uint32_t*)(src+1*stride))[0]=
2168 ((uint32_t*)(src+2*stride))[0]=
2169 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2170 }
2171
2172 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
2173 const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
2174
2175 ((uint32_t*)(src+0*stride))[0]=
2176 ((uint32_t*)(src+1*stride))[0]=
2177 ((uint32_t*)(src+2*stride))[0]=
2178 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2179 }
2180
2181 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
2182 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
2183
2184 ((uint32_t*)(src+0*stride))[0]=
2185 ((uint32_t*)(src+1*stride))[0]=
2186 ((uint32_t*)(src+2*stride))[0]=
2187 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2188 }
2189
2190 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
2191 ((uint32_t*)(src+0*stride))[0]=
2192 ((uint32_t*)(src+1*stride))[0]=
2193 ((uint32_t*)(src+2*stride))[0]=
2194 ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
2195 }
2196
2197
2198 #define LOAD_TOP_RIGHT_EDGE\
2199 const int t4= topright[0];\
2200 const int t5= topright[1];\
2201 const int t6= topright[2];\
2202 const int t7= topright[3];\
2203
2204 #define LOAD_LEFT_EDGE\
2205 const int l0= src[-1+0*stride];\
2206 const int l1= src[-1+1*stride];\
2207 const int l2= src[-1+2*stride];\
2208 const int l3= src[-1+3*stride];\
2209
2210 #define LOAD_TOP_EDGE\
2211 const int t0= src[ 0-1*stride];\
2212 const int t1= src[ 1-1*stride];\
2213 const int t2= src[ 2-1*stride];\
2214 const int t3= src[ 3-1*stride];\
2215
2216 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
2217 const int lt= src[-1-1*stride];
2218 LOAD_TOP_EDGE
2219 LOAD_LEFT_EDGE
2220
2221 src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
2222 src[0+2*stride]=
2223 src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
2224 src[0+1*stride]=
2225 src[1+2*stride]=
2226 src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
2227 src[0+0*stride]=
2228 src[1+1*stride]=
2229 src[2+2*stride]=
2230 src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
2231 src[1+0*stride]=
2232 src[2+1*stride]=
2233 src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
2234 src[2+0*stride]=
2235 src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2236 src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2237 }
2238
2239 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
2240 LOAD_TOP_EDGE
2241 LOAD_TOP_RIGHT_EDGE
2242 // LOAD_LEFT_EDGE
2243
2244 src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
2245 src[1+0*stride]=
2246 src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
2247 src[2+0*stride]=
2248 src[1+1*stride]=
2249 src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
2250 src[3+0*stride]=
2251 src[2+1*stride]=
2252 src[1+2*stride]=
2253 src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
2254 src[3+1*stride]=
2255 src[2+2*stride]=
2256 src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
2257 src[3+2*stride]=
2258 src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
2259 src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
2260 }
2261
2262 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
2263 const int lt= src[-1-1*stride];
2264 LOAD_TOP_EDGE
2265 LOAD_LEFT_EDGE
2266 const __attribute__((unused)) int unu= l3;
2267
2268 src[0+0*stride]=
2269 src[1+2*stride]=(lt + t0 + 1)>>1;
2270 src[1+0*stride]=
2271 src[2+2*stride]=(t0 + t1 + 1)>>1;
2272 src[2+0*stride]=
2273 src[3+2*stride]=(t1 + t2 + 1)>>1;
2274 src[3+0*stride]=(t2 + t3 + 1)>>1;
2275 src[0+1*stride]=
2276 src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
2277 src[1+1*stride]=
2278 src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
2279 src[2+1*stride]=
2280 src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2281 src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2282 src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2283 src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2284 }
2285
2286 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
2287 LOAD_TOP_EDGE
2288 LOAD_TOP_RIGHT_EDGE
2289 const __attribute__((unused)) int unu= t7;
2290
2291 src[0+0*stride]=(t0 + t1 + 1)>>1;
2292 src[1+0*stride]=
2293 src[0+2*stride]=(t1 + t2 + 1)>>1;
2294 src[2+0*stride]=
2295 src[1+2*stride]=(t2 + t3 + 1)>>1;
2296 src[3+0*stride]=
2297 src[2+2*stride]=(t3 + t4+ 1)>>1;
2298 src[3+2*stride]=(t4 + t5+ 1)>>1;
2299 src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2300 src[1+1*stride]=
2301 src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2302 src[2+1*stride]=
2303 src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
2304 src[3+1*stride]=
2305 src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
2306 src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
2307 }
2308
2309 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
2310 LOAD_LEFT_EDGE
2311
2312 src[0+0*stride]=(l0 + l1 + 1)>>1;
2313 src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2314 src[2+0*stride]=
2315 src[0+1*stride]=(l1 + l2 + 1)>>1;
2316 src[3+0*stride]=
2317 src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2318 src[2+1*stride]=
2319 src[0+2*stride]=(l2 + l3 + 1)>>1;
2320 src[3+1*stride]=
2321 src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
2322 src[3+2*stride]=
2323 src[1+3*stride]=
2324 src[0+3*stride]=
2325 src[2+2*stride]=
2326 src[2+3*stride]=
2327 src[3+3*stride]=l3;
2328 }
2329
2330 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
2331 const int lt= src[-1-1*stride];
2332 LOAD_TOP_EDGE
2333 LOAD_LEFT_EDGE
2334 const __attribute__((unused)) int unu= t3;
2335
2336 src[0+0*stride]=
2337 src[2+1*stride]=(lt + l0 + 1)>>1;
2338 src[1+0*stride]=
2339 src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
2340 src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
2341 src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2342 src[0+1*stride]=
2343 src[2+2*stride]=(l0 + l1 + 1)>>1;
2344 src[1+1*stride]=
2345 src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2346 src[0+2*stride]=
2347 src[2+3*stride]=(l1 + l2+ 1)>>1;
2348 src[1+2*stride]=
2349 src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2350 src[0+3*stride]=(l2 + l3 + 1)>>1;
2351 src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2352 }
2353
2354 static void pred16x16_vertical_c(uint8_t *src, int stride){
2355 int i;
2356 const uint32_t a= ((uint32_t*)(src-stride))[0];
2357 const uint32_t b= ((uint32_t*)(src-stride))[1];
2358 const uint32_t c= ((uint32_t*)(src-stride))[2];
2359 const uint32_t d= ((uint32_t*)(src-stride))[3];
2360
2361 for(i=0; i<16; i++){
2362 ((uint32_t*)(src+i*stride))[0]= a;
2363 ((uint32_t*)(src+i*stride))[1]= b;
2364 ((uint32_t*)(src+i*stride))[2]= c;
2365 ((uint32_t*)(src+i*stride))[3]= d;
2366 }
2367 }
2368
2369 static void pred16x16_horizontal_c(uint8_t *src, int stride){
2370 int i;
2371
2372 for(i=0; i<16; i++){
2373 ((uint32_t*)(src+i*stride))[0]=
2374 ((uint32_t*)(src+i*stride))[1]=
2375 ((uint32_t*)(src+i*stride))[2]=
2376 ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
2377 }
2378 }
2379
2380 static void pred16x16_dc_c(uint8_t *src, int stride){
2381 int i, dc=0;
2382
2383 for(i=0;i<16; i++){
2384 dc+= src[-1+i*stride];
2385 }
2386
2387 for(i=0;i<16; i++){
2388 dc+= src[i-stride];
2389 }
2390
2391 dc= 0x01010101*((dc + 16)>>5);
2392
2393 for(i=0; i<16; i++){
2394 ((uint32_t*)(src+i*stride))[0]=
2395 ((uint32_t*)(src+i*stride))[1]=
2396 ((uint32_t*)(src+i*stride))[2]=
2397 ((uint32_t*)(src+i*stride))[3]= dc;
2398 }
2399 }
2400
2401 static void pred16x16_left_dc_c(uint8_t *src, int stride){
2402 int i, dc=0;
2403
2404 for(i=0;i<16; i++){
2405 dc+= src[-1+i*stride];
2406 }
2407
2408 dc= 0x01010101*((dc + 8)>>4);
2409
2410 for(i=0; i<16; i++){
2411 ((uint32_t*)(src+i*stride))[0]=
2412 ((uint32_t*)(src+i*stride))[1]=
2413 ((uint32_t*)(src+i*stride))[2]=
2414 ((uint32_t*)(src+i*stride))[3]= dc;
2415 }
2416 }
2417
2418 static void pred16x16_top_dc_c(uint8_t *src, int stride){
2419 int i, dc=0;
2420
2421 for(i=0;i<16; i++){
2422 dc+= src[i-stride];
2423 }
2424 dc= 0x01010101*((dc + 8)>>4);
2425
2426 for(i=0; i<16; i++){
2427 ((uint32_t*)(src+i*stride))[0]=
2428 ((uint32_t*)(src+i*stride))[1]=
2429 ((uint32_t*)(src+i*stride))[2]=
2430 ((uint32_t*)(src+i*stride))[3]= dc;
2431 }
2432 }
2433
2434 static void pred16x16_128_dc_c(uint8_t *src, int stride){
2435 int i;
2436
2437 for(i=0; i<16; i++){
2438 ((uint32_t*)(src+i*stride))[0]=
2439 ((uint32_t*)(src+i*stride))[1]=
2440 ((uint32_t*)(src+i*stride))[2]=
2441 ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
2442 }
2443 }
2444
2445 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
2446 int i, j, k;
2447 int a;
2448 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2449 const uint8_t * const src0 = src+7-stride;
2450 const uint8_t *src1 = src+8*stride-1;
2451 const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
2452 int H = src0[1] - src0[-1];
2453 int V = src1[0] - src2[ 0];
2454 for(k=2; k<=8; ++k) {
2455 src1 += stride; src2 -= stride;
2456 H += k*(src0[k] - src0[-k]);
2457 V += k*(src1[0] - src2[ 0]);
2458 }
2459 if(svq3){
2460 H = ( 5*(H/4) ) / 16;
2461 V = ( 5*(V/4) ) / 16;
2462
2463 /* required for 100% accuracy */
2464 i = H; H = V; V = i;
2465 }else{
2466 H = ( 5*H+32 ) >> 6;
2467 V = ( 5*V+32 ) >> 6;
2468 }
2469
2470 a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2471 for(j=16; j>0; --j) {
2472 int b = a;
2473 a += V;
2474 for(i=-16; i<0; i+=4) {
2475 src[16+i] = cm[ (b ) >> 5 ];
2476 src[17+i] = cm[ (b+ H) >> 5 ];
2477 src[18+i] = cm[ (b+2*H) >> 5 ];
2478 src[19+i] = cm[ (b+3*H) >> 5 ];
2479 b += 4*H;
2480 }
2481 src += stride;
2482 }
2483 }
2484
2485 static void pred16x16_plane_c(uint8_t *src, int stride){
2486 pred16x16_plane_compat_c(src, stride, 0);
2487 }
2488
2489 static void pred8x8_vertical_c(uint8_t *src, int stride){
2490 int i;
2491 const uint32_t a= ((uint32_t*)(src-stride))[0];
2492 const uint32_t b= ((uint32_t*)(src-stride))[1];
2493
2494 for(i=0; i<8; i++){
2495 ((uint32_t*)(src+i*stride))[0]= a;
2496 ((uint32_t*)(src+i*stride))[1]= b;
2497 }
2498 }
2499
2500 static void pred8x8_horizontal_c(uint8_t *src, int stride){
2501 int i;
2502
2503 for(i=0; i<8; i++){
2504 ((uint32_t*)(src+i*stride))[0]=
2505 ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2506 }
2507 }
2508
2509 static void pred8x8_128_dc_c(uint8_t *src, int stride){
2510 int i;
2511
2512 for(i=0; i<8; i++){
2513 ((uint32_t*)(src+i*stride))[0]=
2514 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2515 }
2516 }
2517
2518 static void pred8x8_left_dc_c(uint8_t *src, int stride){
2519 int i;
2520 int dc0, dc2;
2521
2522 dc0=dc2=0;
2523 for(i=0;i<4; i++){
2524 dc0+= src[-1+i*stride];
2525 dc2+= src[-1+(i+4)*stride];
2526 }
2527 dc0= 0x01010101*((dc0 + 2)>>2);
2528 dc2= 0x01010101*((dc2 + 2)>>2);
2529
2530 for(i=0; i<4; i++){
2531 ((uint32_t*)(src+i*stride))[0]=
2532 ((uint32_t*)(src+i*stride))[1]= dc0;
2533 }
2534 for(i=4; i<8; i++){
2535 ((uint32_t*)(src+i*stride))[0]=
2536 ((uint32_t*)(src+i*stride))[1]= dc2;
2537 }
2538 }
2539
2540 static void pred8x8_top_dc_c(uint8_t *src, int stride){
2541 int i;
2542 int dc0, dc1;
2543
2544 dc0=dc1=0;
2545 for(i=0;i<4; i++){
2546 dc0+= src[i-stride];
2547 dc1+= src[4+i-stride];
2548 }
2549 dc0= 0x01010101*((dc0 + 2)>>2);
2550 dc1= 0x01010101*((dc1 + 2)>>2);
2551
2552 for(i=0; i<4; i++){
2553 ((uint32_t*)(src+i*stride))[0]= dc0;
2554 ((uint32_t*)(src+i*stride))[1]= dc1;
2555 }
2556 for(i=4; i<8; i++){
2557 ((uint32_t*)(src+i*stride))[0]= dc0;
2558 ((uint32_t*)(src+i*stride))[1]= dc1;
2559 }
2560 }
2561
2562
2563 static void pred8x8_dc_c(uint8_t *src, int stride){
2564 int i;
2565 int dc0, dc1, dc2, dc3;
2566
2567 dc0=dc1=dc2=0;
2568 for(i=0;i<4; i++){
2569 dc0+= src[-1+i*stride] + src[i-stride];
2570 dc1+= src[4+i-stride];
2571 dc2+= src[-1+(i+4)*stride];
2572 }
2573 dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2574 dc0= 0x01010101*((dc0 + 4)>>3);
2575 dc1= 0x01010101*((dc1 + 2)>>2);
2576 dc2= 0x01010101*((dc2 + 2)>>2);
2577
2578 for(i=0; i<4; i++){
2579 ((uint32_t*)(src+i*stride))[0]= dc0;
2580 ((uint32_t*)(src+i*stride))[1]= dc1;
2581 }
2582 for(i=4; i<8; i++){
2583 ((uint32_t*)(src+i*stride))[0]= dc2;
2584 ((uint32_t*)(src+i*stride))[1]= dc3;
2585 }
2586 }
2587
2588 static void pred8x8_plane_c(uint8_t *src, int stride){
2589 int j, k;
2590 int a;
2591 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2592 const uint8_t * const src0 = src+3-stride;
2593 const uint8_t *src1 = src+4*stride-1;
2594 const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
2595 int H = src0[1] - src0[-1];
2596 int V = src1[0] - src2[ 0];
2597 for(k=2; k<=4; ++k) {
2598 src1 += stride; src2 -= stride;
2599 H += k*(src0[k] - src0[-k]);
2600 V += k*(src1[0] - src2[ 0]);
2601 }
2602 H = ( 17*H+16 ) >> 5;
2603 V = ( 17*V+16 ) >> 5;
2604
2605 a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2606 for(j=8; j>0; --j) {
2607 int b = a;
2608 a += V;
2609 src[0] = cm[ (b ) >> 5 ];
2610 src[1] = cm[ (b+ H) >> 5 ];
2611 src[2] = cm[ (b+2*H) >> 5 ];
2612 src[3] = cm[ (b+3*H) >> 5 ];
2613 src[4] = cm[ (b+4*H) >> 5 ];
2614 src[5] = cm[ (b+5*H) >> 5 ];
2615 src[6] = cm[ (b+6*H) >> 5 ];
2616 src[7] = cm[ (b+7*H) >> 5 ];
2617 src += stride;
2618 }
2619 }
2620
2621 #define SRC(x,y) src[(x)+(y)*stride]
2622 #define PL(y) \
2623 const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
2624 #define PREDICT_8x8_LOAD_LEFT \
2625 const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
2626 + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
2627 PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
2628 const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
2629
2630 #define PT(x) \
2631 const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2632 #define PREDICT_8x8_LOAD_TOP \
2633 const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
2634 + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
2635 PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
2636 const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
2637 + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
2638
2639 #define PTR(x) \
2640 t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2641 #define PREDICT_8x8_LOAD_TOPRIGHT \
2642 int t8, t9, t10, t11, t12, t13, t14, t15; \
2643 if(has_topright) { \
2644 PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
2645 t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
2646 } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
2647
2648 #define PREDICT_8x8_LOAD_TOPLEFT \
2649 const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
2650
2651 #define PREDICT_8x8_DC(v) \
2652 int y; \
2653 for( y = 0; y < 8; y++ ) { \
2654 ((uint32_t*)src)[0] = \
2655 ((uint32_t*)src)[1] = v; \
2656 src += stride; \
2657 }
2658
2659 static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2660 {
2661 PREDICT_8x8_DC(0x80808080);
2662 }
2663 static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2664 {
2665 PREDICT_8x8_LOAD_LEFT;
2666 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
2667 PREDICT_8x8_DC(dc);
2668 }
2669 static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2670 {
2671 PREDICT_8x8_LOAD_TOP;
2672 const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
2673 PREDICT_8x8_DC(dc);
2674 }
2675 static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2676 {
2677 PREDICT_8x8_LOAD_LEFT;
2678 PREDICT_8x8_LOAD_TOP;
2679 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
2680 +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
2681 PREDICT_8x8_DC(dc);
2682 }
2683 static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2684 {
2685 PREDICT_8x8_LOAD_LEFT;
2686 #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
2687 ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
2688 ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
2689 #undef ROW
2690 }
2691 static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2692 {
2693 int y;
2694 PREDICT_8x8_LOAD_TOP;
2695 src[0] = t0;
2696 src[1] = t1;
2697 src[2] = t2;
2698 src[3] = t3;
2699 src[4] = t4;
2700 src[5] = t5;
2701 src[6] = t6;
2702 src[7] = t7;
2703 for( y = 1; y < 8; y++ )
2704 *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
2705 }
2706 static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2707 {
2708 PREDICT_8x8_LOAD_TOP;
2709 PREDICT_8x8_LOAD_TOPRIGHT;
2710 SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
2711 SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
2712 SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
2713 SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
2714 SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
2715 SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2716 SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
2717 SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
2718 SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
2719 SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
2720 SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
2721 SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
2722 SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
2723 SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
2724 SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
2725 }
2726 static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2727 {
2728 PREDICT_8x8_LOAD_TOP;
2729 PREDICT_8x8_LOAD_LEFT;
2730 PREDICT_8x8_LOAD_TOPLEFT;
2731 SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
2732 SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2733 SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
2734 SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2735 SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
2736 SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2737 SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
2738 SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
2739 SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
2740 SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
2741 SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
2742 SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
2743 SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
2744 SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2745 SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2746
2747 }
2748 static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2749 {
2750 PREDICT_8x8_LOAD_TOP;
2751 PREDICT_8x8_LOAD_LEFT;
2752 PREDICT_8x8_LOAD_TOPLEFT;
2753 SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
2754 SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2755 SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
2756 SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2757 SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
2758 SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2759 SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
2760 SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
2761 SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
2762 SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
2763 SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
2764 SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
2765 SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
2766 SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
2767 SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
2768 SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
2769 SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
2770 SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
2771 SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
2772 SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
2773 SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2774 SRC(7,0)= (t6 + t7 + 1) >> 1;
2775 }
2776 static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2777 {
2778 PREDICT_8x8_LOAD_TOP;
2779 PREDICT_8x8_LOAD_LEFT;
2780 PREDICT_8x8_LOAD_TOPLEFT;
2781 SRC(0,7)= (l6 + l7 + 1) >> 1;
2782 SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
2783 SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
2784 SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
2785 SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
2786 SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
2787 SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
2788 SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
2789 SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
2790 SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
2791 SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
2792 SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
2793 SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
2794 SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
2795 SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
2796 SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
2797 SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
2798 SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
2799 SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
2800 SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
2801 SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
2802 SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
2803 }
2804 static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2805 {
2806 PREDICT_8x8_LOAD_TOP;
2807 PREDICT_8x8_LOAD_TOPRIGHT;
2808 SRC(0,0)= (t0 + t1 + 1) >> 1;
2809 SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
2810 SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
2811 SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
2812 SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
2813 SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
2814 SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
2815 SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
2816 SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
2817 SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2818 SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
2819 SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2820 SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
2821 SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
2822 SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
2823 SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
2824 SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
2825 SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
2826 SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
2827 SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
2828 SRC