2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
35 #include "rectangle.h"
39 #include "x86/h264_i386.h"
46 * Value of Picture.reference when Picture is not a reference picture, but
47 * is held for delayed output.
49 #define DELAYED_PIC_REF 4
51 static VLC coeff_token_vlc
[4];
52 static VLC_TYPE coeff_token_vlc_tables
[520+332+280+256][2];
53 static const int coeff_token_vlc_tables_size
[4]={520,332,280,256};
55 static VLC chroma_dc_coeff_token_vlc
;
56 static VLC_TYPE chroma_dc_coeff_token_vlc_table
[256][2];
57 static const int chroma_dc_coeff_token_vlc_table_size
= 256;
59 static VLC total_zeros_vlc
[15];
60 static VLC_TYPE total_zeros_vlc_tables
[15][512][2];
61 static const int total_zeros_vlc_tables_size
= 512;
63 static VLC chroma_dc_total_zeros_vlc
[3];
64 static VLC_TYPE chroma_dc_total_zeros_vlc_tables
[3][8][2];
65 static const int chroma_dc_total_zeros_vlc_tables_size
= 8;
67 static VLC run_vlc
[6];
68 static VLC_TYPE run_vlc_tables
[6][8][2];
69 static const int run_vlc_tables_size
= 8;
72 static VLC_TYPE run7_vlc_table
[96][2];
73 static const int run7_vlc_table_size
= 96;
75 static void svq3_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
);
76 static void svq3_add_idct_c(uint8_t *dst
, DCTELEM
*block
, int stride
, int qp
, int dc
);
77 static void filter_mb( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
78 static void filter_mb_fast( H264Context
*h
, int mb_x
, int mb_y
, uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
, unsigned int linesize
, unsigned int uvlinesize
);
79 static Picture
* remove_long(H264Context
*h
, int i
, int ref_mask
);
81 static av_always_inline
uint32_t pack16to32(int a
, int b
){
82 #ifdef WORDS_BIGENDIAN
83 return (b
&0xFFFF) + (a
<<16);
85 return (a
&0xFFFF) + (b
<<16);
89 static const uint8_t rem6
[52]={
90 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
93 static const uint8_t div6
[52]={
94 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
97 static const int left_block_options
[4][8]={
104 static void fill_caches(H264Context
*h
, int mb_type
, int for_deblock
){
105 MpegEncContext
* const s
= &h
->s
;
106 const int mb_xy
= h
->mb_xy
;
107 int topleft_xy
, top_xy
, topright_xy
, left_xy
[2];
108 int topleft_type
, top_type
, topright_type
, left_type
[2];
109 const int * left_block
;
110 int topleft_partition
= -1;
113 top_xy
= mb_xy
- (s
->mb_stride
<< FIELD_PICTURE
);
115 //FIXME deblocking could skip the intra and nnz parts.
116 if(for_deblock
&& (h
->slice_num
== 1 || h
->slice_table
[mb_xy
] == h
->slice_table
[top_xy
]) && !FRAME_MBAFF
)
119 /* Wow, what a mess, why didn't they simplify the interlacing & intra
120 * stuff, I can't imagine that these complex rules are worth it. */
122 topleft_xy
= top_xy
- 1;
123 topright_xy
= top_xy
+ 1;
124 left_xy
[1] = left_xy
[0] = mb_xy
-1;
125 left_block
= left_block_options
[0];
127 const int pair_xy
= s
->mb_x
+ (s
->mb_y
& ~1)*s
->mb_stride
;
128 const int top_pair_xy
= pair_xy
- s
->mb_stride
;
129 const int topleft_pair_xy
= top_pair_xy
- 1;
130 const int topright_pair_xy
= top_pair_xy
+ 1;
131 const int topleft_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[topleft_pair_xy
]);
132 const int top_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[top_pair_xy
]);
133 const int topright_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[topright_pair_xy
]);
134 const int left_mb_field_flag
= IS_INTERLACED(s
->current_picture
.mb_type
[pair_xy
-1]);
135 const int curr_mb_field_flag
= IS_INTERLACED(mb_type
);
136 const int bottom
= (s
->mb_y
& 1);
137 tprintf(s
->avctx
, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag
, left_mb_field_flag
, topleft_mb_field_flag
, top_mb_field_flag
, topright_mb_field_flag
);
139 if (curr_mb_field_flag
&& (bottom
|| top_mb_field_flag
)){
140 top_xy
-= s
->mb_stride
;
142 if (curr_mb_field_flag
&& (bottom
|| topleft_mb_field_flag
)){
143 topleft_xy
-= s
->mb_stride
;
144 } else if(bottom
&& !curr_mb_field_flag
&& left_mb_field_flag
) {
145 topleft_xy
+= s
->mb_stride
;
146 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
147 topleft_partition
= 0;
149 if (curr_mb_field_flag
&& (bottom
|| topright_mb_field_flag
)){
150 topright_xy
-= s
->mb_stride
;
152 if (left_mb_field_flag
!= curr_mb_field_flag
) {
153 left_xy
[1] = left_xy
[0] = pair_xy
- 1;
154 if (curr_mb_field_flag
) {
155 left_xy
[1] += s
->mb_stride
;
156 left_block
= left_block_options
[3];
158 left_block
= left_block_options
[2 - bottom
];
163 h
->top_mb_xy
= top_xy
;
164 h
->left_mb_xy
[0] = left_xy
[0];
165 h
->left_mb_xy
[1] = left_xy
[1];
169 top_type
= h
->slice_table
[top_xy
] < 0xFFFF ? s
->current_picture
.mb_type
[top_xy
] : 0;
170 left_type
[0] = h
->slice_table
[left_xy
[0] ] < 0xFFFF ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
171 left_type
[1] = h
->slice_table
[left_xy
[1] ] < 0xFFFF ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
173 if(MB_MBAFF
&& !IS_INTRA(mb_type
)){
175 for(list
=0; list
<h
->list_count
; list
++){
176 //These values where changed for ease of performing MC, we need to change them back
177 //FIXME maybe we can make MC and loop filter use the same values or prevent
178 //the MC code from changing ref_cache and rather use a temporary array.
179 if(USES_LIST(mb_type
,list
)){
180 int8_t *ref
= &s
->current_picture
.ref_index
[list
][h
->mb2b8_xy
[mb_xy
]];
181 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 0]] =
182 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 2]] = (pack16to32(ref
[0],ref
[1])&0x00FF00FF)*0x0101;
184 *(uint32_t*)&h
->ref_cache
[list
][scan8
[ 8]] =
185 *(uint32_t*)&h
->ref_cache
[list
][scan8
[10]] = (pack16to32(ref
[0],ref
[1])&0x00FF00FF)*0x0101;
190 topleft_type
= h
->slice_table
[topleft_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topleft_xy
] : 0;
191 top_type
= h
->slice_table
[top_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[top_xy
] : 0;
192 topright_type
= h
->slice_table
[topright_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topright_xy
]: 0;
193 left_type
[0] = h
->slice_table
[left_xy
[0] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
194 left_type
[1] = h
->slice_table
[left_xy
[1] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
196 if(IS_INTRA(mb_type
)){
197 int type_mask
= h
->pps
.constrained_intra_pred ?
IS_INTRA(-1) : -1;
198 h
->topleft_samples_available
=
199 h
->top_samples_available
=
200 h
->left_samples_available
= 0xFFFF;
201 h
->topright_samples_available
= 0xEEEA;
203 if(!(top_type
& type_mask
)){
204 h
->topleft_samples_available
= 0xB3FF;
205 h
->top_samples_available
= 0x33FF;
206 h
->topright_samples_available
= 0x26EA;
208 if(IS_INTERLACED(mb_type
) != IS_INTERLACED(left_type
[0])){
209 if(IS_INTERLACED(mb_type
)){
210 if(!(left_type
[0] & type_mask
)){
211 h
->topleft_samples_available
&= 0xDFFF;
212 h
->left_samples_available
&= 0x5FFF;
214 if(!(left_type
[1] & type_mask
)){
215 h
->topleft_samples_available
&= 0xFF5F;
216 h
->left_samples_available
&= 0xFF5F;
219 int left_typei
= h
->slice_table
[left_xy
[0] + s
->mb_stride
] == h
->slice_num
220 ? s
->current_picture
.mb_type
[left_xy
[0] + s
->mb_stride
] : 0;
221 assert(left_xy
[0] == left_xy
[1]);
222 if(!((left_typei
& type_mask
) && (left_type
[0] & type_mask
))){
223 h
->topleft_samples_available
&= 0xDF5F;
224 h
->left_samples_available
&= 0x5F5F;
228 if(!(left_type
[0] & type_mask
)){
229 h
->topleft_samples_available
&= 0xDF5F;
230 h
->left_samples_available
&= 0x5F5F;
234 if(!(topleft_type
& type_mask
))
235 h
->topleft_samples_available
&= 0x7FFF;
237 if(!(topright_type
& type_mask
))
238 h
->topright_samples_available
&= 0xFBFF;
240 if(IS_INTRA4x4(mb_type
)){
241 if(IS_INTRA4x4(top_type
)){
242 h
->intra4x4_pred_mode_cache
[4+8*0]= h
->intra4x4_pred_mode
[top_xy
][4];
243 h
->intra4x4_pred_mode_cache
[5+8*0]= h
->intra4x4_pred_mode
[top_xy
][5];
244 h
->intra4x4_pred_mode_cache
[6+8*0]= h
->intra4x4_pred_mode
[top_xy
][6];
245 h
->intra4x4_pred_mode_cache
[7+8*0]= h
->intra4x4_pred_mode
[top_xy
][3];
248 if(!(top_type
& type_mask
))
253 h
->intra4x4_pred_mode_cache
[4+8*0]=
254 h
->intra4x4_pred_mode_cache
[5+8*0]=
255 h
->intra4x4_pred_mode_cache
[6+8*0]=
256 h
->intra4x4_pred_mode_cache
[7+8*0]= pred
;
259 if(IS_INTRA4x4(left_type
[i
])){
260 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[0+2*i
]];
261 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[1+2*i
]];
264 if(!(left_type
[i
] & type_mask
))
269 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]=
270 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= pred
;
286 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
288 h
->non_zero_count_cache
[4+8*0]= h
->non_zero_count
[top_xy
][4];
289 h
->non_zero_count_cache
[5+8*0]= h
->non_zero_count
[top_xy
][5];
290 h
->non_zero_count_cache
[6+8*0]= h
->non_zero_count
[top_xy
][6];
291 h
->non_zero_count_cache
[7+8*0]= h
->non_zero_count
[top_xy
][3];
293 h
->non_zero_count_cache
[1+8*0]= h
->non_zero_count
[top_xy
][9];
294 h
->non_zero_count_cache
[2+8*0]= h
->non_zero_count
[top_xy
][8];
296 h
->non_zero_count_cache
[1+8*3]= h
->non_zero_count
[top_xy
][12];
297 h
->non_zero_count_cache
[2+8*3]= h
->non_zero_count
[top_xy
][11];
300 h
->non_zero_count_cache
[4+8*0]=
301 h
->non_zero_count_cache
[5+8*0]=
302 h
->non_zero_count_cache
[6+8*0]=
303 h
->non_zero_count_cache
[7+8*0]=
305 h
->non_zero_count_cache
[1+8*0]=
306 h
->non_zero_count_cache
[2+8*0]=
308 h
->non_zero_count_cache
[1+8*3]=
309 h
->non_zero_count_cache
[2+8*3]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
313 for (i
=0; i
<2; i
++) {
315 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[0+2*i
]];
316 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[1+2*i
]];
317 h
->non_zero_count_cache
[0+8*1 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[4+2*i
]];
318 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->non_zero_count
[left_xy
[i
]][left_block
[5+2*i
]];
320 h
->non_zero_count_cache
[3+8*1 + 2*8*i
]=
321 h
->non_zero_count_cache
[3+8*2 + 2*8*i
]=
322 h
->non_zero_count_cache
[0+8*1 + 8*i
]=
323 h
->non_zero_count_cache
[0+8*4 + 8*i
]= h
->pps
.cabac
&& !IS_INTRA(mb_type
) ?
0 : 64;
330 h
->top_cbp
= h
->cbp_table
[top_xy
];
331 } else if(IS_INTRA(mb_type
)) {
338 h
->left_cbp
= h
->cbp_table
[left_xy
[0]] & 0x1f0;
339 } else if(IS_INTRA(mb_type
)) {
345 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[0]]>>((left_block
[0]&(~1))+1))&0x1) << 1;
348 h
->left_cbp
|= ((h
->cbp_table
[left_xy
[1]]>>((left_block
[2]&(~1))+1))&0x1) << 3;
353 if(IS_INTER(mb_type
) || IS_DIRECT(mb_type
)){
355 for(list
=0; list
<h
->list_count
; list
++){
356 if(!USES_LIST(mb_type
, list
) && !IS_DIRECT(mb_type
) && !h
->deblocking_filter
){
357 /*if(!h->mv_cache_clean[list]){
358 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
359 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
360 h->mv_cache_clean[list]= 1;
364 h
->mv_cache_clean
[list
]= 0;
366 if(USES_LIST(top_type
, list
)){
367 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
368 const int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
369 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0];
370 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 1];
371 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2];
372 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 3];
373 h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]=
374 h
->ref_cache
[list
][scan8
[0] + 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 0];
375 h
->ref_cache
[list
][scan8
[0] + 2 - 1*8]=
376 h
->ref_cache
[list
][scan8
[0] + 3 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 1];
378 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]=
379 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]=
380 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]=
381 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
382 *(uint32_t*)&h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
)&0xFF)*0x01010101;
386 int cache_idx
= scan8
[0] - 1 + i
*2*8;
387 if(USES_LIST(left_type
[i
], list
)){
388 const int b_xy
= h
->mb2b_xy
[left_xy
[i
]] + 3;
389 const int b8_xy
= h
->mb2b8_xy
[left_xy
[i
]] + 1;
390 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[0+i
*2]];
391 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[1+i
*2]];
392 h
->ref_cache
[list
][cache_idx
]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[0+i
*2]>>1)];
393 h
->ref_cache
[list
][cache_idx
+8]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[1+i
*2]>>1)];
395 *(uint32_t*)h
->mv_cache
[list
][cache_idx
]=
396 *(uint32_t*)h
->mv_cache
[list
][cache_idx
+8]= 0;
397 h
->ref_cache
[list
][cache_idx
]=
398 h
->ref_cache
[list
][cache_idx
+8]= left_type
[i
] ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
402 if(for_deblock
|| ((IS_DIRECT(mb_type
) && !h
->direct_spatial_mv_pred
) && !FRAME_MBAFF
))
405 if(USES_LIST(topleft_type
, list
)){
406 const int b_xy
= h
->mb2b_xy
[topleft_xy
] + 3 + h
->b_stride
+ (topleft_partition
& 2*h
->b_stride
);
407 const int b8_xy
= h
->mb2b8_xy
[topleft_xy
] + 1 + (topleft_partition
& h
->b8_stride
);
408 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
409 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
411 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= 0;
412 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
415 if(USES_LIST(topright_type
, list
)){
416 const int b_xy
= h
->mb2b_xy
[topright_xy
] + 3*h
->b_stride
;
417 const int b8_xy
= h
->mb2b8_xy
[topright_xy
] + h
->b8_stride
;
418 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
419 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
421 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= 0;
422 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
425 if((IS_SKIP(mb_type
) || IS_DIRECT(mb_type
)) && !FRAME_MBAFF
)
428 h
->ref_cache
[list
][scan8
[5 ]+1] =
429 h
->ref_cache
[list
][scan8
[7 ]+1] =
430 h
->ref_cache
[list
][scan8
[13]+1] = //FIXME remove past 3 (init somewhere else)
431 h
->ref_cache
[list
][scan8
[4 ]] =
432 h
->ref_cache
[list
][scan8
[12]] = PART_NOT_AVAILABLE
;
433 *(uint32_t*)h
->mv_cache
[list
][scan8
[5 ]+1]=
434 *(uint32_t*)h
->mv_cache
[list
][scan8
[7 ]+1]=
435 *(uint32_t*)h
->mv_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
436 *(uint32_t*)h
->mv_cache
[list
][scan8
[4 ]]=
437 *(uint32_t*)h
->mv_cache
[list
][scan8
[12]]= 0;
440 /* XXX beurk, Load mvd */
441 if(USES_LIST(top_type
, list
)){
442 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
443 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 0];
444 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 1];
445 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 2];
446 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ 3];
448 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 0 - 1*8]=
449 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 1 - 1*8]=
450 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 2 - 1*8]=
451 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
453 if(USES_LIST(left_type
[0], list
)){
454 const int b_xy
= h
->mb2b_xy
[left_xy
[0]] + 3;
455 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[0]];
456 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[1]];
458 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 0*8]=
459 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 1*8]= 0;
461 if(USES_LIST(left_type
[1], list
)){
462 const int b_xy
= h
->mb2b_xy
[left_xy
[1]] + 3;
463 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[2]];
464 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= *(uint32_t*)h
->mvd_table
[list
][b_xy
+ h
->b_stride
*left_block
[3]];
466 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 2*8]=
467 *(uint32_t*)h
->mvd_cache
[list
][scan8
[0] - 1 + 3*8]= 0;
469 *(uint32_t*)h
->mvd_cache
[list
][scan8
[5 ]+1]=
470 *(uint32_t*)h
->mvd_cache
[list
][scan8
[7 ]+1]=
471 *(uint32_t*)h
->mvd_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewhere else)
472 *(uint32_t*)h
->mvd_cache
[list
][scan8
[4 ]]=
473 *(uint32_t*)h
->mvd_cache
[list
][scan8
[12]]= 0;
475 if(h
->slice_type_nos
== FF_B_TYPE
){
476 fill_rectangle(&h
->direct_cache
[scan8
[0]], 4, 4, 8, 0, 1);
478 if(IS_DIRECT(top_type
)){
479 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0x01010101;
480 }else if(IS_8X8(top_type
)){
481 int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
482 h
->direct_cache
[scan8
[0] + 0 - 1*8]= h
->direct_table
[b8_xy
];
483 h
->direct_cache
[scan8
[0] + 2 - 1*8]= h
->direct_table
[b8_xy
+ 1];
485 *(uint32_t*)&h
->direct_cache
[scan8
[0] - 1*8]= 0;
488 if(IS_DIRECT(left_type
[0]))
489 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 1;
490 else if(IS_8X8(left_type
[0]))
491 h
->direct_cache
[scan8
[0] - 1 + 0*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[0]] + 1 + h
->b8_stride
*(left_block
[0]>>1)];
493 h
->direct_cache
[scan8
[0] - 1 + 0*8]= 0;
495 if(IS_DIRECT(left_type
[1]))
496 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 1;
497 else if(IS_8X8(left_type
[1]))
498 h
->direct_cache
[scan8
[0] - 1 + 2*8]= h
->direct_table
[h
->mb2b8_xy
[left_xy
[1]] + 1 + h
->b8_stride
*(left_block
[2]>>1)];
500 h
->direct_cache
[scan8
[0] - 1 + 2*8]= 0;
506 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
507 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
508 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
509 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
510 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
511 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
512 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
513 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
514 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
515 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
517 #define MAP_F2F(idx, mb_type)\
518 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
519 h->ref_cache[list][idx] <<= 1;\
520 h->mv_cache[list][idx][1] /= 2;\
521 h->mvd_cache[list][idx][1] /= 2;\
526 #define MAP_F2F(idx, mb_type)\
527 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
528 h->ref_cache[list][idx] >>= 1;\
529 h->mv_cache[list][idx][1] <<= 1;\
530 h->mvd_cache[list][idx][1] <<= 1;\
540 h
->neighbor_transform_size
= !!IS_8x8DCT(top_type
) + !!IS_8x8DCT(left_type
[0]);
543 static inline void write_back_intra_pred_mode(H264Context
*h
){
544 const int mb_xy
= h
->mb_xy
;
546 h
->intra4x4_pred_mode
[mb_xy
][0]= h
->intra4x4_pred_mode_cache
[7+8*1];
547 h
->intra4x4_pred_mode
[mb_xy
][1]= h
->intra4x4_pred_mode_cache
[7+8*2];
548 h
->intra4x4_pred_mode
[mb_xy
][2]= h
->intra4x4_pred_mode_cache
[7+8*3];
549 h
->intra4x4_pred_mode
[mb_xy
][3]= h
->intra4x4_pred_mode_cache
[7+8*4];
550 h
->intra4x4_pred_mode
[mb_xy
][4]= h
->intra4x4_pred_mode_cache
[4+8*4];
551 h
->intra4x4_pred_mode
[mb_xy
][5]= h
->intra4x4_pred_mode_cache
[5+8*4];
552 h
->intra4x4_pred_mode
[mb_xy
][6]= h
->intra4x4_pred_mode_cache
[6+8*4];
556 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
558 static inline int check_intra4x4_pred_mode(H264Context
*h
){
559 MpegEncContext
* const s
= &h
->s
;
560 static const int8_t top
[12]= {-1, 0,LEFT_DC_PRED
,-1,-1,-1,-1,-1, 0};
561 static const int8_t left
[12]= { 0,-1, TOP_DC_PRED
, 0,-1,-1,-1, 0,-1,DC_128_PRED
};
564 if(!(h
->top_samples_available
&0x8000)){
566 int status
= top
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + i
] ];
568 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
571 h
->intra4x4_pred_mode_cache
[scan8
[0] + i
]= status
;
576 if((h
->left_samples_available
&0x8888)!=0x8888){
577 static const int mask
[4]={0x8000,0x2000,0x80,0x20};
579 if(!(h
->left_samples_available
&mask
[i
])){
580 int status
= left
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
] ];
582 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
585 h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
]= status
;
592 } //FIXME cleanup like next
595 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
597 static inline int check_intra_pred_mode(H264Context
*h
, int mode
){
598 MpegEncContext
* const s
= &h
->s
;
599 static const int8_t top
[7]= {LEFT_DC_PRED8x8
, 1,-1,-1};
600 static const int8_t left
[7]= { TOP_DC_PRED8x8
,-1, 2,-1,DC_128_PRED8x8
};
603 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "out of range intra chroma pred mode at %d %d\n", s
->mb_x
, s
->mb_y
);
607 if(!(h
->top_samples_available
&0x8000)){
610 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "top block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
615 if((h
->left_samples_available
&0x8080) != 0x8080){
617 if(h
->left_samples_available
&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
618 mode
= ALZHEIMER_DC_L0T_PRED8x8
+ (!(h
->left_samples_available
&0x8000)) + 2*(mode
== DC_128_PRED8x8
);
621 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "left block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
630 * gets the predicted intra4x4 prediction mode.
632 static inline int pred_intra_mode(H264Context
*h
, int n
){
633 const int index8
= scan8
[n
];
634 const int left
= h
->intra4x4_pred_mode_cache
[index8
- 1];
635 const int top
= h
->intra4x4_pred_mode_cache
[index8
- 8];
636 const int min
= FFMIN(left
, top
);
638 tprintf(h
->s
.avctx
, "mode:%d %d min:%d\n", left
,top
, min
);
640 if(min
<0) return DC_PRED
;
644 static inline void write_back_non_zero_count(H264Context
*h
){
645 const int mb_xy
= h
->mb_xy
;
647 h
->non_zero_count
[mb_xy
][0]= h
->non_zero_count_cache
[7+8*1];
648 h
->non_zero_count
[mb_xy
][1]= h
->non_zero_count_cache
[7+8*2];
649 h
->non_zero_count
[mb_xy
][2]= h
->non_zero_count_cache
[7+8*3];
650 h
->non_zero_count
[mb_xy
][3]= h
->non_zero_count_cache
[7+8*4];
651 h
->non_zero_count
[mb_xy
][4]= h
->non_zero_count_cache
[4+8*4];
652 h
->non_zero_count
[mb_xy
][5]= h
->non_zero_count_cache
[5+8*4];
653 h
->non_zero_count
[mb_xy
][6]= h
->non_zero_count_cache
[6+8*4];
655 h
->non_zero_count
[mb_xy
][9]= h
->non_zero_count_cache
[1+8*2];
656 h
->non_zero_count
[mb_xy
][8]= h
->non_zero_count_cache
[2+8*2];
657 h
->non_zero_count
[mb_xy
][7]= h
->non_zero_count_cache
[2+8*1];
659 h
->non_zero_count
[mb_xy
][12]=h
->non_zero_count_cache
[1+8*5];
660 h
->non_zero_count
[mb_xy
][11]=h
->non_zero_count_cache
[2+8*5];
661 h
->non_zero_count
[mb_xy
][10]=h
->non_zero_count_cache
[2+8*4];
665 * gets the predicted number of non-zero coefficients.
666 * @param n block index
668 static inline int pred_non_zero_count(H264Context
*h
, int n
){
669 const int index8
= scan8
[n
];
670 const int left
= h
->non_zero_count_cache
[index8
- 1];
671 const int top
= h
->non_zero_count_cache
[index8
- 8];
674 if(i
<64) i
= (i
+1)>>1;
676 tprintf(h
->s
.avctx
, "pred_nnz L%X T%X n%d s%d P%X\n", left
, top
, n
, scan8
[n
], i
&31);
681 static inline int fetch_diagonal_mv(H264Context
*h
, const int16_t **C
, int i
, int list
, int part_width
){
682 const int topright_ref
= h
->ref_cache
[list
][ i
- 8 + part_width
];
683 MpegEncContext
*s
= &h
->s
;
685 /* there is no consistent mapping of mvs to neighboring locations that will
686 * make mbaff happy, so we can't move all this logic to fill_caches */
688 const uint32_t *mb_types
= s
->current_picture_ptr
->mb_type
;
690 *(uint32_t*)h
->mv_cache
[list
][scan8
[0]-2] = 0;
691 *C
= h
->mv_cache
[list
][scan8
[0]-2];
694 && (s
->mb_y
&1) && i
< scan8
[0]+8 && topright_ref
!= PART_NOT_AVAILABLE
){
695 int topright_xy
= s
->mb_x
+ (s
->mb_y
-1)*s
->mb_stride
+ (i
== scan8
[0]+3);
696 if(IS_INTERLACED(mb_types
[topright_xy
])){
697 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
698 const int x4 = X4, y4 = Y4;\
699 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
700 if(!USES_LIST(mb_type,list))\
701 return LIST_NOT_USED;\
702 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
703 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
704 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
705 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
707 SET_DIAG_MV(*2, >>1, s
->mb_x
*4+(i
&7)-4+part_width
, s
->mb_y
*4-1);
710 if(topright_ref
== PART_NOT_AVAILABLE
711 && ((s
->mb_y
&1) || i
>= scan8
[0]+8) && (i
&7)==4
712 && h
->ref_cache
[list
][scan8
[0]-1] != PART_NOT_AVAILABLE
){
714 && IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])){
715 SET_DIAG_MV(*2, >>1, s
->mb_x
*4-1, (s
->mb_y
|1)*4+(s
->mb_y
&1)*2+(i
>>4)-1);
718 && !IS_INTERLACED(mb_types
[h
->left_mb_xy
[0]])
720 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
721 SET_DIAG_MV(/2, <<1, s
->mb_x
*4-1, (s
->mb_y
&~1)*4 - 1 + ((i
-scan8
[0])>>3)*2);
727 if(topright_ref
!= PART_NOT_AVAILABLE
){
728 *C
= h
->mv_cache
[list
][ i
- 8 + part_width
];
731 tprintf(s
->avctx
, "topright MV not available\n");
733 *C
= h
->mv_cache
[list
][ i
- 8 - 1 ];
734 return h
->ref_cache
[list
][ i
- 8 - 1 ];
739 * gets the predicted MV.
740 * @param n the block index
741 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
742 * @param mx the x component of the predicted motion vector
743 * @param my the y component of the predicted motion vector
745 static inline void pred_motion(H264Context
* const h
, int n
, int part_width
, int list
, int ref
, int * const mx
, int * const my
){
746 const int index8
= scan8
[n
];
747 const int top_ref
= h
->ref_cache
[list
][ index8
- 8 ];
748 const int left_ref
= h
->ref_cache
[list
][ index8
- 1 ];
749 const int16_t * const A
= h
->mv_cache
[list
][ index8
- 1 ];
750 const int16_t * const B
= h
->mv_cache
[list
][ index8
- 8 ];
752 int diagonal_ref
, match_count
;
754 assert(part_width
==1 || part_width
==2 || part_width
==4);
764 diagonal_ref
= fetch_diagonal_mv(h
, &C
, index8
, list
, part_width
);
765 match_count
= (diagonal_ref
==ref
) + (top_ref
==ref
) + (left_ref
==ref
);
766 tprintf(h
->s
.avctx
, "pred_motion match_count=%d\n", match_count
);
767 if(match_count
> 1){ //most common
768 *mx
= mid_pred(A
[0], B
[0], C
[0]);
769 *my
= mid_pred(A
[1], B
[1], C
[1]);
770 }else if(match_count
==1){
774 }else if(top_ref
==ref
){
782 if(top_ref
== PART_NOT_AVAILABLE
&& diagonal_ref
== PART_NOT_AVAILABLE
&& left_ref
!= PART_NOT_AVAILABLE
){
786 *mx
= mid_pred(A
[0], B
[0], C
[0]);
787 *my
= mid_pred(A
[1], B
[1], C
[1]);
791 tprintf(h
->s
.avctx
, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], diagonal_ref
, C
[0], C
[1], left_ref
, A
[0], A
[1], ref
, *mx
, *my
, h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
795 * gets the directionally predicted 16x8 MV.
796 * @param n the block index
797 * @param mx the x component of the predicted motion vector
798 * @param my the y component of the predicted motion vector
800 static inline void pred_16x8_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
802 const int top_ref
= h
->ref_cache
[list
][ scan8
[0] - 8 ];
803 const int16_t * const B
= h
->mv_cache
[list
][ scan8
[0] - 8 ];
805 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
813 const int left_ref
= h
->ref_cache
[list
][ scan8
[8] - 1 ];
814 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[8] - 1 ];
816 tprintf(h
->s
.avctx
, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
826 pred_motion(h
, n
, 4, list
, ref
, mx
, my
);
830 * gets the directionally predicted 8x16 MV.
831 * @param n the block index
832 * @param mx the x component of the predicted motion vector
833 * @param my the y component of the predicted motion vector
835 static inline void pred_8x16_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
837 const int left_ref
= h
->ref_cache
[list
][ scan8
[0] - 1 ];
838 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[0] - 1 ];
840 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
851 diagonal_ref
= fetch_diagonal_mv(h
, &C
, scan8
[4], list
, 2);
853 tprintf(h
->s
.avctx
, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref
, C
[0], C
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
855 if(diagonal_ref
== ref
){
863 pred_motion(h
, n
, 2, list
, ref
, mx
, my
);
866 static inline void pred_pskip_motion(H264Context
* const h
, int * const mx
, int * const my
){
867 const int top_ref
= h
->ref_cache
[0][ scan8
[0] - 8 ];
868 const int left_ref
= h
->ref_cache
[0][ scan8
[0] - 1 ];
870 tprintf(h
->s
.avctx
, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref
, left_ref
, h
->s
.mb_x
, h
->s
.mb_y
);
872 if(top_ref
== PART_NOT_AVAILABLE
|| left_ref
== PART_NOT_AVAILABLE
873 || (top_ref
== 0 && *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 8 ] == 0)
874 || (left_ref
== 0 && *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 1 ] == 0)){
880 pred_motion(h
, 0, 4, 0, 0, mx
, my
);
885 static int get_scale_factor(H264Context
* const h
, int poc
, int poc1
, int i
){
886 int poc0
= h
->ref_list
[0][i
].poc
;
887 int td
= av_clip(poc1
- poc0
, -128, 127);
888 if(td
== 0 || h
->ref_list
[0][i
].long_ref
){
891 int tb
= av_clip(poc
- poc0
, -128, 127);
892 int tx
= (16384 + (FFABS(td
) >> 1)) / td
;
893 return av_clip((tb
*tx
+ 32) >> 6, -1024, 1023);
897 static inline void direct_dist_scale_factor(H264Context
* const h
){
898 MpegEncContext
* const s
= &h
->s
;
899 const int poc
= h
->s
.current_picture_ptr
->field_poc
[ s
->picture_structure
== PICT_BOTTOM_FIELD
];
900 const int poc1
= h
->ref_list
[1][0].poc
;
902 for(field
=0; field
<2; field
++){
903 const int poc
= h
->s
.current_picture_ptr
->field_poc
[field
];
904 const int poc1
= h
->ref_list
[1][0].field_poc
[field
];
905 for(i
=0; i
< 2*h
->ref_count
[0]; i
++)
906 h
->dist_scale_factor_field
[field
][i
^field
] = get_scale_factor(h
, poc
, poc1
, i
+16);
909 for(i
=0; i
<h
->ref_count
[0]; i
++){
910 h
->dist_scale_factor
[i
] = get_scale_factor(h
, poc
, poc1
, i
);
914 static void fill_colmap(H264Context
*h
, int map
[2][16+32], int list
, int field
, int colfield
, int mbafi
){
915 MpegEncContext
* const s
= &h
->s
;
916 Picture
* const ref1
= &h
->ref_list
[1][0];
917 int j
, old_ref
, rfield
;
918 int start
= mbafi ?
16 : 0;
919 int end
= mbafi ?
16+2*h
->ref_count
[list
] : h
->ref_count
[list
];
920 int interl
= mbafi
|| s
->picture_structure
!= PICT_FRAME
;
922 /* bogus; fills in for missing frames */
923 memset(map
[list
], 0, sizeof(map
[list
]));
925 for(rfield
=0; rfield
<2; rfield
++){
926 for(old_ref
=0; old_ref
<ref1
->ref_count
[colfield
][list
]; old_ref
++){
927 int poc
= ref1
->ref_poc
[colfield
][list
][old_ref
];
931 else if( interl
&& (poc
&3) == 3) //FIXME store all MBAFF references so this isnt needed
932 poc
= (poc
&~3) + rfield
+ 1;
934 for(j
=start
; j
<end
; j
++){
935 if(4*h
->ref_list
[list
][j
].frame_num
+ (h
->ref_list
[list
][j
].reference
&3) == poc
){
936 int cur_ref
= mbafi ?
(j
-16)^field
: j
;
937 map
[list
][2*old_ref
+ (rfield
^field
) + 16] = cur_ref
;
939 map
[list
][old_ref
] = cur_ref
;
947 static inline void direct_ref_list_init(H264Context
* const h
){
948 MpegEncContext
* const s
= &h
->s
;
949 Picture
* const ref1
= &h
->ref_list
[1][0];
950 Picture
* const cur
= s
->current_picture_ptr
;
952 int sidx
= (s
->picture_structure
&1)^1;
953 int ref1sidx
= (ref1
->reference
&1)^1;
955 for(list
=0; list
<2; list
++){
956 cur
->ref_count
[sidx
][list
] = h
->ref_count
[list
];
957 for(j
=0; j
<h
->ref_count
[list
]; j
++)
958 cur
->ref_poc
[sidx
][list
][j
] = 4*h
->ref_list
[list
][j
].frame_num
+ (h
->ref_list
[list
][j
].reference
&3);
961 if(s
->picture_structure
== PICT_FRAME
){
962 memcpy(cur
->ref_count
[1], cur
->ref_count
[0], sizeof(cur
->ref_count
[0]));
963 memcpy(cur
->ref_poc
[1], cur
->ref_poc
[0], sizeof(cur
->ref_poc
[0]));
966 cur
->mbaff
= FRAME_MBAFF
;
968 if(cur
->pict_type
!= FF_B_TYPE
|| h
->direct_spatial_mv_pred
)
971 for(list
=0; list
<2; list
++){
972 fill_colmap(h
, h
->map_col_to_list0
, list
, sidx
, ref1sidx
, 0);
973 for(field
=0; field
<2; field
++)
974 fill_colmap(h
, h
->map_col_to_list0_field
[field
], list
, field
, field
, 1);
978 static inline void pred_direct_motion(H264Context
* const h
, int *mb_type
){
979 MpegEncContext
* const s
= &h
->s
;
980 int b8_stride
= h
->b8_stride
;
981 int b4_stride
= h
->b_stride
;
982 int mb_xy
= h
->mb_xy
;
984 const int16_t (*l1mv0
)[2], (*l1mv1
)[2];
985 const int8_t *l1ref0
, *l1ref1
;
986 const int is_b8x8
= IS_8X8(*mb_type
);
987 unsigned int sub_mb_type
;
990 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
992 if(IS_INTERLACED(h
->ref_list
[1][0].mb_type
[mb_xy
])){ // AFL/AFR/FR/FL -> AFL/FL
993 if(!IS_INTERLACED(*mb_type
)){ // AFR/FR -> AFL/FL
994 int cur_poc
= s
->current_picture_ptr
->poc
;
995 int *col_poc
= h
->ref_list
[1]->field_poc
;
996 int col_parity
= FFABS(col_poc
[0] - cur_poc
) >= FFABS(col_poc
[1] - cur_poc
);
997 mb_xy
= s
->mb_x
+ ((s
->mb_y
&~1) + col_parity
)*s
->mb_stride
;
999 }else if(!(s
->picture_structure
& h
->ref_list
[1][0].reference
) && !h
->ref_list
[1][0].mbaff
){// FL -> FL & differ parity
1000 int fieldoff
= 2*(h
->ref_list
[1][0].reference
)-3;
1001 mb_xy
+= s
->mb_stride
*fieldoff
;
1004 }else{ // AFL/AFR/FR/FL -> AFR/FR
1005 if(IS_INTERLACED(*mb_type
)){ // AFL /FL -> AFR/FR
1006 mb_xy
= s
->mb_x
+ (s
->mb_y
&~1)*s
->mb_stride
;
1007 mb_type_col
[0] = h
->ref_list
[1][0].mb_type
[mb_xy
];
1008 mb_type_col
[1] = h
->ref_list
[1][0].mb_type
[mb_xy
+ s
->mb_stride
];
1011 //FIXME IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag
1012 if( (mb_type_col
[0] & MB_TYPE_16x16_OR_INTRA
)
1013 && (mb_type_col
[1] & MB_TYPE_16x16_OR_INTRA
)
1015 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1016 *mb_type
|= MB_TYPE_16x8
|MB_TYPE_L0L1
|MB_TYPE_DIRECT2
; /* B_16x8 */
1018 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1019 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1021 }else{ // AFR/FR -> AFR/FR
1024 mb_type_col
[1] = h
->ref_list
[1][0].mb_type
[mb_xy
];
1025 if(IS_8X8(mb_type_col
[0]) && !h
->sps
.direct_8x8_inference_flag
){
1026 /* FIXME save sub mb types from previous frames (or derive from MVs)
1027 * so we know exactly what block size to use */
1028 sub_mb_type
= MB_TYPE_8x8
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_4x4 */
1029 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1030 }else if(!is_b8x8
&& (mb_type_col
[0] & MB_TYPE_16x16_OR_INTRA
)){
1031 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1032 *mb_type
|= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_16x16 */
1034 sub_mb_type
= MB_TYPE_16x16
|MB_TYPE_P0L0
|MB_TYPE_P0L1
|MB_TYPE_DIRECT2
; /* B_SUB_8x8 */
1035 *mb_type
|= MB_TYPE_8x8
|MB_TYPE_L0L1
;
1040 l1mv0
= &h
->ref_list
[1][0].motion_val
[0][h
->mb2b_xy
[mb_xy
]];
1041 l1mv1
= &h
->ref_list
[1][0].motion_val
[1][h
->mb2b_xy
[mb_xy
]];
1042 l1ref0
= &h
->ref_list
[1][0].ref_index
[0][h
->mb2b8_xy
[mb_xy
]];
1043 l1ref1
= &h
->ref_list
[1][0].ref_index
[1][h
->mb2b8_xy
[mb_xy
]];
1046 l1ref0
+= h
->b8_stride
;
1047 l1ref1
+= h
->b8_stride
;
1048 l1mv0
+= 2*b4_stride
;
1049 l1mv1
+= 2*b4_stride
;
1053 if(h
->direct_spatial_mv_pred
){
1058 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1060 /* ref = min(neighbors) */
1061 for(list
=0; list
<2; list
++){
1062 int refa
= h
->ref_cache
[list
][scan8
[0] - 1];
1063 int refb
= h
->ref_cache
[list
][scan8
[0] - 8];
1064 int refc
= h
->ref_cache
[list
][scan8
[0] - 8 + 4];
1065 if(refc
== PART_NOT_AVAILABLE
)
1066 refc
= h
->ref_cache
[list
][scan8
[0] - 8 - 1];
1067 ref
[list
] = FFMIN3((unsigned)refa
, (unsigned)refb
, (unsigned)refc
);
1072 if(ref
[0] < 0 && ref
[1] < 0){
1073 ref
[0] = ref
[1] = 0;
1074 mv
[0][0] = mv
[0][1] =
1075 mv
[1][0] = mv
[1][1] = 0;
1077 for(list
=0; list
<2; list
++){
1079 pred_motion(h
, 0, 4, list
, ref
[list
], &mv
[list
][0], &mv
[list
][1]);
1081 mv
[list
][0] = mv
[list
][1] = 0;
1087 *mb_type
&= ~MB_TYPE_L1
;
1088 sub_mb_type
&= ~MB_TYPE_L1
;
1089 }else if(ref
[0] < 0){
1091 *mb_type
&= ~MB_TYPE_L0
;
1092 sub_mb_type
&= ~MB_TYPE_L0
;
1095 if(IS_INTERLACED(*mb_type
) != IS_INTERLACED(mb_type_col
[0])){
1096 for(i8
=0; i8
<4; i8
++){
1099 int xy8
= x8
+y8
*b8_stride
;
1100 int xy4
= 3*x8
+y8
*b4_stride
;
1103 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1105 h
->sub_mb_type
[i8
] = sub_mb_type
;
1107 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[0], 1);
1108 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[1], 1);
1109 if(!IS_INTRA(mb_type_col
[y8
])
1110 && ( (l1ref0
[xy8
] == 0 && FFABS(l1mv0
[xy4
][0]) <= 1 && FFABS(l1mv0
[xy4
][1]) <= 1)
1111 || (l1ref0
[xy8
] < 0 && l1ref1
[xy8
] == 0 && FFABS(l1mv1
[xy4
][0]) <= 1 && FFABS(l1mv1
[xy4
][1]) <= 1))){
1113 a
= pack16to32(mv
[0][0],mv
[0][1]);
1115 b
= pack16to32(mv
[1][0],mv
[1][1]);
1117 a
= pack16to32(mv
[0][0],mv
[0][1]);
1118 b
= pack16to32(mv
[1][0],mv
[1][1]);
1120 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, a
, 4);
1121 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, b
, 4);
1123 }else if(IS_16X16(*mb_type
)){
1126 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, (uint8_t)ref
[0], 1);
1127 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, (uint8_t)ref
[1], 1);
1128 if(!IS_INTRA(mb_type_col
[0])
1129 && ( (l1ref0
[0] == 0 && FFABS(l1mv0
[0][0]) <= 1 && FFABS(l1mv0
[0][1]) <= 1)
1130 || (l1ref0
[0] < 0 && l1ref1
[0] == 0 && FFABS(l1mv1
[0][0]) <= 1 && FFABS(l1mv1
[0][1]) <= 1
1131 && (h
->x264_build
>33 || !h
->x264_build
)))){
1133 a
= pack16to32(mv
[0][0],mv
[0][1]);
1135 b
= pack16to32(mv
[1][0],mv
[1][1]);
1137 a
= pack16to32(mv
[0][0],mv
[0][1]);
1138 b
= pack16to32(mv
[1][0],mv
[1][1]);
1140 fill_rectangle(&h
->mv_cache
[0][scan8
[0]], 4, 4, 8, a
, 4);
1141 fill_rectangle(&h
->mv_cache
[1][scan8
[0]], 4, 4, 8, b
, 4);
1143 for(i8
=0; i8
<4; i8
++){
1144 const int x8
= i8
&1;
1145 const int y8
= i8
>>1;
1147 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1149 h
->sub_mb_type
[i8
] = sub_mb_type
;
1151 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[0][0],mv
[0][1]), 4);
1152 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mv
[1][0],mv
[1][1]), 4);
1153 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[0], 1);
1154 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, (uint8_t)ref
[1], 1);
1157 if(!IS_INTRA(mb_type_col
[0]) && ( l1ref0
[x8
+ y8
*b8_stride
] == 0
1158 || (l1ref0
[x8
+ y8
*b8_stride
] < 0 && l1ref1
[x8
+ y8
*b8_stride
] == 0
1159 && (h
->x264_build
>33 || !h
->x264_build
)))){
1160 const int16_t (*l1mv
)[2]= l1ref0
[x8
+ y8
*b8_stride
] == 0 ? l1mv0
: l1mv1
;
1161 if(IS_SUB_8X8(sub_mb_type
)){
1162 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*b4_stride
];
1163 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1165 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1167 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1170 for(i4
=0; i4
<4; i4
++){
1171 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*b4_stride
];
1172 if(FFABS(mv_col
[0]) <= 1 && FFABS(mv_col
[1]) <= 1){
1174 *(uint32_t*)h
->mv_cache
[0][scan8
[i8
*4+i4
]] = 0;
1176 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] = 0;
1182 }else{ /* direct temporal mv pred */
1183 const int *map_col_to_list0
[2] = {h
->map_col_to_list0
[0], h
->map_col_to_list0
[1]};
1184 const int *dist_scale_factor
= h
->dist_scale_factor
;
1187 if(FRAME_MBAFF
&& IS_INTERLACED(*mb_type
)){
1188 map_col_to_list0
[0] = h
->map_col_to_list0_field
[s
->mb_y
&1][0];
1189 map_col_to_list0
[1] = h
->map_col_to_list0_field
[s
->mb_y
&1][1];
1190 dist_scale_factor
=h
->dist_scale_factor_field
[s
->mb_y
&1];
1192 if(h
->ref_list
[1][0].mbaff
&& IS_INTERLACED(mb_type_col
[0]))
1195 if(IS_INTERLACED(*mb_type
) != IS_INTERLACED(mb_type_col
[0])){
1196 /* FIXME assumes direct_8x8_inference == 1 */
1197 int y_shift
= 2*!IS_INTERLACED(*mb_type
);
1199 for(i8
=0; i8
<4; i8
++){
1200 const int x8
= i8
&1;
1201 const int y8
= i8
>>1;
1203 const int16_t (*l1mv
)[2]= l1mv0
;
1205 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1207 h
->sub_mb_type
[i8
] = sub_mb_type
;
1209 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1210 if(IS_INTRA(mb_type_col
[y8
])){
1211 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1212 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1213 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1217 ref0
= l1ref0
[x8
+ y8
*b8_stride
];
1219 ref0
= map_col_to_list0
[0][ref0
+ ref_offset
];
1221 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ y8
*b8_stride
] + ref_offset
];
1224 scale
= dist_scale_factor
[ref0
];
1225 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1228 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*b4_stride
];
1229 int my_col
= (mv_col
[1]<<y_shift
)/2;
1230 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1231 int my
= (scale
* my_col
+ 128) >> 8;
1232 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1233 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-my_col
), 4);
1239 /* one-to-one mv scaling */
1241 if(IS_16X16(*mb_type
)){
1244 fill_rectangle(&h
->ref_cache
[1][scan8
[0]], 4, 4, 8, 0, 1);
1245 if(IS_INTRA(mb_type_col
[0])){
1248 const int ref0
= l1ref0
[0] >= 0 ? map_col_to_list0
[0][l1ref0
[0] + ref_offset
]
1249 : map_col_to_list0
[1][l1ref1
[0] + ref_offset
];
1250 const int scale
= dist_scale_factor
[ref0
];
1251 const int16_t *mv_col
= l1ref0
[0] >= 0 ? l1mv0
[0] : l1mv1
[0];
1253 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1254 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1256 mv0
= pack16to32(mv_l0
[0],mv_l0
[1]);
1257 mv1
= pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1259 fill_rectangle(&h
->ref_cache
[0][scan8
[0]], 4, 4, 8, ref
, 1);
1260 fill_rectangle(&h
-> mv_cache
[0][scan8
[0]], 4, 4, 8, mv0
, 4);
1261 fill_rectangle(&h
-> mv_cache
[1][scan8
[0]], 4, 4, 8, mv1
, 4);
1263 for(i8
=0; i8
<4; i8
++){
1264 const int x8
= i8
&1;
1265 const int y8
= i8
>>1;
1267 const int16_t (*l1mv
)[2]= l1mv0
;
1269 if(is_b8x8
&& !IS_DIRECT(h
->sub_mb_type
[i8
]))
1271 h
->sub_mb_type
[i8
] = sub_mb_type
;
1272 fill_rectangle(&h
->ref_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1273 if(IS_INTRA(mb_type_col
[0])){
1274 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 1);
1275 fill_rectangle(&h
-> mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1276 fill_rectangle(&h
-> mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, 0, 4);
1280 ref0
= l1ref0
[x8
+ y8
*b8_stride
] + ref_offset
;
1282 ref0
= map_col_to_list0
[0][ref0
];
1284 ref0
= map_col_to_list0
[1][l1ref1
[x8
+ y8
*b8_stride
] + ref_offset
];
1287 scale
= dist_scale_factor
[ref0
];
1289 fill_rectangle(&h
->ref_cache
[0][scan8
[i8
*4]], 2, 2, 8, ref0
, 1);
1290 if(IS_SUB_8X8(sub_mb_type
)){
1291 const int16_t *mv_col
= l1mv
[x8
*3 + y8
*3*b4_stride
];
1292 int mx
= (scale
* mv_col
[0] + 128) >> 8;
1293 int my
= (scale
* mv_col
[1] + 128) >> 8;
1294 fill_rectangle(&h
->mv_cache
[0][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
,my
), 4);
1295 fill_rectangle(&h
->mv_cache
[1][scan8
[i8
*4]], 2, 2, 8, pack16to32(mx
-mv_col
[0],my
-mv_col
[1]), 4);
1297 for(i4
=0; i4
<4; i4
++){
1298 const int16_t *mv_col
= l1mv
[x8
*2 + (i4
&1) + (y8
*2 + (i4
>>1))*b4_stride
];
1299 int16_t *mv_l0
= h
->mv_cache
[0][scan8
[i8
*4+i4
]];
1300 mv_l0
[0] = (scale
* mv_col
[0] + 128) >> 8;
1301 mv_l0
[1] = (scale
* mv_col
[1] + 128) >> 8;
1302 *(uint32_t*)h
->mv_cache
[1][scan8
[i8
*4+i4
]] =
1303 pack16to32(mv_l0
[0]-mv_col
[0],mv_l0
[1]-mv_col
[1]);
1310 static inline void write_back_motion(H264Context
*h
, int mb_type
){
1311 MpegEncContext
* const s
= &h
->s
;
1312 const int b_xy
= 4*s
->mb_x
+ 4*s
->mb_y
*h
->b_stride
;
1313 const int b8_xy
= 2*s
->mb_x
+ 2*s
->mb_y
*h
->b8_stride
;
1316 if(!USES_LIST(mb_type
, 0))
1317 fill_rectangle(&s
->current_picture
.ref_index
[0][b8_xy
], 2, 2, h
->b8_stride
, (uint8_t)LIST_NOT_USED
, 1);
1319 for(list
=0; list
<h
->list_count
; list
++){
1321 if(!USES_LIST(mb_type
, list
))
1325 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+0 + 8*y
];
1326 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+2 + 8*y
];
1328 if( h
->pps
.cabac
) {
1329 if(IS_SKIP(mb_type
))
1330 fill_rectangle(h
->mvd_table
[list
][b_xy
], 4, 4, h
->b_stride
, 0, 4);
1333 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+0 + 8*y
];
1334 *(uint64_t*)h
->mvd_table
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mvd_cache
[list
][scan8
[0]+2 + 8*y
];
1339 int8_t *ref_index
= &s
->current_picture
.ref_index
[list
][b8_xy
];
1340 ref_index
[0+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[0]];
1341 ref_index
[1+0*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[4]];
1342 ref_index
[0+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[8]];
1343 ref_index
[1+1*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[12]];
1347 if(h
->slice_type_nos
== FF_B_TYPE
&& h
->pps
.cabac
){
1348 if(IS_8X8(mb_type
)){
1349 uint8_t *direct_table
= &h
->direct_table
[b8_xy
];
1350 direct_table
[1+0*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[1]) ?
1 : 0;
1351 direct_table
[0+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[2]) ?
1 : 0;
1352 direct_table
[1+1*h
->b8_stride
] = IS_DIRECT(h
->sub_mb_type
[3]) ?
1 : 0;
1358 * Decodes a network abstraction layer unit.
1359 * @param consumed is the number of bytes used as input
1360 * @param length is the length of the array
1361 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1362 * @returns decoded bytes, might be src+1 if no escapes
1364 static const uint8_t *decode_nal(H264Context
*h
, const uint8_t *src
, int *dst_length
, int *consumed
, int length
){
1369 // src[0]&0x80; //forbidden bit
1370 h
->nal_ref_idc
= src
[0]>>5;
1371 h
->nal_unit_type
= src
[0]&0x1F;
1375 for(i
=0; i
<length
; i
++)
1376 printf("%2X ", src
[i
]);
1379 #ifdef HAVE_FAST_UNALIGNED
1380 # ifdef HAVE_FAST_64BIT
1382 for(i
=0; i
+1<length
; i
+=9){
1383 if(!((~*(uint64_t*)(src
+i
) & (*(uint64_t*)(src
+i
) - 0x0100010001000101ULL
)) & 0x8000800080008080ULL
))
1386 for(i
=0; i
+1<length
; i
+=5){
1387 if(!((~*(uint32_t*)(src
+i
) & (*(uint32_t*)(src
+i
) - 0x01000101U
)) & 0x80008080U
))
1390 if(i
>0 && !src
[i
]) i
--;
1394 for(i
=0; i
+1<length
; i
+=2){
1395 if(src
[i
]) continue;
1396 if(i
>0 && src
[i
-1]==0) i
--;
1398 if(i
+2<length
&& src
[i
+1]==0 && src
[i
+2]<=3){
1400 /* startcode, so we must be past the end */
1408 if(i
>=length
-1){ //no escaped 0
1409 *dst_length
= length
;
1410 *consumed
= length
+1; //+1 for the header
1414 bufidx
= h
->nal_unit_type
== NAL_DPC ?
1 : 0; // use second escape buffer for inter data
1415 h
->rbsp_buffer
[bufidx
]= av_fast_realloc(h
->rbsp_buffer
[bufidx
], &h
->rbsp_buffer_size
[bufidx
], length
+FF_INPUT_BUFFER_PADDING_SIZE
);
1416 dst
= h
->rbsp_buffer
[bufidx
];
1422 //printf("decoding esc\n");
1425 //remove escapes (very rare 1:2^22)
1426 if(si
+2<length
&& src
[si
]==0 && src
[si
+1]==0 && src
[si
+2]<=3){
1427 if(src
[si
+2]==3){ //escape
1432 }else //next start code
1436 dst
[di
++]= src
[si
++];
1439 memset(dst
+di
, 0, FF_INPUT_BUFFER_PADDING_SIZE
);
1442 *consumed
= si
+ 1;//+1 for the header
1443 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1448 * identifies the exact end of the bitstream
1449 * @return the length of the trailing, or 0 if damaged
1451 static int decode_rbsp_trailing(H264Context
*h
, const uint8_t *src
){
1455 tprintf(h
->s
.avctx
, "rbsp trailing %X\n", v
);
1465 * IDCT transforms the 16 dc values and dequantizes them.
1466 * @param qp quantization parameter
1468 static void h264_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1471 int temp
[16]; //FIXME check if this is a good idea
1472 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1473 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1475 //memset(block, 64, 2*256);
1478 const int offset
= y_offset
[i
];
1479 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1480 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1481 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1482 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1491 const int offset
= x_offset
[i
];
1492 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1493 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1494 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1495 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1497 block
[stride
*0 +offset
]= ((((z0
+ z3
)*qmul
+ 128 ) >> 8)); //FIXME think about merging this into decode_residual
1498 block
[stride
*2 +offset
]= ((((z1
+ z2
)*qmul
+ 128 ) >> 8));
1499 block
[stride
*8 +offset
]= ((((z1
- z2
)*qmul
+ 128 ) >> 8));
1500 block
[stride
*10+offset
]= ((((z0
- z3
)*qmul
+ 128 ) >> 8));
1506 * DCT transforms the 16 dc values.
1507 * @param qp quantization parameter ??? FIXME
1509 static void h264_luma_dc_dct_c(DCTELEM
*block
/*, int qp*/){
1510 // const int qmul= dequant_coeff[qp][0];
1512 int temp
[16]; //FIXME check if this is a good idea
1513 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1514 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1517 const int offset
= y_offset
[i
];
1518 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1519 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1520 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1521 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1530 const int offset
= x_offset
[i
];
1531 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1532 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1533 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1534 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1536 block
[stride
*0 +offset
]= (z0
+ z3
)>>1;
1537 block
[stride
*2 +offset
]= (z1
+ z2
)>>1;
1538 block
[stride
*8 +offset
]= (z1
- z2
)>>1;
1539 block
[stride
*10+offset
]= (z0
- z3
)>>1;
1547 static void chroma_dc_dequant_idct_c(DCTELEM
*block
, int qp
, int qmul
){
1548 const int stride
= 16*2;
1549 const int xStride
= 16;
1552 a
= block
[stride
*0 + xStride
*0];
1553 b
= block
[stride
*0 + xStride
*1];
1554 c
= block
[stride
*1 + xStride
*0];
1555 d
= block
[stride
*1 + xStride
*1];
1562 block
[stride
*0 + xStride
*0]= ((a
+c
)*qmul
) >> 7;
1563 block
[stride
*0 + xStride
*1]= ((e
+b
)*qmul
) >> 7;
1564 block
[stride
*1 + xStride
*0]= ((a
-c
)*qmul
) >> 7;
1565 block
[stride
*1 + xStride
*1]= ((e
-b
)*qmul
) >> 7;
1569 static void chroma_dc_dct_c(DCTELEM
*block
){
1570 const int stride
= 16*2;
1571 const int xStride
= 16;
1574 a
= block
[stride
*0 + xStride
*0];
1575 b
= block
[stride
*0 + xStride
*1];
1576 c
= block
[stride
*1 + xStride
*0];
1577 d
= block
[stride
*1 + xStride
*1];
1584 block
[stride
*0 + xStride
*0]= (a
+c
);
1585 block
[stride
*0 + xStride
*1]= (e
+b
);
1586 block
[stride
*1 + xStride
*0]= (a
-c
);
1587 block
[stride
*1 + xStride
*1]= (e
-b
);
1592 * gets the chroma qp.
1594 static inline int get_chroma_qp(H264Context
*h
, int t
, int qscale
){
1595 return h
->pps
.chroma_qp_table
[t
][qscale
];
1598 static inline void mc_dir_part(H264Context
*h
, Picture
*pic
, int n
, int square
, int chroma_height
, int delta
, int list
,
1599 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1600 int src_x_offset
, int src_y_offset
,
1601 qpel_mc_func
*qpix_op
, h264_chroma_mc_func chroma_op
){
1602 MpegEncContext
* const s
= &h
->s
;
1603 const int mx
= h
->mv_cache
[list
][ scan8
[n
] ][0] + src_x_offset
*8;
1604 int my
= h
->mv_cache
[list
][ scan8
[n
] ][1] + src_y_offset
*8;
1605 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
1606 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->mb_linesize
;
1607 uint8_t * src_cb
, * src_cr
;
1608 int extra_width
= h
->emu_edge_width
;
1609 int extra_height
= h
->emu_edge_height
;
1611 const int full_mx
= mx
>>2;
1612 const int full_my
= my
>>2;
1613 const int pic_width
= 16*s
->mb_width
;
1614 const int pic_height
= 16*s
->mb_height
>> MB_FIELD
;
1616 if(mx
&7) extra_width
-= 3;
1617 if(my
&7) extra_height
-= 3;
1619 if( full_mx
< 0-extra_width
1620 || full_my
< 0-extra_height
1621 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
1622 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
1623 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->mb_linesize
, h
->mb_linesize
, 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
1624 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->mb_linesize
;
1628 qpix_op
[luma_xy
](dest_y
, src_y
, h
->mb_linesize
); //FIXME try variable height perhaps?
1630 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->mb_linesize
);
1633 if(ENABLE_GRAY
&& s
->flags
&CODEC_FLAG_GRAY
) return;
1636 // chroma offset when predicting from a field of opposite parity
1637 my
+= 2 * ((s
->mb_y
& 1) - (pic
->reference
- 1));
1638 emu
|= (my
>>3) < 0 || (my
>>3) + 8 >= (pic_height
>>1);
1640 src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1641 src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->mb_uvlinesize
;
1644 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1645 src_cb
= s
->edge_emu_buffer
;
1647 chroma_op(dest_cb
, src_cb
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1650 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->mb_uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
1651 src_cr
= s
->edge_emu_buffer
;
1653 chroma_op(dest_cr
, src_cr
, h
->mb_uvlinesize
, chroma_height
, mx
&7, my
&7);
1656 static inline void mc_part_std(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1657 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1658 int x_offset
, int y_offset
,
1659 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1660 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1661 int list0
, int list1
){
1662 MpegEncContext
* const s
= &h
->s
;
1663 qpel_mc_func
*qpix_op
= qpix_put
;
1664 h264_chroma_mc_func chroma_op
= chroma_put
;
1666 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1667 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1668 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1669 x_offset
+= 8*s
->mb_x
;
1670 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1673 Picture
*ref
= &h
->ref_list
[0][ h
->ref_cache
[0][ scan8
[n
] ] ];
1674 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 0,
1675 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1676 qpix_op
, chroma_op
);
1679 chroma_op
= chroma_avg
;
1683 Picture
*ref
= &h
->ref_list
[1][ h
->ref_cache
[1][ scan8
[n
] ] ];
1684 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 1,
1685 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1686 qpix_op
, chroma_op
);
1690 static inline void mc_part_weighted(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1691 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1692 int x_offset
, int y_offset
,
1693 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1694 h264_weight_func luma_weight_op
, h264_weight_func chroma_weight_op
,
1695 h264_biweight_func luma_weight_avg
, h264_biweight_func chroma_weight_avg
,
1696 int list0
, int list1
){
1697 MpegEncContext
* const s
= &h
->s
;
1699 dest_y
+= 2*x_offset
+ 2*y_offset
*h
-> mb_linesize
;
1700 dest_cb
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1701 dest_cr
+= x_offset
+ y_offset
*h
->mb_uvlinesize
;
1702 x_offset
+= 8*s
->mb_x
;
1703 y_offset
+= 8*(s
->mb_y
>> MB_FIELD
);
1706 /* don't optimize for luma-only case, since B-frames usually
1707 * use implicit weights => chroma too. */
1708 uint8_t *tmp_cb
= s
->obmc_scratchpad
;
1709 uint8_t *tmp_cr
= s
->obmc_scratchpad
+ 8;
1710 uint8_t *tmp_y
= s
->obmc_scratchpad
+ 8*h
->mb_uvlinesize
;
1711 int refn0
= h
->ref_cache
[0][ scan8
[n
] ];
1712 int refn1
= h
->ref_cache
[1][ scan8
[n
] ];
1714 mc_dir_part(h
, &h
->ref_list
[0][refn0
], n
, square
, chroma_height
, delta
, 0,
1715 dest_y
, dest_cb
, dest_cr
,
1716 x_offset
, y_offset
, qpix_put
, chroma_put
);
1717 mc_dir_part(h
, &h
->ref_list
[1][refn1
], n
, square
, chroma_height
, delta
, 1,
1718 tmp_y
, tmp_cb
, tmp_cr
,
1719 x_offset
, y_offset
, qpix_put
, chroma_put
);
1721 if(h
->use_weight
== 2){
1722 int weight0
= h
->implicit_weight
[refn0
][refn1
];
1723 int weight1
= 64 - weight0
;
1724 luma_weight_avg( dest_y
, tmp_y
, h
-> mb_linesize
, 5, weight0
, weight1
, 0);
1725 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1726 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, 5, weight0
, weight1
, 0);
1728 luma_weight_avg(dest_y
, tmp_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1729 h
->luma_weight
[0][refn0
], h
->luma_weight
[1][refn1
],
1730 h
->luma_offset
[0][refn0
] + h
->luma_offset
[1][refn1
]);
1731 chroma_weight_avg(dest_cb
, tmp_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1732 h
->chroma_weight
[0][refn0
][0], h
->chroma_weight
[1][refn1
][0],
1733 h
->chroma_offset
[0][refn0
][0] + h
->chroma_offset
[1][refn1
][0]);
1734 chroma_weight_avg(dest_cr
, tmp_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1735 h
->chroma_weight
[0][refn0
][1], h
->chroma_weight
[1][refn1
][1],
1736 h
->chroma_offset
[0][refn0
][1] + h
->chroma_offset
[1][refn1
][1]);
1739 int list
= list1 ?
1 : 0;
1740 int refn
= h
->ref_cache
[list
][ scan8
[n
] ];
1741 Picture
*ref
= &h
->ref_list
[list
][refn
];
1742 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, list
,
1743 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1744 qpix_put
, chroma_put
);
1746 luma_weight_op(dest_y
, h
->mb_linesize
, h
->luma_log2_weight_denom
,
1747 h
->luma_weight
[list
][refn
], h
->luma_offset
[list
][refn
]);
1748 if(h
->use_weight_chroma
){
1749 chroma_weight_op(dest_cb
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1750 h
->chroma_weight
[list
][refn
][0], h
->chroma_offset
[list
][refn
][0]);
1751 chroma_weight_op(dest_cr
, h
->mb_uvlinesize
, h
->chroma_log2_weight_denom
,
1752 h
->chroma_weight
[list
][refn
][1], h
->chroma_offset
[list
][refn
][1]);
1757 static inline void mc_part(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1758 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1759 int x_offset
, int y_offset
,
1760 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1761 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1762 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
,
1763 int list0
, int list1
){
1764 if((h
->use_weight
==2 && list0
&& list1
1765 && (h
->implicit_weight
[ h
->ref_cache
[0][scan8
[n
]] ][ h
->ref_cache
[1][scan8
[n
]] ] != 32))
1766 || h
->use_weight
==1)
1767 mc_part_weighted(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1768 x_offset
, y_offset
, qpix_put
, chroma_put
,
1769 weight_op
[0], weight_op
[3], weight_avg
[0], weight_avg
[3], list0
, list1
);
1771 mc_part_std(h
, n
, square
, chroma_height
, delta
, dest_y
, dest_cb
, dest_cr
,
1772 x_offset
, y_offset
, qpix_put
, chroma_put
, qpix_avg
, chroma_avg
, list0
, list1
);
1775 static inline void prefetch_motion(H264Context
*h
, int list
){
1776 /* fetch pixels for estimated mv 4 macroblocks ahead
1777 * optimized for 64byte cache lines */
1778 MpegEncContext
* const s
= &h
->s
;
1779 const int refn
= h
->ref_cache
[list
][scan8
[0]];
1781 const int mx
= (h
->mv_cache
[list
][scan8
[0]][0]>>2) + 16*s
->mb_x
+ 8;
1782 const int my
= (h
->mv_cache
[list
][scan8
[0]][1]>>2) + 16*s
->mb_y
;
1783 uint8_t **src
= h
->ref_list
[list
][refn
].data
;
1784 int off
= mx
+ (my
+ (s
->mb_x
&3)*4)*h
->mb_linesize
+ 64;
1785 s
->dsp
.prefetch(src
[0]+off
, s
->linesize
, 4);
1786 off
= (mx
>>1) + ((my
>>1) + (s
->mb_x
&7))*s
->uvlinesize
+ 64;
1787 s
->dsp
.prefetch(src
[1]+off
, src
[2]-src
[1], 2);
1791 static void hl_motion(H264Context
*h
, uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1792 qpel_mc_func (*qpix_put
)[16], h264_chroma_mc_func (*chroma_put
),
1793 qpel_mc_func (*qpix_avg
)[16], h264_chroma_mc_func (*chroma_avg
),
1794 h264_weight_func
*weight_op
, h264_biweight_func
*weight_avg
){
1795 MpegEncContext
* const s
= &h
->s
;
1796 const int mb_xy
= h
->mb_xy
;
1797 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
1799 assert(IS_INTER(mb_type
));
1801 prefetch_motion(h
, 0);
1803 if(IS_16X16(mb_type
)){
1804 mc_part(h
, 0, 1, 8, 0, dest_y
, dest_cb
, dest_cr
, 0, 0,
1805 qpix_put
[0], chroma_put
[0], qpix_avg
[0], chroma_avg
[0],
1806 &weight_op
[0], &weight_avg
[0],
1807 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1808 }else if(IS_16X8(mb_type
)){
1809 mc_part(h
, 0, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 0,
1810 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1811 &weight_op
[1], &weight_avg
[1],
1812 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1813 mc_part(h
, 8, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 4,
1814 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1815 &weight_op
[1], &weight_avg
[1],
1816 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1817 }else if(IS_8X16(mb_type
)){
1818 mc_part(h
, 0, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 0, 0,
1819 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1820 &weight_op
[2], &weight_avg
[2],
1821 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1822 mc_part(h
, 4, 0, 8, 8*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, 4, 0,
1823 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1824 &weight_op
[2], &weight_avg
[2],
1825 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1829 assert(IS_8X8(mb_type
));
1832 const int sub_mb_type
= h
->sub_mb_type
[i
];
1834 int x_offset
= (i
&1)<<2;
1835 int y_offset
= (i
&2)<<1;
1837 if(IS_SUB_8X8(sub_mb_type
)){
1838 mc_part(h
, n
, 1, 4, 0, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1839 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1840 &weight_op
[3], &weight_avg
[3],
1841 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1842 }else if(IS_SUB_8X4(sub_mb_type
)){
1843 mc_part(h
, n
, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1844 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1845 &weight_op
[4], &weight_avg
[4],
1846 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1847 mc_part(h
, n
+2, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
+2,
1848 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
1849 &weight_op
[4], &weight_avg
[4],
1850 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1851 }else if(IS_SUB_4X8(sub_mb_type
)){
1852 mc_part(h
, n
, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1853 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1854 &weight_op
[5], &weight_avg
[5],
1855 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1856 mc_part(h
, n
+1, 0, 4, 4*h
->mb_linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
+2, y_offset
,
1857 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1858 &weight_op
[5], &weight_avg
[5],
1859 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1862 assert(IS_SUB_4X4(sub_mb_type
));
1864 int sub_x_offset
= x_offset
+ 2*(j
&1);
1865 int sub_y_offset
= y_offset
+ (j
&2);
1866 mc_part(h
, n
+j
, 1, 2, 0, dest_y
, dest_cb
, dest_cr
, sub_x_offset
, sub_y_offset
,
1867 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
1868 &weight_op
[6], &weight_avg
[6],
1869 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
1875 prefetch_motion(h
, 1);
1878 static av_cold
void decode_init_vlc(void){
1879 static int done
= 0;
1886 chroma_dc_coeff_token_vlc
.table
= chroma_dc_coeff_token_vlc_table
;
1887 chroma_dc_coeff_token_vlc
.table_allocated
= chroma_dc_coeff_token_vlc_table_size
;
1888 init_vlc(&chroma_dc_coeff_token_vlc
, CHROMA_DC_COEFF_TOKEN_VLC_BITS
, 4*5,
1889 &chroma_dc_coeff_token_len
[0], 1, 1,
1890 &chroma_dc_coeff_token_bits
[0], 1, 1,
1891 INIT_VLC_USE_NEW_STATIC
);
1895 coeff_token_vlc
[i
].table
= coeff_token_vlc_tables
+offset
;
1896 coeff_token_vlc
[i
].table_allocated
= coeff_token_vlc_tables_size
[i
];
1897 init_vlc(&coeff_token_vlc
[i
], COEFF_TOKEN_VLC_BITS
, 4*17,
1898 &coeff_token_len
[i
][0], 1, 1,
1899 &coeff_token_bits
[i
][0], 1, 1,
1900 INIT_VLC_USE_NEW_STATIC
);
1901 offset
+= coeff_token_vlc_tables_size
[i
];
1904 * This is a one time safety check to make sure that
1905 * the packed static coeff_token_vlc table sizes
1906 * were initialized correctly.
1908 assert(offset
== FF_ARRAY_ELEMS(coeff_token_vlc_tables
));
1911 chroma_dc_total_zeros_vlc
[i
].table
= chroma_dc_total_zeros_vlc_tables
[i
];
1912 chroma_dc_total_zeros_vlc
[i
].table_allocated
= chroma_dc_total_zeros_vlc_tables_size
;
1913 init_vlc(&chroma_dc_total_zeros_vlc
[i
],
1914 CHROMA_DC_TOTAL_ZEROS_VLC_BITS
, 4,
1915 &chroma_dc_total_zeros_len
[i
][0], 1, 1,
1916 &chroma_dc_total_zeros_bits
[i
][0], 1, 1,
1917 INIT_VLC_USE_NEW_STATIC
);
1919 for(i
=0; i
<15; i
++){
1920 total_zeros_vlc
[i
].table
= total_zeros_vlc_tables
[i
];
1921 total_zeros_vlc
[i
].table_allocated
= total_zeros_vlc_tables_size
;
1922 init_vlc(&total_zeros_vlc
[i
],
1923 TOTAL_ZEROS_VLC_BITS
, 16,
1924 &total_zeros_len
[i
][0], 1, 1,
1925 &total_zeros_bits
[i
][0], 1, 1,
1926 INIT_VLC_USE_NEW_STATIC
);
1930 run_vlc
[i
].table
= run_vlc_tables
[i
];
1931 run_vlc
[i
].table_allocated
= run_vlc_tables_size
;
1932 init_vlc(&run_vlc
[i
],
1934 &run_len
[i
][0], 1, 1,
1935 &run_bits
[i
][0], 1, 1,
1936 INIT_VLC_USE_NEW_STATIC
);
1938 run7_vlc
.table
= run7_vlc_table
,
1939 run7_vlc
.table_allocated
= run7_vlc_table_size
;
1940 init_vlc(&run7_vlc
, RUN7_VLC_BITS
, 16,
1941 &run_len
[6][0], 1, 1,
1942 &run_bits
[6][0], 1, 1,
1943 INIT_VLC_USE_NEW_STATIC
);
1947 static void free_tables(H264Context
*h
){
1950 av_freep(&h
->intra4x4_pred_mode
);
1951 av_freep(&h
->chroma_pred_mode_table
);
1952 av_freep(&h
->cbp_table
);
1953 av_freep(&h
->mvd_table
[0]);
1954 av_freep(&h
->mvd_table
[1]);
1955 av_freep(&h
->direct_table
);
1956 av_freep(&h
->non_zero_count
);
1957 av_freep(&h
->slice_table_base
);
1958 h
->slice_table
= NULL
;
1960 av_freep(&h
->mb2b_xy
);
1961 av_freep(&h
->mb2b8_xy
);
1963 for(i
= 0; i
< h
->s
.avctx
->thread_count
; i
++) {
1964 hx
= h
->thread_context
[i
];
1966 av_freep(&hx
->top_borders
[1]);
1967 av_freep(&hx
->top_borders
[0]);
1968 av_freep(&hx
->s
.obmc_scratchpad
);
1972 static void init_dequant8_coeff_table(H264Context
*h
){
1974 const int transpose
= (h
->s
.dsp
.h264_idct8_add
!= ff_h264_idct8_add_c
); //FIXME ugly
1975 h
->dequant8_coeff
[0] = h
->dequant8_buffer
[0];
1976 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[1];
1978 for(i
=0; i
<2; i
++ ){
1979 if(i
&& !memcmp(h
->pps
.scaling_matrix8
[0], h
->pps
.scaling_matrix8
[1], 64*sizeof(uint8_t))){
1980 h
->dequant8_coeff
[1] = h
->dequant8_buffer
[0];
1984 for(q
=0; q
<52; q
++){
1985 int shift
= div6
[q
];
1988 h
->dequant8_coeff
[i
][q
][transpose ?
(x
>>3)|((x
&7)<<3) : x
] =
1989 ((uint32_t)dequant8_coeff_init
[idx
][ dequant8_coeff_init_scan
[((x
>>1)&12) | (x
&3)] ] *
1990 h
->pps
.scaling_matrix8
[i
][x
]) << shift
;
1995 static void init_dequant4_coeff_table(H264Context
*h
){
1997 const int transpose
= (h
->s
.dsp
.h264_idct_add
!= ff_h264_idct_add_c
); //FIXME ugly
1998 for(i
=0; i
<6; i
++ ){
1999 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[i
];
2001 if(!memcmp(h
->pps
.scaling_matrix4
[j
], h
->pps
.scaling_matrix4
[i
], 16*sizeof(uint8_t))){
2002 h
->dequant4_coeff
[i
] = h
->dequant4_buffer
[j
];
2009 for(q
=0; q
<52; q
++){
2010 int shift
= div6
[q
] + 2;
2013 h
->dequant4_coeff
[i
][q
][transpose ?
(x
>>2)|((x
<<2)&0xF) : x
] =
2014 ((uint32_t)dequant4_coeff_init
[idx
][(x
&1) + ((x
>>2)&1)] *
2015 h
->pps
.scaling_matrix4
[i
][x
]) << shift
;
2020 static void init_dequant_tables(H264Context
*h
){
2022 init_dequant4_coeff_table(h
);
2023 if(h
->pps
.transform_8x8_mode
)
2024 init_dequant8_coeff_table(h
);
2025 if(h
->sps
.transform_bypass
){
2028 h
->dequant4_coeff
[i
][0][x
] = 1<<6;
2029 if(h
->pps
.transform_8x8_mode
)
2032 h
->dequant8_coeff
[i
][0][x
] = 1<<6;
2039 * needs width/height
2041 static int alloc_tables(H264Context
*h
){
2042 MpegEncContext
* const s
= &h
->s
;
2043 const int big_mb_num
= s
->mb_stride
* (s
->mb_height
+1);
2046 CHECKED_ALLOCZ(h
->intra4x4_pred_mode
, big_mb_num
* 8 * sizeof(uint8_t))
2048 CHECKED_ALLOCZ(h
->non_zero_count
, big_mb_num
* 16 * sizeof(uint8_t))
2049 CHECKED_ALLOCZ(h
->slice_table_base
, (big_mb_num
+s
->mb_stride
) * sizeof(*h
->slice_table_base
))
2050 CHECKED_ALLOCZ(h
->cbp_table
, big_mb_num
* sizeof(uint16_t))
2052 CHECKED_ALLOCZ(h
->chroma_pred_mode_table
, big_mb_num
* sizeof(uint8_t))
2053 CHECKED_ALLOCZ(h
->mvd_table
[0], 32*big_mb_num
* sizeof(uint16_t));
2054 CHECKED_ALLOCZ(h
->mvd_table
[1], 32*big_mb_num
* sizeof(uint16_t));
2055 CHECKED_ALLOCZ(h
->direct_table
, 32*big_mb_num
* sizeof(uint8_t));
2057 memset(h
->slice_table_base
, -1, (big_mb_num
+s
->mb_stride
) * sizeof(*h
->slice_table_base
));
2058 h
->slice_table
= h
->slice_table_base
+ s
->mb_stride
*2 + 1;
2060 CHECKED_ALLOCZ(h
->mb2b_xy
, big_mb_num
* sizeof(uint32_t));
2061 CHECKED_ALLOCZ(h
->mb2b8_xy
, big_mb_num
* sizeof(uint32_t));
2062 for(y
=0; y
<s
->mb_height
; y
++){
2063 for(x
=0; x
<s
->mb_width
; x
++){
2064 const int mb_xy
= x
+ y
*s
->mb_stride
;
2065 const int b_xy
= 4*x
+ 4*y
*h
->b_stride
;
2066 const int b8_xy
= 2*x
+ 2*y
*h
->b8_stride
;
2068 h
->mb2b_xy
[mb_xy
]= b_xy
;
2069 h
->mb2b8_xy
[mb_xy
]= b8_xy
;
2073 s
->obmc_scratchpad
= NULL
;
2075 if(!h
->dequant4_coeff
[0])
2076 init_dequant_tables(h
);
2085 * Mimic alloc_tables(), but for every context thread.
2087 static void clone_tables(H264Context
*dst
, H264Context
*src
){
2088 dst
->intra4x4_pred_mode
= src
->intra4x4_pred_mode
;
2089 dst
->non_zero_count
= src
->non_zero_count
;
2090 dst
->slice_table
= src
->slice_table
;
2091 dst
->cbp_table
= src
->cbp_table
;
2092 dst
->mb2b_xy
= src
->mb2b_xy
;
2093 dst
->mb2b8_xy
= src
->mb2b8_xy
;
2094 dst
->chroma_pred_mode_table
= src
->chroma_pred_mode_table
;
2095 dst
->mvd_table
[0] = src
->mvd_table
[0];
2096 dst
->mvd_table
[1] = src
->mvd_table
[1];
2097 dst
->direct_table
= src
->direct_table
;
2099 dst
->s
.obmc_scratchpad
= NULL
;
2100 ff_h264_pred_init(&dst
->hpc
, src
->s
.codec_id
);
2105 * Allocate buffers which are not shared amongst multiple threads.
2107 static int context_init(H264Context
*h
){
2108 CHECKED_ALLOCZ(h
->top_borders
[0], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2109 CHECKED_ALLOCZ(h
->top_borders
[1], h
->s
.mb_width
* (16+8+8) * sizeof(uint8_t))
2113 return -1; // free_tables will clean up for us
2116 static av_cold
void common_init(H264Context
*h
){
2117 MpegEncContext
* const s
= &h
->s
;
2119 s
->width
= s
->avctx
->width
;
2120 s
->height
= s
->avctx
->height
;
2121 s
->codec_id
= s
->avctx
->codec
->id
;
2123 ff_h264_pred_init(&h
->hpc
, s
->codec_id
);
2125 h
->dequant_coeff_pps
= -1;
2126 s
->unrestricted_mv
=1;
2127 s
->decode
=1; //FIXME
2129 dsputil_init(&s
->dsp
, s
->avctx
); // needed so that idct permutation is known early
2131 memset(h
->pps
.scaling_matrix4
, 16, 6*16*sizeof(uint8_t));
2132 memset(h
->pps
.scaling_matrix8
, 16, 2*64*sizeof(uint8_t));
2135 static av_cold
int decode_init(AVCodecContext
*avctx
){
2136 H264Context
*h
= avctx
->priv_data
;
2137 MpegEncContext
* const s
= &h
->s
;
2139 MPV_decode_defaults(s
);
2144 s
->out_format
= FMT_H264
;
2145 s
->workaround_bugs
= avctx
->workaround_bugs
;
2148 // s->decode_mb= ff_h263_decode_mb;
2149 s
->quarter_sample
= 1;
2152 if(avctx
->codec_id
== CODEC_ID_SVQ3
)
2153 avctx
->pix_fmt
= PIX_FMT_YUVJ420P
;
2155 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
2159 if(avctx
->extradata_size
> 0 && avctx
->extradata
&&
2160 *(char *)avctx
->extradata
== 1){
2167 h
->thread_context
[0] = h
;
2168 h
->outputed_poc
= INT_MIN
;
2169 h
->prev_poc_msb
= 1<<16;
2173 static int frame_start(H264Context
*h
){
2174 MpegEncContext
* const s
= &h
->s
;
2177 if(MPV_frame_start(s
, s
->avctx
) < 0)
2179 ff_er_frame_start(s
);
2181 * MPV_frame_start uses pict_type to derive key_frame.
2182 * This is incorrect for H.264; IDR markings must be used.
2183 * Zero here; IDR markings per slice in frame or fields are ORed in later.
2184 * See decode_nal_units().
2186 s
->current_picture_ptr
->key_frame
= 0;
2188 assert(s
->linesize
&& s
->uvlinesize
);
2190 for(i
=0; i
<16; i
++){
2191 h
->block_offset
[i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2192 h
->block_offset
[24+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2195 h
->block_offset
[16+i
]=
2196 h
->block_offset
[20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2197 h
->block_offset
[24+16+i
]=
2198 h
->block_offset
[24+20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 8*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2201 /* can't be in alloc_tables because linesize isn't known there.
2202 * FIXME: redo bipred weight to not require extra buffer? */
2203 for(i
= 0; i
< s
->avctx
->thread_count
; i
++)
2204 if(!h
->thread_context
[i
]->s
.obmc_scratchpad
)
2205 h
->thread_context
[i
]->s
.obmc_scratchpad
= av_malloc(16*2*s
->linesize
+ 8*2*s
->uvlinesize
);
2207 /* some macroblocks will be accessed before they're available */
2208 if(FRAME_MBAFF
|| s
->avctx
->thread_count
> 1)
2209 memset(h
->slice_table
, -1, (s
->mb_height
*s
->mb_stride
-1) * sizeof(*h
->slice_table
));
2211 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2213 // We mark the current picture as non-reference after allocating it, so
2214 // that if we break out due to an error it can be released automatically
2215 // in the next MPV_frame_start().
2216 // SVQ3 as well as most other codecs have only last/next/current and thus
2217 // get released even with set reference, besides SVQ3 and others do not
2218 // mark frames as reference later "naturally".
2219 if(s
->codec_id
!= CODEC_ID_SVQ3
)
2220 s
->current_picture_ptr
->reference
= 0;
2222 s
->current_picture_ptr
->field_poc
[0]=
2223 s
->current_picture_ptr
->field_poc
[1]= INT_MAX
;
2224 assert(s
->current_picture_ptr
->long_ref
==0);
2229 static inline void backup_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int simple
){
2230 MpegEncContext
* const s
= &h
->s
;
2239 src_cb
-= uvlinesize
;
2240 src_cr
-= uvlinesize
;
2242 if(!simple
&& FRAME_MBAFF
){
2244 offset
= MB_MBAFF ?
1 : 17;
2245 uvoffset
= MB_MBAFF ?
1 : 9;
2247 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+ 0)= *(uint64_t*)(src_y
+ 15*linesize
);
2248 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+ 8)= *(uint64_t*)(src_y
+8+15*linesize
);
2249 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2250 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+7*uvlinesize
);
2251 *(uint64_t*)(h
->top_borders
[0][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+7*uvlinesize
);
2256 h
->left_border
[0]= h
->top_borders
[0][s
->mb_x
][15];
2257 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2258 h
->left_border
[34 ]= h
->top_borders
[0][s
->mb_x
][16+7 ];
2259 h
->left_border
[34+18]= h
->top_borders
[0][s
->mb_x
][16+8+7];
2265 top_idx
= MB_MBAFF ?
0 : 1;
2267 step
= MB_MBAFF ?
2 : 1;
2270 // There are two lines saved, the line above the the top macroblock of a pair,
2271 // and the line above the bottom macroblock
2272 h
->left_border
[offset
]= h
->top_borders
[top_idx
][s
->mb_x
][15];
2273 for(i
=1; i
<17 - skiplast
; i
++){
2274 h
->left_border
[offset
+i
*step
]= src_y
[15+i
* linesize
];
2277 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+0)= *(uint64_t*)(src_y
+ 16*linesize
);
2278 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+8)= *(uint64_t*)(src_y
+8+16*linesize
);
2280 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2281 h
->left_border
[uvoffset
+34 ]= h
->top_borders
[top_idx
][s
->mb_x
][16+7];
2282 h
->left_border
[uvoffset
+34+18]= h
->top_borders
[top_idx
][s
->mb_x
][24+7];
2283 for(i
=1; i
<9 - skiplast
; i
++){
2284 h
->left_border
[uvoffset
+34 +i
*step
]= src_cb
[7+i
*uvlinesize
];
2285 h
->left_border
[uvoffset
+34+18+i
*step
]= src_cr
[7+i
*uvlinesize
];
2287 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+16)= *(uint64_t*)(src_cb
+8*uvlinesize
);
2288 *(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+24)= *(uint64_t*)(src_cr
+8*uvlinesize
);
2292 static inline void xchg_mb_border(H264Context
*h
, uint8_t *src_y
, uint8_t *src_cb
, uint8_t *src_cr
, int linesize
, int uvlinesize
, int xchg
, int simple
){
2293 MpegEncContext
* const s
= &h
->s
;
2304 if(!simple
&& FRAME_MBAFF
){
2306 offset
= MB_MBAFF ?
1 : 17;
2307 uvoffset
= MB_MBAFF ?
1 : 9;
2311 top_idx
= MB_MBAFF ?
0 : 1;
2313 step
= MB_MBAFF ?
2 : 1;
2316 if(h
->deblocking_filter
== 2) {
2318 deblock_left
= h
->slice_table
[mb_xy
] == h
->slice_table
[mb_xy
- 1];
2319 deblock_top
= h
->slice_table
[mb_xy
] == h
->slice_table
[h
->top_mb_xy
];
2321 deblock_left
= (s
->mb_x
> 0);
2322 deblock_top
= (s
->mb_y
> !!MB_FIELD
);
2325 src_y
-= linesize
+ 1;
2326 src_cb
-= uvlinesize
+ 1;
2327 src_cr
-= uvlinesize
+ 1;
2329 #define XCHG(a,b,t,xchg)\
2336 for(i
= !deblock_top
; i
<16; i
++){
2337 XCHG(h
->left_border
[offset
+i
*step
], src_y
[i
* linesize
], temp8
, xchg
);
2339 XCHG(h
->left_border
[offset
+i
*step
], src_y
[i
* linesize
], temp8
, 1);
2343 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+0), *(uint64_t*)(src_y
+1), temp64
, xchg
);
2344 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+8), *(uint64_t*)(src_y
+9), temp64
, 1);
2345 if(s
->mb_x
+1 < s
->mb_width
){
2346 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
+1]), *(uint64_t*)(src_y
+17), temp64
, 1);
2350 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2352 for(i
= !deblock_top
; i
<8; i
++){
2353 XCHG(h
->left_border
[uvoffset
+34 +i
*step
], src_cb
[i
*uvlinesize
], temp8
, xchg
);
2354 XCHG(h
->left_border
[uvoffset
+34+18+i
*step
], src_cr
[i
*uvlinesize
], temp8
, xchg
);
2356 XCHG(h
->left_border
[uvoffset
+34 +i
*step
], src_cb
[i
*uvlinesize
], temp8
, 1);
2357 XCHG(h
->left_border
[uvoffset
+34+18+i
*step
], src_cr
[i
*uvlinesize
], temp8
, 1);
2360 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+16), *(uint64_t*)(src_cb
+1), temp64
, 1);
2361 XCHG(*(uint64_t*)(h
->top_borders
[top_idx
][s
->mb_x
]+24), *(uint64_t*)(src_cr
+1), temp64
, 1);
2366 static av_always_inline
void hl_decode_mb_internal(H264Context
*h
, int simple
){
2367 MpegEncContext
* const s
= &h
->s
;
2368 const int mb_x
= s
->mb_x
;
2369 const int mb_y
= s
->mb_y
;
2370 const int mb_xy
= h
->mb_xy
;
2371 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
2372 uint8_t *dest_y
, *dest_cb
, *dest_cr
;
2373 int linesize
, uvlinesize
/*dct_offset*/;
2375 int *block_offset
= &h
->block_offset
[0];
2376 const int transform_bypass
= !simple
&& (s
->qscale
== 0 && h
->sps
.transform_bypass
);
2377 const int is_h264
= simple
|| s
->codec_id
== CODEC_ID_H264
;
2378 void (*idct_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2379 void (*idct_dc_add
)(uint8_t *dst
, DCTELEM
*block
, int stride
);
2381 dest_y
= s
->current_picture
.data
[0] + (mb_x
+ mb_y
* s
->linesize
) * 16;
2382 dest_cb
= s
->current_picture
.data
[1] + (mb_x
+ mb_y
* s
->uvlinesize
) * 8;
2383 dest_cr
= s
->current_picture
.data
[2] + (mb_x
+ mb_y
* s
->uvlinesize
) * 8;
2385 s
->dsp
.prefetch(dest_y
+ (s
->mb_x
&3)*4*s
->linesize
+ 64, s
->linesize
, 4);
2386 s
->dsp
.prefetch(dest_cb
+ (s
->mb_x
&7)*s
->uvlinesize
+ 64, dest_cr
- dest_cb
, 2);
2388 if (!simple
&& MB_FIELD
) {
2389 linesize
= h
->mb_linesize
= s
->linesize
* 2;
2390 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
* 2;
2391 block_offset
= &h
->block_offset
[24];
2392 if(mb_y
&1){ //FIXME move out of this function?
2393 dest_y
-= s
->linesize
*15;
2394 dest_cb
-= s
->uvlinesize
*7;
2395 dest_cr
-= s
->uvlinesize
*7;
2399 for(list
=0; list
<h
->list_count
; list
++){
2400 if(!USES_LIST(mb_type
, list
))
2402 if(IS_16X16(mb_type
)){
2403 int8_t *ref
= &h
->ref_cache
[list
][scan8
[0]];
2404 fill_rectangle(ref
, 4, 4, 8, (16+*ref
)^(s
->mb_y
&1), 1);
2406 for(i
=0; i
<16; i
+=4){
2407 int ref
= h
->ref_cache
[list
][scan8
[i
]];
2409 fill_rectangle(&h
->ref_cache
[list
][scan8
[i
]], 2, 2, 8, (16+ref
)^(s
->mb_y
&1), 1);
2415 linesize
= h
->mb_linesize
= s
->linesize
;
2416 uvlinesize
= h
->mb_uvlinesize
= s
->uvlinesize
;
2417 // dct_offset = s->linesize * 16;
2420 if (!simple
&& IS_INTRA_PCM(mb_type
)) {
2421 for (i
=0; i
<16; i
++) {
2422 memcpy(dest_y
+ i
* linesize
, h
->mb
+ i
*8, 16);
2424 for (i
=0; i
<8; i
++) {
2425 memcpy(dest_cb
+ i
*uvlinesize
, h
->mb
+ 128 + i
*4, 8);
2426 memcpy(dest_cr
+ i
*uvlinesize
, h
->mb
+ 160 + i
*4, 8);
2429 if(IS_INTRA(mb_type
)){
2430 if(h
->deblocking_filter
)
2431 xchg_mb_border(h
, dest_y
, dest_cb
, dest_cr
, linesize
, uvlinesize
, 1, simple
);
2433 if(simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)){
2434 h
->hpc
.pred8x8
[ h
->chroma_pred_mode
](dest_cb
, uvlinesize
);
2435 h
->hpc
.pred8x8
[ h
->chroma_pred_mode
](dest_cr
, uvlinesize
);
2438 if(IS_INTRA4x4(mb_type
)){
2439 if(simple
|| !s
->encoding
){
2440 if(IS_8x8DCT(mb_type
)){
2441 if(transform_bypass
){
2443 idct_add
= s
->dsp
.add_pixels8
;
2445 idct_dc_add
= s
->dsp
.h264_idct8_dc_add
;
2446 idct_add
= s
->dsp
.h264_idct8_add
;
2448 for(i
=0; i
<16; i
+=4){
2449 uint8_t * const ptr
= dest_y
+ block_offset
[i
];
2450 const int dir
= h
->intra4x4_pred_mode_cache
[ scan8
[i
] ];
2451 if(transform_bypass
&& h
->sps
.profile_idc
==244 && dir
<=1){
2452 h
->hpc
.pred8x8l_add
[dir
](ptr
, h
->mb
+ i
*16, linesize
);
2454 const int nnz
= h
->non_zero_count_cache
[ scan8
[i
] ];
2455 h
->hpc
.pred8x8l
[ dir
](ptr
, (h
->topleft_samples_available
<<i
)&0x8000,
2456 (h
->topright_samples_available
<<i
)&0x4000, linesize
);
2458 if(nnz
== 1 && h
->mb
[i
*16])
2459 idct_dc_add(ptr
, h
->mb
+ i
*16, linesize
);
2461 idct_add (ptr
, h
->mb
+ i
*16, linesize
);
2466 if(transform_bypass
){
2468 idct_add
= s
->dsp
.add_pixels4
;
2470 idct_dc_add
= s
->dsp
.h264_idct_dc_add
;
2471 idct_add
= s
->dsp
.h264_idct_add
;
2473 for(i
=0; i
<16; i
++){
2474 uint8_t * const ptr
= dest_y
+ block_offset
[i
];
2475 const int dir
= h
->intra4x4_pred_mode_cache
[ scan8
[i
] ];
2477 if(transform_bypass
&& h
->sps
.profile_idc
==244 && dir
<=1){
2478 h
->hpc
.pred4x4_add
[dir
](ptr
, h
->mb
+ i
*16, linesize
);
2482 if(dir
== DIAG_DOWN_LEFT_PRED
|| dir
== VERT_LEFT_PRED
){
2483 const int topright_avail
= (h
->topright_samples_available
<<i
)&0x8000;
2484 assert(mb_y
|| linesize
<= block_offset
[i
]);
2485 if(!topright_avail
){
2486 tr
= ptr
[3 - linesize
]*0x01010101;
2487 topright
= (uint8_t*) &tr
;
2489 topright
= ptr
+ 4 - linesize
;
2493 h
->hpc
.pred4x4
[ dir
](ptr
, topright
, linesize
);
2494 nnz
= h
->non_zero_count_cache
[ scan8
[i
] ];
2497 if(nnz
== 1 && h
->mb
[i
*16])
2498 idct_dc_add(ptr
, h
->mb
+ i
*16, linesize
);
2500 idct_add (ptr
, h
->mb
+ i
*16, linesize
);
2502 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
, s
->qscale
, 0);
2509 h
->hpc
.pred16x16
[ h
->intra16x16_pred_mode
](dest_y
, linesize
);
2511 if(!transform_bypass
)
2512 h264_luma_dc_dequant_idct_c(h
->mb
, s
->qscale
, h
->dequant4_coeff
[0][s
->qscale
][0]);
2514 svq3_luma_dc_dequant_idct_c(h
->mb
, s
->qscale
);
2516 if(h
->deblocking_filter
)
2517 xchg_mb_border(h
, dest_y
, dest_cb
, dest_cr
, linesize
, uvlinesize
, 0, simple
);
2519 hl_motion(h
, dest_y
, dest_cb
, dest_cr
,
2520 s
->me
.qpel_put
, s
->dsp
.put_h264_chroma_pixels_tab
,
2521 s
->me
.qpel_avg
, s
->dsp
.avg_h264_chroma_pixels_tab
,
2522 s
->dsp
.weight_h264_pixels_tab
, s
->dsp
.biweight_h264_pixels_tab
);
2526 if(!IS_INTRA4x4(mb_type
)){
2528 if(IS_INTRA16x16(mb_type
)){
2529 if(transform_bypass
){
2530 if(h
->sps
.profile_idc
==244 && (h
->intra16x16_pred_mode
==VERT_PRED8x8
|| h
->intra16x16_pred_mode
==HOR_PRED8x8
)){
2531 h
->hpc
.pred16x16_add
[h
->intra16x16_pred_mode
](dest_y
, block_offset
, h
->mb
, linesize
);
2533 for(i
=0; i
<16; i
++){
2534 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16])
2535 s
->dsp
.add_pixels4(dest_y
+ block_offset
[i
], h
->mb
+ i
*16, linesize
);
2539 s
->dsp
.h264_idct_add16intra(dest_y
, block_offset
, h
->mb
, linesize
, h
->non_zero_count_cache
);
2541 }else if(h
->cbp
&15){
2542 if(transform_bypass
){
2543 const int di
= IS_8x8DCT(mb_type
) ?
4 : 1;
2544 idct_add
= IS_8x8DCT(mb_type
) ? s
->dsp
.add_pixels8
: s
->dsp
.add_pixels4
;
2545 for(i
=0; i
<16; i
+=di
){
2546 if(h
->non_zero_count_cache
[ scan8
[i
] ]){
2547 idct_add(dest_y
+ block_offset
[i
], h
->mb
+ i
*16, linesize
);
2551 if(IS_8x8DCT(mb_type
)){
2552 s
->dsp
.h264_idct8_add4(dest_y
, block_offset
, h
->mb
, linesize
, h
->non_zero_count_cache
);
2554 s
->dsp
.h264_idct_add16(dest_y
, block_offset
, h
->mb
, linesize
, h
->non_zero_count_cache
);
2559 for(i
=0; i
<16; i
++){
2560 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){ //FIXME benchmark weird rule, & below
2561 uint8_t * const ptr
= dest_y
+ block_offset
[i
];
2562 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
, s
->qscale
, IS_INTRA(mb_type
) ?
1 : 0);
2568 if((simple
|| !ENABLE_GRAY
|| !(s
->flags
&CODEC_FLAG_GRAY
)) && (h
->cbp
&0x30)){
2569 uint8_t *dest
[2] = {dest_cb
, dest_cr
};
2570 if(transform_bypass
){
2571 if(IS_INTRA(mb_type
) && h
->sps
.profile_idc
==244 && (h
->chroma_pred_mode
==VERT_PRED8x8
|| h
->chroma_pred_mode
==HOR_PRED8x8
)){
2572 h
->hpc
.pred8x8_add
[h
->chroma_pred_mode
](dest
[0], block_offset
+ 16, h
->mb
+ 16*16, uvlinesize
);
2573 h
->hpc
.pred8x8_add
[h
->chroma_pred_mode
](dest
[1], block_offset
+ 20, h
->mb
+ 20*16, uvlinesize
);
2575 idct_add
= s
->dsp
.add_pixels4
;
2576 for(i
=16; i
<16+8; i
++){
2577 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16])
2578 idct_add (dest
[(i
&4)>>2] + block_offset
[i
], h
->mb
+ i
*16, uvlinesize
);
2582 chroma_dc_dequant_idct_c(h
->mb
+ 16*16, h
->chroma_qp
[0], h
->dequant4_coeff
[IS_INTRA(mb_type
) ?
1:4][h
->chroma_qp
[0]][0]);
2583 chroma_dc_dequant_idct_c(h
->mb
+ 16*16+4*16, h
->chroma_qp
[1], h
->dequant4_coeff
[IS_INTRA(mb_type
) ?
2:5][h
->chroma_qp
[1]][0]);
2585 idct_add
= s
->dsp
.h264_idct_add
;
2586 idct_dc_add
= s
->dsp
.h264_idct_dc_add
;
2587 for(i
=16; i
<16+8; i
++){
2588 if(h
->non_zero_count_cache
[ scan8
[i
] ])
2589 idct_add (dest
[(i
&4)>>2] + block_offset
[i
], h
->mb
+ i
*16, uvlinesize
);
2590 else if(h
->mb
[i
*16])
2591 idct_dc_add(dest
[(i
&4)>>2] + block_offset
[i
], h
->mb
+ i
*16, uvlinesize
);
2594 for(i
=16; i
<16+8; i
++){
2595 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){
2596 uint8_t * const ptr
= dest
[(i
&4)>>2] + block_offset
[i
];
2597 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, uvlinesize
, chroma_qp
[s
->qscale
+ 12] - 12, 2);
2604 if(h
->cbp
|| IS_INTRA(mb_type
))
2605 s
->dsp
.clear_blocks(h
->mb
);
2607 if(h
->deblocking_filter
) {
2608 backup_mb_border(h
, dest_y
, dest_cb
, dest_cr
, linesize
, uvlinesize
, simple
);
2609 fill_caches(h
, mb_type
, 1); //FIXME don't fill stuff which isn't used by filter_mb
2610 h
->chroma_qp
[0] = get_chroma_qp(h
, 0, s
->current_picture
.qscale_table
[mb_xy
]);
2611 h
->chroma_qp
[1] = get_chroma_qp(h
, 1, s
->current_picture
.qscale_table
[mb_xy
]);
2612 if (!simple
&& FRAME_MBAFF
) {
2613 filter_mb (h
, mb_x
, mb_y
, dest_y
, dest_cb
, dest_cr
, linesize
, uvlinesize
);
2615 filter_mb_fast(h
, mb_x
, mb_y
, dest_y
, dest_cb
, dest_cr
, linesize
, uvlinesize
);
2621 * Process a macroblock; this case avoids checks for expensive uncommon cases.
2623 static void hl_decode_mb_simple(H264Context
*h
){
2624 hl_decode_mb_internal(h
, 1);
2628 * Process a macroblock; this handles edge cases, such as interlacing.
2630 static void av_noinline
hl_decode_mb_complex(H264Context
*h
){
2631 hl_decode_mb_internal(h
, 0);
2634 static void hl_decode_mb(H264Context
*h
){
2635 MpegEncContext
* const s
= &h
->s
;
2636 const int mb_xy
= h
->mb_xy
;
2637 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
2638 int is_complex
= ENABLE_SMALL
|| h
->is_complex
|| IS_INTRA_PCM(mb_type
) || s
->qscale
== 0;
2640 if(ENABLE_H264_ENCODER
&& !s
->decode
)
2644 hl_decode_mb_complex(h
);
2645 else hl_decode_mb_simple(h
);
2648 static void pic_as_field(Picture
*pic
, const int parity
){
2650 for (i
= 0; i
< 4; ++i
) {
2651 if (parity
== PICT_BOTTOM_FIELD
)
2652 pic
->data
[i
] += pic
->linesize
[i
];
2653 pic
->reference
= parity
;
2654 pic
->linesize
[i
] *= 2;
2656 pic
->poc
= pic
->field_poc
[parity
== PICT_BOTTOM_FIELD
];
2659 static int split_field_copy(Picture
*dest
, Picture
*src
,
2660 int parity
, int id_add
){
2661 int match
= !!(src
->reference
& parity
);
2665 if(parity
!= PICT_FRAME
){
2666 pic_as_field(dest
, parity
);
2668 dest
->pic_id
+= id_add
;
2675 static int build_def_list(Picture
*def
, Picture
**in
, int len
, int is_long
, int sel
){
2679 while(i
[0]<len
|| i
[1]<len
){
2680 while(i
[0]<len
&& !(in
[ i
[0] ] && (in
[ i
[0] ]->reference
& sel
)))
2682 while(i
[1]<len
&& !(in
[ i
[1] ] && (in
[ i
[1] ]->reference
& (sel
^3))))
2685 in
[ i
[0] ]->pic_id
= is_long ? i
[0] : in
[ i
[0] ]->frame_num
;
2686 split_field_copy(&def
[index
++], in
[ i
[0]++ ], sel
, 1);
2689 in
[ i
[1] ]->pic_id
= is_long ? i
[1] : in
[ i
[1] ]->frame_num
;
2690 split_field_copy(&def
[index
++], in
[ i
[1]++ ], sel
^3, 0);
2697 static int add_sorted(Picture
**sorted
, Picture
**src
, int len
, int limit
, int dir
){
2702 best_poc
= dir ? INT_MIN
: INT_MAX
;
2704 for(i
=0; i
<len
; i
++){
2705 const int poc
= src
[i
]->poc
;
2706 if(((poc
> limit
) ^ dir
) && ((poc
< best_poc
) ^ dir
)){
2708 sorted
[out_i
]= src
[i
];
2711 if(best_poc
== (dir ? INT_MIN
: INT_MAX
))
2713 limit
= sorted
[out_i
++]->poc
- dir
;
2719 * fills the default_ref_list.
2721 static int fill_default_ref_list(H264Context
*h
){
2722 MpegEncContext
* const s
= &h
->s
;
2725 if(h
->slice_type_nos
==FF_B_TYPE
){
2726 Picture
*sorted
[32];
2731 cur_poc
= s
->current_picture_ptr
->field_poc
[ s
->picture_structure
== PICT_BOTTOM_FIELD
];
2733 cur_poc
= s
->current_picture_ptr
->poc
;
2735 for(list
= 0; list
<2; list
++){
2736 len
= add_sorted(sorted
, h
->short_ref
, h
->short_ref_count
, cur_poc
, 1^list
);
2737 len
+=add_sorted(sorted
+len
, h
->short_ref
, h
->short_ref_count
, cur_poc
, 0^list
);
2739 len
= build_def_list(h
->default_ref_list
[list
] , sorted
, len
, 0, s
->picture_structure
);
2740 len
+=build_def_list(h
->default_ref_list
[list
]+len
, h
->long_ref
, 16 , 1, s
->picture_structure
);
2743 if(len
< h
->ref_count
[list
])
2744 memset(&h
->default_ref_list
[list
][len
], 0, sizeof(Picture
)*(h
->ref_count
[list
] - len
));
2748 if(lens
[0] == lens
[1] && lens
[1] > 1){
2749 for(i
=0; h
->default_ref_list
[0][i
].data
[0] == h
->default_ref_list
[1][i
].data
[0] && i
<lens
[0]; i
++);
2751 FFSWAP(Picture
, h
->default_ref_list
[1][0], h
->default_ref_list
[1][1]);
2754 len
= build_def_list(h
->default_ref_list
[0] , h
->short_ref
, h
->short_ref_count
, 0, s
->picture_structure
);
2755 len
+= build_def_list(h
->default_ref_list
[0]+len
, h
-> long_ref
, 16 , 1, s
->picture_structure
);
2757 if(len
< h
->ref_count
[0])
2758 memset(&h
->default_ref_list
[0][len
], 0, sizeof(Picture
)*(h
->ref_count
[0] - len
));
2761 for (i
=0; i
<h
->ref_count
[0]; i
++) {
2762 tprintf(h
->s
.avctx
, "List0: %s fn:%d 0x%p\n", (h
->default_ref_list
[0][i
].long_ref ?
"LT" : "ST"), h
->default_ref_list
[0][i
].pic_id
, h
->default_ref_list
[0][i
].data
[0]);
2764 if(h
->slice_type_nos
==FF_B_TYPE
){
2765 for (i
=0; i
<h
->ref_count
[1]; i
++) {
2766 tprintf(h
->s
.avctx
, "List1: %s fn:%d 0x%p\n", (h
->default_ref_list
[1][i
].long_ref ?
"LT" : "ST"), h
->default_ref_list
[1][i
].pic_id
, h
->default_ref_list
[1][i
].data
[0]);
2773 static void print_short_term(H264Context
*h
);
2774 static void print_long_term(H264Context
*h
);
2777 * Extract structure information about the picture described by pic_num in
2778 * the current decoding context (frame or field). Note that pic_num is
2779 * picture number without wrapping (so, 0<=pic_num<max_pic_num).
2780 * @param pic_num picture number for which to extract structure information
2781 * @param structure one of PICT_XXX describing structure of picture
2783 * @return frame number (short term) or long term index of picture
2784 * described by pic_num
2786 static int pic_num_extract(H264Context
*h
, int pic_num
, int *structure
){
2787 MpegEncContext
* const s
= &h
->s
;
2789 *structure
= s
->picture_structure
;
2792 /* opposite field */
2793 *structure
^= PICT_FRAME
;
2800 static int decode_ref_pic_list_reordering(H264Context
*h
){
2801 MpegEncContext
* const s
= &h
->s
;
2802 int list
, index
, pic_structure
;
2804 print_short_term(h
);
2807 for(list
=0; list
<h
->list_count
; list
++){
2808 memcpy(h
->ref_list
[list
], h
->default_ref_list
[list
], sizeof(Picture
)*h
->ref_count
[list
]);
2810 if(get_bits1(&s
->gb
)){
2811 int pred
= h
->curr_pic_num
;
2813 for(index
=0; ; index
++){
2814 unsigned int reordering_of_pic_nums_idc
= get_ue_golomb(&s
->gb
);
2815 unsigned int pic_id
;
2817 Picture
*ref
= NULL
;
2819 if(reordering_of_pic_nums_idc
==3)
2822 if(index
>= h
->ref_count
[list
]){
2823 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "reference count overflow\n");
2827 if(reordering_of_pic_nums_idc
<3){
2828 if(reordering_of_pic_nums_idc
<2){
2829 const unsigned int abs_diff_pic_num
= get_ue_golomb(&s
->gb
) + 1;
2832 if(abs_diff_pic_num
> h
->max_pic_num
){
2833 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "abs_diff_pic_num overflow\n");
2837 if(reordering_of_pic_nums_idc
== 0) pred
-= abs_diff_pic_num
;
2838 else pred
+= abs_diff_pic_num
;
2839 pred
&= h
->max_pic_num
- 1;
2841 frame_num
= pic_num_extract(h
, pred
, &pic_structure
);
2843 for(i
= h
->short_ref_count
-1; i
>=0; i
--){
2844 ref
= h
->short_ref
[i
];
2845 assert(ref
->reference
);
2846 assert(!ref
->long_ref
);
2848 ref
->frame_num
== frame_num
&&
2849 (ref
->reference
& pic_structure
)
2857 pic_id
= get_ue_golomb(&s
->gb
); //long_term_pic_idx
2859 long_idx
= pic_num_extract(h
, pic_id
, &pic_structure
);
2862 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "long_term_pic_idx overflow\n");
2865 ref
= h
->long_ref
[long_idx
];
2866 assert(!(ref
&& !ref
->reference
));
2867 if(ref
&& (ref
->reference
& pic_structure
)){
2868 ref
->pic_id
= pic_id
;
2869 assert(ref
->long_ref
);
2877 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "reference picture missing during reorder\n"