2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * H.264 / AVC / MPEG4 part10 codec.
24 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_isnt_initalized_see_mb_type
40 #define LUMA_DC_BLOCK_INDEX 25
41 #define CHROMA_DC_BLOCK_INDEX 26
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS 8
45 #define TOTAL_ZEROS_VLC_BITS 9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS 3
48 #define RUN7_VLC_BITS 6
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
53 #define MAX_MMCO_COUNT 66
56 * Sequence parameter set
62 int log2_max_frame_num
; ///< log2_max_frame_num_minus4 + 4
63 int poc_type
; ///< pic_order_cnt_type
64 int log2_max_poc_lsb
; ///< log2_max_pic_order_cnt_lsb_minus4
65 int delta_pic_order_always_zero_flag
;
66 int offset_for_non_ref_pic
;
67 int offset_for_top_to_bottom_field
;
68 int poc_cycle_length
; ///< num_ref_frames_in_pic_order_cnt_cycle
69 int ref_frame_count
; ///< num_ref_frames
70 int gaps_in_frame_num_allowed_flag
;
71 int mb_width
; ///< frame_width_in_mbs_minus1 + 1
72 int mb_height
; ///< frame_height_in_mbs_minus1 + 1
73 int frame_mbs_only_flag
;
74 int mb_aff
; ///<mb_adaptive_frame_field_flag
75 int direct_8x8_inference_flag
;
76 int crop
; ///< frame_cropping_flag
77 int crop_left
; ///< frame_cropping_rect_left_offset
78 int crop_right
; ///< frame_cropping_rect_right_offset
79 int crop_top
; ///< frame_cropping_rect_top_offset
80 int crop_bottom
; ///< frame_cropping_rect_bottom_offset
81 int vui_parameters_present_flag
;
84 short offset_for_ref_frame
[256]; //FIXME dyn aloc?
88 * Picture parameter set
92 int cabac
; ///< entropy_coding_mode_flag
93 int pic_order_present
; ///< pic_order_present_flag
94 int slice_group_count
; ///< num_slice_groups_minus1 + 1
95 int mb_slice_group_map_type
;
96 int ref_count
[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
97 int weighted_pred
; ///< weighted_pred_flag
98 int weighted_bipred_idc
;
99 int init_qp
; ///< pic_init_qp_minus26 + 26
100 int init_qs
; ///< pic_init_qs_minus26 + 26
101 int chroma_qp_index_offset
;
102 int deblocking_filter_parameters_present
; ///< deblocking_filter_parameters_present_flag
103 int constrained_intra_pred
; ///< constrained_intra_pred_flag
104 int redundant_pic_cnt_present
; ///< redundant_pic_cnt_present_flag
108 * Memory management control operation opcode.
110 typedef enum MMCOOpcode
{
121 * Memory management control operation.
132 typedef struct H264Context
{
140 #define NAL_IDR_SLICE 5
144 #define NAL_PICTURE_DELIMITER 9
145 #define NAL_FILTER_DATA 10
146 uint8_t *rbsp_buffer
;
147 int rbsp_buffer_size
;
151 int prev_mb_skiped
; //FIXME remove (IMHO not used)
154 int chroma_pred_mode
;
155 int intra16x16_pred_mode
;
157 int8_t intra4x4_pred_mode_cache
[5*8];
158 int8_t (*intra4x4_pred_mode
)[8];
159 void (*pred4x4
[9+3])(uint8_t *src
, uint8_t *topright
, int stride
);//FIXME move to dsp?
160 void (*pred8x8
[4+3])(uint8_t *src
, int stride
);
161 void (*pred16x16
[4+3])(uint8_t *src
, int stride
);
162 unsigned int topleft_samples_available
;
163 unsigned int top_samples_available
;
164 unsigned int topright_samples_available
;
165 unsigned int left_samples_available
;
168 * non zero coeff count cache.
169 * is 64 if not available.
171 uint8_t non_zero_count_cache
[6*8];
172 uint8_t (*non_zero_count
)[16];
175 * Motion vector cache.
177 int16_t mv_cache
[2][5*8][2];
178 int8_t ref_cache
[2][5*8];
179 #define LIST_NOT_USED -1 //FIXME rename?
180 #define PART_NOT_AVAILABLE -2
183 * is 1 if the specific list MV&references are set to 0,0,-2.
185 int mv_cache_clean
[2];
187 int block_offset
[16+8];
188 int chroma_subblock_offset
[16]; //FIXME remove
190 uint16_t *mb2b_xy
; //FIXME are these 4 a good idea?
198 int unknown_svq3_flag
;
199 int next_slice_index
;
201 SPS sps_buffer
[MAX_SPS_COUNT
];
202 SPS sps
; ///< current sps
204 PPS pps_buffer
[MAX_PPS_COUNT
];
208 PPS pps
; //FIXME move tp Picture perhaps? (->no) do we need that?
211 uint8_t *slice_table_base
;
212 uint8_t *slice_table
; ///< slice_table_base + mb_stride + 1
214 int slice_type_fixed
;
216 //interlacing specific flags
217 int mb_field_decoding_flag
;
224 int delta_poc_bottom
;
227 int prev_poc_msb
; ///< poc_msb of the last reference pic for POC type 0
228 int prev_poc_lsb
; ///< poc_lsb of the last reference pic for POC type 0
229 int frame_num_offset
; ///< for POC type 2
230 int prev_frame_num_offset
; ///< for POC type 2
231 int prev_frame_num
; ///< frame_num of the last pic for POC type 1/2
234 * frame_num for frames or 2*frame_num for field pics.
239 * max_frame_num or 2*max_frame_num for field pics.
243 //Weighted pred stuff
244 int luma_log2_weight_denom
;
245 int chroma_log2_weight_denom
;
246 int luma_weight
[2][16];
247 int luma_offset
[2][16];
248 int chroma_weight
[2][16][2];
249 int chroma_offset
[2][16][2];
252 int disable_deblocking_filter_idc
;
253 int slice_alpha_c0_offset_div2
;
254 int slice_beta_offset_div2
;
256 int redundant_pic_count
;
258 int direct_spatial_mv_pred
;
261 * num_ref_idx_l0/1_active_minus1 + 1
263 int ref_count
[2];// FIXME split for AFF
264 Picture
*short_ref
[16];
265 Picture
*long_ref
[16];
266 Picture default_ref_list
[2][32];
267 Picture ref_list
[2][32]; //FIXME size?
268 Picture field_ref_list
[2][32]; //FIXME size?
271 * memory management control operations buffer.
273 MMCO mmco
[MAX_MMCO_COUNT
];
276 int long_ref_count
; ///< number of actual long term references
277 int short_ref_count
; ///< number of actual short term references
280 GetBitContext intra_gb
;
281 GetBitContext inter_gb
;
282 GetBitContext
*intra_gb_ptr
;
283 GetBitContext
*inter_gb_ptr
;
285 DCTELEM mb
[16*24] __align8
;
288 static VLC coeff_token_vlc
[4];
289 static VLC chroma_dc_coeff_token_vlc
;
291 static VLC total_zeros_vlc
[15];
292 static VLC chroma_dc_total_zeros_vlc
[3];
294 static VLC run_vlc
[6];
297 static void svq3_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
);
298 static void svq3_add_idct_c(uint8_t *dst
, DCTELEM
*block
, int stride
, int qp
, int dc
);
300 static inline uint32_t pack16to32(int a
, int b
){
301 #ifdef WORDS_BIGENDIAN
302 return (b
&0xFFFF) + (a
<<16);
304 return (a
&0xFFFF) + (b
<<16);
310 * @param h height of the recatangle, should be a constant
311 * @param w width of the recatangle, should be a constant
312 * @param size the size of val (1 or 4), should be a constant
314 static inline void fill_rectangle(void *vp
, int w
, int h
, int stride
, uint32_t val
, int size
){ //FIXME ensure this IS inlined
315 uint8_t *p
= (uint8_t*)vp
;
316 assert(size
==1 || size
==4);
321 //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
324 *(uint16_t*)(p
+ stride
)= size
==4 ? val
: val
*0x0101;
325 }else if(w
==2 && h
==4){
326 *(uint16_t*)(p
+ 0*stride
)=
327 *(uint16_t*)(p
+ 1*stride
)=
328 *(uint16_t*)(p
+ 2*stride
)=
329 *(uint16_t*)(p
+ 3*stride
)= size
==4 ? val
: val
*0x0101;
330 }else if(w
==4 && h
==1){
331 *(uint32_t*)(p
+ 0*stride
)= size
==4 ? val
: val
*0x01010101;
332 }else if(w
==4 && h
==2){
333 *(uint32_t*)(p
+ 0*stride
)=
334 *(uint32_t*)(p
+ 1*stride
)= size
==4 ? val
: val
*0x01010101;
335 }else if(w
==4 && h
==4){
336 *(uint32_t*)(p
+ 0*stride
)=
337 *(uint32_t*)(p
+ 1*stride
)=
338 *(uint32_t*)(p
+ 2*stride
)=
339 *(uint32_t*)(p
+ 3*stride
)= size
==4 ? val
: val
*0x01010101;
340 }else if(w
==8 && h
==1){
342 *(uint32_t*)(p
+ 4)= size
==4 ? val
: val
*0x01010101;
343 }else if(w
==8 && h
==2){
344 *(uint32_t*)(p
+ 0 + 0*stride
)=
345 *(uint32_t*)(p
+ 4 + 0*stride
)=
346 *(uint32_t*)(p
+ 0 + 1*stride
)=
347 *(uint32_t*)(p
+ 4 + 1*stride
)= size
==4 ? val
: val
*0x01010101;
348 }else if(w
==8 && h
==4){
349 *(uint64_t*)(p
+ 0*stride
)=
350 *(uint64_t*)(p
+ 1*stride
)=
351 *(uint64_t*)(p
+ 2*stride
)=
352 *(uint64_t*)(p
+ 3*stride
)= size
==4 ? val
*0x0100000001ULL
: val
*0x0101010101010101ULL
;
353 }else if(w
==16 && h
==2){
354 *(uint64_t*)(p
+ 0+0*stride
)=
355 *(uint64_t*)(p
+ 8+0*stride
)=
356 *(uint64_t*)(p
+ 0+1*stride
)=
357 *(uint64_t*)(p
+ 8+1*stride
)= size
==4 ? val
*0x0100000001ULL
: val
*0x0101010101010101ULL
;
358 }else if(w
==16 && h
==4){
359 *(uint64_t*)(p
+ 0+0*stride
)=
360 *(uint64_t*)(p
+ 8+0*stride
)=
361 *(uint64_t*)(p
+ 0+1*stride
)=
362 *(uint64_t*)(p
+ 8+1*stride
)=
363 *(uint64_t*)(p
+ 0+2*stride
)=
364 *(uint64_t*)(p
+ 8+2*stride
)=
365 *(uint64_t*)(p
+ 0+3*stride
)=
366 *(uint64_t*)(p
+ 8+3*stride
)= size
==4 ? val
*0x0100000001ULL
: val
*0x0101010101010101ULL
;
371 static inline void fill_caches(H264Context
*h
, int mb_type
){
372 MpegEncContext
* const s
= &h
->s
;
373 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
374 int topleft_xy
, top_xy
, topright_xy
, left_xy
[2];
375 int topleft_type
, top_type
, topright_type
, left_type
[2];
379 //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it
383 topleft_xy
= 0; /* avoid warning */
384 top_xy
= 0; /* avoid warning */
385 topright_xy
= 0; /* avoid warning */
387 topleft_xy
= mb_xy
-1 - s
->mb_stride
;
388 top_xy
= mb_xy
- s
->mb_stride
;
389 topright_xy
= mb_xy
+1 - s
->mb_stride
;
390 left_xy
[0] = mb_xy
-1;
391 left_xy
[1] = mb_xy
-1;
398 topleft_type
= h
->slice_table
[topleft_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topleft_xy
] : 0;
399 top_type
= h
->slice_table
[top_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[top_xy
] : 0;
400 topright_type
= h
->slice_table
[topright_xy
] == h
->slice_num ? s
->current_picture
.mb_type
[topright_xy
]: 0;
401 left_type
[0] = h
->slice_table
[left_xy
[0] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[0]] : 0;
402 left_type
[1] = h
->slice_table
[left_xy
[1] ] == h
->slice_num ? s
->current_picture
.mb_type
[left_xy
[1]] : 0;
404 if(IS_INTRA(mb_type
)){
405 h
->topleft_samples_available
=
406 h
->top_samples_available
=
407 h
->left_samples_available
= 0xFFFF;
408 h
->topright_samples_available
= 0xEEEA;
410 if(!IS_INTRA(top_type
) && (top_type
==0 || h
->pps
.constrained_intra_pred
)){
411 h
->topleft_samples_available
= 0xB3FF;
412 h
->top_samples_available
= 0x33FF;
413 h
->topright_samples_available
= 0x26EA;
416 if(!IS_INTRA(left_type
[i
]) && (left_type
[i
]==0 || h
->pps
.constrained_intra_pred
)){
417 h
->topleft_samples_available
&= 0xDF5F;
418 h
->left_samples_available
&= 0x5F5F;
422 if(!IS_INTRA(topleft_type
) && (topleft_type
==0 || h
->pps
.constrained_intra_pred
))
423 h
->topleft_samples_available
&= 0x7FFF;
425 if(!IS_INTRA(topright_type
) && (topright_type
==0 || h
->pps
.constrained_intra_pred
))
426 h
->topright_samples_available
&= 0xFBFF;
428 if(IS_INTRA4x4(mb_type
)){
429 if(IS_INTRA4x4(top_type
)){
430 h
->intra4x4_pred_mode_cache
[4+8*0]= h
->intra4x4_pred_mode
[top_xy
][4];
431 h
->intra4x4_pred_mode_cache
[5+8*0]= h
->intra4x4_pred_mode
[top_xy
][5];
432 h
->intra4x4_pred_mode_cache
[6+8*0]= h
->intra4x4_pred_mode
[top_xy
][6];
433 h
->intra4x4_pred_mode_cache
[7+8*0]= h
->intra4x4_pred_mode
[top_xy
][3];
436 if(IS_INTRA16x16(top_type
) || (IS_INTER(top_type
) && !h
->pps
.constrained_intra_pred
))
441 h
->intra4x4_pred_mode_cache
[4+8*0]=
442 h
->intra4x4_pred_mode_cache
[5+8*0]=
443 h
->intra4x4_pred_mode_cache
[6+8*0]=
444 h
->intra4x4_pred_mode_cache
[7+8*0]= pred
;
447 if(IS_INTRA4x4(left_type
[i
])){
448 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[0+2*i
]];
449 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= h
->intra4x4_pred_mode
[left_xy
[i
]][left_block
[1+2*i
]];
452 if(IS_INTRA16x16(left_type
[i
]) || (IS_INTER(left_type
[i
]) && !h
->pps
.constrained_intra_pred
))
457 h
->intra4x4_pred_mode_cache
[3+8*1 + 2*8*i
]=
458 h
->intra4x4_pred_mode_cache
[3+8*2 + 2*8*i
]= pred
;
473 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
475 h
->non_zero_count_cache
[4+8*0]= h
->non_zero_count
[top_xy
][0];
476 h
->non_zero_count_cache
[5+8*0]= h
->non_zero_count
[top_xy
][1];
477 h
->non_zero_count_cache
[6+8*0]= h
->non_zero_count
[top_xy
][2];
478 h
->non_zero_count_cache
[7+8*0]= h
->non_zero_count
[top_xy
][3];
480 h
->non_zero_count_cache
[1+8*0]= h
->non_zero_count
[top_xy
][7];
481 h
->non_zero_count_cache
[2+8*0]= h
->non_zero_count
[top_xy
][8];
483 h
->non_zero_count_cache
[1+8*3]= h
->non_zero_count
[top_xy
][10];
484 h
->non_zero_count_cache
[2+8*3]= h
->non_zero_count
[top_xy
][11];
486 h
->non_zero_count_cache
[4+8*0]=
487 h
->non_zero_count_cache
[5+8*0]=
488 h
->non_zero_count_cache
[6+8*0]=
489 h
->non_zero_count_cache
[7+8*0]=
491 h
->non_zero_count_cache
[1+8*0]=
492 h
->non_zero_count_cache
[2+8*0]=
494 h
->non_zero_count_cache
[1+8*3]=
495 h
->non_zero_count_cache
[2+8*3]= 64;
499 h
->non_zero_count_cache
[3+8*1]= h
->non_zero_count
[left_xy
[0]][6];
500 h
->non_zero_count_cache
[3+8*2]= h
->non_zero_count
[left_xy
[0]][5];
501 h
->non_zero_count_cache
[0+8*1]= h
->non_zero_count
[left_xy
[0]][9]; //FIXME left_block
502 h
->non_zero_count_cache
[0+8*4]= h
->non_zero_count
[left_xy
[0]][12];
504 h
->non_zero_count_cache
[3+8*1]=
505 h
->non_zero_count_cache
[3+8*2]=
506 h
->non_zero_count_cache
[0+8*1]=
507 h
->non_zero_count_cache
[0+8*4]= 64;
511 h
->non_zero_count_cache
[3+8*3]= h
->non_zero_count
[left_xy
[1]][4];
512 h
->non_zero_count_cache
[3+8*4]= h
->non_zero_count
[left_xy
[1]][3];
513 h
->non_zero_count_cache
[0+8*2]= h
->non_zero_count
[left_xy
[1]][8];
514 h
->non_zero_count_cache
[0+8*5]= h
->non_zero_count
[left_xy
[1]][11];
516 h
->non_zero_count_cache
[3+8*3]=
517 h
->non_zero_count_cache
[3+8*4]=
518 h
->non_zero_count_cache
[0+8*2]=
519 h
->non_zero_count_cache
[0+8*5]= 64;
523 if(IS_INTER(mb_type
)){
525 for(list
=0; list
<2; list
++){
526 if((!IS_8X8(mb_type
)) && !USES_LIST(mb_type
, list
)){
527 /*if(!h->mv_cache_clean[list]){
528 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
529 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
530 h->mv_cache_clean[list]= 1;
532 continue; //FIXME direct mode ...
534 h
->mv_cache_clean
[list
]= 0;
536 if(IS_INTER(topleft_type
)){
537 const int b_xy
= h
->mb2b_xy
[topleft_xy
] + 3 + 3*h
->b_stride
;
538 const int b8_xy
= h
->mb2b8_xy
[topleft_xy
] + 1 + h
->b8_stride
;
539 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
540 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
542 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 - 1*8]= 0;
543 h
->ref_cache
[list
][scan8
[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
546 if(IS_INTER(top_type
)){
547 const int b_xy
= h
->mb2b_xy
[top_xy
] + 3*h
->b_stride
;
548 const int b8_xy
= h
->mb2b8_xy
[top_xy
] + h
->b8_stride
;
549 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0];
550 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 1];
551 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2];
552 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 3];
553 h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]=
554 h
->ref_cache
[list
][scan8
[0] + 1 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 0];
555 h
->ref_cache
[list
][scan8
[0] + 2 - 1*8]=
556 h
->ref_cache
[list
][scan8
[0] + 3 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ 1];
558 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 0 - 1*8]=
559 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 1 - 1*8]=
560 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 2 - 1*8]=
561 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 3 - 1*8]= 0;
562 *(uint32_t*)&h
->ref_cache
[list
][scan8
[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
)&0xFF)*0x01010101;
565 if(IS_INTER(topright_type
)){
566 const int b_xy
= h
->mb2b_xy
[topright_xy
] + 3*h
->b_stride
;
567 const int b8_xy
= h
->mb2b8_xy
[topright_xy
] + h
->b8_stride
;
568 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
];
569 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
];
571 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] + 4 - 1*8]= 0;
572 h
->ref_cache
[list
][scan8
[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
575 //FIXME unify cleanup or sth
576 if(IS_INTER(left_type
[0])){
577 const int b_xy
= h
->mb2b_xy
[left_xy
[0]] + 3;
578 const int b8_xy
= h
->mb2b8_xy
[left_xy
[0]] + 1;
579 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 0*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[0]];
580 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 1*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[1]];
581 h
->ref_cache
[list
][scan8
[0] - 1 + 0*8]=
582 h
->ref_cache
[list
][scan8
[0] - 1 + 1*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[0]>>1)];
584 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 0*8]=
585 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 1*8]= 0;
586 h
->ref_cache
[list
][scan8
[0] - 1 + 0*8]=
587 h
->ref_cache
[list
][scan8
[0] - 1 + 1*8]= left_type
[0] ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
590 if(IS_INTER(left_type
[1])){
591 const int b_xy
= h
->mb2b_xy
[left_xy
[1]] + 3;
592 const int b8_xy
= h
->mb2b8_xy
[left_xy
[1]] + 1;
593 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 2*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[2]];
594 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 3*8]= *(uint32_t*)s
->current_picture
.motion_val
[list
][b_xy
+ h
->b_stride
*left_block
[3]];
595 h
->ref_cache
[list
][scan8
[0] - 1 + 2*8]=
596 h
->ref_cache
[list
][scan8
[0] - 1 + 3*8]= s
->current_picture
.ref_index
[list
][b8_xy
+ h
->b8_stride
*(left_block
[2]>>1)];
598 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 2*8]=
599 *(uint32_t*)h
->mv_cache
[list
][scan8
[0] - 1 + 3*8]= 0;
600 h
->ref_cache
[list
][scan8
[0] - 1 + 2*8]=
601 h
->ref_cache
[list
][scan8
[0] - 1 + 3*8]= left_type
[0] ? LIST_NOT_USED
: PART_NOT_AVAILABLE
;
604 h
->ref_cache
[list
][scan8
[5 ]+1] =
605 h
->ref_cache
[list
][scan8
[7 ]+1] =
606 h
->ref_cache
[list
][scan8
[13]+1] = //FIXME remove past 3 (init somewher else)
607 h
->ref_cache
[list
][scan8
[4 ]] =
608 h
->ref_cache
[list
][scan8
[12]] = PART_NOT_AVAILABLE
;
609 *(uint32_t*)h
->mv_cache
[list
][scan8
[5 ]+1]=
610 *(uint32_t*)h
->mv_cache
[list
][scan8
[7 ]+1]=
611 *(uint32_t*)h
->mv_cache
[list
][scan8
[13]+1]= //FIXME remove past 3 (init somewher else)
612 *(uint32_t*)h
->mv_cache
[list
][scan8
[4 ]]=
613 *(uint32_t*)h
->mv_cache
[list
][scan8
[12]]= 0;
621 static inline void write_back_intra_pred_mode(H264Context
*h
){
622 MpegEncContext
* const s
= &h
->s
;
623 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
625 h
->intra4x4_pred_mode
[mb_xy
][0]= h
->intra4x4_pred_mode_cache
[7+8*1];
626 h
->intra4x4_pred_mode
[mb_xy
][1]= h
->intra4x4_pred_mode_cache
[7+8*2];
627 h
->intra4x4_pred_mode
[mb_xy
][2]= h
->intra4x4_pred_mode_cache
[7+8*3];
628 h
->intra4x4_pred_mode
[mb_xy
][3]= h
->intra4x4_pred_mode_cache
[7+8*4];
629 h
->intra4x4_pred_mode
[mb_xy
][4]= h
->intra4x4_pred_mode_cache
[4+8*4];
630 h
->intra4x4_pred_mode
[mb_xy
][5]= h
->intra4x4_pred_mode_cache
[5+8*4];
631 h
->intra4x4_pred_mode
[mb_xy
][6]= h
->intra4x4_pred_mode_cache
[6+8*4];
635 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
637 static inline int check_intra4x4_pred_mode(H264Context
*h
){
638 MpegEncContext
* const s
= &h
->s
;
639 static const int8_t top
[12]= {-1, 0,LEFT_DC_PRED
,-1,-1,-1,-1,-1, 0};
640 static const int8_t left
[12]= { 0,-1, TOP_DC_PRED
, 0,-1,-1,-1, 0,-1,DC_128_PRED
};
643 if(!(h
->top_samples_available
&0x8000)){
645 int status
= top
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + i
] ];
647 fprintf(stderr
, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
650 h
->intra4x4_pred_mode_cache
[scan8
[0] + i
]= status
;
655 if(!(h
->left_samples_available
&0x8000)){
657 int status
= left
[ h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
] ];
659 fprintf(stderr
, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status
, s
->mb_x
, s
->mb_y
);
662 h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
]= status
;
668 } //FIXME cleanup like next
671 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
673 static inline int check_intra_pred_mode(H264Context
*h
, int mode
){
674 MpegEncContext
* const s
= &h
->s
;
675 static const int8_t top
[7]= {LEFT_DC_PRED8x8
, 1,-1,-1};
676 static const int8_t left
[7]= { TOP_DC_PRED8x8
,-1, 2,-1,DC_128_PRED8x8
};
678 if(!(h
->top_samples_available
&0x8000)){
681 fprintf(stderr
, "top block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
686 if(!(h
->left_samples_available
&0x8000)){
689 fprintf(stderr
, "left block unavailable for requested intra mode at %d %d\n", s
->mb_x
, s
->mb_y
);
698 * gets the predicted intra4x4 prediction mode.
700 static inline int pred_intra_mode(H264Context
*h
, int n
){
701 const int index8
= scan8
[n
];
702 const int left
= h
->intra4x4_pred_mode_cache
[index8
- 1];
703 const int top
= h
->intra4x4_pred_mode_cache
[index8
- 8];
704 const int min
= FFMIN(left
, top
);
706 tprintf("mode:%d %d min:%d\n", left
,top
, min
);
708 if(min
<0) return DC_PRED
;
712 static inline void write_back_non_zero_count(H264Context
*h
){
713 MpegEncContext
* const s
= &h
->s
;
714 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
716 h
->non_zero_count
[mb_xy
][0]= h
->non_zero_count_cache
[4+8*4];
717 h
->non_zero_count
[mb_xy
][1]= h
->non_zero_count_cache
[5+8*4];
718 h
->non_zero_count
[mb_xy
][2]= h
->non_zero_count_cache
[6+8*4];
719 h
->non_zero_count
[mb_xy
][3]= h
->non_zero_count_cache
[7+8*4];
720 h
->non_zero_count
[mb_xy
][4]= h
->non_zero_count_cache
[7+8*3];
721 h
->non_zero_count
[mb_xy
][5]= h
->non_zero_count_cache
[7+8*2];
722 h
->non_zero_count
[mb_xy
][6]= h
->non_zero_count_cache
[7+8*1];
724 h
->non_zero_count
[mb_xy
][7]= h
->non_zero_count_cache
[1+8*2];
725 h
->non_zero_count
[mb_xy
][8]= h
->non_zero_count_cache
[2+8*2];
726 h
->non_zero_count
[mb_xy
][9]= h
->non_zero_count_cache
[2+8*1];
728 h
->non_zero_count
[mb_xy
][10]=h
->non_zero_count_cache
[1+8*5];
729 h
->non_zero_count
[mb_xy
][11]=h
->non_zero_count_cache
[2+8*5];
730 h
->non_zero_count
[mb_xy
][12]=h
->non_zero_count_cache
[2+8*4];
734 * gets the predicted number of non zero coefficients.
735 * @param n block index
737 static inline int pred_non_zero_count(H264Context
*h
, int n
){
738 const int index8
= scan8
[n
];
739 const int left
= h
->non_zero_count_cache
[index8
- 1];
740 const int top
= h
->non_zero_count_cache
[index8
- 8];
743 if(i
<64) i
= (i
+1)>>1;
745 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left
, top
, n
, scan8
[n
], i
&31);
750 static inline int fetch_diagonal_mv(H264Context
*h
, const int16_t **C
, int i
, int list
, int part_width
){
751 const int topright_ref
= h
->ref_cache
[list
][ i
- 8 + part_width
];
753 if(topright_ref
!= PART_NOT_AVAILABLE
){
754 *C
= h
->mv_cache
[list
][ i
- 8 + part_width
];
757 tprintf("topright MV not available\n");
759 *C
= h
->mv_cache
[list
][ i
- 8 - 1 ];
760 return h
->ref_cache
[list
][ i
- 8 - 1 ];
765 * gets the predicted MV.
766 * @param n the block index
767 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
768 * @param mx the x component of the predicted motion vector
769 * @param my the y component of the predicted motion vector
771 static inline void pred_motion(H264Context
* const h
, int n
, int part_width
, int list
, int ref
, int * const mx
, int * const my
){
772 const int index8
= scan8
[n
];
773 const int top_ref
= h
->ref_cache
[list
][ index8
- 8 ];
774 const int left_ref
= h
->ref_cache
[list
][ index8
- 1 ];
775 const int16_t * const A
= h
->mv_cache
[list
][ index8
- 1 ];
776 const int16_t * const B
= h
->mv_cache
[list
][ index8
- 8 ];
778 int diagonal_ref
, match_count
;
780 assert(part_width
==1 || part_width
==2 || part_width
==4);
790 diagonal_ref
= fetch_diagonal_mv(h
, &C
, index8
, list
, part_width
);
791 match_count
= (diagonal_ref
==ref
) + (top_ref
==ref
) + (left_ref
==ref
);
792 if(match_count
> 1){ //most common
793 *mx
= mid_pred(A
[0], B
[0], C
[0]);
794 *my
= mid_pred(A
[1], B
[1], C
[1]);
795 }else if(match_count
==1){
799 }else if(top_ref
==ref
){
807 if(top_ref
== PART_NOT_AVAILABLE
&& diagonal_ref
== PART_NOT_AVAILABLE
&& left_ref
!= PART_NOT_AVAILABLE
){
811 *mx
= mid_pred(A
[0], B
[0], C
[0]);
812 *my
= mid_pred(A
[1], B
[1], C
[1]);
816 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref
, B
[0], B
[1], diagonal_ref
, C
[0], C
[1], left_ref
, A
[0], A
[1], ref
, *mx
, *my
, h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
820 * gets the directionally predicted 16x8 MV.
821 * @param n the block index
822 * @param mx the x component of the predicted motion vector
823 * @param my the y component of the predicted motion vector
825 static inline void pred_16x8_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
827 const int top_ref
= h
->ref_cache
[list
][ scan8
[0] - 8 ];
828 const int16_t * const B
= h
->mv_cache
[list
][ scan8
[0] - 8 ];
830 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref
, B
[0], B
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
838 const int left_ref
= h
->ref_cache
[list
][ scan8
[8] - 1 ];
839 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[8] - 1 ];
841 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
851 pred_motion(h
, n
, 4, list
, ref
, mx
, my
);
855 * gets the directionally predicted 8x16 MV.
856 * @param n the block index
857 * @param mx the x component of the predicted motion vector
858 * @param my the y component of the predicted motion vector
860 static inline void pred_8x16_motion(H264Context
* const h
, int n
, int list
, int ref
, int * const mx
, int * const my
){
862 const int left_ref
= h
->ref_cache
[list
][ scan8
[0] - 1 ];
863 const int16_t * const A
= h
->mv_cache
[list
][ scan8
[0] - 1 ];
865 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref
, A
[0], A
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
876 diagonal_ref
= fetch_diagonal_mv(h
, &C
, scan8
[4], list
, 2);
878 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref
, C
[0], C
[1], h
->s
.mb_x
, h
->s
.mb_y
, n
, list
);
880 if(diagonal_ref
== ref
){
888 pred_motion(h
, n
, 2, list
, ref
, mx
, my
);
891 static inline void pred_pskip_motion(H264Context
* const h
, int * const mx
, int * const my
){
892 const int top_ref
= h
->ref_cache
[0][ scan8
[0] - 8 ];
893 const int left_ref
= h
->ref_cache
[0][ scan8
[0] - 1 ];
895 tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref
, left_ref
, h
->s
.mb_x
, h
->s
.mb_y
);
897 if(top_ref
== PART_NOT_AVAILABLE
|| left_ref
== PART_NOT_AVAILABLE
898 || (top_ref
== 0 && *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 8 ] == 0)
899 || (left_ref
== 0 && *(uint32_t*)h
->mv_cache
[0][ scan8
[0] - 1 ] == 0)){
905 pred_motion(h
, 0, 4, 0, 0, mx
, my
);
910 static inline void write_back_motion(H264Context
*h
, int mb_type
){
911 MpegEncContext
* const s
= &h
->s
;
912 const int b_xy
= 4*s
->mb_x
+ 4*s
->mb_y
*h
->b_stride
;
913 const int b8_xy
= 2*s
->mb_x
+ 2*s
->mb_y
*h
->b8_stride
;
916 for(list
=0; list
<2; list
++){
918 if((!IS_8X8(mb_type
)) && !USES_LIST(mb_type
, list
)){
919 if(1){ //FIXME skip or never read if mb_type doesnt use it
921 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0 + y
*h
->b_stride
]=
922 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2 + y
*h
->b_stride
]= 0;
925 *(uint16_t*)s
->current_picture
.motion_val
[list
][b8_xy
+ y
*h
->b8_stride
]= (LIST_NOT_USED
&0xFF)*0x0101;
928 continue; //FIXME direct mode ...
932 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 0 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+0 + 8*y
];
933 *(uint64_t*)s
->current_picture
.motion_val
[list
][b_xy
+ 2 + y
*h
->b_stride
]= *(uint64_t*)h
->mv_cache
[list
][scan8
[0]+2 + 8*y
];
936 s
->current_picture
.ref_index
[list
][b8_xy
+ 0 + y
*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[0]+0 + 16*y
];
937 s
->current_picture
.ref_index
[list
][b8_xy
+ 1 + y
*h
->b8_stride
]= h
->ref_cache
[list
][scan8
[0]+2 + 16*y
];
943 * Decodes a network abstraction layer unit.
944 * @param consumed is the number of bytes used as input
945 * @param length is the length of the array
946 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
947 * @returns decoded bytes, might be src+1 if no escapes
949 static uint8_t *decode_nal(H264Context
*h
, uint8_t *src
, int *dst_length
, int *consumed
, int length
){
953 // src[0]&0x80; //forbidden bit
954 h
->nal_ref_idc
= src
[0]>>5;
955 h
->nal_unit_type
= src
[0]&0x1F;
959 for(i
=0; i
<length
; i
++)
960 printf("%2X ", src
[i
]);
962 for(i
=0; i
+1<length
; i
+=2){
964 if(i
>0 && src
[i
-1]==0) i
--;
965 if(i
+2<length
&& src
[i
+1]==0 && src
[i
+2]<=3){
967 /* startcode, so we must be past the end */
974 if(i
>=length
-1){ //no escaped 0
976 *consumed
= length
+1; //+1 for the header
980 h
->rbsp_buffer
= av_fast_realloc(h
->rbsp_buffer
, &h
->rbsp_buffer_size
, length
);
983 //printf("deoding esc\n");
986 //remove escapes (very rare 1:2^22)
987 if(si
+2<length
&& src
[si
]==0 && src
[si
+1]==0 && src
[si
+2]<=3){
988 if(src
[si
+2]==3){ //escape
992 }else //next start code
996 dst
[di
++]= src
[si
++];
1000 *consumed
= si
+ 1;//+1 for the header
1001 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1006 * @param src the data which should be escaped
1007 * @param dst the target buffer, dst+1 == src is allowed as a special case
1008 * @param length the length of the src data
1009 * @param dst_length the length of the dst array
1010 * @returns length of escaped data in bytes or -1 if an error occured
1012 static int encode_nal(H264Context
*h
, uint8_t *dst
, uint8_t *src
, int length
, int dst_length
){
1013 int i
, escape_count
, si
, di
;
1017 assert(dst_length
>0);
1019 dst
[0]= (h
->nal_ref_idc
<<5) + h
->nal_unit_type
;
1021 if(length
==0) return 1;
1024 for(i
=0; i
<length
; i
+=2){
1025 if(src
[i
]) continue;
1026 if(i
>0 && src
[i
-1]==0)
1028 if(i
+2<length
&& src
[i
+1]==0 && src
[i
+2]<=3){
1034 if(escape_count
==0){
1036 memcpy(dst
+1, src
, length
);
1040 if(length
+ escape_count
+ 1> dst_length
)
1043 //this should be damn rare (hopefully)
1045 h
->rbsp_buffer
= av_fast_realloc(h
->rbsp_buffer
, &h
->rbsp_buffer_size
, length
+ escape_count
);
1046 temp
= h
->rbsp_buffer
;
1047 //printf("encoding esc\n");
1052 if(si
+2<length
&& src
[si
]==0 && src
[si
+1]==0 && src
[si
+2]<=3){
1053 temp
[di
++]= 0; si
++;
1054 temp
[di
++]= 0; si
++;
1056 temp
[di
++]= src
[si
++];
1059 temp
[di
++]= src
[si
++];
1061 memcpy(dst
+1, temp
, length
+escape_count
);
1063 assert(di
== length
+escape_count
);
1069 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1071 static void encode_rbsp_trailing(PutBitContext
*pb
){
1074 length
= (-get_bit_count(pb
))&7;
1075 if(length
) put_bits(pb
, length
, 0);
1079 * identifies the exact end of the bitstream
1080 * @return the length of the trailing, or 0 if damaged
1082 static int decode_rbsp_trailing(uint8_t *src
){
1086 tprintf("rbsp trailing %X\n", v
);
1096 * idct tranforms the 16 dc values and dequantize them.
1097 * @param qp quantization parameter
1099 static void h264_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
){
1100 const int qmul
= dequant_coeff
[qp
][0];
1103 int temp
[16]; //FIXME check if this is a good idea
1104 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1105 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1107 //memset(block, 64, 2*256);
1110 const int offset
= y_offset
[i
];
1111 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1112 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1113 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1114 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1123 const int offset
= x_offset
[i
];
1124 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1125 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1126 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1127 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1129 block
[stride
*0 +offset
]= ((z0
+ z3
)*qmul
+ 2)>>2; //FIXME think about merging this into decode_resdual
1130 block
[stride
*2 +offset
]= ((z1
+ z2
)*qmul
+ 2)>>2;
1131 block
[stride
*8 +offset
]= ((z1
- z2
)*qmul
+ 2)>>2;
1132 block
[stride
*10+offset
]= ((z0
- z3
)*qmul
+ 2)>>2;
1137 * dct tranforms the 16 dc values.
1138 * @param qp quantization parameter ??? FIXME
1140 static void h264_luma_dc_dct_c(DCTELEM
*block
/*, int qp*/){
1141 // const int qmul= dequant_coeff[qp][0];
1143 int temp
[16]; //FIXME check if this is a good idea
1144 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
1145 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
1148 const int offset
= y_offset
[i
];
1149 const int z0
= block
[offset
+stride
*0] + block
[offset
+stride
*4];
1150 const int z1
= block
[offset
+stride
*0] - block
[offset
+stride
*4];
1151 const int z2
= block
[offset
+stride
*1] - block
[offset
+stride
*5];
1152 const int z3
= block
[offset
+stride
*1] + block
[offset
+stride
*5];
1161 const int offset
= x_offset
[i
];
1162 const int z0
= temp
[4*0+i
] + temp
[4*2+i
];
1163 const int z1
= temp
[4*0+i
] - temp
[4*2+i
];
1164 const int z2
= temp
[4*1+i
] - temp
[4*3+i
];
1165 const int z3
= temp
[4*1+i
] + temp
[4*3+i
];
1167 block
[stride
*0 +offset
]= (z0
+ z3
)>>1;
1168 block
[stride
*2 +offset
]= (z1
+ z2
)>>1;
1169 block
[stride
*8 +offset
]= (z1
- z2
)>>1;
1170 block
[stride
*10+offset
]= (z0
- z3
)>>1;
1176 static void chroma_dc_dequant_idct_c(DCTELEM
*block
, int qp
){
1177 const int qmul
= dequant_coeff
[qp
][0];
1178 const int stride
= 16*2;
1179 const int xStride
= 16;
1182 a
= block
[stride
*0 + xStride
*0];
1183 b
= block
[stride
*0 + xStride
*1];
1184 c
= block
[stride
*1 + xStride
*0];
1185 d
= block
[stride
*1 + xStride
*1];
1192 block
[stride
*0 + xStride
*0]= ((a
+c
)*qmul
+ 0)>>1;
1193 block
[stride
*0 + xStride
*1]= ((e
+b
)*qmul
+ 0)>>1;
1194 block
[stride
*1 + xStride
*0]= ((a
-c
)*qmul
+ 0)>>1;
1195 block
[stride
*1 + xStride
*1]= ((e
-b
)*qmul
+ 0)>>1;
1198 static void chroma_dc_dct_c(DCTELEM
*block
){
1199 const int stride
= 16*2;
1200 const int xStride
= 16;
1203 a
= block
[stride
*0 + xStride
*0];
1204 b
= block
[stride
*0 + xStride
*1];
1205 c
= block
[stride
*1 + xStride
*0];
1206 d
= block
[stride
*1 + xStride
*1];
1213 block
[stride
*0 + xStride
*0]= (a
+c
);
1214 block
[stride
*0 + xStride
*1]= (e
+b
);
1215 block
[stride
*1 + xStride
*0]= (a
-c
);
1216 block
[stride
*1 + xStride
*1]= (e
-b
);
1220 * gets the chroma qp.
1222 static inline int get_chroma_qp(H264Context
*h
, int qscale
){
1224 return chroma_qp
[clip(qscale
+ h
->pps
.chroma_qp_index_offset
, 0, 51)];
1231 static void h264_add_idct_c(uint8_t *dst
, DCTELEM
*block
, int stride
){
1233 uint8_t *cm
= cropTbl
+ MAX_NEG_CROP
;
1238 const int z0
= block
[i
+ 4*0] + block
[i
+ 4*2];
1239 const int z1
= block
[i
+ 4*0] - block
[i
+ 4*2];
1240 const int z2
= (block
[i
+ 4*1]>>1) - block
[i
+ 4*3];
1241 const int z3
= block
[i
+ 4*1] + (block
[i
+ 4*3]>>1);
1243 block
[i
+ 4*0]= z0
+ z3
;
1244 block
[i
+ 4*1]= z1
+ z2
;
1245 block
[i
+ 4*2]= z1
- z2
;
1246 block
[i
+ 4*3]= z0
- z3
;
1250 const int z0
= block
[0 + 4*i
] + block
[2 + 4*i
];
1251 const int z1
= block
[0 + 4*i
] - block
[2 + 4*i
];
1252 const int z2
= (block
[1 + 4*i
]>>1) - block
[3 + 4*i
];
1253 const int z3
= block
[1 + 4*i
] + (block
[3 + 4*i
]>>1);
1255 dst
[0 + i
*stride
]= cm
[ dst
[0 + i
*stride
] + ((z0
+ z3
) >> 6) ];
1256 dst
[1 + i
*stride
]= cm
[ dst
[1 + i
*stride
] + ((z1
+ z2
) >> 6) ];
1257 dst
[2 + i
*stride
]= cm
[ dst
[2 + i
*stride
] + ((z1
- z2
) >> 6) ];
1258 dst
[3 + i
*stride
]= cm
[ dst
[3 + i
*stride
] + ((z0
- z3
) >> 6) ];
1262 const int z0
= block
[0 + 4*i
] + block
[2 + 4*i
];
1263 const int z1
= block
[0 + 4*i
] - block
[2 + 4*i
];
1264 const int z2
= (block
[1 + 4*i
]>>1) - block
[3 + 4*i
];
1265 const int z3
= block
[1 + 4*i
] + (block
[3 + 4*i
]>>1);
1267 block
[0 + 4*i
]= z0
+ z3
;
1268 block
[1 + 4*i
]= z1
+ z2
;
1269 block
[2 + 4*i
]= z1
- z2
;
1270 block
[3 + 4*i
]= z0
- z3
;
1274 const int z0
= block
[i
+ 4*0] + block
[i
+ 4*2];
1275 const int z1
= block
[i
+ 4*0] - block
[i
+ 4*2];
1276 const int z2
= (block
[i
+ 4*1]>>1) - block
[i
+ 4*3];
1277 const int z3
= block
[i
+ 4*1] + (block
[i
+ 4*3]>>1);
1279 dst
[i
+ 0*stride
]= cm
[ dst
[i
+ 0*stride
] + ((z0
+ z3
) >> 6) ];
1280 dst
[i
+ 1*stride
]= cm
[ dst
[i
+ 1*stride
] + ((z1
+ z2
) >> 6) ];
1281 dst
[i
+ 2*stride
]= cm
[ dst
[i
+ 2*stride
] + ((z1
- z2
) >> 6) ];
1282 dst
[i
+ 3*stride
]= cm
[ dst
[i
+ 3*stride
] + ((z0
- z3
) >> 6) ];
1287 static void h264_diff_dct_c(DCTELEM
*block
, uint8_t *src1
, uint8_t *src2
, int stride
){
1289 //FIXME try int temp instead of block
1292 const int d0
= src1
[0 + i
*stride
] - src2
[0 + i
*stride
];
1293 const int d1
= src1
[1 + i
*stride
] - src2
[1 + i
*stride
];
1294 const int d2
= src1
[2 + i
*stride
] - src2
[2 + i
*stride
];
1295 const int d3
= src1
[3 + i
*stride
] - src2
[3 + i
*stride
];
1296 const int z0
= d0
+ d3
;
1297 const int z3
= d0
- d3
;
1298 const int z1
= d1
+ d2
;
1299 const int z2
= d1
- d2
;
1301 block
[0 + 4*i
]= z0
+ z1
;
1302 block
[1 + 4*i
]= 2*z3
+ z2
;
1303 block
[2 + 4*i
]= z0
- z1
;
1304 block
[3 + 4*i
]= z3
- 2*z2
;
1308 const int z0
= block
[0*4 + i
] + block
[3*4 + i
];
1309 const int z3
= block
[0*4 + i
] - block
[3*4 + i
];
1310 const int z1
= block
[1*4 + i
] + block
[2*4 + i
];
1311 const int z2
= block
[1*4 + i
] - block
[2*4 + i
];
1313 block
[0*4 + i
]= z0
+ z1
;
1314 block
[1*4 + i
]= 2*z3
+ z2
;
1315 block
[2*4 + i
]= z0
- z1
;
1316 block
[3*4 + i
]= z3
- 2*z2
;
1320 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1321 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1322 static inline int quantize_c(DCTELEM
*block
, uint8_t *scantable
, int qscale
, int intra
, int seperate_dc
){
1324 const int * const quant_table
= quant_coeff
[qscale
];
1325 const int bias
= intra ?
(1<<QUANT_SHIFT
)/3 : (1<<QUANT_SHIFT
)/6;
1326 const unsigned int threshold1
= (1<<QUANT_SHIFT
) - bias
- 1;
1327 const unsigned int threshold2
= (threshold1
<<1);
1333 const int dc_bias
= intra ?
(1<<(QUANT_SHIFT
-2))/3 : (1<<(QUANT_SHIFT
-2))/6;
1334 const unsigned int dc_threshold1
= (1<<(QUANT_SHIFT
-2)) - dc_bias
- 1;
1335 const unsigned int dc_threshold2
= (dc_threshold1
<<1);
1337 int level
= block
[0]*quant_coeff
[qscale
+18][0];
1338 if(((unsigned)(level
+dc_threshold1
))>dc_threshold2
){
1340 level
= (dc_bias
+ level
)>>(QUANT_SHIFT
-2);
1343 level
= (dc_bias
- level
)>>(QUANT_SHIFT
-2);
1346 // last_non_zero = i;
1351 const int dc_bias
= intra ?
(1<<(QUANT_SHIFT
+1))/3 : (1<<(QUANT_SHIFT
+1))/6;
1352 const unsigned int dc_threshold1
= (1<<(QUANT_SHIFT
+1)) - dc_bias
- 1;
1353 const unsigned int dc_threshold2
= (dc_threshold1
<<1);
1355 int level
= block
[0]*quant_table
[0];
1356 if(((unsigned)(level
+dc_threshold1
))>dc_threshold2
){
1358 level
= (dc_bias
+ level
)>>(QUANT_SHIFT
+1);
1361 level
= (dc_bias
- level
)>>(QUANT_SHIFT
+1);
1364 // last_non_zero = i;
1377 const int j
= scantable
[i
];
1378 int level
= block
[j
]*quant_table
[j
];
1380 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1381 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1382 if(((unsigned)(level
+threshold1
))>threshold2
){
1384 level
= (bias
+ level
)>>QUANT_SHIFT
;
1387 level
= (bias
- level
)>>QUANT_SHIFT
;
1396 return last_non_zero
;
1399 static void pred4x4_vertical_c(uint8_t *src
, uint8_t *topright
, int stride
){
1400 const uint32_t a
= ((uint32_t*)(src
-stride
))[0];
1401 ((uint32_t*)(src
+0*stride
))[0]= a
;
1402 ((uint32_t*)(src
+1*stride
))[0]= a
;
1403 ((uint32_t*)(src
+2*stride
))[0]= a
;
1404 ((uint32_t*)(src
+3*stride
))[0]= a
;
1407 static void pred4x4_horizontal_c(uint8_t *src
, uint8_t *topright
, int stride
){
1408 ((uint32_t*)(src
+0*stride
))[0]= src
[-1+0*stride
]*0x01010101;
1409 ((uint32_t*)(src
+1*stride
))[0]= src
[-1+1*stride
]*0x01010101;
1410 ((uint32_t*)(src
+2*stride
))[0]= src
[-1+2*stride
]*0x01010101;
1411 ((uint32_t*)(src
+3*stride
))[0]= src
[-1+3*stride
]*0x01010101;
1414 static void pred4x4_dc_c(uint8_t *src
, uint8_t *topright
, int stride
){
1415 const int dc
= ( src
[-stride
] + src
[1-stride
] + src
[2-stride
] + src
[3-stride
]
1416 + src
[-1+0*stride
] + src
[-1+1*stride
] + src
[-1+2*stride
] + src
[-1+3*stride
] + 4) >>3;
1418 ((uint32_t*)(src
+0*stride
))[0]=
1419 ((uint32_t*)(src
+1*stride
))[0]=
1420 ((uint32_t*)(src
+2*stride
))[0]=
1421 ((uint32_t*)(src
+3*stride
))[0]= dc
* 0x01010101;
1424 static void pred4x4_left_dc_c(uint8_t *src
, uint8_t *topright
, int stride
){
1425 const int dc
= ( src
[-1+0*stride
] + src
[-1+1*stride
] + src
[-1+2*stride
] + src
[-1+3*stride
] + 2) >>2;
1427 ((uint32_t*)(src
+0*stride
))[0]=
1428 ((uint32_t*)(src
+1*stride
))[0]=
1429 ((uint32_t*)(src
+2*stride
))[0]=
1430 ((uint32_t*)(src
+3*stride
))[0]= dc
* 0x01010101;
1433 static void pred4x4_top_dc_c(uint8_t *src
, uint8_t *topright
, int stride
){
1434 const int dc
= ( src
[-stride
] + src
[1-stride
] + src
[2-stride
] + src
[3-stride
] + 2) >>2;
1436 ((uint32_t*)(src
+0*stride
))[0]=
1437 ((uint32_t*)(src
+1*stride
))[0]=
1438 ((uint32_t*)(src
+2*stride
))[0]=
1439 ((uint32_t*)(src
+3*stride
))[0]= dc
* 0x01010101;
1442 static void pred4x4_128_dc_c(uint8_t *src
, uint8_t *topright
, int stride
){
1443 ((uint32_t*)(src
+0*stride
))[0]=
1444 ((uint32_t*)(src
+1*stride
))[0]=
1445 ((uint32_t*)(src
+2*stride
))[0]=
1446 ((uint32_t*)(src
+3*stride
))[0]= 128U*0x01010101U
;
1450 #define LOAD_TOP_RIGHT_EDGE\
1451 const int t4= topright[0];\
1452 const int t5= topright[1];\
1453 const int t6= topright[2];\
1454 const int t7= topright[3];\
1456 #define LOAD_LEFT_EDGE\
1457 const int l0= src[-1+0*stride];\
1458 const int l1= src[-1+1*stride];\
1459 const int l2= src[-1+2*stride];\
1460 const int l3= src[-1+3*stride];\
1462 #define LOAD_TOP_EDGE\
1463 const int t0= src[ 0-1*stride];\
1464 const int t1= src[ 1-1*stride];\
1465 const int t2= src[ 2-1*stride];\
1466 const int t3= src[ 3-1*stride];\
1468 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1469 const int lt
= src
[-1-1*stride
];
1473 src
[0+3*stride
]=(l3
+ 2*l2
+ l1
+ 2)>>2;
1475 src
[1+3*stride
]=(l2
+ 2*l1
+ l0
+ 2)>>2;
1478 src
[2+3*stride
]=(l1
+ 2*l0
+ lt
+ 2)>>2;
1482 src
[3+3*stride
]=(l0
+ 2*lt
+ t0
+ 2)>>2;
1485 src
[3+2*stride
]=(lt
+ 2*t0
+ t1
+ 2)>>2;
1487 src
[3+1*stride
]=(t0
+ 2*t1
+ t2
+ 2)>>2;
1488 src
[3+0*stride
]=(t1
+ 2*t2
+ t3
+ 2)>>2;
1491 static void pred4x4_down_left_c(uint8_t *src
, uint8_t *topright
, int stride
){
1496 src
[0+0*stride
]=(t0
+ t2
+ 2*t1
+ 2)>>2;
1498 src
[0+1*stride
]=(t1
+ t3
+ 2*t2
+ 2)>>2;
1501 src
[0+2*stride
]=(t2
+ t4
+ 2*t3
+ 2)>>2;
1505 src
[0+3*stride
]=(t3
+ t5
+ 2*t4
+ 2)>>2;
1508 src
[1+3*stride
]=(t4
+ t6
+ 2*t5
+ 2)>>2;
1510 src
[2+3*stride
]=(t5
+ t7
+ 2*t6
+ 2)>>2;
1511 src
[3+3*stride
]=(t6
+ 3*t7
+ 2)>>2;
1514 static void pred4x4_vertical_right_c(uint8_t *src
, uint8_t *topright
, int stride
){
1515 const int lt
= src
[-1-1*stride
];
1518 const __attribute__((unused
)) int unu
= l3
;
1521 src
[1+2*stride
]=(lt
+ t0
+ 1)>>1;
1523 src
[2+2*stride
]=(t0
+ t1
+ 1)>>1;
1525 src
[3+2*stride
]=(t1
+ t2
+ 1)>>1;
1526 src
[3+0*stride
]=(t2
+ t3
+ 1)>>1;
1528 src
[1+3*stride
]=(l0
+ 2*lt
+ t0
+ 2)>>2;
1530 src
[2+3*stride
]=(lt
+ 2*t0
+ t1
+ 2)>>2;
1532 src
[3+3*stride
]=(t0
+ 2*t1
+ t2
+ 2)>>2;
1533 src
[3+1*stride
]=(t1
+ 2*t2
+ t3
+ 2)>>2;
1534 src
[0+2*stride
]=(lt
+ 2*l0
+ l1
+ 2)>>2;
1535 src
[0+3*stride
]=(l0
+ 2*l1
+ l2
+ 2)>>2;
1538 static void pred4x4_vertical_left_c(uint8_t *src
, uint8_t *topright
, int stride
){
1541 const __attribute__((unused
)) int unu
= t7
;
1543 src
[0+0*stride
]=(t0
+ t1
+ 1)>>1;
1545 src
[0+2*stride
]=(t1
+ t2
+ 1)>>1;
1547 src
[1+2*stride
]=(t2
+ t3
+ 1)>>1;
1549 src
[2+2*stride
]=(t3
+ t4
+ 1)>>1;
1550 src
[3+2*stride
]=(t4
+ t5
+ 1)>>1;
1551 src
[0+1*stride
]=(t0
+ 2*t1
+ t2
+ 2)>>2;
1553 src
[0+3*stride
]=(t1
+ 2*t2
+ t3
+ 2)>>2;
1555 src
[1+3*stride
]=(t2
+ 2*t3
+ t4
+ 2)>>2;
1557 src
[2+3*stride
]=(t3
+ 2*t4
+ t5
+ 2)>>2;
1558 src
[3+3*stride
]=(t4
+ 2*t5
+ t6
+ 2)>>2;
1561 static void pred4x4_horizontal_up_c(uint8_t *src
, uint8_t *topright
, int stride
){
1564 src
[0+0*stride
]=(l0
+ l1
+ 1)>>1;
1565 src
[1+0*stride
]=(l0
+ 2*l1
+ l2
+ 2)>>2;
1567 src
[0+1*stride
]=(l1
+ l2
+ 1)>>1;
1569 src
[1+1*stride
]=(l1
+ 2*l2
+ l3
+ 2)>>2;
1571 src
[0+2*stride
]=(l2
+ l3
+ 1)>>1;
1573 src
[1+2*stride
]=(l2
+ 2*l3
+ l3
+ 2)>>2;
1582 static void pred4x4_horizontal_down_c(uint8_t *src
, uint8_t *topright
, int stride
){
1583 const int lt
= src
[-1-1*stride
];
1586 const __attribute__((unused
)) int unu
= t3
;
1589 src
[2+1*stride
]=(lt
+ l0
+ 1)>>1;
1591 src
[3+1*stride
]=(l0
+ 2*lt
+ t0
+ 2)>>2;
1592 src
[2+0*stride
]=(lt
+ 2*t0
+ t1
+ 2)>>2;
1593 src
[3+0*stride
]=(t0
+ 2*t1
+ t2
+ 2)>>2;
1595 src
[2+2*stride
]=(l0
+ l1
+ 1)>>1;
1597 src
[3+2*stride
]=(lt
+ 2*l0
+ l1
+ 2)>>2;
1599 src
[2+3*stride
]=(l1
+ l2
+ 1)>>1;
1601 src
[3+3*stride
]=(l0
+ 2*l1
+ l2
+ 2)>>2;
1602 src
[0+3*stride
]=(l2
+ l3
+ 1)>>1;
1603 src
[1+3*stride
]=(l1
+ 2*l2
+ l3
+ 2)>>2;
1606 static void pred16x16_vertical_c(uint8_t *src
, int stride
){
1608 const uint32_t a
= ((uint32_t*)(src
-stride
))[0];
1609 const uint32_t b
= ((uint32_t*)(src
-stride
))[1];
1610 const uint32_t c
= ((uint32_t*)(src
-stride
))[2];
1611 const uint32_t d
= ((uint32_t*)(src
-stride
))[3];
1613 for(i
=0; i
<16; i
++){
1614 ((uint32_t*)(src
+i
*stride
))[0]= a
;
1615 ((uint32_t*)(src
+i
*stride
))[1]= b
;
1616 ((uint32_t*)(src
+i
*stride
))[2]= c
;
1617 ((uint32_t*)(src
+i
*stride
))[3]= d
;
1621 static void pred16x16_horizontal_c(uint8_t *src
, int stride
){
1624 for(i
=0; i
<16; i
++){
1625 ((uint32_t*)(src
+i
*stride
))[0]=
1626 ((uint32_t*)(src
+i
*stride
))[1]=
1627 ((uint32_t*)(src
+i
*stride
))[2]=
1628 ((uint32_t*)(src
+i
*stride
))[3]= src
[-1+i
*stride
]*0x01010101;
1632 static void pred16x16_dc_c(uint8_t *src
, int stride
){
1636 dc
+= src
[-1+i
*stride
];
1643 dc
= 0x01010101*((dc
+ 16)>>5);
1645 for(i
=0; i
<16; i
++){
1646 ((uint32_t*)(src
+i
*stride
))[0]=
1647 ((uint32_t*)(src
+i
*stride
))[1]=
1648 ((uint32_t*)(src
+i
*stride
))[2]=
1649 ((uint32_t*)(src
+i
*stride
))[3]= dc
;
1653 static void pred16x16_left_dc_c(uint8_t *src
, int stride
){
1657 dc
+= src
[-1+i
*stride
];
1660 dc
= 0x01010101*((dc
+ 8)>>4);
1662 for(i
=0; i
<16; i
++){
1663 ((uint32_t*)(src
+i
*stride
))[0]=
1664 ((uint32_t*)(src
+i
*stride
))[1]=
1665 ((uint32_t*)(src
+i
*stride
))[2]=
1666 ((uint32_t*)(src
+i
*stride
))[3]= dc
;
1670 static void pred16x16_top_dc_c(uint8_t *src
, int stride
){
1676 dc
= 0x01010101*((dc
+ 8)>>4);
1678 for(i
=0; i
<16; i
++){
1679 ((uint32_t*)(src
+i
*stride
))[0]=
1680 ((uint32_t*)(src
+i
*stride
))[1]=
1681 ((uint32_t*)(src
+i
*stride
))[2]=
1682 ((uint32_t*)(src
+i
*stride
))[3]= dc
;
1686 static void pred16x16_128_dc_c(uint8_t *src
, int stride
){
1689 for(i
=0; i
<16; i
++){
1690 ((uint32_t*)(src
+i
*stride
))[0]=
1691 ((uint32_t*)(src
+i
*stride
))[1]=
1692 ((uint32_t*)(src
+i
*stride
))[2]=
1693 ((uint32_t*)(src
+i
*stride
))[3]= 0x01010101U
*128U;
1697 static inline void pred16x16_plane_compat_c(uint8_t *src
, int stride
, const int svq3
){
1700 uint8_t *cm
= cropTbl
+ MAX_NEG_CROP
;
1701 const uint8_t * const src0
= src
+7-stride
;
1702 const uint8_t *src1
= src
+8*stride
-1;
1703 const uint8_t *src2
= src1
-2*stride
; // == src+6*stride-1;
1704 int H
= src0
[1] - src0
[-1];
1705 int V
= src1
[0] - src2
[ 0];
1706 for(k
=2; k
<=8; ++k
) {
1707 src1
+= stride
; src2
-= stride
;
1708 H
+= k
*(src0
[k
] - src0
[-k
]);
1709 V
+= k
*(src1
[0] - src2
[ 0]);
1712 H
= ( 5*(H
/4) ) / 16;
1713 V
= ( 5*(V
/4) ) / 16;
1715 /* required for 100% accuracy */
1716 i
= H
; H
= V
; V
= i
;
1718 H
= ( 5*H
+32 ) >> 6;
1719 V
= ( 5*V
+32 ) >> 6;
1722 a
= 16*(src1
[0] + src2
[16] + 1) - 7*(V
+H
);
1723 for(j
=16; j
>0; --j
) {
1726 for(i
=-16; i
<0; i
+=4) {
1727 src
[16+i
] = cm
[ (b
) >> 5 ];
1728 src
[17+i
] = cm
[ (b
+ H
) >> 5 ];
1729 src
[18+i
] = cm
[ (b
+2*H
) >> 5 ];
1730 src
[19+i
] = cm
[ (b
+3*H
) >> 5 ];
1737 static void pred16x16_plane_c(uint8_t *src
, int stride
){
1738 pred16x16_plane_compat_c(src
, stride
, 0);
1741 static void pred8x8_vertical_c(uint8_t *src
, int stride
){
1743 const uint32_t a
= ((uint32_t*)(src
-stride
))[0];
1744 const uint32_t b
= ((uint32_t*)(src
-stride
))[1];
1747 ((uint32_t*)(src
+i
*stride
))[0]= a
;
1748 ((uint32_t*)(src
+i
*stride
))[1]= b
;
1752 static void pred8x8_horizontal_c(uint8_t *src
, int stride
){
1756 ((uint32_t*)(src
+i
*stride
))[0]=
1757 ((uint32_t*)(src
+i
*stride
))[1]= src
[-1+i
*stride
]*0x01010101;
1761 static void pred8x8_128_dc_c(uint8_t *src
, int stride
){
1765 ((uint32_t*)(src
+i
*stride
))[0]=
1766 ((uint32_t*)(src
+i
*stride
))[1]= 0x01010101U
*128U;
1769 ((uint32_t*)(src
+i
*stride
))[0]=
1770 ((uint32_t*)(src
+i
*stride
))[1]= 0x01010101U
*128U;
1774 static void pred8x8_left_dc_c(uint8_t *src
, int stride
){
1780 dc0
+= src
[-1+i
*stride
];
1781 dc2
+= src
[-1+(i
+4)*stride
];
1783 dc0
= 0x01010101*((dc0
+ 2)>>2);
1784 dc2
= 0x01010101*((dc2
+ 2)>>2);
1787 ((uint32_t*)(src
+i
*stride
))[0]=
1788 ((uint32_t*)(src
+i
*stride
))[1]= dc0
;
1791 ((uint32_t*)(src
+i
*stride
))[0]=
1792 ((uint32_t*)(src
+i
*stride
))[1]= dc2
;
1796 static void pred8x8_top_dc_c(uint8_t *src
, int stride
){
1802 dc0
+= src
[i
-stride
];
1803 dc1
+= src
[4+i
-stride
];
1805 dc0
= 0x01010101*((dc0
+ 2)>>2);
1806 dc1
= 0x01010101*((dc1
+ 2)>>2);
1809 ((uint32_t*)(src
+i
*stride
))[0]= dc0
;
1810 ((uint32_t*)(src
+i
*stride
))[1]= dc1
;
1813 ((uint32_t*)(src
+i
*stride
))[0]= dc0
;
1814 ((uint32_t*)(src
+i
*stride
))[1]= dc1
;
1819 static void pred8x8_dc_c(uint8_t *src
, int stride
){
1821 int dc0
, dc1
, dc2
, dc3
;
1825 dc0
+= src
[-1+i
*stride
] + src
[i
-stride
];
1826 dc1
+= src
[4+i
-stride
];
1827 dc2
+= src
[-1+(i
+4)*stride
];
1829 dc3
= 0x01010101*((dc1
+ dc2
+ 4)>>3);
1830 dc0
= 0x01010101*((dc0
+ 4)>>3);
1831 dc1
= 0x01010101*((dc1
+ 2)>>2);
1832 dc2
= 0x01010101*((dc2
+ 2)>>2);
1835 ((uint32_t*)(src
+i
*stride
))[0]= dc0
;
1836 ((uint32_t*)(src
+i
*stride
))[1]= dc1
;
1839 ((uint32_t*)(src
+i
*stride
))[0]= dc2
;
1840 ((uint32_t*)(src
+i
*stride
))[1]= dc3
;
1844 static void pred8x8_plane_c(uint8_t *src
, int stride
){
1847 uint8_t *cm
= cropTbl
+ MAX_NEG_CROP
;
1848 const uint8_t * const src0
= src
+3-stride
;
1849 const uint8_t *src1
= src
+4*stride
-1;
1850 const uint8_t *src2
= src1
-2*stride
; // == src+2*stride-1;
1851 int H
= src0
[1] - src0
[-1];
1852 int V
= src1
[0] - src2
[ 0];
1853 for(k
=2; k
<=4; ++k
) {
1854 src1
+= stride
; src2
-= stride
;
1855 H
+= k
*(src0
[k
] - src0
[-k
]);
1856 V
+= k
*(src1
[0] - src2
[ 0]);
1858 H
= ( 17*H
+16 ) >> 5;
1859 V
= ( 17*V
+16 ) >> 5;
1861 a
= 16*(src1
[0] + src2
[8]+1) - 3*(V
+H
);
1862 for(j
=8; j
>0; --j
) {
1865 src
[0] = cm
[ (b
) >> 5 ];
1866 src
[1] = cm
[ (b
+ H
) >> 5 ];
1867 src
[2] = cm
[ (b
+2*H
) >> 5 ];
1868 src
[3] = cm
[ (b
+3*H
) >> 5 ];
1869 src
[4] = cm
[ (b
+4*H
) >> 5 ];
1870 src
[5] = cm
[ (b
+5*H
) >> 5 ];
1871 src
[6] = cm
[ (b
+6*H
) >> 5 ];
1872 src
[7] = cm
[ (b
+7*H
) >> 5 ];
1877 static inline void mc_dir_part(H264Context
*h
, Picture
*pic
, int n
, int square
, int chroma_height
, int delta
, int list
,
1878 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1879 int src_x_offset
, int src_y_offset
,
1880 qpel_mc_func
*qpix_op
, h264_chroma_mc_func chroma_op
){
1881 MpegEncContext
* const s
= &h
->s
;
1882 const int mx
= h
->mv_cache
[list
][ scan8
[n
] ][0] + src_x_offset
*8;
1883 const int my
= h
->mv_cache
[list
][ scan8
[n
] ][1] + src_y_offset
*8;
1884 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
1885 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*s
->linesize
;
1886 uint8_t * src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*s
->uvlinesize
;
1887 uint8_t * src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*s
->uvlinesize
;
1888 int extra_width
= (s
->flags
&CODEC_FLAG_EMU_EDGE
) ?
0 : 16; //FIXME increase edge?, IMHO not worth it
1889 int extra_height
= extra_width
;
1891 const int full_mx
= mx
>>2;
1892 const int full_my
= my
>>2;
1894 assert(pic
->data
[0]);
1896 if(mx
&7) extra_width
-= 3;
1897 if(my
&7) extra_height
-= 3;
1899 if( full_mx
< 0-extra_width
1900 || full_my
< 0-extra_height
1901 || full_mx
+ 16/*FIXME*/ > s
->width
+ extra_width
1902 || full_my
+ 16/*FIXME*/ > s
->height
+ extra_height
){
1903 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*s
->linesize
, s
->linesize
, 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, s
->width
, s
->height
);
1904 src_y
= s
->edge_emu_buffer
+ 2 + 2*s
->linesize
;
1908 qpix_op
[luma_xy
](dest_y
, src_y
, s
->linesize
); //FIXME try variable height perhaps?
1910 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, s
->linesize
);
1913 if(s
->flags
&CODEC_FLAG_GRAY
) return;
1916 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, s
->uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), s
->width
>>1, s
->height
>>1);
1917 src_cb
= s
->edge_emu_buffer
;
1919 chroma_op(dest_cb
, src_cb
, s
->uvlinesize
, chroma_height
, mx
&7, my
&7);
1922 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, s
->uvlinesize
, 9, 9/*FIXME*/, (mx
>>3), (my
>>3), s
->width
>>1, s
->height
>>1);
1923 src_cr
= s
->edge_emu_buffer
;
1925 chroma_op(dest_cr
, src_cr
, s
->uvlinesize
, chroma_height
, mx
&7, my
&7);
1928 static inline void mc_part(H264Context
*h
, int n
, int square
, int chroma_height
, int delta
,
1929 uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1930 int x_offset
, int y_offset
,
1931 qpel_mc_func
*qpix_put
, h264_chroma_mc_func chroma_put
,
1932 qpel_mc_func
*qpix_avg
, h264_chroma_mc_func chroma_avg
,
1933 int list0
, int list1
){
1934 MpegEncContext
* const s
= &h
->s
;
1935 qpel_mc_func
*qpix_op
= qpix_put
;
1936 h264_chroma_mc_func chroma_op
= chroma_put
;
1938 dest_y
+= 2*x_offset
+ 2*y_offset
*s
-> linesize
;
1939 dest_cb
+= x_offset
+ y_offset
*s
->uvlinesize
;
1940 dest_cr
+= x_offset
+ y_offset
*s
->uvlinesize
;
1941 x_offset
+= 8*s
->mb_x
;
1942 y_offset
+= 8*s
->mb_y
;
1945 Picture
*ref
= &h
->ref_list
[0][ h
->ref_cache
[0][ scan8
[n
] ] ];
1946 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 0,
1947 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1948 qpix_op
, chroma_op
);
1951 chroma_op
= chroma_avg
;
1955 Picture
*ref
= &h
->ref_list
[1][ h
->ref_cache
[1][ scan8
[n
] ] ];
1956 mc_dir_part(h
, ref
, n
, square
, chroma_height
, delta
, 1,
1957 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
1958 qpix_op
, chroma_op
);
1962 static void hl_motion(H264Context
*h
, uint8_t *dest_y
, uint8_t *dest_cb
, uint8_t *dest_cr
,
1963 qpel_mc_func (*qpix_put
)[16], h264_chroma_mc_func (*chroma_put
),
1964 qpel_mc_func (*qpix_avg
)[16], h264_chroma_mc_func (*chroma_avg
)){
1965 MpegEncContext
* const s
= &h
->s
;
1966 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
1967 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
1969 assert(IS_INTER(mb_type
));
1971 if(IS_16X16(mb_type
)){
1972 mc_part(h
, 0, 1, 8, 0, dest_y
, dest_cb
, dest_cr
, 0, 0,
1973 qpix_put
[0], chroma_put
[0], qpix_avg
[0], chroma_avg
[0],
1974 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1975 }else if(IS_16X8(mb_type
)){
1976 mc_part(h
, 0, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 0,
1977 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1978 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1979 mc_part(h
, 8, 0, 4, 8, dest_y
, dest_cb
, dest_cr
, 0, 4,
1980 qpix_put
[1], chroma_put
[0], qpix_avg
[1], chroma_avg
[0],
1981 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1982 }else if(IS_8X16(mb_type
)){
1983 mc_part(h
, 0, 0, 8, 8*s
->linesize
, dest_y
, dest_cb
, dest_cr
, 0, 0,
1984 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1985 IS_DIR(mb_type
, 0, 0), IS_DIR(mb_type
, 0, 1));
1986 mc_part(h
, 4, 0, 8, 8*s
->linesize
, dest_y
, dest_cb
, dest_cr
, 4, 0,
1987 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
1988 IS_DIR(mb_type
, 1, 0), IS_DIR(mb_type
, 1, 1));
1992 assert(IS_8X8(mb_type
));
1995 const int sub_mb_type
= h
->sub_mb_type
[i
];
1997 int x_offset
= (i
&1)<<2;
1998 int y_offset
= (i
&2)<<1;
2000 if(IS_SUB_8X8(sub_mb_type
)){
2001 mc_part(h
, n
, 1, 4, 0, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
2002 qpix_put
[1], chroma_put
[1], qpix_avg
[1], chroma_avg
[1],
2003 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
2004 }else if(IS_SUB_8X4(sub_mb_type
)){
2005 mc_part(h
, n
, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
2006 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
2007 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
2008 mc_part(h
, n
+2, 0, 2, 4, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
+2,
2009 qpix_put
[2], chroma_put
[1], qpix_avg
[2], chroma_avg
[1],
2010 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
2011 }else if(IS_SUB_4X8(sub_mb_type
)){
2012 mc_part(h
, n
, 0, 4, 4*s
->linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
2013 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
2014 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
2015 mc_part(h
, n
+1, 0, 4, 4*s
->linesize
, dest_y
, dest_cb
, dest_cr
, x_offset
+2, y_offset
,
2016 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
2017 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
2020 assert(IS_SUB_4X4(sub_mb_type
));
2022 int sub_x_offset
= x_offset
+ 2*(j
&1);
2023 int sub_y_offset
= y_offset
+ (j
&2);
2024 mc_part(h
, n
+j
, 1, 2, 0, dest_y
, dest_cb
, dest_cr
, sub_x_offset
, sub_y_offset
,
2025 qpix_put
[2], chroma_put
[2], qpix_avg
[2], chroma_avg
[2],
2026 IS_DIR(sub_mb_type
, 0, 0), IS_DIR(sub_mb_type
, 0, 1));
2033 static void decode_init_vlc(H264Context
*h
){
2034 static int done
= 0;
2040 init_vlc(&chroma_dc_coeff_token_vlc
, CHROMA_DC_COEFF_TOKEN_VLC_BITS
, 4*5,
2041 &chroma_dc_coeff_token_len
[0], 1, 1,
2042 &chroma_dc_coeff_token_bits
[0], 1, 1);
2045 init_vlc(&coeff_token_vlc
[i
], COEFF_TOKEN_VLC_BITS
, 4*17,
2046 &coeff_token_len
[i
][0], 1, 1,
2047 &coeff_token_bits
[i
][0], 1, 1);
2051 init_vlc(&chroma_dc_total_zeros_vlc
[i
], CHROMA_DC_TOTAL_ZEROS_VLC_BITS
, 4,
2052 &chroma_dc_total_zeros_len
[i
][0], 1, 1,
2053 &chroma_dc_total_zeros_bits
[i
][0], 1, 1);
2055 for(i
=0; i
<15; i
++){
2056 init_vlc(&total_zeros_vlc
[i
], TOTAL_ZEROS_VLC_BITS
, 16,
2057 &total_zeros_len
[i
][0], 1, 1,
2058 &total_zeros_bits
[i
][0], 1, 1);
2062 init_vlc(&run_vlc
[i
], RUN_VLC_BITS
, 7,
2063 &run_len
[i
][0], 1, 1,
2064 &run_bits
[i
][0], 1, 1);
2066 init_vlc(&run7_vlc
, RUN7_VLC_BITS
, 16,
2067 &run_len
[6][0], 1, 1,
2068 &run_bits
[6][0], 1, 1);
2073 * Sets the intra prediction function pointers.
2075 static void init_pred_ptrs(H264Context
*h
){
2076 // MpegEncContext * const s = &h->s;
2078 h
->pred4x4
[VERT_PRED
]= pred4x4_vertical_c
;
2079 h
->pred4x4
[HOR_PRED
]= pred4x4_horizontal_c
;
2080 h
->pred4x4
[DC_PRED
]= pred4x4_dc_c
;
2081 h
->pred4x4
[DIAG_DOWN_LEFT_PRED
]= pred4x4_down_left_c
;
2082 h
->pred4x4
[DIAG_DOWN_RIGHT_PRED
]= pred4x4_down_right_c
;
2083 h
->pred4x4
[VERT_RIGHT_PRED
]= pred4x4_vertical_right_c
;
2084 h
->pred4x4
[HOR_DOWN_PRED
]= pred4x4_horizontal_down_c
;
2085 h
->pred4x4
[VERT_LEFT_PRED
]= pred4x4_vertical_left_c
;
2086 h
->pred4x4
[HOR_UP_PRED
]= pred4x4_horizontal_up_c
;
2087 h
->pred4x4
[LEFT_DC_PRED
]= pred4x4_left_dc_c
;
2088 h
->pred4x4
[TOP_DC_PRED
]= pred4x4_top_dc_c
;
2089 h
->pred4x4
[DC_128_PRED
]= pred4x4_128_dc_c
;
2091 h
->pred8x8
[DC_PRED8x8
]= pred8x8_dc_c
;
2092 h
->pred8x8
[VERT_PRED8x8
]= pred8x8_vertical_c
;
2093 h
->pred8x8
[HOR_PRED8x8
]= pred8x8_horizontal_c
;
2094 h
->pred8x8
[PLANE_PRED8x8
]= pred8x8_plane_c
;
2095 h
->pred8x8
[LEFT_DC_PRED8x8
]= pred8x8_left_dc_c
;
2096 h
->pred8x8
[TOP_DC_PRED8x8
]= pred8x8_top_dc_c
;
2097 h
->pred8x8
[DC_128_PRED8x8
]= pred8x8_128_dc_c
;
2099 h
->pred16x16
[DC_PRED8x8
]= pred16x16_dc_c
;
2100 h
->pred16x16
[VERT_PRED8x8
]= pred16x16_vertical_c
;
2101 h
->pred16x16
[HOR_PRED8x8
]= pred16x16_horizontal_c
;
2102 h
->pred16x16
[PLANE_PRED8x8
]= pred16x16_plane_c
;
2103 h
->pred16x16
[LEFT_DC_PRED8x8
]= pred16x16_left_dc_c
;
2104 h
->pred16x16
[TOP_DC_PRED8x8
]= pred16x16_top_dc_c
;
2105 h
->pred16x16
[DC_128_PRED8x8
]= pred16x16_128_dc_c
;
2108 static void free_tables(H264Context
*h
){
2109 av_freep(&h
->intra4x4_pred_mode
);
2110 av_freep(&h
->non_zero_count
);
2111 av_freep(&h
->slice_table_base
);
2112 h
->slice_table
= NULL
;
2114 av_freep(&h
->mb2b_xy
);
2115 av_freep(&h
->mb2b8_xy
);
2120 * needs widzh/height
2122 static int alloc_tables(H264Context
*h
){
2123 MpegEncContext
* const s
= &h
->s
;
2124 const int big_mb_num
= s
->mb_stride
* (s
->mb_height
+1);
2127 CHECKED_ALLOCZ(h
->intra4x4_pred_mode
, big_mb_num
* 8 * sizeof(uint8_t))
2128 CHECKED_ALLOCZ(h
->non_zero_count
, big_mb_num
* 16 * sizeof(uint8_t))
2129 CHECKED_ALLOCZ(h
->slice_table_base
, big_mb_num
* sizeof(uint8_t))
2131 memset(h
->slice_table_base
, -1, big_mb_num
* sizeof(uint8_t));
2132 h
->slice_table
= h
->slice_table_base
+ s
->mb_stride
+ 1;
2134 CHECKED_ALLOCZ(h
->mb2b_xy
, big_mb_num
* sizeof(uint16_t));
2135 CHECKED_ALLOCZ(h
->mb2b8_xy
, big_mb_num
* sizeof(uint16_t));
2136 for(y
=0; y
<s
->mb_height
; y
++){
2137 for(x
=0; x
<s
->mb_width
; x
++){
2138 const int mb_xy
= x
+ y
*s
->mb_stride
;
2139 const int b_xy
= 4*x
+ 4*y
*h
->b_stride
;
2140 const int b8_xy
= 2*x
+ 2*y
*h
->b8_stride
;
2142 h
->mb2b_xy
[mb_xy
]= b_xy
;
2143 h
->mb2b8_xy
[mb_xy
]= b8_xy
;
2153 static void common_init(H264Context
*h
){
2154 MpegEncContext
* const s
= &h
->s
;
2156 s
->width
= s
->avctx
->width
;
2157 s
->height
= s
->avctx
->height
;
2158 s
->codec_id
= s
->avctx
->codec
->id
;
2162 s
->decode
=1; //FIXME
2165 static int decode_init(AVCodecContext
*avctx
){
2166 H264Context
*h
= avctx
->priv_data
;
2167 MpegEncContext
* const s
= &h
->s
;
2172 s
->out_format
= FMT_H264
;
2173 s
->workaround_bugs
= avctx
->workaround_bugs
;
2176 s
->progressive_sequence
=1;
2177 // s->decode_mb= ff_h263_decode_mb;
2179 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
2186 static void frame_start(H264Context
*h
){
2187 MpegEncContext
* const s
= &h
->s
;
2190 MPV_frame_start(s
, s
->avctx
);
2191 ff_er_frame_start(s
);
2194 assert(s
->linesize
&& s
->uvlinesize
);
2196 for(i
=0; i
<16; i
++){
2197 h
->block_offset
[i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->linesize
*((scan8
[i
] - scan8
[0])>>3);
2198 h
->chroma_subblock_offset
[i
]= 2*((scan8
[i
] - scan8
[0])&7) + 2*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2201 h
->block_offset
[16+i
]=
2202 h
->block_offset
[20+i
]= 4*((scan8
[i
] - scan8
[0])&7) + 4*s
->uvlinesize
*((scan8
[i
] - scan8
[0])>>3);
2205 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2208 static void hl_decode_mb(H264Context
*h
){
2209 MpegEncContext
* const s
= &h
->s
;
2210 const int mb_x
= s
->mb_x
;
2211 const int mb_y
= s
->mb_y
;
2212 const int mb_xy
= mb_x
+ mb_y
*s
->mb_stride
;
2213 const int mb_type
= s
->current_picture
.mb_type
[mb_xy
];
2214 uint8_t *dest_y
, *dest_cb
, *dest_cr
;
2215 int linesize
, uvlinesize
/*dct_offset*/;
2224 dest_y
= s
->current_picture
.data
[0] + (mb_y
* 16* s
->linesize
) + mb_x
* 16;
2225 dest_cb
= s
->current_picture
.data
[1] + (mb_y
* 8 * s
->uvlinesize
) + mb_x
* 8;
2226 dest_cr
= s
->current_picture
.data
[2] + (mb_y
* 8 * s
->uvlinesize
) + mb_x
* 8;
2228 if (h
->mb_field_decoding_flag
) {
2229 linesize
= s
->linesize
* 2;
2230 uvlinesize
= s
->uvlinesize
* 2;
2231 if(mb_y
&1){ //FIXME move out of this func?
2232 dest_y
-= s
->linesize
*15;
2233 dest_cb
-= s
->linesize
*7;
2234 dest_cr
-= s
->linesize
*7;
2237 linesize
= s
->linesize
;
2238 uvlinesize
= s
->uvlinesize
;
2239 // dct_offset = s->linesize * 16;
2242 if(IS_INTRA(mb_type
)){
2243 if(!(s
->flags
&CODEC_FLAG_GRAY
)){
2244 h
->pred8x8
[ h
->chroma_pred_mode
](dest_cb
, uvlinesize
);
2245 h
->pred8x8
[ h
->chroma_pred_mode
](dest_cr
, uvlinesize
);
2248 if(IS_INTRA4x4(mb_type
)){
2250 for(i
=0; i
<16; i
++){
2251 uint8_t * const ptr
= dest_y
+ h
->block_offset
[i
];
2252 uint8_t *topright
= ptr
+ 4 - linesize
;
2253 const int topright_avail
= (h
->topright_samples_available
<<i
)&0x8000;
2254 const int dir
= h
->intra4x4_pred_mode_cache
[ scan8
[i
] ];
2257 if(!topright_avail
){
2258 tr
= ptr
[3 - linesize
]*0x01010101;
2259 topright
= (uint8_t*) &tr
;
2262 h
->pred4x4
[ dir
](ptr
, topright
, linesize
);
2263 if(h
->non_zero_count_cache
[ scan8
[i
] ]){
2264 if(s
->codec_id
== CODEC_ID_H264
)
2265 h264_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
);
2267 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
, s
->qscale
, 0);
2272 h
->pred16x16
[ h
->intra16x16_pred_mode
](dest_y
, linesize
);
2273 if(s
->codec_id
== CODEC_ID_H264
)
2274 h264_luma_dc_dequant_idct_c(h
->mb
, s
->qscale
);
2276 svq3_luma_dc_dequant_idct_c(h
->mb
, s
->qscale
);
2278 }else if(s
->codec_id
== CODEC_ID_H264
){
2279 hl_motion(h
, dest_y
, dest_cb
, dest_cr
,
2280 s
->dsp
.put_h264_qpel_pixels_tab
, s
->dsp
.put_h264_chroma_pixels_tab
,
2281 s
->dsp
.avg_h264_qpel_pixels_tab
, s
->dsp
.avg_h264_chroma_pixels_tab
);
2285 if(!IS_INTRA4x4(mb_type
)){
2286 if(s
->codec_id
== CODEC_ID_H264
){
2287 for(i
=0; i
<16; i
++){
2288 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){ //FIXME benchmark weird rule, & below
2289 uint8_t * const ptr
= dest_y
+ h
->block_offset
[i
];
2290 h264_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
);
2294 for(i
=0; i
<16; i
++){
2295 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){ //FIXME benchmark weird rule, & below
2296 uint8_t * const ptr
= dest_y
+ h
->block_offset
[i
];
2297 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, linesize
, s
->qscale
, IS_INTRA(mb_type
) ?
1 : 0);
2303 if(!(s
->flags
&CODEC_FLAG_GRAY
)){
2304 chroma_dc_dequant_idct_c(h
->mb
+ 16*16, h
->chroma_qp
);
2305 chroma_dc_dequant_idct_c(h
->mb
+ 16*16+4*16, h
->chroma_qp
);
2306 if(s
->codec_id
== CODEC_ID_H264
){
2307 for(i
=16; i
<16+4; i
++){
2308 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){
2309 uint8_t * const ptr
= dest_cb
+ h
->block_offset
[i
];
2310 h264_add_idct_c(ptr
, h
->mb
+ i
*16, uvlinesize
);
2313 for(i
=20; i
<20+4; i
++){
2314 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){
2315 uint8_t * const ptr
= dest_cr
+ h
->block_offset
[i
];
2316 h264_add_idct_c(ptr
, h
->mb
+ i
*16, uvlinesize
);
2320 for(i
=16; i
<16+4; i
++){
2321 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){
2322 uint8_t * const ptr
= dest_cb
+ h
->block_offset
[i
];
2323 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, uvlinesize
, chroma_qp
[s
->qscale
+ 12] - 12, 2);
2326 for(i
=20; i
<20+4; i
++){
2327 if(h
->non_zero_count_cache
[ scan8
[i
] ] || h
->mb
[i
*16]){
2328 uint8_t * const ptr
= dest_cr
+ h
->block_offset
[i
];
2329 svq3_add_idct_c(ptr
, h
->mb
+ i
*16, uvlinesize
, chroma_qp
[s
->qscale
+ 12] - 12, 2);
2336 static void decode_mb_cabac(H264Context
*h
){
2337 // MpegEncContext * const s = &h->s;
2341 * fills the default_ref_list.
2343 static int fill_default_ref_list(H264Context
*h
){
2344 MpegEncContext
* const s
= &h
->s
;
2346 Picture sorted_short_ref
[16];
2348 if(h
->slice_type
==B_TYPE
){
2352 for(out_i
=0; out_i
<h
->short_ref_count
; out_i
++){
2356 for(i
=0; i
<h
->short_ref_count
; i
++){
2357 const int poc
= h
->short_ref
[i
]->poc
;
2358 if(poc
> limit
&& poc
< best_poc
){
2364 assert(best_i
!= -1);
2367 sorted_short_ref
[out_i
]= *h
->short_ref
[best_i
];
2371 if(s
->picture_structure
== PICT_FRAME
){
2372 if(h
->slice_type
==B_TYPE
){
2373 const int current_poc
= s
->current_picture_ptr
->poc
;
2376 for(list
=0; list
<2; list
++){
2379 for(i
=0; i
<h
->short_ref_count
&& index
< h
->ref_count
[list
]; i
++){
2380 const int i2
= list ? h
->short_ref_count
- i
- 1 : i
;
2381 const int poc
= sorted_short_ref
[i2
].poc
;
2383 if(sorted_short_ref
[i2
].reference
!= 3) continue; //FIXME refernce field shit
2385 if((list
==1 && poc
> current_poc
) || (list
==0 && poc
< current_poc
)){
2386 h
->default_ref_list
[list
][index
]= sorted_short_ref
[i2
];
2387 h
->default_ref_list
[list
][index
++].pic_id
= sorted_short_ref
[i2
].frame_num
;
2391 for(i
=0; i
<h
->long_ref_count
&& index
< h
->ref_count
[ list
]; i
++){
2392 if(h
->long_ref
[i
]->reference
!= 3) continue;
2394 h
->default_ref_list
[ list
][index
]= *h
->long_ref
[i
];
2395 h
->default_ref_list
[ list
][index
++].pic_id
= i
;;
2398 if(h
->long_ref_count
> 1 && h
->short_ref_count
==0){
2399 Picture temp
= h
->default_ref_list
[1][0];
2400 h
->default_ref_list
[1][0] = h
->default_ref_list
[1][1];
2401 h
->default_ref_list
[1][0] = temp
;
2404 if(index
< h
->ref_count
[ list
])
2405 memset(&h
->default_ref_list
[list
][index
], 0, sizeof(Picture
)*(h
->ref_count
[ list
] - index
));
2409 for(i
=0; i
<h
->short_ref_count
&& index
< h
->ref_count
[0]; i
++){
2410 if(h
->short_ref
[i
]->reference
!= 3) continue; //FIXME refernce field shit
2411 h
->default_ref_list
[0][index
]= *h
->short_ref
[i
];
2412 h
->default_ref_list
[0][index
++].pic_id
= h
->short_ref
[i
]->frame_num
;
2414 for(i
=0; i
<h
->long_ref_count
&& index
< h
->ref_count
[0]; i
++){
2415 if(h
->long_ref
[i
]->reference
!= 3) continue;
2416 h
->default_ref_list
[0][index
]= *h
->long_ref
[i
];
2417 h
->default_ref_list
[0][index
++].pic_id
= i
;;
2419 if(index
< h
->ref_count
[0])
2420 memset(&h
->default_ref_list
[0][index
], 0, sizeof(Picture
)*(h
->ref_count
[0] - index
));
2423 if(h
->slice_type
==B_TYPE
){
2425 //FIXME second field balh
2431 static int decode_ref_pic_list_reordering(H264Context
*h
){
2432 MpegEncContext
* const s
= &h
->s
;
2435 if(h
->slice_type
==I_TYPE
|| h
->slice_type
==SI_TYPE
) return 0; //FIXME move beofre func
2437 for(list
=0; list
<2; list
++){
2438 memcpy(h
->ref_list
[list
], h
->default_ref_list
[list
], sizeof(Picture
)*h
->ref_count
[list
]);
2440 if(get_bits1(&s
->gb
)){
2441 int pred
= h
->curr_pic_num
;
2444 for(index
=0; ; index
++){
2445 int reordering_of_pic_nums_idc
= get_ue_golomb(&s
->gb
);
2450 if(index
>= h
->ref_count
[list
]){
2451 fprintf(stderr
, "reference count overflow\n");
2455 if(reordering_of_pic_nums_idc
<3){
2456 if(reordering_of_pic_nums_idc
<2){
2457 const int abs_diff_pic_num
= get_ue_golomb(&s
->gb
) + 1;
2459 if(abs_diff_pic_num
>= h
->max_pic_num
){
2460 fprintf(stderr
, "abs_diff_pic_num overflow\n");
2464 if(reordering_of_pic_nums_idc
== 0) pred
-= abs_diff_pic_num
;
2465 else pred
+= abs_diff_pic_num
;
2466 pred
&= h
->max_pic_num
- 1;
2468 for(i
= h
->ref_count
[list
]-1; i
>=index
; i
--){
2469 if(h
->ref_list
[list
][i
].pic_id
== pred
&& h
->ref_list
[list
][i
].long_ref
==0)
2473 pic_id
= get_ue_golomb(&s
->gb
); //long_term_pic_idx
2475 for(i
= h
->ref_count
[list
]-1; i
>=index
; i
--){
2476 if(h
->ref_list
[list
][i
].pic_id
== pic_id
&& h
->ref_list
[list
][i
].long_ref
==1)
2482 fprintf(stderr
, "reference picture missing during reorder\n");
2483 memset(&h
->ref_list
[list
][index
], 0, sizeof(Picture
)); //FIXME
2484 }else if(i
> index
){
2485 Picture tmp
= h
->ref_list
[list
][i
];
2486 for(; i
>index
; i
--){
2487 h
->ref_list
[list
][i
]= h
->ref_list
[list
][i
-1];
2489 h
->ref_list
[list
][index
]= tmp
;
2491 }else if(reordering_of_pic_nums_idc
==3)
2494 fprintf(stderr
, "illegal reordering_of_pic_nums_idc\n");
2500 if(h
->slice_type
!=B_TYPE
) break;
2505 static int pred_weight_table(H264Context
*h
){
2506 MpegEncContext
* const s
= &h
->s
;
2509 h
->luma_log2_weight_denom
= get_ue_golomb(&s
->gb
);
2510 h
->chroma_log2_weight_denom
= get_ue_golomb(&s
->gb
);
2512 for(list
=0; list
<2; list
++){
2513 for(i
=0; i
<h
->ref_count
[list
]; i
++){
2514 int luma_weight_flag
, chroma_weight_flag
;
2516 luma_weight_flag
= get_bits1(&s
->gb
);
2517 if(luma_weight_flag
){
2518 h
->luma_weight
[list
][i
]= get_se_golomb(&s
->gb
);
2519 h
->luma_offset
[list
][i
]= get_se_golomb(&s
->gb
);
2522 chroma_weight_flag
= get_bits1(&s
->gb
);
2523 if(chroma_weight_flag
){
2526 h
->chroma_weight
[list
][i
][j
]= get_se_golomb(&s
->gb
);
2527 h
->chroma_offset
[list
][i
][j
]= get_se_golomb(&s
->gb
);
2531 if(h
->slice_type
!= B_TYPE
) break;
2537 * instantaneos decoder refresh.
2539 static void idr(H264Context
*h
){
2542 for(i
=0; i
<h
->long_ref_count
; i
++){
2543 h
->long_ref
[i
]->reference
=0;
2544 h
->long_ref
[i
]= NULL
;
2546 h
->long_ref_count
=0;
2548 for(i
=0; i
<h
->short_ref_count
; i
++){
2549 h
->short_ref
[i
]->reference
=0;
2550 h
->short_ref
[i
]= NULL
;
2552 h
->short_ref_count
=0;
2557 * @return the removed picture or NULL if an error occures
2559 static Picture
* remove_short(H264Context
*h
, int frame_num
){
2560 MpegEncContext
* const s
= &h
->s
;
2563 if(s
->avctx
->debug
&FF_DEBUG_MMCO
)
2564 printf("remove short %d count %d\n", frame_num
, h
->short_ref_count
);
2566 for(i
=0; i
<h
->short_ref_count
; i
++){
2567 Picture
*pic
= h
->short_ref
[i
];
2568 if(s
->avctx
->debug
&FF_DEBUG_MMCO
)
2569 printf("%d %d %p\n", i
, pic
->frame_num
, pic
);
2570 if(pic
->frame_num
== frame_num
){
2571 h
->short_ref
[i
]= NULL
;
2572 memmove(&h
->short_ref
[i
], &h
->short_ref
[i
+1], (h
->short_ref_count
- i
- 1)*sizeof(Picture
*));
2573 h
->short_ref_count
--;
2582 * @return the removed picture or NULL if an error occures
2584 static Picture
* remove_long(H264Context
*h
, int i
){
2587 if(i
>= h
->long_ref_count
) return NULL
;
2588 pic
= h
->long_ref
[i
];
2589 if(pic
==NULL
) return NULL
;
2591 h
->long_ref
[i
]= NULL
;
2592 memmove(&h
->long_ref
[i
], &h
->long_ref
[i
+1], (h
->long_ref_count
- i
- 1)*sizeof(Picture
*));
2593 h
->long_ref_count
--;
2599 * Executes the reference picture marking (memory management control operations).
2601 static int execute_ref_pic_marking(H264Context
*h
, MMCO
*mmco
, int mmco_count
){
2602 MpegEncContext
* const s
= &h
->s
;
2604 int current_is_long
=0;
2607 if((s
->avctx
->debug
&FF_DEBUG_MMCO
) && mmco_count
==0)
2608 printf("no mmco here\n");
2610 for(i
=0; i
<mmco_count
; i
++){
2611 if(s
->avctx
->debug
&FF_DEBUG_MMCO
)
2612 printf("mmco:%d %d %d\n", h
->mmco
[i
].opcode
, h
->mmco
[i
].short_frame_num
, h
->mmco
[i
].long_index
);
2614 switch(mmco
[i
].opcode
){
2615 case MMCO_SHORT2UNUSED
:
2616 pic
= remove_short(h
, mmco
[i
].short_frame_num
);
2617 if(pic
==NULL
) return -1;
2620 case MMCO_SHORT2LONG
:
2621 pic
= remove_long(h
, mmco
[i
].long_index
);
2622 if(pic
) pic
->reference
=0;
2624 h
->long_ref
[ mmco
[i
].long_index
]= remove_short(h
, mmco
[i
].short_frame_num
);
2625 h
->long_ref
[ mmco
[i
].long_index
]->long_ref
=1;
2627 case MMCO_LONG2UNUSED
:
2628 pic
= remove_long(h
, mmco
[i
].long_index
);
2629 if(pic
==NULL
) return -1;
2633 pic
= remove_long(h
, mmco
[i
].long_index
);
2634 if(pic
) pic
->reference
=0;
2636 h
->long_ref
[ mmco
[i
].long_index
]= s
->current_picture_ptr
;
2637 h
->long_ref
[ mmco
[i
].long_index
]->long_ref
=1;
2638 h
->long_ref_count
++;
2642 case MMCO_SET_MAX_LONG
:
2643 assert(mmco
[i
].long_index
<= 16);
2644 while(mmco
[i
].long_index
< h
->long_ref_count
){
2645 pic
= remove_long(h
, mmco
[i
].long_index
);
2648 while(mmco
[i
].long_index
> h
->long_ref_count
){
2649 h
->long_ref
[ h
->long_ref_count
++ ]= NULL
;
2653 while(h
->short_ref_count
){
2654 pic
= remove_short(h
, h
->short_ref
[0]->frame_num
);
2657 while(h
->long_ref_count
){
2658 pic
= remove_long(h
, h
->long_ref_count
-1);
2666 if(!current_is_long
){
2667 pic
= remove_short(h
, s
->current_picture_ptr
->frame_num
);
2670 fprintf(stderr
, "illegal short term buffer state detected\n");
2673 if(h
->short_ref_count
)
2674 memmove(&h
->short_ref
[1], &h
->short_ref
[0], h
->short_ref_count
*sizeof(Picture
*));
2676 h
->short_ref
[0]= s
->current_picture_ptr
;
2677 h
->short_ref
[0]->long_ref
=0;
2678 h
->short_ref_count
++;
2684 static int decode_ref_pic_marking(H264Context
*h
){
2685 MpegEncContext
* const s
= &h
->s
;
2688 if(h
->nal_unit_type
== NAL_IDR_SLICE
){ //FIXME fields
2689 s
->broken_link
= get_bits1(&s
->gb
) -1;
2690 h
->mmco
[0].long_index
= get_bits1(&s
->gb
) - 1; // current_long_term_idx
2691 if(h
->mmco
[0].long_index
== -1)
2694 h
->mmco
[0].opcode
= MMCO_LONG
;
2698 if(get_bits1(&s
->gb
)){ // adaptive_ref_pic_marking_mode_flag
2699 for(i
= h
->mmco_index
; i
<MAX_MMCO_COUNT
; i
++) {
2700 MMCOOpcode opcode
= get_ue_golomb(&s
->gb
);;
2702 h
->mmco
[i
].opcode
= opcode
;
2703 if(opcode
==MMCO_SHORT2UNUSED
|| opcode
==MMCO_SHORT2LONG
){
2704 h
->mmco
[i
].short_frame_num
= (h
->frame_num
- get_ue_golomb(&s
->gb
) - 1) & ((1<<h
->sps
.log2_max_frame_num
)-1); //FIXME fields
2705 /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
2706 fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
2710 if(opcode
==MMCO_SHORT2LONG
|| opcode
==MMCO_LONG2UNUSED
|| opcode
==MMCO_LONG
|| opcode
==MMCO_SET_MAX_LONG
){
2711 h
->mmco
[i
].long_index
= get_ue_golomb(&s
->gb
);
2712 if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h
->mmco
[i
].long_index
>= 16){
2713 fprintf(stderr
, "illegal long ref in memory management control operation %d\n", opcode
);
2718 if(opcode
> MMCO_LONG
){
2719 fprintf(stderr
, "illegal memory management control operation %d\n", opcode
);