920e3fc1c8412943200353106b329d98b4fb05f1
[libav.git] / libavcodec / h264.h
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30
31 #include "libavutil/intreadwrite.h"
32 #include "cabac.h"
33 #include "error_resilience.h"
34 #include "get_bits.h"
35 #include "mpegvideo.h"
36 #include "h264chroma.h"
37 #include "h264dsp.h"
38 #include "h264pred.h"
39 #include "h264qpel.h"
40 #include "rectangle.h"
41
42 #define MAX_SPS_COUNT 32
43 #define MAX_PPS_COUNT 256
44
45 #define MAX_MMCO_COUNT 66
46
47 #define MAX_DELAYED_PIC_COUNT 16
48
49 /* Compiling in interlaced support reduces the speed
50 * of progressive decoding by about 2%. */
51 #define ALLOW_INTERLACE
52
53 #define FMO 0
54
55 /**
56 * The maximum number of slices supported by the decoder.
57 * must be a power of 2
58 */
59 #define MAX_SLICES 16
60
61 #ifdef ALLOW_INTERLACE
62 #define MB_MBAFF(h) h->mb_mbaff
63 #define MB_FIELD(h) h->mb_field_decoding_flag
64 #define FRAME_MBAFF(h) h->mb_aff_frame
65 #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
66 #define LEFT_MBS 2
67 #define LTOP 0
68 #define LBOT 1
69 #define LEFT(i) (i)
70 #else
71 #define MB_MBAFF(h) 0
72 #define MB_FIELD(h) 0
73 #define FRAME_MBAFF(h) 0
74 #define FIELD_PICTURE(h) 0
75 #undef IS_INTERLACED
76 #define IS_INTERLACED(mb_type) 0
77 #define LEFT_MBS 1
78 #define LTOP 0
79 #define LBOT 0
80 #define LEFT(i) 0
81 #endif
82 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
83
84 #ifndef CABAC
85 #define CABAC(h) h->pps.cabac
86 #endif
87
88 #define CHROMA422(h) (h->sps.chroma_format_idc == 2)
89 #define CHROMA444(h) (h->sps.chroma_format_idc == 3)
90
91 #define EXTENDED_SAR 255
92
93 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
94 #define MB_TYPE_8x8DCT 0x01000000
95 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
96 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
97
98 #define QP_MAX_NUM (51 + 2 * 6) // The maximum supported qp
99
100 /* NAL unit types */
101 enum {
102 NAL_SLICE = 1,
103 NAL_DPA,
104 NAL_DPB,
105 NAL_DPC,
106 NAL_IDR_SLICE,
107 NAL_SEI,
108 NAL_SPS,
109 NAL_PPS,
110 NAL_AUD,
111 NAL_END_SEQUENCE,
112 NAL_END_STREAM,
113 NAL_FILLER_DATA,
114 NAL_SPS_EXT,
115 NAL_AUXILIARY_SLICE = 19,
116 NAL_FF_IGNORE = 0xff0f001,
117 };
118
119 /**
120 * SEI message types
121 */
122 typedef enum {
123 SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
124 SEI_TYPE_PIC_TIMING = 1, ///< picture timing
125 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
126 SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
127 } SEI_Type;
128
129 /**
130 * pic_struct in picture timing SEI message
131 */
132 typedef enum {
133 SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
134 SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
135 SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
136 SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
137 SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
138 SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
139 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
140 SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
141 SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
142 } SEI_PicStructType;
143
144 /**
145 * Sequence parameter set
146 */
147 typedef struct SPS {
148 int profile_idc;
149 int level_idc;
150 int chroma_format_idc;
151 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
152 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
153 int poc_type; ///< pic_order_cnt_type
154 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
155 int delta_pic_order_always_zero_flag;
156 int offset_for_non_ref_pic;
157 int offset_for_top_to_bottom_field;
158 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
159 int ref_frame_count; ///< num_ref_frames
160 int gaps_in_frame_num_allowed_flag;
161 int mb_width; ///< pic_width_in_mbs_minus1 + 1
162 int mb_height; ///< pic_height_in_map_units_minus1 + 1
163 int frame_mbs_only_flag;
164 int mb_aff; ///< mb_adaptive_frame_field_flag
165 int direct_8x8_inference_flag;
166 int crop; ///< frame_cropping_flag
167
168 /* those 4 are already in luma samples */
169 unsigned int crop_left; ///< frame_cropping_rect_left_offset
170 unsigned int crop_right; ///< frame_cropping_rect_right_offset
171 unsigned int crop_top; ///< frame_cropping_rect_top_offset
172 unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
173 int vui_parameters_present_flag;
174 AVRational sar;
175 int video_signal_type_present_flag;
176 int full_range;
177 int colour_description_present_flag;
178 enum AVColorPrimaries color_primaries;
179 enum AVColorTransferCharacteristic color_trc;
180 enum AVColorSpace colorspace;
181 int timing_info_present_flag;
182 uint32_t num_units_in_tick;
183 uint32_t time_scale;
184 int fixed_frame_rate_flag;
185 short offset_for_ref_frame[256]; // FIXME dyn aloc?
186 int bitstream_restriction_flag;
187 int num_reorder_frames;
188 int scaling_matrix_present;
189 uint8_t scaling_matrix4[6][16];
190 uint8_t scaling_matrix8[6][64];
191 int nal_hrd_parameters_present_flag;
192 int vcl_hrd_parameters_present_flag;
193 int pic_struct_present_flag;
194 int time_offset_length;
195 int cpb_cnt; ///< See H.264 E.1.2
196 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
197 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
198 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
199 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
200 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
201 int residual_color_transform_flag; ///< residual_colour_transform_flag
202 int constraint_set_flags; ///< constraint_set[0-3]_flag
203 int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
204 } SPS;
205
206 /**
207 * Picture parameter set
208 */
209 typedef struct PPS {
210 unsigned int sps_id;
211 int cabac; ///< entropy_coding_mode_flag
212 int pic_order_present; ///< pic_order_present_flag
213 int slice_group_count; ///< num_slice_groups_minus1 + 1
214 int mb_slice_group_map_type;
215 unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
216 int weighted_pred; ///< weighted_pred_flag
217 int weighted_bipred_idc;
218 int init_qp; ///< pic_init_qp_minus26 + 26
219 int init_qs; ///< pic_init_qs_minus26 + 26
220 int chroma_qp_index_offset[2];
221 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
222 int constrained_intra_pred; ///< constrained_intra_pred_flag
223 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
224 int transform_8x8_mode; ///< transform_8x8_mode_flag
225 uint8_t scaling_matrix4[6][16];
226 uint8_t scaling_matrix8[6][64];
227 uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
228 int chroma_qp_diff;
229 } PPS;
230
231 /**
232 * Memory management control operation opcode.
233 */
234 typedef enum MMCOOpcode {
235 MMCO_END = 0,
236 MMCO_SHORT2UNUSED,
237 MMCO_LONG2UNUSED,
238 MMCO_SHORT2LONG,
239 MMCO_SET_MAX_LONG,
240 MMCO_RESET,
241 MMCO_LONG,
242 } MMCOOpcode;
243
244 /**
245 * Memory management control operation.
246 */
247 typedef struct MMCO {
248 MMCOOpcode opcode;
249 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
250 int long_arg; ///< index, pic_num, or num long refs depending on opcode
251 } MMCO;
252
253 /**
254 * H264Context
255 */
256 typedef struct H264Context {
257 AVCodecContext *avctx;
258 DSPContext dsp;
259 VideoDSPContext vdsp;
260 H264DSPContext h264dsp;
261 H264ChromaContext h264chroma;
262 H264QpelContext h264qpel;
263 MotionEstContext me;
264 ParseContext parse_context;
265 GetBitContext gb;
266 ERContext er;
267
268 Picture *DPB;
269 Picture *cur_pic_ptr;
270 Picture cur_pic;
271
272 int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
273 int chroma_qp[2]; // QPc
274
275 int qp_thresh; ///< QP threshold to skip loopfilter
276
277 /* coded dimensions -- 16 * mb w/h */
278 int width, height;
279 ptrdiff_t linesize, uvlinesize;
280 int chroma_x_shift, chroma_y_shift;
281
282 int qscale;
283 int droppable;
284 int data_partitioning;
285 int coded_picture_number;
286 int low_delay;
287
288 int context_initialized;
289 int flags;
290 int workaround_bugs;
291
292 int prev_mb_skipped;
293 int next_mb_skipped;
294
295 // prediction stuff
296 int chroma_pred_mode;
297 int intra16x16_pred_mode;
298
299 int topleft_mb_xy;
300 int top_mb_xy;
301 int topright_mb_xy;
302 int left_mb_xy[LEFT_MBS];
303
304 int topleft_type;
305 int top_type;
306 int topright_type;
307 int left_type[LEFT_MBS];
308
309 const uint8_t *left_block;
310 int topleft_partition;
311
312 int8_t intra4x4_pred_mode_cache[5 * 8];
313 int8_t(*intra4x4_pred_mode);
314 H264PredContext hpc;
315 unsigned int topleft_samples_available;
316 unsigned int top_samples_available;
317 unsigned int topright_samples_available;
318 unsigned int left_samples_available;
319 uint8_t (*top_borders[2])[(16 * 3) * 2];
320
321 /**
322 * non zero coeff count cache.
323 * is 64 if not available.
324 */
325 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
326
327 uint8_t (*non_zero_count)[48];
328
329 /**
330 * Motion vector cache.
331 */
332 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
333 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
334 #define LIST_NOT_USED -1 // FIXME rename?
335 #define PART_NOT_AVAILABLE -2
336
337 /**
338 * number of neighbors (top and/or left) that used 8x8 dct
339 */
340 int neighbor_transform_size;
341
342 /**
343 * block_offset[ 0..23] for frame macroblocks
344 * block_offset[24..47] for field macroblocks
345 */
346 int block_offset[2 * (16 * 3)];
347
348 uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
349 uint32_t *mb2br_xy;
350 int b_stride; // FIXME use s->b4_stride
351
352 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
353 ptrdiff_t mb_uvlinesize;
354
355 unsigned current_sps_id; ///< id of the current SPS
356 SPS sps; ///< current sps
357
358 /**
359 * current pps
360 */
361 PPS pps; // FIXME move to Picture perhaps? (->no) do we need that?
362
363 uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
364 uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
365 uint32_t(*dequant4_coeff[6])[16];
366 uint32_t(*dequant8_coeff[6])[64];
367
368 int slice_num;
369 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
370 int slice_type;
371 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
372 int slice_type_fixed;
373
374 // interlacing specific flags
375 int mb_aff_frame;
376 int mb_field_decoding_flag;
377 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
378 int picture_structure;
379 int first_field;
380
381 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
382
383 // Weighted pred stuff
384 int use_weight;
385 int use_weight_chroma;
386 int luma_log2_weight_denom;
387 int chroma_log2_weight_denom;
388 // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
389 int luma_weight[48][2][2];
390 int chroma_weight[48][2][2][2];
391 int implicit_weight[48][48][2];
392
393 int direct_spatial_mv_pred;
394 int col_parity;
395 int col_fieldoff;
396 int dist_scale_factor[32];
397 int dist_scale_factor_field[2][32];
398 int map_col_to_list0[2][16 + 32];
399 int map_col_to_list0_field[2][2][16 + 32];
400
401 /**
402 * num_ref_idx_l0/1_active_minus1 + 1
403 */
404 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
405 unsigned int list_count;
406 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
407 Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
408 * Reordered version of default_ref_list
409 * according to picture reordering in slice header */
410 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
411
412 // data partitioning
413 GetBitContext intra_gb;
414 GetBitContext inter_gb;
415 GetBitContext *intra_gb_ptr;
416 GetBitContext *inter_gb_ptr;
417
418 const uint8_t *intra_pcm_ptr;
419 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
420 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
421 int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
422
423 /**
424 * Cabac
425 */
426 CABACContext cabac;
427 uint8_t cabac_state[1024];
428
429 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
430 uint16_t *cbp_table;
431 int cbp;
432 int top_cbp;
433 int left_cbp;
434 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
435 uint8_t *chroma_pred_mode_table;
436 int last_qscale_diff;
437 uint8_t (*mvd_table[2])[2];
438 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
439 uint8_t *direct_table;
440 uint8_t direct_cache[5 * 8];
441
442 uint8_t zigzag_scan[16];
443 uint8_t zigzag_scan8x8[64];
444 uint8_t zigzag_scan8x8_cavlc[64];
445 uint8_t field_scan[16];
446 uint8_t field_scan8x8[64];
447 uint8_t field_scan8x8_cavlc[64];
448 const uint8_t *zigzag_scan_q0;
449 const uint8_t *zigzag_scan8x8_q0;
450 const uint8_t *zigzag_scan8x8_cavlc_q0;
451 const uint8_t *field_scan_q0;
452 const uint8_t *field_scan8x8_q0;
453 const uint8_t *field_scan8x8_cavlc_q0;
454
455 int x264_build;
456
457 int mb_x, mb_y;
458 int resync_mb_x;
459 int resync_mb_y;
460 int mb_skip_run;
461 int mb_height, mb_width;
462 int mb_stride;
463 int mb_num;
464 int mb_xy;
465
466 int is_complex;
467
468 // deblock
469 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
470 int slice_alpha_c0_offset;
471 int slice_beta_offset;
472
473 // =============================================================
474 // Things below are not used in the MB or more inner code
475
476 int nal_ref_idc;
477 int nal_unit_type;
478 uint8_t *rbsp_buffer[2];
479 unsigned int rbsp_buffer_size[2];
480
481 /**
482 * Used to parse AVC variant of h264
483 */
484 int is_avc; ///< this flag is != 0 if codec is avc1
485 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
486 int got_first; ///< this flag is != 0 if we've parsed a frame
487
488 int bit_depth_luma; ///< luma bit depth from sps to detect changes
489 int chroma_format_idc; ///< chroma format from sps to detect changes
490
491 SPS *sps_buffers[MAX_SPS_COUNT];
492 PPS *pps_buffers[MAX_PPS_COUNT];
493
494 int dequant_coeff_pps; ///< reinit tables when pps changes
495
496 uint16_t *slice_table_base;
497
498 // POC stuff
499 int poc_lsb;
500 int poc_msb;
501 int delta_poc_bottom;
502 int delta_poc[2];
503 int frame_num;
504 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
505 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
506 int frame_num_offset; ///< for POC type 2
507 int prev_frame_num_offset; ///< for POC type 2
508 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
509
510 /**
511 * frame_num for frames or 2 * frame_num + 1 for field pics.
512 */
513 int curr_pic_num;
514
515 /**
516 * max_frame_num or 2 * max_frame_num for field pics.
517 */
518 int max_pic_num;
519
520 int redundant_pic_count;
521
522 Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
523 Picture *short_ref[32];
524 Picture *long_ref[32];
525 Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
526 int last_pocs[MAX_DELAYED_PIC_COUNT];
527 Picture *next_output_pic;
528 int outputed_poc;
529 int next_outputed_poc;
530
531 /**
532 * memory management control operations buffer.
533 */
534 MMCO mmco[MAX_MMCO_COUNT];
535 int mmco_index;
536 int mmco_reset;
537
538 int long_ref_count; ///< number of actual long term references
539 int short_ref_count; ///< number of actual short term references
540
541 int cabac_init_idc;
542
543 /**
544 * @name Members for slice based multithreading
545 * @{
546 */
547 struct H264Context *thread_context[MAX_THREADS];
548
549 /**
550 * current slice number, used to initalize slice_num of each thread/context
551 */
552 int current_slice;
553
554 /**
555 * Max number of threads / contexts.
556 * This is equal to AVCodecContext.thread_count unless
557 * multithreaded decoding is impossible, in which case it is
558 * reduced to 1.
559 */
560 int max_contexts;
561
562 int slice_context_count;
563
564 /**
565 * 1 if the single thread fallback warning has already been
566 * displayed, 0 otherwise.
567 */
568 int single_decode_warning;
569
570 enum AVPictureType pict_type;
571
572 int last_slice_type;
573 /** @} */
574
575 /**
576 * pic_struct in picture timing SEI message
577 */
578 SEI_PicStructType sei_pic_struct;
579
580 /**
581 * Complement sei_pic_struct
582 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
583 * However, soft telecined frames may have these values.
584 * This is used in an attempt to flag soft telecine progressive.
585 */
586 int prev_interlaced_frame;
587
588 /**
589 * Bit set of clock types for fields/frames in picture timing SEI message.
590 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
591 * interlaced).
592 */
593 int sei_ct_type;
594
595 /**
596 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
597 */
598 int sei_dpb_output_delay;
599
600 /**
601 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
602 */
603 int sei_cpb_removal_delay;
604
605 /**
606 * recovery_frame_cnt from SEI message
607 *
608 * Set to -1 if no recovery point SEI message found or to number of frames
609 * before playback synchronizes. Frames having recovery point are key
610 * frames.
611 */
612 int sei_recovery_frame_cnt;
613
614 /**
615 * recovery_frame is the frame_num at which the next frame should
616 * be fully constructed.
617 *
618 * Set to -1 when not expecting a recovery point.
619 */
620 int recovery_frame;
621
622 /**
623 * We have seen an IDR, so all the following frames in coded order are correctly
624 * decodable.
625 */
626 #define FRAME_RECOVERED_IDR (1 << 0)
627 /**
628 * Sufficient number of frames have been decoded since a SEI recovery point,
629 * so all the following frames in presentation order are correct.
630 */
631 #define FRAME_RECOVERED_SEI (1 << 1)
632
633 int frame_recovered; ///< Initial frame has been completely recovered
634
635 int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
636 int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
637
638 // Timestamp stuff
639 int sei_buffering_period_present; ///< Buffering period SEI flag
640 int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
641
642 int cur_chroma_format_idc;
643 uint8_t *bipred_scratchpad;
644 uint8_t *edge_emu_buffer;
645 int16_t *dc_val_base;
646
647 AVBufferPool *qscale_table_pool;
648 AVBufferPool *mb_type_pool;
649 AVBufferPool *motion_val_pool;
650 AVBufferPool *ref_index_pool;
651 } H264Context;
652
653 extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_NUM + 1]; ///< One chroma qp table for each supported bit depth (8, 9, 10).
654 extern const uint16_t ff_h264_mb_sizes[4];
655
656 /**
657 * Decode SEI
658 */
659 int ff_h264_decode_sei(H264Context *h);
660
661 /**
662 * Decode SPS
663 */
664 int ff_h264_decode_seq_parameter_set(H264Context *h);
665
666 /**
667 * compute profile from sps
668 */
669 int ff_h264_get_profile(SPS *sps);
670
671 /**
672 * Decode PPS
673 */
674 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
675
676 /**
677 * Decode a network abstraction layer unit.
678 * @param consumed is the number of bytes used as input
679 * @param length is the length of the array
680 * @param dst_length is the number of decoded bytes FIXME here
681 * or a decode rbsp tailing?
682 * @return decoded bytes, might be src+1 if no escapes
683 */
684 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
685 int *dst_length, int *consumed, int length);
686
687 /**
688 * Free any data that may have been allocated in the H264 context
689 * like SPS, PPS etc.
690 */
691 void ff_h264_free_context(H264Context *h);
692
693 /**
694 * Reconstruct bitstream slice_type.
695 */
696 int ff_h264_get_slice_type(const H264Context *h);
697
698 /**
699 * Allocate tables.
700 * needs width/height
701 */
702 int ff_h264_alloc_tables(H264Context *h);
703
704 /**
705 * Fill the default_ref_list.
706 */
707 int ff_h264_fill_default_ref_list(H264Context *h);
708
709 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
710 void ff_h264_fill_mbaff_ref_list(H264Context *h);
711 void ff_h264_remove_all_refs(H264Context *h);
712
713 /**
714 * Execute the reference picture marking (memory management control operations).
715 */
716 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
717
718 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
719 int first_slice);
720
721 int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
722
723 /**
724 * Check if the top & left blocks are available if needed & change the
725 * dc mode so it only uses the available blocks.
726 */
727 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
728
729 /**
730 * Check if the top & left blocks are available if needed & change the
731 * dc mode so it only uses the available blocks.
732 */
733 int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
734
735 void ff_h264_hl_decode_mb(H264Context *h);
736 int ff_h264_decode_extradata(H264Context *h);
737 int ff_h264_decode_init(AVCodecContext *avctx);
738 void ff_h264_decode_init_vlc(void);
739
740 /**
741 * Decode a macroblock
742 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
743 */
744 int ff_h264_decode_mb_cavlc(H264Context *h);
745
746 /**
747 * Decode a CABAC coded macroblock
748 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
749 */
750 int ff_h264_decode_mb_cabac(H264Context *h);
751
752 void ff_h264_init_cabac_states(H264Context *h);
753
754 void ff_h264_direct_dist_scale_factor(H264Context *const h);
755 void ff_h264_direct_ref_list_init(H264Context *const h);
756 void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
757
758 void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
759 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
760 unsigned int linesize, unsigned int uvlinesize);
761 void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
762 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
763 unsigned int linesize, unsigned int uvlinesize);
764
765 /**
766 * Reset SEI values at the beginning of the frame.
767 *
768 * @param h H.264 context.
769 */
770 void ff_h264_reset_sei(H264Context *h);
771
772 /*
773 * o-o o-o
774 * / / /
775 * o-o o-o
776 * ,---'
777 * o-o o-o
778 * / / /
779 * o-o o-o
780 */
781
782 /* Scan8 organization:
783 * 0 1 2 3 4 5 6 7
784 * 0 DY y y y y y
785 * 1 y Y Y Y Y
786 * 2 y Y Y Y Y
787 * 3 y Y Y Y Y
788 * 4 y Y Y Y Y
789 * 5 DU u u u u u
790 * 6 u U U U U
791 * 7 u U U U U
792 * 8 u U U U U
793 * 9 u U U U U
794 * 10 DV v v v v v
795 * 11 v V V V V
796 * 12 v V V V V
797 * 13 v V V V V
798 * 14 v V V V V
799 * DY/DU/DV are for luma/chroma DC.
800 */
801
802 #define LUMA_DC_BLOCK_INDEX 48
803 #define CHROMA_DC_BLOCK_INDEX 49
804
805 // This table must be here because scan8[constant] must be known at compiletime
806 static const uint8_t scan8[16 * 3 + 3] = {
807 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
808 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
809 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
810 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
811 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
812 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
813 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
814 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
815 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
816 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
817 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
818 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
819 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
820 };
821
822 static av_always_inline uint32_t pack16to32(int a, int b)
823 {
824 #if HAVE_BIGENDIAN
825 return (b & 0xFFFF) + (a << 16);
826 #else
827 return (a & 0xFFFF) + (b << 16);
828 #endif
829 }
830
831 static av_always_inline uint16_t pack8to16(int a, int b)
832 {
833 #if HAVE_BIGENDIAN
834 return (b & 0xFF) + (a << 8);
835 #else
836 return (a & 0xFF) + (b << 8);
837 #endif
838 }
839
840 /**
841 * Get the chroma qp.
842 */
843 static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
844 {
845 return h->pps.chroma_qp_table[t][qscale];
846 }
847
848 /**
849 * Get the predicted intra4x4 prediction mode.
850 */
851 static av_always_inline int pred_intra_mode(H264Context *h, int n)
852 {
853 const int index8 = scan8[n];
854 const int left = h->intra4x4_pred_mode_cache[index8 - 1];
855 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
856 const int min = FFMIN(left, top);
857
858 tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
859
860 if (min < 0)
861 return DC_PRED;
862 else
863 return min;
864 }
865
866 static av_always_inline void write_back_intra_pred_mode(H264Context *h)
867 {
868 int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
869 int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
870
871 AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
872 i4x4[4] = i4x4_cache[7 + 8 * 3];
873 i4x4[5] = i4x4_cache[7 + 8 * 2];
874 i4x4[6] = i4x4_cache[7 + 8 * 1];
875 }
876
877 static av_always_inline void write_back_non_zero_count(H264Context *h)
878 {
879 const int mb_xy = h->mb_xy;
880 uint8_t *nnz = h->non_zero_count[mb_xy];
881 uint8_t *nnz_cache = h->non_zero_count_cache;
882
883 AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
884 AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
885 AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
886 AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
887 AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
888 AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
889 AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
890 AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
891
892 if (!h->chroma_y_shift) {
893 AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
894 AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
895 AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
896 AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
897 }
898 }
899
900 static av_always_inline void write_back_motion_list(H264Context *h,
901 int b_stride,
902 int b_xy, int b8_xy,
903 int mb_type, int list)
904 {
905 int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
906 int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
907 AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
908 AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
909 AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
910 AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
911 if (CABAC(h)) {
912 uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
913 : h->mb2br_xy[h->mb_xy]];
914 uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
915 if (IS_SKIP(mb_type)) {
916 AV_ZERO128(mvd_dst);
917 } else {
918 AV_COPY64(mvd_dst, mvd_src + 8 * 3);
919 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
920 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
921 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
922 }
923 }
924
925 {
926 int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
927 int8_t *ref_cache = h->ref_cache[list];
928 ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
929 ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
930 ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
931 ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
932 }
933 }
934
935 static av_always_inline void write_back_motion(H264Context *h, int mb_type)
936 {
937 const int b_stride = h->b_stride;
938 const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
939 const int b8_xy = 4 * h->mb_xy;
940
941 if (USES_LIST(mb_type, 0)) {
942 write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
943 } else {
944 fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
945 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
946 }
947 if (USES_LIST(mb_type, 1))
948 write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
949
950 if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
951 if (IS_8X8(mb_type)) {
952 uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
953 direct_table[1] = h->sub_mb_type[1] >> 1;
954 direct_table[2] = h->sub_mb_type[2] >> 1;
955 direct_table[3] = h->sub_mb_type[3] >> 1;
956 }
957 }
958 }
959
960 static av_always_inline int get_dct8x8_allowed(H264Context *h)
961 {
962 if (h->sps.direct_8x8_inference_flag)
963 return !(AV_RN64A(h->sub_mb_type) &
964 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
965 0x0001000100010001ULL));
966 else
967 return !(AV_RN64A(h->sub_mb_type) &
968 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
969 0x0001000100010001ULL));
970 }
971
972 void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
973 int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
974 int ff_pred_weight_table(H264Context *h);
975 int ff_set_ref_count(H264Context *h);
976
977 #endif /* AVCODEC_H264_H */