b49f6cc6f5acc80375c7b4edaf5bec9085309c1f
[libav.git] / libavcodec / h264.h
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file libavcodec/h264.h
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30
31 #include "dsputil.h"
32 #include "cabac.h"
33 #include "mpegvideo.h"
34 #include "h264pred.h"
35 #include "rectangle.h"
36
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_is_not_initialized_see_mb_type
39
40 #define LUMA_DC_BLOCK_INDEX 25
41 #define CHROMA_DC_BLOCK_INDEX 26
42
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS 8
45 #define TOTAL_ZEROS_VLC_BITS 9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS 3
48 #define RUN7_VLC_BITS 6
49
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
52
53 #define MAX_MMCO_COUNT 66
54
55 #define MAX_DELAYED_PIC_COUNT 16
56
57 /* Compiling in interlaced support reduces the speed
58 * of progressive decoding by about 2%. */
59 #define ALLOW_INTERLACE
60
61 #define ALLOW_NOCHROMA
62
63 /**
64 * The maximum number of slices supported by the decoder.
65 * must be a power of 2
66 */
67 #define MAX_SLICES 16
68
69 #ifdef ALLOW_INTERLACE
70 #define MB_MBAFF h->mb_mbaff
71 #define MB_FIELD h->mb_field_decoding_flag
72 #define FRAME_MBAFF h->mb_aff_frame
73 #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74 #else
75 #define MB_MBAFF 0
76 #define MB_FIELD 0
77 #define FRAME_MBAFF 0
78 #define FIELD_PICTURE 0
79 #undef IS_INTERLACED
80 #define IS_INTERLACED(mb_type) 0
81 #endif
82 #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83
84 #ifdef ALLOW_NOCHROMA
85 #define CHROMA h->sps.chroma_format_idc
86 #else
87 #define CHROMA 1
88 #endif
89
90 #ifndef CABAC
91 #define CABAC h->pps.cabac
92 #endif
93
94 #define EXTENDED_SAR 255
95
96 #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
97 #define MB_TYPE_8x8DCT 0x01000000
98 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
99 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
100
101 /**
102 * Value of Picture.reference when Picture is not a reference picture, but
103 * is held for delayed output.
104 */
105 #define DELAYED_PIC_REF 4
106
107
108 /* NAL unit types */
109 enum {
110 NAL_SLICE=1,
111 NAL_DPA,
112 NAL_DPB,
113 NAL_DPC,
114 NAL_IDR_SLICE,
115 NAL_SEI,
116 NAL_SPS,
117 NAL_PPS,
118 NAL_AUD,
119 NAL_END_SEQUENCE,
120 NAL_END_STREAM,
121 NAL_FILLER_DATA,
122 NAL_SPS_EXT,
123 NAL_AUXILIARY_SLICE=19
124 };
125
126 /**
127 * SEI message types
128 */
129 typedef enum {
130 SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
131 SEI_TYPE_PIC_TIMING = 1, ///< picture timing
132 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
133 SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
134 } SEI_Type;
135
136 /**
137 * pic_struct in picture timing SEI message
138 */
139 typedef enum {
140 SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
141 SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
142 SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
143 SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
144 SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
145 SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
146 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
147 SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
148 SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
149 } SEI_PicStructType;
150
151 /**
152 * Sequence parameter set
153 */
154 typedef struct SPS{
155
156 int profile_idc;
157 int level_idc;
158 int chroma_format_idc;
159 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
160 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
161 int poc_type; ///< pic_order_cnt_type
162 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
163 int delta_pic_order_always_zero_flag;
164 int offset_for_non_ref_pic;
165 int offset_for_top_to_bottom_field;
166 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
167 int ref_frame_count; ///< num_ref_frames
168 int gaps_in_frame_num_allowed_flag;
169 int mb_width; ///< pic_width_in_mbs_minus1 + 1
170 int mb_height; ///< pic_height_in_map_units_minus1 + 1
171 int frame_mbs_only_flag;
172 int mb_aff; ///<mb_adaptive_frame_field_flag
173 int direct_8x8_inference_flag;
174 int crop; ///< frame_cropping_flag
175 unsigned int crop_left; ///< frame_cropping_rect_left_offset
176 unsigned int crop_right; ///< frame_cropping_rect_right_offset
177 unsigned int crop_top; ///< frame_cropping_rect_top_offset
178 unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
179 int vui_parameters_present_flag;
180 AVRational sar;
181 int video_signal_type_present_flag;
182 int full_range;
183 int colour_description_present_flag;
184 enum AVColorPrimaries color_primaries;
185 enum AVColorTransferCharacteristic color_trc;
186 enum AVColorSpace colorspace;
187 int timing_info_present_flag;
188 uint32_t num_units_in_tick;
189 uint32_t time_scale;
190 int fixed_frame_rate_flag;
191 short offset_for_ref_frame[256]; //FIXME dyn aloc?
192 int bitstream_restriction_flag;
193 int num_reorder_frames;
194 int scaling_matrix_present;
195 uint8_t scaling_matrix4[6][16];
196 uint8_t scaling_matrix8[2][64];
197 int nal_hrd_parameters_present_flag;
198 int vcl_hrd_parameters_present_flag;
199 int pic_struct_present_flag;
200 int time_offset_length;
201 int cpb_cnt; ///< See H.264 E.1.2
202 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
204 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
205 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
206 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
207 int residual_color_transform_flag; ///< residual_colour_transform_flag
208 }SPS;
209
210 /**
211 * Picture parameter set
212 */
213 typedef struct PPS{
214 unsigned int sps_id;
215 int cabac; ///< entropy_coding_mode_flag
216 int pic_order_present; ///< pic_order_present_flag
217 int slice_group_count; ///< num_slice_groups_minus1 + 1
218 int mb_slice_group_map_type;
219 unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
220 int weighted_pred; ///< weighted_pred_flag
221 int weighted_bipred_idc;
222 int init_qp; ///< pic_init_qp_minus26 + 26
223 int init_qs; ///< pic_init_qs_minus26 + 26
224 int chroma_qp_index_offset[2];
225 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226 int constrained_intra_pred; ///< constrained_intra_pred_flag
227 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228 int transform_8x8_mode; ///< transform_8x8_mode_flag
229 uint8_t scaling_matrix4[6][16];
230 uint8_t scaling_matrix8[2][64];
231 uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232 int chroma_qp_diff;
233 }PPS;
234
235 /**
236 * Memory management control operation opcode.
237 */
238 typedef enum MMCOOpcode{
239 MMCO_END=0,
240 MMCO_SHORT2UNUSED,
241 MMCO_LONG2UNUSED,
242 MMCO_SHORT2LONG,
243 MMCO_SET_MAX_LONG,
244 MMCO_RESET,
245 MMCO_LONG,
246 } MMCOOpcode;
247
248 /**
249 * Memory management control operation.
250 */
251 typedef struct MMCO{
252 MMCOOpcode opcode;
253 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
254 int long_arg; ///< index, pic_num, or num long refs depending on opcode
255 } MMCO;
256
257 /**
258 * H264Context
259 */
260 typedef struct H264Context{
261 MpegEncContext s;
262 int nal_ref_idc;
263 int nal_unit_type;
264 uint8_t *rbsp_buffer[2];
265 unsigned int rbsp_buffer_size[2];
266
267 /**
268 * Used to parse AVC variant of h264
269 */
270 int is_avc; ///< this flag is != 0 if codec is avc1
271 int got_avcC; ///< flag used to parse avcC data only once
272 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273
274 int chroma_qp[2]; //QPc
275
276 int qp_thresh; ///< QP threshold to skip loopfilter
277
278 int prev_mb_skipped;
279 int next_mb_skipped;
280
281 //prediction stuff
282 int chroma_pred_mode;
283 int intra16x16_pred_mode;
284
285 int top_mb_xy;
286 int left_mb_xy[2];
287
288 int8_t intra4x4_pred_mode_cache[5*8];
289 int8_t (*intra4x4_pred_mode)[8];
290 H264PredContext hpc;
291 unsigned int topleft_samples_available;
292 unsigned int top_samples_available;
293 unsigned int topright_samples_available;
294 unsigned int left_samples_available;
295 uint8_t (*top_borders[2])[16+2*8];
296 uint8_t left_border[2*(17+2*9)];
297
298 /**
299 * non zero coeff count cache.
300 * is 64 if not available.
301 */
302 DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
303
304 /*
305 .UU.YYYY
306 .UU.YYYY
307 .vv.YYYY
308 .VV.YYYY
309 */
310 uint8_t (*non_zero_count)[32];
311
312 /**
313 * Motion vector cache.
314 */
315 DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
316 DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
317 #define LIST_NOT_USED -1 //FIXME rename?
318 #define PART_NOT_AVAILABLE -2
319
320 /**
321 * is 1 if the specific list MV&references are set to 0,0,-2.
322 */
323 int mv_cache_clean[2];
324
325 /**
326 * number of neighbors (top and/or left) that used 8x8 dct
327 */
328 int neighbor_transform_size;
329
330 /**
331 * block_offset[ 0..23] for frame macroblocks
332 * block_offset[24..47] for field macroblocks
333 */
334 int block_offset[2*(16+8)];
335
336 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
337 uint32_t *mb2b8_xy;
338 int b_stride; //FIXME use s->b4_stride
339 int b8_stride;
340
341 int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
342 int mb_uvlinesize;
343
344 int emu_edge_width;
345 int emu_edge_height;
346
347 int halfpel_flag;
348 int thirdpel_flag;
349
350 int unknown_svq3_flag;
351 int next_slice_index;
352
353 SPS *sps_buffers[MAX_SPS_COUNT];
354 SPS sps; ///< current sps
355
356 PPS *pps_buffers[MAX_PPS_COUNT];
357 /**
358 * current pps
359 */
360 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
361
362 uint32_t dequant4_buffer[6][52][16];
363 uint32_t dequant8_buffer[2][52][64];
364 uint32_t (*dequant4_coeff[6])[16];
365 uint32_t (*dequant8_coeff[2])[64];
366 int dequant_coeff_pps; ///< reinit tables when pps changes
367
368 int slice_num;
369 uint16_t *slice_table_base;
370 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
371 int slice_type;
372 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
373 int slice_type_fixed;
374
375 //interlacing specific flags
376 int mb_aff_frame;
377 int mb_field_decoding_flag;
378 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
379
380 DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
381
382 //POC stuff
383 int poc_lsb;
384 int poc_msb;
385 int delta_poc_bottom;
386 int delta_poc[2];
387 int frame_num;
388 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
389 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
390 int frame_num_offset; ///< for POC type 2
391 int prev_frame_num_offset; ///< for POC type 2
392 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
393
394 /**
395 * frame_num for frames or 2*frame_num+1 for field pics.
396 */
397 int curr_pic_num;
398
399 /**
400 * max_frame_num or 2*max_frame_num for field pics.
401 */
402 int max_pic_num;
403
404 //Weighted pred stuff
405 int use_weight;
406 int use_weight_chroma;
407 int luma_log2_weight_denom;
408 int chroma_log2_weight_denom;
409 int luma_weight[2][48];
410 int luma_offset[2][48];
411 int chroma_weight[2][48][2];
412 int chroma_offset[2][48][2];
413 int implicit_weight[48][48];
414
415 //deblock
416 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
417 int slice_alpha_c0_offset;
418 int slice_beta_offset;
419
420 int redundant_pic_count;
421
422 int direct_spatial_mv_pred;
423 int dist_scale_factor[16];
424 int dist_scale_factor_field[2][32];
425 int map_col_to_list0[2][16+32];
426 int map_col_to_list0_field[2][2][16+32];
427
428 /**
429 * num_ref_idx_l0/1_active_minus1 + 1
430 */
431 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
432 unsigned int list_count;
433 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
434 Picture *short_ref[32];
435 Picture *long_ref[32];
436 Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
437 Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
438 Reordered version of default_ref_list
439 according to picture reordering in slice header */
440 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441 Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
442 int outputed_poc;
443
444 /**
445 * memory management control operations buffer.
446 */
447 MMCO mmco[MAX_MMCO_COUNT];
448 int mmco_index;
449
450 int long_ref_count; ///< number of actual long term references
451 int short_ref_count; ///< number of actual short term references
452
453 //data partitioning
454 GetBitContext intra_gb;
455 GetBitContext inter_gb;
456 GetBitContext *intra_gb_ptr;
457 GetBitContext *inter_gb_ptr;
458
459 DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
460 DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
461
462 /**
463 * Cabac
464 */
465 CABACContext cabac;
466 uint8_t cabac_state[460];
467 int cabac_init_idc;
468
469 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
470 uint16_t *cbp_table;
471 int cbp;
472 int top_cbp;
473 int left_cbp;
474 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
475 uint8_t *chroma_pred_mode_table;
476 int last_qscale_diff;
477 int16_t (*mvd_table[2])[2];
478 DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
479 uint8_t *direct_table;
480 uint8_t direct_cache[5*8];
481
482 uint8_t zigzag_scan[16];
483 uint8_t zigzag_scan8x8[64];
484 uint8_t zigzag_scan8x8_cavlc[64];
485 uint8_t field_scan[16];
486 uint8_t field_scan8x8[64];
487 uint8_t field_scan8x8_cavlc[64];
488 const uint8_t *zigzag_scan_q0;
489 const uint8_t *zigzag_scan8x8_q0;
490 const uint8_t *zigzag_scan8x8_cavlc_q0;
491 const uint8_t *field_scan_q0;
492 const uint8_t *field_scan8x8_q0;
493 const uint8_t *field_scan8x8_cavlc_q0;
494
495 int x264_build;
496
497 /**
498 * @defgroup multithreading Members for slice based multithreading
499 * @{
500 */
501 struct H264Context *thread_context[MAX_THREADS];
502
503 /**
504 * current slice number, used to initalize slice_num of each thread/context
505 */
506 int current_slice;
507
508 /**
509 * Max number of threads / contexts.
510 * This is equal to AVCodecContext.thread_count unless
511 * multithreaded decoding is impossible, in which case it is
512 * reduced to 1.
513 */
514 int max_contexts;
515
516 /**
517 * 1 if the single thread fallback warning has already been
518 * displayed, 0 otherwise.
519 */
520 int single_decode_warning;
521
522 int last_slice_type;
523 /** @} */
524
525 int mb_xy;
526
527 uint32_t svq3_watermark_key;
528
529 /**
530 * pic_struct in picture timing SEI message
531 */
532 SEI_PicStructType sei_pic_struct;
533
534 /**
535 * Complement sei_pic_struct
536 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
537 * However, soft telecined frames may have these values.
538 * This is used in an attempt to flag soft telecine progressive.
539 */
540 int prev_interlaced_frame;
541
542 /**
543 * Bit set of clock types for fields/frames in picture timing SEI message.
544 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
545 * interlaced).
546 */
547 int sei_ct_type;
548
549 /**
550 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
551 */
552 int sei_dpb_output_delay;
553
554 /**
555 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
556 */
557 int sei_cpb_removal_delay;
558
559 /**
560 * recovery_frame_cnt from SEI message
561 *
562 * Set to -1 if no recovery point SEI message found or to number of frames
563 * before playback synchronizes. Frames having recovery point are key
564 * frames.
565 */
566 int sei_recovery_frame_cnt;
567
568 int is_complex;
569
570 int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
571 int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
572
573 // Timestamp stuff
574 int sei_buffering_period_present; ///< Buffering period SEI flag
575 int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
576 }H264Context;
577
578
579 extern const uint8_t ff_h264_chroma_qp[52];
580
581
582 /**
583 * Decode SEI
584 */
585 int ff_h264_decode_sei(H264Context *h);
586
587 /**
588 * Decode SPS
589 */
590 int ff_h264_decode_seq_parameter_set(H264Context *h);
591
592 /**
593 * Decode PPS
594 */
595 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
596
597 /**
598 * Decodes a network abstraction layer unit.
599 * @param consumed is the number of bytes used as input
600 * @param length is the length of the array
601 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
602 * @returns decoded bytes, might be src+1 if no escapes
603 */
604 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
605
606 /**
607 * identifies the exact end of the bitstream
608 * @return the length of the trailing, or 0 if damaged
609 */
610 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
611
612 /**
613 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
614 */
615 av_cold void ff_h264_free_context(H264Context *h);
616
617 /**
618 * reconstructs bitstream slice_type.
619 */
620 int ff_h264_get_slice_type(const H264Context *h);
621
622 /**
623 * allocates tables.
624 * needs width/height
625 */
626 int ff_h264_alloc_tables(H264Context *h);
627
628 /**
629 * fills the default_ref_list.
630 */
631 int ff_h264_fill_default_ref_list(H264Context *h);
632
633 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
634 void ff_h264_fill_mbaff_ref_list(H264Context *h);
635 void ff_h264_remove_all_refs(H264Context *h);
636
637 /**
638 * Executes the reference picture marking (memory management control operations).
639 */
640 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
641
642 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
643
644
645 /**
646 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
647 */
648 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
649
650 /**
651 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
652 */
653 int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
654
655 void ff_h264_write_back_intra_pred_mode(H264Context *h);
656 void ff_h264_hl_decode_mb(H264Context *h);
657 int ff_h264_frame_start(H264Context *h);
658 av_cold int ff_h264_decode_init(AVCodecContext *avctx);
659 av_cold int ff_h264_decode_end(AVCodecContext *avctx);
660 av_cold void ff_h264_decode_init_vlc(void);
661
662 /**
663 * decodes a macroblock
664 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
665 */
666 int ff_h264_decode_mb_cavlc(H264Context *h);
667
668 /**
669 * decodes a CABAC coded macroblock
670 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
671 */
672 int ff_h264_decode_mb_cabac(H264Context *h);
673
674 void ff_h264_init_cabac_states(H264Context *h);
675
676 void ff_h264_direct_dist_scale_factor(H264Context * const h);
677 void ff_h264_direct_ref_list_init(H264Context * const h);
678 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
679
680 void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
681 void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
682
683 /**
684 * Reset SEI values at the beginning of the frame.
685 *
686 * @param h H.264 context.
687 */
688 void ff_h264_reset_sei(H264Context *h);
689
690
691 /*
692 o-o o-o
693 / / /
694 o-o o-o
695 ,---'
696 o-o o-o
697 / / /
698 o-o o-o
699 */
700 //This table must be here because scan8[constant] must be known at compiletime
701 static const uint8_t scan8[16 + 2*4]={
702 4+1*8, 5+1*8, 4+2*8, 5+2*8,
703 6+1*8, 7+1*8, 6+2*8, 7+2*8,
704 4+3*8, 5+3*8, 4+4*8, 5+4*8,
705 6+3*8, 7+3*8, 6+4*8, 7+4*8,
706 1+1*8, 2+1*8,
707 1+2*8, 2+2*8,
708 1+4*8, 2+4*8,
709 1+5*8, 2+5*8,
710 };
711
712 static av_always_inline uint32_t pack16to32(int a, int b){
713 #if HAVE_BIGENDIAN
714 return (b&0xFFFF) + (a<<16);
715 #else
716 return (a&0xFFFF) + (b<<16);
717 #endif
718 }
719
720 /**
721 * gets the chroma qp.
722 */
723 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
724 return h->pps.chroma_qp_table[t][qscale];
725 }
726
727 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
728
729 static av_always_inline int fill_caches(H264Context *h, int mb_type, int for_deblock){
730 MpegEncContext * const s = &h->s;
731 const int mb_xy= h->mb_xy;
732 int topleft_xy, top_xy, topright_xy, left_xy[2];
733 int topleft_type, top_type, topright_type, left_type[2];
734 const uint8_t * left_block;
735 int topleft_partition= -1;
736 int i;
737 static const uint8_t left_block_options[4][16]={
738 {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
739 {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
740 {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
741 {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
742 };
743
744 top_xy = mb_xy - (s->mb_stride << MB_FIELD);
745
746 //FIXME deblocking could skip the intra and nnz parts.
747 // if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
748 // return;
749
750 /* Wow, what a mess, why didn't they simplify the interlacing & intra
751 * stuff, I can't imagine that these complex rules are worth it. */
752
753 topleft_xy = top_xy - 1;
754 topright_xy= top_xy + 1;
755 left_xy[1] = left_xy[0] = mb_xy-1;
756 left_block = left_block_options[0];
757 if(FRAME_MBAFF){
758 const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
759 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
760 if(s->mb_y&1){
761 if (left_mb_field_flag != curr_mb_field_flag) {
762 left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
763 if (curr_mb_field_flag) {
764 left_xy[1] += s->mb_stride;
765 left_block = left_block_options[3];
766 } else {
767 topleft_xy += s->mb_stride;
768 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
769 topleft_partition = 0;
770 left_block = left_block_options[1];
771 }
772 }
773 }else{
774 if(curr_mb_field_flag){
775 topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
776 topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
777 top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
778 }
779 if (left_mb_field_flag != curr_mb_field_flag) {
780 left_xy[1] = left_xy[0] = mb_xy - 1;
781 if (curr_mb_field_flag) {
782 left_xy[1] += s->mb_stride;
783 left_block = left_block_options[3];
784 } else {
785 left_block = left_block_options[2];
786 }
787 }
788 }
789 }
790
791 h->top_mb_xy = top_xy;
792 h->left_mb_xy[0] = left_xy[0];
793 h->left_mb_xy[1] = left_xy[1];
794 if(for_deblock){
795
796 //for sufficiently low qp, filtering wouldn't do anything
797 //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
798 int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
799 int qp = s->current_picture.qscale_table[mb_xy];
800 if(qp <= qp_thresh
801 && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
802 && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
803 if(!FRAME_MBAFF)
804 return 1;
805 if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[0]+s->mb_stride] + 1)>>1) <= qp_thresh)
806 && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
807 return 1;
808 }
809 if(IS_INTRA(mb_type))
810 return 0;
811
812 AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
813 AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
814 *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
815 *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
816 AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
817
818 h->cbp= h->cbp_table[mb_xy];
819
820 top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
821 left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
822 left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
823
824 {
825 int list;
826 for(list=0; list<h->list_count; list++){
827 int8_t *ref;
828 int y, b_stride;
829 int16_t (*mv_dst)[2];
830 int16_t (*mv_src)[2];
831
832 if(!USES_LIST(mb_type, list)){
833 fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
834 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
835 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
836 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
837 *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
838 continue;
839 }
840
841 ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
842 {
843 int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
844 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
845 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
846 ref += h->b8_stride;
847 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
848 *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
849 }
850
851 b_stride = h->b_stride;
852 mv_dst = &h->mv_cache[list][scan8[0]];
853 mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
854 for(y=0; y<4; y++){
855 AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
856 }
857
858 }
859 }
860 }else{
861 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
862 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
863 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
864 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
865 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
866
867 if(IS_INTRA(mb_type)){
868 int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
869 h->topleft_samples_available=
870 h->top_samples_available=
871 h->left_samples_available= 0xFFFF;
872 h->topright_samples_available= 0xEEEA;
873
874 if(!(top_type & type_mask)){
875 h->topleft_samples_available= 0xB3FF;
876 h->top_samples_available= 0x33FF;
877 h->topright_samples_available= 0x26EA;
878 }
879 if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
880 if(IS_INTERLACED(mb_type)){
881 if(!(left_type[0] & type_mask)){
882 h->topleft_samples_available&= 0xDFFF;
883 h->left_samples_available&= 0x5FFF;
884 }
885 if(!(left_type[1] & type_mask)){
886 h->topleft_samples_available&= 0xFF5F;
887 h->left_samples_available&= 0xFF5F;
888 }
889 }else{
890 int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
891 ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
892 assert(left_xy[0] == left_xy[1]);
893 if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
894 h->topleft_samples_available&= 0xDF5F;
895 h->left_samples_available&= 0x5F5F;
896 }
897 }
898 }else{
899 if(!(left_type[0] & type_mask)){
900 h->topleft_samples_available&= 0xDF5F;
901 h->left_samples_available&= 0x5F5F;
902 }
903 }
904
905 if(!(topleft_type & type_mask))
906 h->topleft_samples_available&= 0x7FFF;
907
908 if(!(topright_type & type_mask))
909 h->topright_samples_available&= 0xFBFF;
910
911 if(IS_INTRA4x4(mb_type)){
912 if(IS_INTRA4x4(top_type)){
913 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
914 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
915 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
916 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
917 }else{
918 int pred;
919 if(!(top_type & type_mask))
920 pred= -1;
921 else{
922 pred= 2;
923 }
924 h->intra4x4_pred_mode_cache[4+8*0]=
925 h->intra4x4_pred_mode_cache[5+8*0]=
926 h->intra4x4_pred_mode_cache[6+8*0]=
927 h->intra4x4_pred_mode_cache[7+8*0]= pred;
928 }
929 for(i=0; i<2; i++){
930 if(IS_INTRA4x4(left_type[i])){
931 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
932 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
933 }else{
934 int pred;
935 if(!(left_type[i] & type_mask))
936 pred= -1;
937 else{
938 pred= 2;
939 }
940 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
941 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
942 }
943 }
944 }
945 }
946 }
947
948
949 /*
950 0 . T T. T T T T
951 1 L . .L . . . .
952 2 L . .L . . . .
953 3 . T TL . . . .
954 4 L . .L . . . .
955 5 L . .. . . . .
956 */
957 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
958 if(top_type){
959 *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
960 if(!for_deblock){
961 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
962 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
963
964 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
965 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
966 }
967 }else if(!for_deblock){
968 h->non_zero_count_cache[1+8*0]=
969 h->non_zero_count_cache[2+8*0]=
970
971 h->non_zero_count_cache[1+8*3]=
972 h->non_zero_count_cache[2+8*3]=
973 *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
974 }
975
976 for (i=0; i<2; i++) {
977 if(left_type[i]){
978 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
979 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
980 if(!for_deblock){
981 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
982 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
983 }
984 }else if(!for_deblock){
985 h->non_zero_count_cache[3+8*1 + 2*8*i]=
986 h->non_zero_count_cache[3+8*2 + 2*8*i]=
987 h->non_zero_count_cache[0+8*1 + 8*i]=
988 h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
989 }
990 }
991
992 // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
993 if(for_deblock && !CABAC && h->pps.transform_8x8_mode){
994 if(IS_8x8DCT(top_type)){
995 h->non_zero_count_cache[4+8*0]=
996 h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
997 h->non_zero_count_cache[6+8*0]=
998 h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
999 }
1000 if(IS_8x8DCT(left_type[0])){
1001 h->non_zero_count_cache[3+8*1]=
1002 h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1003 }
1004 if(IS_8x8DCT(left_type[1])){
1005 h->non_zero_count_cache[3+8*3]=
1006 h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1007 }
1008
1009 if(IS_8x8DCT(mb_type)){
1010 h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
1011 h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
1012
1013 h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1014 h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1015
1016 h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1017 h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1018
1019 h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1020 h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1021 }
1022 }
1023
1024 if( CABAC && !for_deblock) {
1025 // top_cbp
1026 if(top_type) {
1027 h->top_cbp = h->cbp_table[top_xy];
1028 } else if(IS_INTRA(mb_type)) {
1029 h->top_cbp = 0x1C0;
1030 } else {
1031 h->top_cbp = 0;
1032 }
1033 // left_cbp
1034 if (left_type[0]) {
1035 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
1036 } else if(IS_INTRA(mb_type)) {
1037 h->left_cbp = 0x1C0;
1038 } else {
1039 h->left_cbp = 0;
1040 }
1041 if (left_type[0]) {
1042 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
1043 }
1044 if (left_type[1]) {
1045 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
1046 }
1047 }
1048
1049 #if 1
1050 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1051 int list;
1052 for(list=0; list<h->list_count; list++){
1053 if(!for_deblock && !USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
1054 /*if(!h->mv_cache_clean[list]){
1055 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1056 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1057 h->mv_cache_clean[list]= 1;
1058 }*/
1059 continue;
1060 }
1061 h->mv_cache_clean[list]= 0;
1062
1063 if(USES_LIST(top_type, list)){
1064 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1065 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1066 AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1067 if(for_deblock){
1068 int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1069 h->ref_cache[list][scan8[0] + 0 - 1*8]=
1070 h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1071 h->ref_cache[list][scan8[0] + 2 - 1*8]=
1072 h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1073 }else{
1074 h->ref_cache[list][scan8[0] + 0 - 1*8]=
1075 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1076 h->ref_cache[list][scan8[0] + 2 - 1*8]=
1077 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1078 }
1079 }else{
1080 AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1081 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= (((for_deblock||top_type) ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1082 }
1083
1084 for(i=0; i<2; i++){
1085 int cache_idx = scan8[0] - 1 + i*2*8;
1086 if(USES_LIST(left_type[i], list)){
1087 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1088 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1089 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1090 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1091 if(for_deblock){
1092 int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[i]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1093 h->ref_cache[list][cache_idx ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]];
1094 h->ref_cache[list][cache_idx+8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]];
1095 }else{
1096 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1097 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1098 }
1099 }else{
1100 *(uint32_t*)h->mv_cache [list][cache_idx ]=
1101 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1102 h->ref_cache[list][cache_idx ]=
1103 h->ref_cache[list][cache_idx+8]= (for_deblock||left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1104 }
1105 }
1106
1107 if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
1108 continue;
1109
1110 if(USES_LIST(topleft_type, list)){
1111 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
1112 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1113 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1114 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1115 }else{
1116 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1117 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1118 }
1119
1120 if(USES_LIST(topright_type, list)){
1121 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1122 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1123 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1124 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1125 }else{
1126 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1127 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1128 }
1129
1130 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1131 continue;
1132
1133 h->ref_cache[list][scan8[5 ]+1] =
1134 h->ref_cache[list][scan8[7 ]+1] =
1135 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
1136 h->ref_cache[list][scan8[4 ]] =
1137 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1138 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1139 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1140 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1141 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1142 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1143
1144 if( CABAC ) {
1145 /* XXX beurk, Load mvd */
1146 if(USES_LIST(top_type, list)){
1147 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1148 AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1149 }else{
1150 AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1151 }
1152 if(USES_LIST(left_type[0], list)){
1153 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1154 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1155 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1156 }else{
1157 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1158 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1159 }
1160 if(USES_LIST(left_type[1], list)){
1161 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1162 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1163 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1164 }else{
1165 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1166 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1167 }
1168 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1169 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1170 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1171 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1172 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1173
1174 if(h->slice_type_nos == FF_B_TYPE){
1175 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1176
1177 if(IS_DIRECT(top_type)){
1178 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1179 }else if(IS_8X8(top_type)){
1180 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1181 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1182 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1183 }else{
1184 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1185 }
1186
1187 if(IS_DIRECT(left_type[0]))
1188 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1189 else if(IS_8X8(left_type[0]))
1190 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1191 else
1192 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1193
1194 if(IS_DIRECT(left_type[1]))
1195 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1196 else if(IS_8X8(left_type[1]))
1197 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1198 else
1199 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1200 }
1201 }
1202
1203 if(FRAME_MBAFF){
1204 #define MAP_MVS\
1205 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1206 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1207 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1208 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1209 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1210 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1211 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1212 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1213 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1214 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1215 if(MB_FIELD){
1216 #define MAP_F2F(idx, mb_type)\
1217 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1218 h->ref_cache[list][idx] <<= 1;\
1219 h->mv_cache[list][idx][1] /= 2;\
1220 h->mvd_cache[list][idx][1] /= 2;\
1221 }
1222 MAP_MVS
1223 #undef MAP_F2F
1224 }else{
1225 #define MAP_F2F(idx, mb_type)\
1226 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1227 h->ref_cache[list][idx] >>= 1;\
1228 h->mv_cache[list][idx][1] <<= 1;\
1229 h->mvd_cache[list][idx][1] <<= 1;\
1230 }
1231 MAP_MVS
1232 #undef MAP_F2F
1233 }
1234 }
1235 }
1236 }
1237 #endif
1238
1239 if(!for_deblock)
1240 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1241 return 0;
1242 }
1243
1244 static void fill_decode_caches(H264Context *h, int mb_type){
1245 fill_caches(h, mb_type, 0);
1246 }
1247
1248 /**
1249 *
1250 * @returns non zero if the loop filter can be skiped
1251 */
1252 static int fill_filter_caches(H264Context *h, int mb_type){
1253 return fill_caches(h, mb_type, 1);
1254 }
1255
1256 /**
1257 * gets the predicted intra4x4 prediction mode.
1258 */
1259 static inline int pred_intra_mode(H264Context *h, int n){
1260 const int index8= scan8[n];
1261 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1262 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1263 const int min= FFMIN(left, top);
1264
1265 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1266
1267 if(min<0) return DC_PRED;
1268 else return min;
1269 }
1270
1271 static inline void write_back_non_zero_count(H264Context *h){
1272 const int mb_xy= h->mb_xy;
1273
1274 AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1275 AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1276 *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1277 *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1278 AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1279 }
1280
1281 static inline void write_back_motion(H264Context *h, int mb_type){
1282 MpegEncContext * const s = &h->s;
1283 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1284 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1285 int list;
1286
1287 if(!USES_LIST(mb_type, 0))
1288 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1289
1290 for(list=0; list<h->list_count; list++){
1291 int y, b_stride;
1292 int16_t (*mv_dst)[2];
1293 int16_t (*mv_src)[2];
1294
1295 if(!USES_LIST(mb_type, list))
1296 continue;
1297
1298 b_stride = h->b_stride;
1299 mv_dst = &s->current_picture.motion_val[list][b_xy];
1300 mv_src = &h->mv_cache[list][scan8[0]];
1301 for(y=0; y<4; y++){
1302 AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1303 }
1304 if( CABAC ) {
1305 int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
1306 int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1307 if(IS_SKIP(mb_type))
1308 fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
1309 else
1310 for(y=0; y<4; y++){
1311 AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
1312 }
1313 }
1314
1315 {
1316 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1317 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1318 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1319 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1320 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1321 }
1322 }
1323
1324 if(h->slice_type_nos == FF_B_TYPE && CABAC){
1325 if(IS_8X8(mb_type)){
1326 uint8_t *direct_table = &h->direct_table[b8_xy];
1327 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1328 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1329 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1330 }
1331 }
1332 }
1333
1334 static inline int get_dct8x8_allowed(H264Context *h){
1335 if(h->sps.direct_8x8_inference_flag)
1336 return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
1337 else
1338 return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1339 }
1340
1341 static void predict_field_decoding_flag(H264Context *h){
1342 MpegEncContext * const s = &h->s;
1343 const int mb_xy= h->mb_xy;
1344 int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1345 ? s->current_picture.mb_type[mb_xy-1]
1346 : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1347 ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1348 : 0;
1349 h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1350 }
1351
1352 /**
1353 * decodes a P_SKIP or B_SKIP macroblock
1354 */
1355 static void decode_mb_skip(H264Context *h){
1356 MpegEncContext * const s = &h->s;
1357 const int mb_xy= h->mb_xy;
1358 int mb_type=0;
1359
1360 memset(h->non_zero_count[mb_xy], 0, 32);
1361 memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1362
1363 if(MB_FIELD)
1364 mb_type|= MB_TYPE_INTERLACED;
1365
1366 if( h->slice_type_nos == FF_B_TYPE )
1367 {
1368 // just for fill_caches. pred_direct_motion will set the real mb_type
1369 mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1370
1371 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1372 ff_h264_pred_direct_motion(h, &mb_type);
1373 mb_type|= MB_TYPE_SKIP;
1374 }
1375 else
1376 {
1377 int mx, my;
1378 mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1379
1380 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1381 pred_pskip_motion(h, &mx, &my);
1382 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1383 fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1384 }
1385
1386 write_back_motion(h, mb_type);
1387 s->current_picture.mb_type[mb_xy]= mb_type;
1388 s->current_picture.qscale_table[mb_xy]= s->qscale;
1389 h->slice_table[ mb_xy ]= h->slice_num;
1390 h->prev_mb_skipped= 1;
1391 }
1392
1393 #include "h264_mvpred.h" //For pred_pskip_motion()
1394
1395 #endif /* AVCODEC_H264_H */