2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of Libav.
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
31 #include "libavutil/intreadwrite.h"
32 #include "libavutil/thread.h"
34 #include "error_resilience.h"
36 #include "h264chroma.h"
41 #include "mpegutils.h"
44 #include "rectangle.h"
47 #define H264_MAX_PICTURE_COUNT 32
48 #define H264_MAX_THREADS 16
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
53 #define MAX_MMCO_COUNT 66
55 #define MAX_DELAYED_PIC_COUNT 16
57 /* Compiling in interlaced support reduces the speed
58 * of progressive decoding by about 2%. */
59 #define ALLOW_INTERLACE
64 * The maximum number of slices supported by the decoder.
65 * must be a power of 2
69 #ifdef ALLOW_INTERLACE
70 #define MB_MBAFF(h) h->mb_mbaff
71 #define MB_FIELD(h) h->mb_field_decoding_flag
72 #define FRAME_MBAFF(h) h->mb_aff_frame
73 #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
81 #define FRAME_MBAFF(h) 0
82 #define FIELD_PICTURE(h) 0
84 #define IS_INTERLACED(mb_type) 0
90 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
93 #define CABAC(h) h->pps.cabac
96 #define CHROMA422(h) (h->sps.chroma_format_idc == 2)
97 #define CHROMA444(h) (h->sps.chroma_format_idc == 3)
99 #define EXTENDED_SAR 255
101 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
102 #define MB_TYPE_8x8DCT 0x01000000
103 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
104 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
106 #define QP_MAX_NUM (51 + 2 * 6) // The maximum supported qp
119 NAL_END_SEQUENCE
= 10,
121 NAL_FILLER_DATA
= 12,
123 NAL_AUXILIARY_SLICE
= 19,
124 NAL_FF_IGNORE
= 0xff0f001,
131 SEI_TYPE_BUFFERING_PERIOD
= 0, ///< buffering period (H.264, D.1.1)
132 SEI_TYPE_PIC_TIMING
= 1, ///< picture timing
133 SEI_TYPE_USER_DATA_REGISTERED
= 4, ///< registered user data as specified by Rec. ITU-T T.35
134 SEI_TYPE_USER_DATA_UNREGISTERED
= 5, ///< unregistered user data
135 SEI_TYPE_RECOVERY_POINT
= 6, ///< recovery point (frame # to decoder sync)
136 SEI_TYPE_FRAME_PACKING
= 45, ///< frame packing arrangement
137 SEI_TYPE_DISPLAY_ORIENTATION
= 47, ///< display orientation
141 * pic_struct in picture timing SEI message
144 SEI_PIC_STRUCT_FRAME
= 0, ///< 0: %frame
145 SEI_PIC_STRUCT_TOP_FIELD
= 1, ///< 1: top field
146 SEI_PIC_STRUCT_BOTTOM_FIELD
= 2, ///< 2: bottom field
147 SEI_PIC_STRUCT_TOP_BOTTOM
= 3, ///< 3: top field, bottom field, in that order
148 SEI_PIC_STRUCT_BOTTOM_TOP
= 4, ///< 4: bottom field, top field, in that order
149 SEI_PIC_STRUCT_TOP_BOTTOM_TOP
= 5, ///< 5: top field, bottom field, top field repeated, in that order
150 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM
= 6, ///< 6: bottom field, top field, bottom field repeated, in that order
151 SEI_PIC_STRUCT_FRAME_DOUBLING
= 7, ///< 7: %frame doubling
152 SEI_PIC_STRUCT_FRAME_TRIPLING
= 8 ///< 8: %frame tripling
156 * Sequence parameter set
162 int chroma_format_idc
;
163 int transform_bypass
; ///< qpprime_y_zero_transform_bypass_flag
164 int log2_max_frame_num
; ///< log2_max_frame_num_minus4 + 4
165 int poc_type
; ///< pic_order_cnt_type
166 int log2_max_poc_lsb
; ///< log2_max_pic_order_cnt_lsb_minus4
167 int delta_pic_order_always_zero_flag
;
168 int offset_for_non_ref_pic
;
169 int offset_for_top_to_bottom_field
;
170 int poc_cycle_length
; ///< num_ref_frames_in_pic_order_cnt_cycle
171 int ref_frame_count
; ///< num_ref_frames
172 int gaps_in_frame_num_allowed_flag
;
173 int mb_width
; ///< pic_width_in_mbs_minus1 + 1
174 int mb_height
; ///< pic_height_in_map_units_minus1 + 1
175 int frame_mbs_only_flag
;
176 int mb_aff
; ///< mb_adaptive_frame_field_flag
177 int direct_8x8_inference_flag
;
178 int crop
; ///< frame_cropping_flag
180 /* those 4 are already in luma samples */
181 unsigned int crop_left
; ///< frame_cropping_rect_left_offset
182 unsigned int crop_right
; ///< frame_cropping_rect_right_offset
183 unsigned int crop_top
; ///< frame_cropping_rect_top_offset
184 unsigned int crop_bottom
; ///< frame_cropping_rect_bottom_offset
185 int vui_parameters_present_flag
;
187 int video_signal_type_present_flag
;
189 int colour_description_present_flag
;
190 enum AVColorPrimaries color_primaries
;
191 enum AVColorTransferCharacteristic color_trc
;
192 enum AVColorSpace colorspace
;
193 int timing_info_present_flag
;
194 uint32_t num_units_in_tick
;
196 int fixed_frame_rate_flag
;
197 short offset_for_ref_frame
[256]; // FIXME dyn aloc?
198 int bitstream_restriction_flag
;
199 int num_reorder_frames
;
200 int scaling_matrix_present
;
201 uint8_t scaling_matrix4
[6][16];
202 uint8_t scaling_matrix8
[6][64];
203 int nal_hrd_parameters_present_flag
;
204 int vcl_hrd_parameters_present_flag
;
205 int pic_struct_present_flag
;
206 int time_offset_length
;
207 int cpb_cnt
; ///< See H.264 E.1.2
208 int initial_cpb_removal_delay_length
; ///< initial_cpb_removal_delay_length_minus1 + 1
209 int cpb_removal_delay_length
; ///< cpb_removal_delay_length_minus1 + 1
210 int dpb_output_delay_length
; ///< dpb_output_delay_length_minus1 + 1
211 int bit_depth_luma
; ///< bit_depth_luma_minus8 + 8
212 int bit_depth_chroma
; ///< bit_depth_chroma_minus8 + 8
213 int residual_color_transform_flag
; ///< residual_colour_transform_flag
214 int constraint_set_flags
; ///< constraint_set[0-3]_flag
215 int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
219 * Picture parameter set
223 int cabac
; ///< entropy_coding_mode_flag
224 int pic_order_present
; ///< pic_order_present_flag
225 int slice_group_count
; ///< num_slice_groups_minus1 + 1
226 int mb_slice_group_map_type
;
227 unsigned int ref_count
[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
228 int weighted_pred
; ///< weighted_pred_flag
229 int weighted_bipred_idc
;
230 int init_qp
; ///< pic_init_qp_minus26 + 26
231 int init_qs
; ///< pic_init_qs_minus26 + 26
232 int chroma_qp_index_offset
[2];
233 int deblocking_filter_parameters_present
; ///< deblocking_filter_parameters_present_flag
234 int constrained_intra_pred
; ///< constrained_intra_pred_flag
235 int redundant_pic_cnt_present
; ///< redundant_pic_cnt_present_flag
236 int transform_8x8_mode
; ///< transform_8x8_mode_flag
237 uint8_t scaling_matrix4
[6][16];
238 uint8_t scaling_matrix8
[6][64];
239 uint8_t chroma_qp_table
[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
244 * Memory management control operation opcode.
246 typedef enum MMCOOpcode
{
257 * Memory management control operation.
259 typedef struct MMCO
{
261 int short_pic_num
; ///< pic_num without wrapping (pic_num & max_pic_num)
262 int long_arg
; ///< index, pic_num, or num long refs depending on opcode
265 typedef struct H264Picture
{
269 AVBufferRef
*qscale_table_buf
;
270 int8_t *qscale_table
;
272 AVBufferRef
*motion_val_buf
[2];
273 int16_t (*motion_val
[2])[2];
275 AVBufferRef
*mb_type_buf
;
278 AVBufferRef
*hwaccel_priv_buf
;
279 void *hwaccel_picture_private
; ///< hardware accelerator private data
281 AVBufferRef
*ref_index_buf
[2];
282 int8_t *ref_index
[2];
284 int field_poc
[2]; ///< top/bottom POC
285 int poc
; ///< frame POC
286 int frame_num
; ///< frame_num (raw frame_num from slice header)
287 int mmco_reset
; /**< MMCO_RESET set this 1. Reordering code must
288 not mix pictures before and after MMCO_RESET. */
289 int pic_id
; /**< pic_num (short -> no wrap version of pic_num,
290 pic_num & max_pic_num; long -> long_pic_num) */
291 int long_ref
; ///< 1->long term reference 0->short term reference
292 int ref_poc
[2][2][32]; ///< POCs of the frames used as reference (FIXME need per slice)
293 int ref_count
[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
294 int mbaff
; ///< 1 -> MBAFF frame 0-> not MBAFF
295 int field_picture
; ///< whether or not picture was encoded in separate fields
298 int recovered
; ///< picture at IDR or recovery point + recovery count
301 typedef struct H264Ref
{
312 typedef struct H264SliceContext
{
313 struct H264Context
*h264
;
319 int slice_type_nos
; ///< S free slice type (SI/SP are remapped to I/P)
320 int slice_type_fixed
;
323 int chroma_qp
[2]; // QPc
324 int qp_thresh
; ///< QP threshold to skip loopfilter
325 int last_qscale_diff
;
328 int deblocking_filter
; ///< disable_deblocking_filter_idc with 1 <-> 0
329 int slice_alpha_c0_offset
;
330 int slice_beta_offset
;
332 // Weighted pred stuff
334 int use_weight_chroma
;
335 int luma_log2_weight_denom
;
336 int chroma_log2_weight_denom
;
337 int luma_weight_flag
[2]; ///< 7.4.3.2 luma_weight_lX_flag
338 int chroma_weight_flag
[2]; ///< 7.4.3.2 chroma_weight_lX_flag
339 // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
340 int luma_weight
[48][2][2];
341 int chroma_weight
[48][2][2][2];
342 int implicit_weight
[48][48][2];
347 int chroma_pred_mode
;
348 int intra16x16_pred_mode
;
350 int8_t intra4x4_pred_mode_cache
[5 * 8];
351 int8_t(*intra4x4_pred_mode
);
356 int left_mb_xy
[LEFT_MBS
];
361 int left_type
[LEFT_MBS
];
363 const uint8_t *left_block
;
364 int topleft_partition
;
366 unsigned int topleft_samples_available
;
367 unsigned int top_samples_available
;
368 unsigned int topright_samples_available
;
369 unsigned int left_samples_available
;
371 ptrdiff_t linesize
, uvlinesize
;
372 ptrdiff_t mb_linesize
; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
373 ptrdiff_t mb_uvlinesize
;
379 // index of the first MB of the next slice
384 int mb_field_decoding_flag
;
385 int mb_mbaff
; ///< mb_aff_frame && mb_field_decoding_flag
387 int redundant_pic_count
;
390 * number of neighbors (top and/or left) that used 8x8 dct
392 int neighbor_transform_size
;
394 int direct_spatial_mv_pred
;
402 int dist_scale_factor
[32];
403 int dist_scale_factor_field
[2][32];
404 int map_col_to_list0
[2][16 + 32];
405 int map_col_to_list0_field
[2][2][16 + 32];
408 * num_ref_idx_l0/1_active_minus1 + 1
410 unsigned int ref_count
[2]; ///< counts frames or fields, depending on current mb mode
411 unsigned int list_count
;
412 H264Ref ref_list
[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
413 * Reordered version of default_ref_list
414 * according to picture reordering in slice header */
415 int ref2frm
[MAX_SLICES
][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
417 const uint8_t *intra_pcm_ptr
;
418 int16_t *dc_val_base
;
420 uint8_t *bipred_scratchpad
;
421 uint8_t *edge_emu_buffer
;
422 uint8_t (*top_borders
[2])[(16 * 3) * 2];
423 int bipred_scratchpad_allocated
;
424 int edge_emu_buffer_allocated
;
425 int top_borders_allocated
[2];
428 * non zero coeff count cache.
429 * is 64 if not available.
431 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache
)[15 * 8];
434 * Motion vector cache.
436 DECLARE_ALIGNED(16, int16_t, mv_cache
)[2][5 * 8][2];
437 DECLARE_ALIGNED(8, int8_t, ref_cache
)[2][5 * 8];
438 DECLARE_ALIGNED(16, uint8_t, mvd_cache
)[2][5 * 8][2];
439 uint8_t direct_cache
[5 * 8];
441 DECLARE_ALIGNED(8, uint16_t, sub_mb_type
)[4];
443 ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
444 DECLARE_ALIGNED(16, int16_t, mb
)[16 * 48 * 2];
445 DECLARE_ALIGNED(16, int16_t, mb_luma_dc
)[3][16 * 2];
446 ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
447 ///< check that i is not too large or ensure that there is some unused stuff after mb
448 int16_t mb_padding
[256 * 2];
450 uint8_t (*mvd_table
[2])[2];
456 uint8_t cabac_state
[1024];
459 // rbsp buffer used for this slice
460 uint8_t *rbsp_buffer
;
461 unsigned int rbsp_buffer_size
;
467 typedef struct H264Context
{
468 AVCodecContext
*avctx
;
469 VideoDSPContext vdsp
;
470 H264DSPContext h264dsp
;
471 H264ChromaContext h264chroma
;
472 H264QpelContext h264qpel
;
475 H264Picture DPB
[H264_MAX_PICTURE_COUNT
];
476 H264Picture
*cur_pic_ptr
;
479 H264SliceContext
*slice_ctx
;
482 int pixel_shift
; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
484 /* coded dimensions -- 16 * mb w/h */
486 int chroma_x_shift
, chroma_y_shift
;
489 int coded_picture_number
;
492 int context_initialized
;
496 int8_t(*intra4x4_pred_mode
);
499 uint8_t (*non_zero_count
)[48];
501 #define LIST_NOT_USED -1 // FIXME rename?
502 #define PART_NOT_AVAILABLE -2
505 * block_offset[ 0..23] for frame macroblocks
506 * block_offset[24..47] for field macroblocks
508 int block_offset
[2 * (16 * 3)];
510 uint32_t *mb2b_xy
; // FIXME are these 4 a good idea?
512 int b_stride
; // FIXME use s->b4_stride
514 SPS sps
; ///< current sps
515 PPS pps
; ///< current pps
517 uint32_t dequant4_buffer
[6][QP_MAX_NUM
+ 1][16]; // FIXME should these be moved down?
518 uint32_t dequant8_buffer
[6][QP_MAX_NUM
+ 1][64];
519 uint32_t(*dequant4_coeff
[6])[16];
520 uint32_t(*dequant8_coeff
[6])[64];
522 uint16_t *slice_table
; ///< slice_table_base + 2*mb_stride + 1
524 // interlacing specific flags
526 int picture_structure
;
529 uint8_t *list_counts
; ///< Array of list_count per MB specifying the slice type
531 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
534 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
535 uint8_t *chroma_pred_mode_table
;
536 uint8_t (*mvd_table
[2])[2];
537 uint8_t *direct_table
;
539 uint8_t zigzag_scan
[16];
540 uint8_t zigzag_scan8x8
[64];
541 uint8_t zigzag_scan8x8_cavlc
[64];
542 uint8_t field_scan
[16];
543 uint8_t field_scan8x8
[64];
544 uint8_t field_scan8x8_cavlc
[64];
545 const uint8_t *zigzag_scan_q0
;
546 const uint8_t *zigzag_scan8x8_q0
;
547 const uint8_t *zigzag_scan8x8_cavlc_q0
;
548 const uint8_t *field_scan_q0
;
549 const uint8_t *field_scan8x8_q0
;
550 const uint8_t *field_scan8x8_cavlc_q0
;
555 int mb_height
, mb_width
;
559 // =============================================================
560 // Things below are not used in the MB or more inner code
566 * Used to parse AVC variant of h264
568 int is_avc
; ///< this flag is != 0 if codec is avc1
569 int nal_length_size
; ///< Number of bytes used for nal length (1, 2 or 4)
571 int bit_depth_luma
; ///< luma bit depth from sps to detect changes
572 int chroma_format_idc
; ///< chroma format from sps to detect changes
574 SPS
*sps_buffers
[MAX_SPS_COUNT
];
575 PPS
*pps_buffers
[MAX_PPS_COUNT
];
577 int dequant_coeff_pps
; ///< reinit tables when pps changes
579 uint16_t *slice_table_base
;
584 int delta_poc_bottom
;
587 int prev_poc_msb
; ///< poc_msb of the last reference pic for POC type 0
588 int prev_poc_lsb
; ///< poc_lsb of the last reference pic for POC type 0
589 int frame_num_offset
; ///< for POC type 2
590 int prev_frame_num_offset
; ///< for POC type 2
591 int prev_frame_num
; ///< frame_num of the last pic for POC type 1/2
594 * frame_num for frames or 2 * frame_num + 1 for field pics.
599 * max_frame_num or 2 * max_frame_num for field pics.
603 H264Picture
*short_ref
[32];
604 H264Picture
*long_ref
[32];
605 H264Picture
*delayed_pic
[MAX_DELAYED_PIC_COUNT
+ 2]; // FIXME size?
606 int last_pocs
[MAX_DELAYED_PIC_COUNT
];
607 H264Picture
*next_output_pic
;
608 int next_outputed_poc
;
611 * memory management control operations buffer.
613 MMCO mmco
[MAX_MMCO_COUNT
];
617 int long_ref_count
; ///< number of actual long term references
618 int short_ref_count
; ///< number of actual short term references
621 * @name Members for slice based multithreading
625 * current slice number, used to initalize slice_num of each thread/context
630 * Max number of threads / contexts.
631 * This is equal to AVCodecContext.thread_count unless
632 * multithreaded decoding is impossible, in which case it is
637 int slice_context_count
;
640 * 1 if the single thread fallback warning has already been
641 * displayed, 0 otherwise.
643 int single_decode_warning
;
645 enum AVPictureType pict_type
;
650 * pic_struct in picture timing SEI message
652 SEI_PicStructType sei_pic_struct
;
655 * Complement sei_pic_struct
656 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
657 * However, soft telecined frames may have these values.
658 * This is used in an attempt to flag soft telecine progressive.
660 int prev_interlaced_frame
;
663 * frame_packing_arrangment SEI message
665 int sei_frame_packing_present
;
666 int frame_packing_arrangement_type
;
667 int content_interpretation_type
;
668 int quincunx_subsampling
;
671 * display orientation SEI message
673 int sei_display_orientation_present
;
674 int sei_anticlockwise_rotation
;
675 int sei_hflip
, sei_vflip
;
678 * User data registered by Rec. ITU-T T.35 SEI
680 int sei_reguserdata_afd_present
;
681 uint8_t active_format_description
;
682 int a53_caption_size
;
683 uint8_t *a53_caption
;
686 * Bit set of clock types for fields/frames in picture timing SEI message.
687 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
693 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
695 int sei_dpb_output_delay
;
698 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
700 int sei_cpb_removal_delay
;
703 * recovery_frame_cnt from SEI message
705 * Set to -1 if no recovery point SEI message found or to number of frames
706 * before playback synchronizes. Frames having recovery point are key
709 int sei_recovery_frame_cnt
;
712 * recovery_frame is the frame_num at which the next frame should
713 * be fully constructed.
715 * Set to -1 when not expecting a recovery point.
720 * We have seen an IDR, so all the following frames in coded order are correctly
723 #define FRAME_RECOVERED_IDR (1 << 0)
725 * Sufficient number of frames have been decoded since a SEI recovery point,
726 * so all the following frames in presentation order are correct.
728 #define FRAME_RECOVERED_SEI (1 << 1)
730 int frame_recovered
; ///< Initial frame has been completely recovered
732 /* for frame threading, this is set to 1
733 * after finish_setup() has been called, so we cannot modify
734 * some context properties (which are supposed to stay constant between
739 int sei_buffering_period_present
; ///< Buffering period SEI flag
740 int initial_cpb_removal_delay
[32]; ///< Initial timestamps for CPBs
744 AVBufferPool
*qscale_table_pool
;
745 AVBufferPool
*mb_type_pool
;
746 AVBufferPool
*motion_val_pool
;
747 AVBufferPool
*ref_index_pool
;
749 /* Motion Estimation */
750 qpel_mc_func (*qpel_put
)[16];
751 qpel_mc_func (*qpel_avg
)[16];
754 extern const uint8_t ff_h264_chroma_qp
[3][QP_MAX_NUM
+ 1]; ///< One chroma qp table for each supported bit depth (8, 9, 10).
755 extern const uint16_t ff_h264_mb_sizes
[4];
760 int ff_h264_decode_sei(H264Context
*h
);
765 int ff_h264_decode_seq_parameter_set(H264Context
*h
);
768 * compute profile from sps
770 int ff_h264_get_profile(SPS
*sps
);
775 int ff_h264_decode_picture_parameter_set(H264Context
*h
, int bit_length
);
778 * Decode a network abstraction layer unit.
779 * @param consumed is the number of bytes used as input
780 * @param length is the length of the array
781 * @param dst_length is the number of decoded bytes FIXME here
782 * or a decode rbsp tailing?
783 * @return decoded bytes, might be src+1 if no escapes
785 const uint8_t *ff_h264_decode_nal(H264Context
*h
, H264SliceContext
*sl
, const uint8_t *src
,
786 int *dst_length
, int *consumed
, int length
);
789 * Free any data that may have been allocated in the H264 context
792 void ff_h264_free_context(H264Context
*h
);
795 * Reconstruct bitstream slice_type.
797 int ff_h264_get_slice_type(const H264SliceContext
*sl
);
803 int ff_h264_alloc_tables(H264Context
*h
);
805 int ff_h264_decode_ref_pic_list_reordering(H264Context
*h
, H264SliceContext
*sl
);
806 void ff_h264_fill_mbaff_ref_list(H264Context
*h
, H264SliceContext
*sl
);
807 void ff_h264_remove_all_refs(H264Context
*h
);
810 * Execute the reference picture marking (memory management control operations).
812 int ff_h264_execute_ref_pic_marking(H264Context
*h
, MMCO
*mmco
, int mmco_count
);
814 int ff_h264_decode_ref_pic_marking(H264Context
*h
, GetBitContext
*gb
,
817 int ff_generate_sliding_window_mmcos(H264Context
*h
, int first_slice
);
820 * Check if the top & left blocks are available if needed & change the
821 * dc mode so it only uses the available blocks.
823 int ff_h264_check_intra4x4_pred_mode(const H264Context
*h
, H264SliceContext
*sl
);
826 * Check if the top & left blocks are available if needed & change the
827 * dc mode so it only uses the available blocks.
829 int ff_h264_check_intra_pred_mode(const H264Context
*h
, H264SliceContext
*sl
,
830 int mode
, int is_chroma
);
832 void ff_h264_hl_decode_mb(const H264Context
*h
, H264SliceContext
*sl
);
833 int ff_h264_decode_extradata(H264Context
*h
);
834 int ff_h264_decode_init(AVCodecContext
*avctx
);
835 void ff_h264_decode_init_vlc(void);
838 * Decode a macroblock
839 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
841 int ff_h264_decode_mb_cavlc(const H264Context
*h
, H264SliceContext
*sl
);
844 * Decode a CABAC coded macroblock
845 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
847 int ff_h264_decode_mb_cabac(const H264Context
*h
, H264SliceContext
*sl
);
849 void ff_h264_init_cabac_states(const H264Context
*h
, H264SliceContext
*sl
);
851 void h264_init_dequant_tables(H264Context
*h
);
853 void ff_h264_direct_dist_scale_factor(const H264Context
*const h
, H264SliceContext
*sl
);
854 void ff_h264_direct_ref_list_init(const H264Context
*const h
, H264SliceContext
*sl
);
855 void ff_h264_pred_direct_motion(const H264Context
*const h
, H264SliceContext
*sl
,
858 void ff_h264_filter_mb_fast(const H264Context
*h
, H264SliceContext
*sl
, int mb_x
, int mb_y
,
859 uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
,
860 unsigned int linesize
, unsigned int uvlinesize
);
861 void ff_h264_filter_mb(const H264Context
*h
, H264SliceContext
*sl
, int mb_x
, int mb_y
,
862 uint8_t *img_y
, uint8_t *img_cb
, uint8_t *img_cr
,
863 unsigned int linesize
, unsigned int uvlinesize
);
866 * Reset SEI values at the beginning of the frame.
868 * @param h H.264 context.
870 void ff_h264_reset_sei(H264Context
*h
);
882 /* Scan8 organization:
899 * DY/DU/DV are for luma/chroma DC.
902 #define LUMA_DC_BLOCK_INDEX 48
903 #define CHROMA_DC_BLOCK_INDEX 49
905 // This table must be here because scan8[constant] must be known at compiletime
906 static const uint8_t scan8
[16 * 3 + 3] = {
907 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
908 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
909 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
910 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
911 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
912 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
913 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
914 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
915 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
916 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
917 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
918 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
919 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
922 static av_always_inline
uint32_t pack16to32(int a
, int b
)
925 return (b
& 0xFFFF) + (a
<< 16);
927 return (a
& 0xFFFF) + (b
<< 16);
931 static av_always_inline
uint16_t pack8to16(int a
, int b
)
934 return (b
& 0xFF) + (a
<< 8);
936 return (a
& 0xFF) + (b
<< 8);
943 static av_always_inline
int get_chroma_qp(const H264Context
*h
, int t
, int qscale
)
945 return h
->pps
.chroma_qp_table
[t
][qscale
];
949 * Get the predicted intra4x4 prediction mode.
951 static av_always_inline
int pred_intra_mode(const H264Context
*h
,
952 H264SliceContext
*sl
, int n
)
954 const int index8
= scan8
[n
];
955 const int left
= sl
->intra4x4_pred_mode_cache
[index8
- 1];
956 const int top
= sl
->intra4x4_pred_mode_cache
[index8
- 8];
957 const int min
= FFMIN(left
, top
);
959 ff_tlog(h
->avctx
, "mode:%d %d min:%d\n", left
, top
, min
);
967 static av_always_inline
void write_back_intra_pred_mode(const H264Context
*h
,
968 H264SliceContext
*sl
)
970 int8_t *i4x4
= sl
->intra4x4_pred_mode
+ h
->mb2br_xy
[sl
->mb_xy
];
971 int8_t *i4x4_cache
= sl
->intra4x4_pred_mode_cache
;
973 AV_COPY32(i4x4
, i4x4_cache
+ 4 + 8 * 4);
974 i4x4
[4] = i4x4_cache
[7 + 8 * 3];
975 i4x4
[5] = i4x4_cache
[7 + 8 * 2];
976 i4x4
[6] = i4x4_cache
[7 + 8 * 1];
979 static av_always_inline
void write_back_non_zero_count(const H264Context
*h
,
980 H264SliceContext
*sl
)
982 const int mb_xy
= sl
->mb_xy
;
983 uint8_t *nnz
= h
->non_zero_count
[mb_xy
];
984 uint8_t *nnz_cache
= sl
->non_zero_count_cache
;
986 AV_COPY32(&nnz
[ 0], &nnz_cache
[4 + 8 * 1]);
987 AV_COPY32(&nnz
[ 4], &nnz_cache
[4 + 8 * 2]);
988 AV_COPY32(&nnz
[ 8], &nnz_cache
[4 + 8 * 3]);
989 AV_COPY32(&nnz
[12], &nnz_cache
[4 + 8 * 4]);
990 AV_COPY32(&nnz
[16], &nnz_cache
[4 + 8 * 6]);
991 AV_COPY32(&nnz
[20], &nnz_cache
[4 + 8 * 7]);
992 AV_COPY32(&nnz
[32], &nnz_cache
[4 + 8 * 11]);
993 AV_COPY32(&nnz
[36], &nnz_cache
[4 + 8 * 12]);
995 if (!h
->chroma_y_shift
) {
996 AV_COPY32(&nnz
[24], &nnz_cache
[4 + 8 * 8]);
997 AV_COPY32(&nnz
[28], &nnz_cache
[4 + 8 * 9]);
998 AV_COPY32(&nnz
[40], &nnz_cache
[4 + 8 * 13]);
999 AV_COPY32(&nnz
[44], &nnz_cache
[4 + 8 * 14]);
1003 static av_always_inline
void write_back_motion_list(const H264Context
*h
,
1004 H264SliceContext
*sl
,
1006 int b_xy
, int b8_xy
,
1007 int mb_type
, int list
)
1009 int16_t(*mv_dst
)[2] = &h
->cur_pic
.motion_val
[list
][b_xy
];
1010 int16_t(*mv_src
)[2] = &sl
->mv_cache
[list
][scan8
[0]];
1011 AV_COPY128(mv_dst
+ 0 * b_stride
, mv_src
+ 8 * 0);
1012 AV_COPY128(mv_dst
+ 1 * b_stride
, mv_src
+ 8 * 1);
1013 AV_COPY128(mv_dst
+ 2 * b_stride
, mv_src
+ 8 * 2);
1014 AV_COPY128(mv_dst
+ 3 * b_stride
, mv_src
+ 8 * 3);
1016 uint8_t (*mvd_dst
)[2] = &sl
->mvd_table
[list
][FMO ?
8 * sl
->mb_xy
1017 : h
->mb2br_xy
[sl
->mb_xy
]];
1018 uint8_t(*mvd_src
)[2] = &sl
->mvd_cache
[list
][scan8
[0]];
1019 if (IS_SKIP(mb_type
)) {
1020 AV_ZERO128(mvd_dst
);
1022 AV_COPY64(mvd_dst
, mvd_src
+ 8 * 3);
1023 AV_COPY16(mvd_dst
+ 3 + 3, mvd_src
+ 3 + 8 * 0);
1024 AV_COPY16(mvd_dst
+ 3 + 2, mvd_src
+ 3 + 8 * 1);
1025 AV_COPY16(mvd_dst
+ 3 + 1, mvd_src
+ 3 + 8 * 2);
1030 int8_t *ref_index
= &h
->cur_pic
.ref_index
[list
][b8_xy
];
1031 int8_t *ref_cache
= sl
->ref_cache
[list
];
1032 ref_index
[0 + 0 * 2] = ref_cache
[scan8
[0]];
1033 ref_index
[1 + 0 * 2] = ref_cache
[scan8
[4]];
1034 ref_index
[0 + 1 * 2] = ref_cache
[scan8
[8]];
1035 ref_index
[1 + 1 * 2] = ref_cache
[scan8
[12]];
1039 static av_always_inline
void write_back_motion(const H264Context
*h
,
1040 H264SliceContext
*sl
,
1043 const int b_stride
= h
->b_stride
;
1044 const int b_xy
= 4 * sl
->mb_x
+ 4 * sl
->mb_y
* h
->b_stride
; // try mb2b(8)_xy
1045 const int b8_xy
= 4 * sl
->mb_xy
;
1047 if (USES_LIST(mb_type
, 0)) {
1048 write_back_motion_list(h
, sl
, b_stride
, b_xy
, b8_xy
, mb_type
, 0);
1050 fill_rectangle(&h
->cur_pic
.ref_index
[0][b8_xy
],
1051 2, 2, 2, (uint8_t)LIST_NOT_USED
, 1);
1053 if (USES_LIST(mb_type
, 1))
1054 write_back_motion_list(h
, sl
, b_stride
, b_xy
, b8_xy
, mb_type
, 1);
1056 if (sl
->slice_type_nos
== AV_PICTURE_TYPE_B
&& CABAC(h
)) {
1057 if (IS_8X8(mb_type
)) {
1058 uint8_t *direct_table
= &h
->direct_table
[4 * sl
->mb_xy
];
1059 direct_table
[1] = sl
->sub_mb_type
[1] >> 1;
1060 direct_table
[2] = sl
->sub_mb_type
[2] >> 1;
1061 direct_table
[3] = sl
->sub_mb_type
[3] >> 1;
1066 static av_always_inline
int get_dct8x8_allowed(const H264Context
*h
, H264SliceContext
*sl
)
1068 if (h
->sps
.direct_8x8_inference_flag
)
1069 return !(AV_RN64A(sl
->sub_mb_type
) &
1070 ((MB_TYPE_16x8
| MB_TYPE_8x16
| MB_TYPE_8x8
) *
1071 0x0001000100010001ULL
));
1073 return !(AV_RN64A(sl
->sub_mb_type
) &
1074 ((MB_TYPE_16x8
| MB_TYPE_8x16
| MB_TYPE_8x8
| MB_TYPE_DIRECT2
) *
1075 0x0001000100010001ULL
));
1078 int ff_h264_field_end(H264Context
*h
, H264SliceContext
*sl
, int in_setup
);
1080 int ff_h264_ref_picture(H264Context
*h
, H264Picture
*dst
, H264Picture
*src
);
1081 void ff_h264_unref_picture(H264Context
*h
, H264Picture
*pic
);
1083 int ff_h264_slice_context_init(H264Context
*h
, H264SliceContext
*sl
);
1085 void ff_h264_draw_horiz_band(const H264Context
*h
, H264SliceContext
*sl
, int y
, int height
);
1086 int ff_init_poc(H264Context
*h
, int pic_field_poc
[2], int *pic_poc
);
1087 int ff_pred_weight_table(H264Context
*h
, H264SliceContext
*sl
);
1088 int ff_set_ref_count(H264Context
*h
, H264SliceContext
*sl
);
1090 int ff_h264_decode_slice_header(H264Context
*h
, H264SliceContext
*sl
);
1091 int ff_h264_execute_decode_slices(H264Context
*h
, unsigned context_count
);
1092 int ff_h264_update_thread_context(AVCodecContext
*dst
,
1093 const AVCodecContext
*src
);
1095 void ff_h264_flush_change(H264Context
*h
);
1097 void ff_h264_free_tables(H264Context
*h
);
1099 #endif /* AVCODEC_H264_H */