Move static function fill_filter_caches() from h264.h to h264.c.
[libav.git] / libavcodec / h264.h
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file libavcodec/h264.h
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30
31 #include "libavutil/intreadwrite.h"
32 #include "dsputil.h"
33 #include "cabac.h"
34 #include "mpegvideo.h"
35 #include "h264dsp.h"
36 #include "h264pred.h"
37 #include "rectangle.h"
38
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_is_not_initialized_see_mb_type
41
42 #define LUMA_DC_BLOCK_INDEX 25
43 #define CHROMA_DC_BLOCK_INDEX 26
44
45 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46 #define COEFF_TOKEN_VLC_BITS 8
47 #define TOTAL_ZEROS_VLC_BITS 9
48 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49 #define RUN_VLC_BITS 3
50 #define RUN7_VLC_BITS 6
51
52 #define MAX_SPS_COUNT 32
53 #define MAX_PPS_COUNT 256
54
55 #define MAX_MMCO_COUNT 66
56
57 #define MAX_DELAYED_PIC_COUNT 16
58
59 /* Compiling in interlaced support reduces the speed
60 * of progressive decoding by about 2%. */
61 #define ALLOW_INTERLACE
62
63 #define ALLOW_NOCHROMA
64
65 #define FMO 0
66
67 /**
68 * The maximum number of slices supported by the decoder.
69 * must be a power of 2
70 */
71 #define MAX_SLICES 16
72
73 #ifdef ALLOW_INTERLACE
74 #define MB_MBAFF h->mb_mbaff
75 #define MB_FIELD h->mb_field_decoding_flag
76 #define FRAME_MBAFF h->mb_aff_frame
77 #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
78 #else
79 #define MB_MBAFF 0
80 #define MB_FIELD 0
81 #define FRAME_MBAFF 0
82 #define FIELD_PICTURE 0
83 #undef IS_INTERLACED
84 #define IS_INTERLACED(mb_type) 0
85 #endif
86 #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
87
88 #ifdef ALLOW_NOCHROMA
89 #define CHROMA h->sps.chroma_format_idc
90 #else
91 #define CHROMA 1
92 #endif
93
94 #ifndef CABAC
95 #define CABAC h->pps.cabac
96 #endif
97
98 #define EXTENDED_SAR 255
99
100 #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
101 #define MB_TYPE_8x8DCT 0x01000000
102 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
103 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
104
105 /**
106 * Value of Picture.reference when Picture is not a reference picture, but
107 * is held for delayed output.
108 */
109 #define DELAYED_PIC_REF 4
110
111
112 /* NAL unit types */
113 enum {
114 NAL_SLICE=1,
115 NAL_DPA,
116 NAL_DPB,
117 NAL_DPC,
118 NAL_IDR_SLICE,
119 NAL_SEI,
120 NAL_SPS,
121 NAL_PPS,
122 NAL_AUD,
123 NAL_END_SEQUENCE,
124 NAL_END_STREAM,
125 NAL_FILLER_DATA,
126 NAL_SPS_EXT,
127 NAL_AUXILIARY_SLICE=19
128 };
129
130 /**
131 * SEI message types
132 */
133 typedef enum {
134 SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
135 SEI_TYPE_PIC_TIMING = 1, ///< picture timing
136 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
137 SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
138 } SEI_Type;
139
140 /**
141 * pic_struct in picture timing SEI message
142 */
143 typedef enum {
144 SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
145 SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
146 SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
147 SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
148 SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
149 SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
150 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
151 SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
152 SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
153 } SEI_PicStructType;
154
155 /**
156 * Sequence parameter set
157 */
158 typedef struct SPS{
159
160 int profile_idc;
161 int level_idc;
162 int chroma_format_idc;
163 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
164 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
165 int poc_type; ///< pic_order_cnt_type
166 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
167 int delta_pic_order_always_zero_flag;
168 int offset_for_non_ref_pic;
169 int offset_for_top_to_bottom_field;
170 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
171 int ref_frame_count; ///< num_ref_frames
172 int gaps_in_frame_num_allowed_flag;
173 int mb_width; ///< pic_width_in_mbs_minus1 + 1
174 int mb_height; ///< pic_height_in_map_units_minus1 + 1
175 int frame_mbs_only_flag;
176 int mb_aff; ///<mb_adaptive_frame_field_flag
177 int direct_8x8_inference_flag;
178 int crop; ///< frame_cropping_flag
179 unsigned int crop_left; ///< frame_cropping_rect_left_offset
180 unsigned int crop_right; ///< frame_cropping_rect_right_offset
181 unsigned int crop_top; ///< frame_cropping_rect_top_offset
182 unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
183 int vui_parameters_present_flag;
184 AVRational sar;
185 int video_signal_type_present_flag;
186 int full_range;
187 int colour_description_present_flag;
188 enum AVColorPrimaries color_primaries;
189 enum AVColorTransferCharacteristic color_trc;
190 enum AVColorSpace colorspace;
191 int timing_info_present_flag;
192 uint32_t num_units_in_tick;
193 uint32_t time_scale;
194 int fixed_frame_rate_flag;
195 short offset_for_ref_frame[256]; //FIXME dyn aloc?
196 int bitstream_restriction_flag;
197 int num_reorder_frames;
198 int scaling_matrix_present;
199 uint8_t scaling_matrix4[6][16];
200 uint8_t scaling_matrix8[2][64];
201 int nal_hrd_parameters_present_flag;
202 int vcl_hrd_parameters_present_flag;
203 int pic_struct_present_flag;
204 int time_offset_length;
205 int cpb_cnt; ///< See H.264 E.1.2
206 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
207 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
208 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
209 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
210 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
211 int residual_color_transform_flag; ///< residual_colour_transform_flag
212 }SPS;
213
214 /**
215 * Picture parameter set
216 */
217 typedef struct PPS{
218 unsigned int sps_id;
219 int cabac; ///< entropy_coding_mode_flag
220 int pic_order_present; ///< pic_order_present_flag
221 int slice_group_count; ///< num_slice_groups_minus1 + 1
222 int mb_slice_group_map_type;
223 unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
224 int weighted_pred; ///< weighted_pred_flag
225 int weighted_bipred_idc;
226 int init_qp; ///< pic_init_qp_minus26 + 26
227 int init_qs; ///< pic_init_qs_minus26 + 26
228 int chroma_qp_index_offset[2];
229 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
230 int constrained_intra_pred; ///< constrained_intra_pred_flag
231 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
232 int transform_8x8_mode; ///< transform_8x8_mode_flag
233 uint8_t scaling_matrix4[6][16];
234 uint8_t scaling_matrix8[2][64];
235 uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
236 int chroma_qp_diff;
237 }PPS;
238
239 /**
240 * Memory management control operation opcode.
241 */
242 typedef enum MMCOOpcode{
243 MMCO_END=0,
244 MMCO_SHORT2UNUSED,
245 MMCO_LONG2UNUSED,
246 MMCO_SHORT2LONG,
247 MMCO_SET_MAX_LONG,
248 MMCO_RESET,
249 MMCO_LONG,
250 } MMCOOpcode;
251
252 /**
253 * Memory management control operation.
254 */
255 typedef struct MMCO{
256 MMCOOpcode opcode;
257 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
258 int long_arg; ///< index, pic_num, or num long refs depending on opcode
259 } MMCO;
260
261 /**
262 * H264Context
263 */
264 typedef struct H264Context{
265 MpegEncContext s;
266 H264DSPContext h264dsp;
267 int chroma_qp[2]; //QPc
268
269 int qp_thresh; ///< QP threshold to skip loopfilter
270
271 int prev_mb_skipped;
272 int next_mb_skipped;
273
274 //prediction stuff
275 int chroma_pred_mode;
276 int intra16x16_pred_mode;
277
278 int topleft_mb_xy;
279 int top_mb_xy;
280 int topright_mb_xy;
281 int left_mb_xy[2];
282
283 int topleft_type;
284 int top_type;
285 int topright_type;
286 int left_type[2];
287
288 const uint8_t * left_block;
289 int topleft_partition;
290
291 int8_t intra4x4_pred_mode_cache[5*8];
292 int8_t (*intra4x4_pred_mode);
293 H264PredContext hpc;
294 unsigned int topleft_samples_available;
295 unsigned int top_samples_available;
296 unsigned int topright_samples_available;
297 unsigned int left_samples_available;
298 uint8_t (*top_borders[2])[16+2*8];
299
300 /**
301 * non zero coeff count cache.
302 * is 64 if not available.
303 */
304 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
305
306 /*
307 .UU.YYYY
308 .UU.YYYY
309 .vv.YYYY
310 .VV.YYYY
311 */
312 uint8_t (*non_zero_count)[32];
313
314 /**
315 * Motion vector cache.
316 */
317 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
318 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
319 #define LIST_NOT_USED -1 //FIXME rename?
320 #define PART_NOT_AVAILABLE -2
321
322 /**
323 * is 1 if the specific list MV&references are set to 0,0,-2.
324 */
325 int mv_cache_clean[2];
326
327 /**
328 * number of neighbors (top and/or left) that used 8x8 dct
329 */
330 int neighbor_transform_size;
331
332 /**
333 * block_offset[ 0..23] for frame macroblocks
334 * block_offset[24..47] for field macroblocks
335 */
336 int block_offset[2*(16+8)];
337
338 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
339 uint32_t *mb2br_xy;
340 int b_stride; //FIXME use s->b4_stride
341
342 int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
343 int mb_uvlinesize;
344
345 int emu_edge_width;
346 int emu_edge_height;
347
348 SPS sps; ///< current sps
349
350 /**
351 * current pps
352 */
353 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
354
355 uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
356 uint32_t dequant8_buffer[2][52][64];
357 uint32_t (*dequant4_coeff[6])[16];
358 uint32_t (*dequant8_coeff[2])[64];
359
360 int slice_num;
361 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
362 int slice_type;
363 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
364 int slice_type_fixed;
365
366 //interlacing specific flags
367 int mb_aff_frame;
368 int mb_field_decoding_flag;
369 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
370
371 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
372
373 //Weighted pred stuff
374 int use_weight;
375 int use_weight_chroma;
376 int luma_log2_weight_denom;
377 int chroma_log2_weight_denom;
378 //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
379 int luma_weight[48][2][2];
380 int chroma_weight[48][2][2][2];
381 int implicit_weight[48][48][2];
382
383 int direct_spatial_mv_pred;
384 int col_parity;
385 int col_fieldoff;
386 int dist_scale_factor[16];
387 int dist_scale_factor_field[2][32];
388 int map_col_to_list0[2][16+32];
389 int map_col_to_list0_field[2][2][16+32];
390
391 /**
392 * num_ref_idx_l0/1_active_minus1 + 1
393 */
394 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
395 unsigned int list_count;
396 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
397 Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
398 Reordered version of default_ref_list
399 according to picture reordering in slice header */
400 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
401
402 //data partitioning
403 GetBitContext intra_gb;
404 GetBitContext inter_gb;
405 GetBitContext *intra_gb_ptr;
406 GetBitContext *inter_gb_ptr;
407
408 DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
409 DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
410
411 /**
412 * Cabac
413 */
414 CABACContext cabac;
415 uint8_t cabac_state[460];
416
417 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
418 uint16_t *cbp_table;
419 int cbp;
420 int top_cbp;
421 int left_cbp;
422 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
423 uint8_t *chroma_pred_mode_table;
424 int last_qscale_diff;
425 uint8_t (*mvd_table[2])[2];
426 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
427 uint8_t *direct_table;
428 uint8_t direct_cache[5*8];
429
430 uint8_t zigzag_scan[16];
431 uint8_t zigzag_scan8x8[64];
432 uint8_t zigzag_scan8x8_cavlc[64];
433 uint8_t field_scan[16];
434 uint8_t field_scan8x8[64];
435 uint8_t field_scan8x8_cavlc[64];
436 const uint8_t *zigzag_scan_q0;
437 const uint8_t *zigzag_scan8x8_q0;
438 const uint8_t *zigzag_scan8x8_cavlc_q0;
439 const uint8_t *field_scan_q0;
440 const uint8_t *field_scan8x8_q0;
441 const uint8_t *field_scan8x8_cavlc_q0;
442
443 int x264_build;
444
445 int mb_xy;
446
447 int is_complex;
448
449 //deblock
450 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
451 int slice_alpha_c0_offset;
452 int slice_beta_offset;
453
454 //=============================================================
455 //Things below are not used in the MB or more inner code
456
457 int nal_ref_idc;
458 int nal_unit_type;
459 uint8_t *rbsp_buffer[2];
460 unsigned int rbsp_buffer_size[2];
461
462 /**
463 * Used to parse AVC variant of h264
464 */
465 int is_avc; ///< this flag is != 0 if codec is avc1
466 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
467
468 SPS *sps_buffers[MAX_SPS_COUNT];
469 PPS *pps_buffers[MAX_PPS_COUNT];
470
471 int dequant_coeff_pps; ///< reinit tables when pps changes
472
473 uint16_t *slice_table_base;
474
475
476 //POC stuff
477 int poc_lsb;
478 int poc_msb;
479 int delta_poc_bottom;
480 int delta_poc[2];
481 int frame_num;
482 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
483 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
484 int frame_num_offset; ///< for POC type 2
485 int prev_frame_num_offset; ///< for POC type 2
486 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
487
488 /**
489 * frame_num for frames or 2*frame_num+1 for field pics.
490 */
491 int curr_pic_num;
492
493 /**
494 * max_frame_num or 2*max_frame_num for field pics.
495 */
496 int max_pic_num;
497
498 int redundant_pic_count;
499
500 Picture *short_ref[32];
501 Picture *long_ref[32];
502 Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
503 Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
504 int outputed_poc;
505
506 /**
507 * memory management control operations buffer.
508 */
509 MMCO mmco[MAX_MMCO_COUNT];
510 int mmco_index;
511
512 int long_ref_count; ///< number of actual long term references
513 int short_ref_count; ///< number of actual short term references
514
515 int cabac_init_idc;
516
517 /**
518 * @defgroup multithreading Members for slice based multithreading
519 * @{
520 */
521 struct H264Context *thread_context[MAX_THREADS];
522
523 /**
524 * current slice number, used to initalize slice_num of each thread/context
525 */
526 int current_slice;
527
528 /**
529 * Max number of threads / contexts.
530 * This is equal to AVCodecContext.thread_count unless
531 * multithreaded decoding is impossible, in which case it is
532 * reduced to 1.
533 */
534 int max_contexts;
535
536 /**
537 * 1 if the single thread fallback warning has already been
538 * displayed, 0 otherwise.
539 */
540 int single_decode_warning;
541
542 int last_slice_type;
543 /** @} */
544
545 /**
546 * pic_struct in picture timing SEI message
547 */
548 SEI_PicStructType sei_pic_struct;
549
550 /**
551 * Complement sei_pic_struct
552 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
553 * However, soft telecined frames may have these values.
554 * This is used in an attempt to flag soft telecine progressive.
555 */
556 int prev_interlaced_frame;
557
558 /**
559 * Bit set of clock types for fields/frames in picture timing SEI message.
560 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
561 * interlaced).
562 */
563 int sei_ct_type;
564
565 /**
566 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
567 */
568 int sei_dpb_output_delay;
569
570 /**
571 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
572 */
573 int sei_cpb_removal_delay;
574
575 /**
576 * recovery_frame_cnt from SEI message
577 *
578 * Set to -1 if no recovery point SEI message found or to number of frames
579 * before playback synchronizes. Frames having recovery point are key
580 * frames.
581 */
582 int sei_recovery_frame_cnt;
583
584 int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
585 int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
586
587 // Timestamp stuff
588 int sei_buffering_period_present; ///< Buffering period SEI flag
589 int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
590
591 //SVQ3 specific fields
592 int halfpel_flag;
593 int thirdpel_flag;
594 int unknown_svq3_flag;
595 int next_slice_index;
596 uint32_t svq3_watermark_key;
597 }H264Context;
598
599
600 extern const uint8_t ff_h264_chroma_qp[52];
601
602 void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
603
604 void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
605
606 /**
607 * Decode SEI
608 */
609 int ff_h264_decode_sei(H264Context *h);
610
611 /**
612 * Decode SPS
613 */
614 int ff_h264_decode_seq_parameter_set(H264Context *h);
615
616 /**
617 * Decode PPS
618 */
619 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
620
621 /**
622 * Decodes a network abstraction layer unit.
623 * @param consumed is the number of bytes used as input
624 * @param length is the length of the array
625 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
626 * @return decoded bytes, might be src+1 if no escapes
627 */
628 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
629
630 /**
631 * identifies the exact end of the bitstream
632 * @return the length of the trailing, or 0 if damaged
633 */
634 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
635
636 /**
637 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
638 */
639 av_cold void ff_h264_free_context(H264Context *h);
640
641 /**
642 * reconstructs bitstream slice_type.
643 */
644 int ff_h264_get_slice_type(const H264Context *h);
645
646 /**
647 * allocates tables.
648 * needs width/height
649 */
650 int ff_h264_alloc_tables(H264Context *h);
651
652 /**
653 * fills the default_ref_list.
654 */
655 int ff_h264_fill_default_ref_list(H264Context *h);
656
657 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
658 void ff_h264_fill_mbaff_ref_list(H264Context *h);
659 void ff_h264_remove_all_refs(H264Context *h);
660
661 /**
662 * Executes the reference picture marking (memory management control operations).
663 */
664 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
665
666 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
667
668
669 /**
670 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
671 */
672 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
673
674 /**
675 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
676 */
677 int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
678
679 void ff_h264_write_back_intra_pred_mode(H264Context *h);
680 void ff_h264_hl_decode_mb(H264Context *h);
681 int ff_h264_frame_start(H264Context *h);
682 av_cold int ff_h264_decode_init(AVCodecContext *avctx);
683 av_cold int ff_h264_decode_end(AVCodecContext *avctx);
684 av_cold void ff_h264_decode_init_vlc(void);
685
686 /**
687 * decodes a macroblock
688 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
689 */
690 int ff_h264_decode_mb_cavlc(H264Context *h);
691
692 /**
693 * decodes a CABAC coded macroblock
694 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
695 */
696 int ff_h264_decode_mb_cabac(H264Context *h);
697
698 void ff_h264_init_cabac_states(H264Context *h);
699
700 void ff_h264_direct_dist_scale_factor(H264Context * const h);
701 void ff_h264_direct_ref_list_init(H264Context * const h);
702 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
703
704 void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
705 void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
706
707 /**
708 * Reset SEI values at the beginning of the frame.
709 *
710 * @param h H.264 context.
711 */
712 void ff_h264_reset_sei(H264Context *h);
713
714
715 /*
716 o-o o-o
717 / / /
718 o-o o-o
719 ,---'
720 o-o o-o
721 / / /
722 o-o o-o
723 */
724 //This table must be here because scan8[constant] must be known at compiletime
725 static const uint8_t scan8[16 + 2*4]={
726 4+1*8, 5+1*8, 4+2*8, 5+2*8,
727 6+1*8, 7+1*8, 6+2*8, 7+2*8,
728 4+3*8, 5+3*8, 4+4*8, 5+4*8,
729 6+3*8, 7+3*8, 6+4*8, 7+4*8,
730 1+1*8, 2+1*8,
731 1+2*8, 2+2*8,
732 1+4*8, 2+4*8,
733 1+5*8, 2+5*8,
734 };
735
736 static av_always_inline uint32_t pack16to32(int a, int b){
737 #if HAVE_BIGENDIAN
738 return (b&0xFFFF) + (a<<16);
739 #else
740 return (a&0xFFFF) + (b<<16);
741 #endif
742 }
743
744 static av_always_inline uint16_t pack8to16(int a, int b){
745 #if HAVE_BIGENDIAN
746 return (b&0xFF) + (a<<8);
747 #else
748 return (a&0xFF) + (b<<8);
749 #endif
750 }
751
752 /**
753 * gets the chroma qp.
754 */
755 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
756 return h->pps.chroma_qp_table[t][qscale];
757 }
758
759 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
760
761 static void fill_decode_neighbors(H264Context *h, int mb_type){
762 MpegEncContext * const s = &h->s;
763 const int mb_xy= h->mb_xy;
764 int topleft_xy, top_xy, topright_xy, left_xy[2];
765 static const uint8_t left_block_options[4][16]={
766 {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
767 {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
768 {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
769 {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
770 };
771
772 h->topleft_partition= -1;
773
774 top_xy = mb_xy - (s->mb_stride << MB_FIELD);
775
776 /* Wow, what a mess, why didn't they simplify the interlacing & intra
777 * stuff, I can't imagine that these complex rules are worth it. */
778
779 topleft_xy = top_xy - 1;
780 topright_xy= top_xy + 1;
781 left_xy[1] = left_xy[0] = mb_xy-1;
782 h->left_block = left_block_options[0];
783 if(FRAME_MBAFF){
784 const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
785 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
786 if(s->mb_y&1){
787 if (left_mb_field_flag != curr_mb_field_flag) {
788 left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
789 if (curr_mb_field_flag) {
790 left_xy[1] += s->mb_stride;
791 h->left_block = left_block_options[3];
792 } else {
793 topleft_xy += s->mb_stride;
794 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
795 h->topleft_partition = 0;
796 h->left_block = left_block_options[1];
797 }
798 }
799 }else{
800 if(curr_mb_field_flag){
801 topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
802 topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
803 top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
804 }
805 if (left_mb_field_flag != curr_mb_field_flag) {
806 if (curr_mb_field_flag) {
807 left_xy[1] += s->mb_stride;
808 h->left_block = left_block_options[3];
809 } else {
810 h->left_block = left_block_options[2];
811 }
812 }
813 }
814 }
815
816 h->topleft_mb_xy = topleft_xy;
817 h->top_mb_xy = top_xy;
818 h->topright_mb_xy= topright_xy;
819 h->left_mb_xy[0] = left_xy[0];
820 h->left_mb_xy[1] = left_xy[1];
821 //FIXME do we need all in the context?
822
823 h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
824 h->top_type = s->current_picture.mb_type[top_xy] ;
825 h->topright_type= s->current_picture.mb_type[topright_xy];
826 h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
827 h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
828
829 if(FMO){
830 if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
831 if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
832 if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
833 }else{
834 if(h->slice_table[topleft_xy ] != h->slice_num){
835 h->topleft_type = 0;
836 if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
837 if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
838 }
839 }
840 if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
841 }
842
843 static void fill_decode_caches(H264Context *h, int mb_type){
844 MpegEncContext * const s = &h->s;
845 int topleft_xy, top_xy, topright_xy, left_xy[2];
846 int topleft_type, top_type, topright_type, left_type[2];
847 const uint8_t * left_block= h->left_block;
848 int i;
849
850 topleft_xy = h->topleft_mb_xy ;
851 top_xy = h->top_mb_xy ;
852 topright_xy = h->topright_mb_xy;
853 left_xy[0] = h->left_mb_xy[0] ;
854 left_xy[1] = h->left_mb_xy[1] ;
855 topleft_type = h->topleft_type ;
856 top_type = h->top_type ;
857 topright_type= h->topright_type ;
858 left_type[0] = h->left_type[0] ;
859 left_type[1] = h->left_type[1] ;
860
861 if(!IS_SKIP(mb_type)){
862 if(IS_INTRA(mb_type)){
863 int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
864 h->topleft_samples_available=
865 h->top_samples_available=
866 h->left_samples_available= 0xFFFF;
867 h->topright_samples_available= 0xEEEA;
868
869 if(!(top_type & type_mask)){
870 h->topleft_samples_available= 0xB3FF;
871 h->top_samples_available= 0x33FF;
872 h->topright_samples_available= 0x26EA;
873 }
874 if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
875 if(IS_INTERLACED(mb_type)){
876 if(!(left_type[0] & type_mask)){
877 h->topleft_samples_available&= 0xDFFF;
878 h->left_samples_available&= 0x5FFF;
879 }
880 if(!(left_type[1] & type_mask)){
881 h->topleft_samples_available&= 0xFF5F;
882 h->left_samples_available&= 0xFF5F;
883 }
884 }else{
885 int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
886
887 assert(left_xy[0] == left_xy[1]);
888 if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
889 h->topleft_samples_available&= 0xDF5F;
890 h->left_samples_available&= 0x5F5F;
891 }
892 }
893 }else{
894 if(!(left_type[0] & type_mask)){
895 h->topleft_samples_available&= 0xDF5F;
896 h->left_samples_available&= 0x5F5F;
897 }
898 }
899
900 if(!(topleft_type & type_mask))
901 h->topleft_samples_available&= 0x7FFF;
902
903 if(!(topright_type & type_mask))
904 h->topright_samples_available&= 0xFBFF;
905
906 if(IS_INTRA4x4(mb_type)){
907 if(IS_INTRA4x4(top_type)){
908 AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
909 }else{
910 h->intra4x4_pred_mode_cache[4+8*0]=
911 h->intra4x4_pred_mode_cache[5+8*0]=
912 h->intra4x4_pred_mode_cache[6+8*0]=
913 h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
914 }
915 for(i=0; i<2; i++){
916 if(IS_INTRA4x4(left_type[i])){
917 int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
918 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
919 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
920 }else{
921 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
922 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
923 }
924 }
925 }
926 }
927
928
929 /*
930 0 . T T. T T T T
931 1 L . .L . . . .
932 2 L . .L . . . .
933 3 . T TL . . . .
934 4 L . .L . . . .
935 5 L . .. . . . .
936 */
937 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
938 if(top_type){
939 AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
940 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
941 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
942
943 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
944 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
945 }else {
946 h->non_zero_count_cache[1+8*0]=
947 h->non_zero_count_cache[2+8*0]=
948
949 h->non_zero_count_cache[1+8*3]=
950 h->non_zero_count_cache[2+8*3]=
951 AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
952 }
953
954 for (i=0; i<2; i++) {
955 if(left_type[i]){
956 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
957 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
958 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
959 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
960 }else{
961 h->non_zero_count_cache[3+8*1 + 2*8*i]=
962 h->non_zero_count_cache[3+8*2 + 2*8*i]=
963 h->non_zero_count_cache[0+8*1 + 8*i]=
964 h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
965 }
966 }
967
968 if( CABAC ) {
969 // top_cbp
970 if(top_type) {
971 h->top_cbp = h->cbp_table[top_xy];
972 } else {
973 h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
974 }
975 // left_cbp
976 if (left_type[0]) {
977 h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
978 | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
979 | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
980 } else {
981 h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
982 }
983 }
984 }
985
986 #if 1
987 if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
988 int list;
989 for(list=0; list<h->list_count; list++){
990 if(!USES_LIST(mb_type, list)){
991 /*if(!h->mv_cache_clean[list]){
992 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
993 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
994 h->mv_cache_clean[list]= 1;
995 }*/
996 continue;
997 }
998 assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
999
1000 h->mv_cache_clean[list]= 0;
1001
1002 if(USES_LIST(top_type, list)){
1003 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1004 AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1005 h->ref_cache[list][scan8[0] + 0 - 1*8]=
1006 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
1007 h->ref_cache[list][scan8[0] + 2 - 1*8]=
1008 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
1009 }else{
1010 AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1011 AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
1012 }
1013
1014 if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
1015 for(i=0; i<2; i++){
1016 int cache_idx = scan8[0] - 1 + i*2*8;
1017 if(USES_LIST(left_type[i], list)){
1018 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1019 const int b8_xy= 4*left_xy[i] + 1;
1020 AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
1021 AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
1022 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
1023 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
1024 }else{
1025 AV_ZERO32(h->mv_cache [list][cache_idx ]);
1026 AV_ZERO32(h->mv_cache [list][cache_idx+8]);
1027 h->ref_cache[list][cache_idx ]=
1028 h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1029 }
1030 }
1031 }else{
1032 if(USES_LIST(left_type[0], list)){
1033 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1034 const int b8_xy= 4*left_xy[0] + 1;
1035 AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
1036 h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
1037 }else{
1038 AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
1039 h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1040 }
1041 }
1042
1043 if(USES_LIST(topright_type, list)){
1044 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1045 AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
1046 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
1047 }else{
1048 AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
1049 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1050 }
1051 if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
1052 if(USES_LIST(topleft_type, list)){
1053 const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
1054 const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
1055 AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
1056 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1057 }else{
1058 AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
1059 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1060 }
1061 }
1062
1063 if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1064 continue;
1065
1066 if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1067 h->ref_cache[list][scan8[4 ]] =
1068 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1069 AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
1070 AV_ZERO32(h->mv_cache [list][scan8[12]]);
1071
1072 if( CABAC ) {
1073 /* XXX beurk, Load mvd */
1074 if(USES_LIST(top_type, list)){
1075 const int b_xy= h->mb2br_xy[top_xy];
1076 AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1077 }else{
1078 AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1079 }
1080 if(USES_LIST(left_type[0], list)){
1081 const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
1082 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
1083 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
1084 }else{
1085 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
1086 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
1087 }
1088 if(USES_LIST(left_type[1], list)){
1089 const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
1090 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
1091 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
1092 }else{
1093 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
1094 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
1095 }
1096 AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
1097 AV_ZERO16(h->mvd_cache [list][scan8[12]]);
1098 if(h->slice_type_nos == FF_B_TYPE){
1099 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1100
1101 if(IS_DIRECT(top_type)){
1102 AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
1103 }else if(IS_8X8(top_type)){
1104 int b8_xy = 4*top_xy;
1105 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
1106 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
1107 }else{
1108 AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
1109 }
1110
1111 if(IS_DIRECT(left_type[0]))
1112 h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1113 else if(IS_8X8(left_type[0]))
1114 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
1115 else
1116 h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1117
1118 if(IS_DIRECT(left_type[1]))
1119 h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1120 else if(IS_8X8(left_type[1]))
1121 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
1122 else
1123 h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1124 }
1125 }
1126 }
1127 if(FRAME_MBAFF){
1128 #define MAP_MVS\
1129 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1130 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1131 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1132 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1133 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1134 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1135 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1136 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1137 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1138 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1139 if(MB_FIELD){
1140 #define MAP_F2F(idx, mb_type)\
1141 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1142 h->ref_cache[list][idx] <<= 1;\
1143 h->mv_cache[list][idx][1] /= 2;\
1144 h->mvd_cache[list][idx][1] >>=1;\
1145 }
1146 MAP_MVS
1147 #undef MAP_F2F
1148 }else{
1149 #define MAP_F2F(idx, mb_type)\
1150 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1151 h->ref_cache[list][idx] >>= 1;\
1152 h->mv_cache[list][idx][1] <<= 1;\
1153 h->mvd_cache[list][idx][1] <<= 1;\
1154 }
1155 MAP_MVS
1156 #undef MAP_F2F
1157 }
1158 }
1159 }
1160 }
1161 #endif
1162
1163 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1164 }
1165
1166 /**
1167 * gets the predicted intra4x4 prediction mode.
1168 */
1169 static inline int pred_intra_mode(H264Context *h, int n){
1170 const int index8= scan8[n];
1171 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1172 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1173 const int min= FFMIN(left, top);
1174
1175 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1176
1177 if(min<0) return DC_PRED;
1178 else return min;
1179 }
1180
1181 static inline void write_back_non_zero_count(H264Context *h){
1182 const int mb_xy= h->mb_xy;
1183
1184 AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1185 AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1186 AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
1187 AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
1188 AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1189 }
1190
1191 static inline void write_back_motion(H264Context *h, int mb_type){
1192 MpegEncContext * const s = &h->s;
1193 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
1194 const int b8_xy= 4*h->mb_xy;
1195 int list;
1196
1197 if(!USES_LIST(mb_type, 0))
1198 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1199
1200 for(list=0; list<h->list_count; list++){
1201 int y, b_stride;
1202 int16_t (*mv_dst)[2];
1203 int16_t (*mv_src)[2];
1204
1205 if(!USES_LIST(mb_type, list))
1206 continue;
1207
1208 b_stride = h->b_stride;
1209 mv_dst = &s->current_picture.motion_val[list][b_xy];
1210 mv_src = &h->mv_cache[list][scan8[0]];
1211 for(y=0; y<4; y++){
1212 AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1213 }
1214 if( CABAC ) {
1215 uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
1216 uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1217 if(IS_SKIP(mb_type))
1218 AV_ZERO128(mvd_dst);
1219 else{
1220 AV_COPY64(mvd_dst, mvd_src + 8*3);
1221 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
1222 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
1223 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
1224 }
1225 }
1226
1227 {
1228 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1229 ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
1230 ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
1231 ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
1232 ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
1233 }
1234 }
1235
1236 if(h->slice_type_nos == FF_B_TYPE && CABAC){
1237 if(IS_8X8(mb_type)){
1238 uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
1239 direct_table[1] = h->sub_mb_type[1]>>1;
1240 direct_table[2] = h->sub_mb_type[2]>>1;
1241 direct_table[3] = h->sub_mb_type[3]>>1;
1242 }
1243 }
1244 }
1245
1246 static inline int get_dct8x8_allowed(H264Context *h){
1247 if(h->sps.direct_8x8_inference_flag)
1248 return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
1249 else
1250 return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1251 }
1252
1253 /**
1254 * decodes a P_SKIP or B_SKIP macroblock
1255 */
1256 static void decode_mb_skip(H264Context *h){
1257 MpegEncContext * const s = &h->s;
1258 const int mb_xy= h->mb_xy;
1259 int mb_type=0;
1260
1261 memset(h->non_zero_count[mb_xy], 0, 32);
1262 memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1263
1264 if(MB_FIELD)
1265 mb_type|= MB_TYPE_INTERLACED;
1266
1267 if( h->slice_type_nos == FF_B_TYPE )
1268 {
1269 // just for fill_caches. pred_direct_motion will set the real mb_type
1270 mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1271 if(h->direct_spatial_mv_pred){
1272 fill_decode_neighbors(h, mb_type);
1273 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1274 }
1275 ff_h264_pred_direct_motion(h, &mb_type);
1276 mb_type|= MB_TYPE_SKIP;
1277 }
1278 else
1279 {
1280 int mx, my;
1281 mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1282
1283 fill_decode_neighbors(h, mb_type);
1284 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1285 pred_pskip_motion(h, &mx, &my);
1286 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1287 fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1288 }
1289
1290 write_back_motion(h, mb_type);
1291 s->current_picture.mb_type[mb_xy]= mb_type;
1292 s->current_picture.qscale_table[mb_xy]= s->qscale;
1293 h->slice_table[ mb_xy ]= h->slice_num;
1294 h->prev_mb_skipped= 1;
1295 }
1296
1297 #include "h264_mvpred.h" //For pred_pskip_motion()
1298
1299 #endif /* AVCODEC_H264_H */