4 * Copyright (C) 1991, 1992, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the basic inverse-DCT transformation subroutine.
10 * This implementation is based on an algorithm described in
11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
14 * The primary algorithm described there uses 11 multiplies and 29 adds.
15 * We use their alternate method with 12 multiplies and 32 adds.
16 * The advantage of this method is that no data path contains more than one
17 * multiplication; this allows a very simple and accurate implementation in
18 * scaled fixed-point arithmetic, with a minimal number of shifts.
20 * I've made lots of modifications to attempt to take advantage of the
21 * sparse nature of the DCT matrices we're getting. Although the logic
22 * is cumbersome, it's straightforward and the resulting code is much
25 * A better way to do this would be to pass in the DCT block as a sparse
26 * matrix, perhaps with the difference cases encoded.
31 * Independent JPEG Group's LLM idct.
37 #define EIGHT_BIT_SAMPLES
44 #define RIGHT_SHIFT(x, n) ((x) >> (n))
46 typedef DCTELEM DCTBLOCK
[DCTSIZE2
];
51 * This routine is specialized to the case DCTSIZE = 8.
55 Sorry
, this code only copes with
8x8 DCTs
. /* deliberate syntax err */
60 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
61 * on each column. Direct algorithms are also available, but they are
62 * much more complex and seem not to be any faster when reduced to code.
64 * The poop on this scaling stuff is as follows:
66 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
67 * larger than the true IDCT outputs. The final outputs are therefore
68 * a factor of N larger than desired; since N=8 this can be cured by
69 * a simple right shift at the end of the algorithm. The advantage of
70 * this arrangement is that we save two multiplications per 1-D IDCT,
71 * because the y0 and y4 inputs need not be divided by sqrt(N).
73 * We have to do addition and subtraction of the integer inputs, which
74 * is no problem, and multiplication by fractional constants, which is
75 * a problem to do in integer arithmetic. We multiply all the constants
76 * by CONST_SCALE and convert them to integer constants (thus retaining
77 * CONST_BITS bits of precision in the constants). After doing a
78 * multiplication we have to divide the product by CONST_SCALE, with proper
79 * rounding, to produce the correct output. This division can be done
80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
81 * as long as possible so that partial sums can be added together with
82 * full fractional precision.
84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
85 * they are represented to better-than-integral precision. These outputs
86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
87 * with the recommended scaling. (To scale up 12-bit sample data further, an
88 * intermediate int32 array would be needed.)
90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
92 * shows that the values given below are the most effective.
95 #ifdef EIGHT_BIT_SAMPLES
98 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
101 #define ONE ((int32_t) 1)
103 #define CONST_SCALE (ONE << CONST_BITS)
105 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
106 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
107 * you will pay a significant penalty in run time. In that case, figure
108 * the correct integer constant values and insert them by hand.
111 /* Actually FIX is no longer used, we precomputed them all */
112 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
114 /* Descale and correctly round an int32_t value that's scaled by N bits.
115 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
116 * the fudge factor is correct for either sign of X.
119 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
121 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
122 * For 8-bit samples with the recommended scaling, all the variable
123 * and constant values involved are no more than 16 bits wide, so a
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
125 * this provides a useful speedup on many machines.
126 * There is no way to specify a 16x16->32 multiply in portable C, but
127 * some C compilers will do the right thing if you provide the correct
128 * combination of casts.
129 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
132 #ifdef EIGHT_BIT_SAMPLES
133 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
134 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
136 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
137 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
141 #ifndef MULTIPLY /* default definition */
142 #define MULTIPLY(var,const) ((var) * (const))
147 Unlike our decoder where we approximate the FIXes, we need to use exact
148 ones here or successive P-frames will drift too much with Reference frame coding
150 #define FIX_0_211164243 1730
151 #define FIX_0_275899380 2260
152 #define FIX_0_298631336 2446
153 #define FIX_0_390180644 3196
154 #define FIX_0_509795579 4176
155 #define FIX_0_541196100 4433
156 #define FIX_0_601344887 4926
157 #define FIX_0_765366865 6270
158 #define FIX_0_785694958 6436
159 #define FIX_0_899976223 7373
160 #define FIX_1_061594337 8697
161 #define FIX_1_111140466 9102
162 #define FIX_1_175875602 9633
163 #define FIX_1_306562965 10703
164 #define FIX_1_387039845 11363
165 #define FIX_1_451774981 11893
166 #define FIX_1_501321110 12299
167 #define FIX_1_662939225 13623
168 #define FIX_1_847759065 15137
169 #define FIX_1_961570560 16069
170 #define FIX_2_053119869 16819
171 #define FIX_2_172734803 17799
172 #define FIX_2_562915447 20995
173 #define FIX_3_072711026 25172
176 * Perform the inverse DCT on one block of coefficients.
179 void j_rev_dct(DCTBLOCK data
)
181 int32_t tmp0
, tmp1
, tmp2
, tmp3
;
182 int32_t tmp10
, tmp11
, tmp12
, tmp13
;
183 int32_t z1
, z2
, z3
, z4
, z5
;
184 int32_t d0
, d1
, d2
, d3
, d4
, d5
, d6
, d7
;
185 register DCTELEM
*dataptr
;
188 /* Pass 1: process rows. */
189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
190 /* furthermore, we scale the results by 2**PASS1_BITS. */
194 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
195 /* Due to quantization, we will usually find that many of the input
196 * coefficients are zero, especially the AC terms. We can exploit this
197 * by short-circuiting the IDCT calculation for any row in which all
198 * the AC terms are zero. In that case each output is equal to the
199 * DC coefficient (with scale factor as needed).
200 * With typical images and quantization tables, half or more of the
201 * row DCT calculations can be simplified this way.
204 register int *idataptr
= (int*)dataptr
;
206 /* WARNING: we do the same permutation as MMX idct to simplify the
217 if ((d1
| d2
| d3
| d4
| d5
| d6
| d7
) == 0) {
218 /* AC terms all zero */
220 /* Compute a 32 bit value to assign. */
221 DCTELEM dcval
= (DCTELEM
) (d0
<< PASS1_BITS
);
222 register int v
= (dcval
& 0xffff) | ((dcval
<< 16) & 0xffff0000);
230 dataptr
+= DCTSIZE
; /* advance pointer to next row */
234 /* Even part: reverse the even part of the forward DCT. */
235 /* The rotator is sqrt(2)*c(-6). */
241 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
242 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
243 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
244 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
246 tmp0
= (d0
+ d4
) << CONST_BITS
;
247 tmp1
= (d0
- d4
) << CONST_BITS
;
254 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
255 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
256 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
257 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
259 tmp0
= d4
<< CONST_BITS
;
264 tmp12
= -(tmp0
+ tmp2
);
268 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
269 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
270 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
272 tmp0
= (d0
+ d4
) << CONST_BITS
;
273 tmp1
= (d0
- d4
) << CONST_BITS
;
280 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
281 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
282 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
284 tmp0
= d4
<< CONST_BITS
;
289 tmp12
= -(tmp0
+ tmp2
);
295 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
296 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
297 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
298 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
300 tmp0
= d0
<< CONST_BITS
;
307 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
308 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
309 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
310 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
319 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
320 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
321 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
323 tmp0
= d0
<< CONST_BITS
;
330 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
331 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
332 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
345 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
346 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
347 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
349 tmp0
= (d0
+ d4
) << CONST_BITS
;
350 tmp1
= (d0
- d4
) << CONST_BITS
;
357 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
358 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
359 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
361 tmp0
= d4
<< CONST_BITS
;
366 tmp12
= -(tmp0
+ tmp2
);
370 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
371 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
372 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
374 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
375 tmp10
= tmp13
= d4
<< CONST_BITS
;
376 tmp11
= tmp12
= -tmp10
;
382 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
383 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
384 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
386 tmp0
= d0
<< CONST_BITS
;
393 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
394 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
395 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
404 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
405 tmp10
= tmp13
= tmp11
= tmp12
= d0
<< CONST_BITS
;
407 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
408 tmp10
= tmp13
= tmp11
= tmp12
= 0;
414 /* Odd part per figure 8; the matrix is unitary and hence its
415 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
422 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
427 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
);
429 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
430 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
431 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
432 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
433 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
434 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
435 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
436 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
446 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
449 z5
= MULTIPLY(z3
+ d5
, FIX_1_175875602
);
451 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
452 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
453 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
454 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
455 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
456 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
457 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
469 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
472 z5
= MULTIPLY(d7
+ z4
, FIX_1_175875602
);
474 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
475 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
476 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
477 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
478 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
479 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
480 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
490 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
491 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
492 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
493 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
494 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
495 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
496 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
497 z5
= MULTIPLY(d5
+ d7
, FIX_1_175875602
);
511 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
514 z5
= MULTIPLY(z3
+ d1
, FIX_1_175875602
);
516 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
517 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
518 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
519 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
520 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
521 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
522 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
532 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
535 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
536 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
537 tmp2
= MULTIPLY(d3
, FIX_0_509795579
);
538 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
539 z5
= MULTIPLY(z3
, FIX_1_175875602
);
540 z3
= MULTIPLY(-z3
, FIX_0_785694958
);
549 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
551 z5
= MULTIPLY(z1
, FIX_1_175875602
);
553 z1
= MULTIPLY(z1
, FIX_0_275899380
);
554 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
555 tmp0
= MULTIPLY(-d7
, FIX_1_662939225
);
556 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
557 tmp3
= MULTIPLY(d1
, FIX_1_111140466
);
564 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
565 tmp0
= MULTIPLY(-d7
, FIX_1_387039845
);
566 tmp1
= MULTIPLY(d7
, FIX_1_175875602
);
567 tmp2
= MULTIPLY(-d7
, FIX_0_785694958
);
568 tmp3
= MULTIPLY(d7
, FIX_0_275899380
);
576 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
579 z5
= MULTIPLY(d3
+ z4
, FIX_1_175875602
);
581 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
582 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
583 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
584 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
585 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
586 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
587 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
597 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
600 z5
= MULTIPLY(z2
, FIX_1_175875602
);
601 tmp1
= MULTIPLY(d5
, FIX_1_662939225
);
602 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
603 z2
= MULTIPLY(-z2
, FIX_1_387039845
);
604 tmp2
= MULTIPLY(d3
, FIX_1_111140466
);
605 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
614 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
617 z5
= MULTIPLY(z4
, FIX_1_175875602
);
618 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
619 tmp3
= MULTIPLY(d1
, FIX_0_601344887
);
620 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
621 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
622 z4
= MULTIPLY(z4
, FIX_0_785694958
);
629 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
630 tmp0
= MULTIPLY(d5
, FIX_1_175875602
);
631 tmp1
= MULTIPLY(d5
, FIX_0_275899380
);
632 tmp2
= MULTIPLY(-d5
, FIX_1_387039845
);
633 tmp3
= MULTIPLY(d5
, FIX_0_785694958
);
639 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
641 tmp3
= MULTIPLY(d1
, FIX_0_211164243
);
642 tmp2
= MULTIPLY(-d3
, FIX_1_451774981
);
643 z1
= MULTIPLY(d1
, FIX_1_061594337
);
644 z2
= MULTIPLY(-d3
, FIX_2_172734803
);
645 z4
= MULTIPLY(z5
, FIX_0_785694958
);
646 z5
= MULTIPLY(z5
, FIX_1_175875602
);
653 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
654 tmp0
= MULTIPLY(-d3
, FIX_0_785694958
);
655 tmp1
= MULTIPLY(-d3
, FIX_1_387039845
);
656 tmp2
= MULTIPLY(-d3
, FIX_0_275899380
);
657 tmp3
= MULTIPLY(d3
, FIX_1_175875602
);
661 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
662 tmp0
= MULTIPLY(d1
, FIX_0_275899380
);
663 tmp1
= MULTIPLY(d1
, FIX_0_785694958
);
664 tmp2
= MULTIPLY(d1
, FIX_1_175875602
);
665 tmp3
= MULTIPLY(d1
, FIX_1_387039845
);
667 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
668 tmp0
= tmp1
= tmp2
= tmp3
= 0;
674 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
676 dataptr
[0] = (DCTELEM
) DESCALE(tmp10
+ tmp3
, CONST_BITS
-PASS1_BITS
);
677 dataptr
[7] = (DCTELEM
) DESCALE(tmp10
- tmp3
, CONST_BITS
-PASS1_BITS
);
678 dataptr
[1] = (DCTELEM
) DESCALE(tmp11
+ tmp2
, CONST_BITS
-PASS1_BITS
);
679 dataptr
[6] = (DCTELEM
) DESCALE(tmp11
- tmp2
, CONST_BITS
-PASS1_BITS
);
680 dataptr
[2] = (DCTELEM
) DESCALE(tmp12
+ tmp1
, CONST_BITS
-PASS1_BITS
);
681 dataptr
[5] = (DCTELEM
) DESCALE(tmp12
- tmp1
, CONST_BITS
-PASS1_BITS
);
682 dataptr
[3] = (DCTELEM
) DESCALE(tmp13
+ tmp0
, CONST_BITS
-PASS1_BITS
);
683 dataptr
[4] = (DCTELEM
) DESCALE(tmp13
- tmp0
, CONST_BITS
-PASS1_BITS
);
685 dataptr
+= DCTSIZE
; /* advance pointer to next row */
688 /* Pass 2: process columns. */
689 /* Note that we must descale the results by a factor of 8 == 2**3, */
690 /* and also undo the PASS1_BITS scaling. */
693 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
694 /* Columns of zeroes can be exploited in the same way as we did with rows.
695 * However, the row calculation has created many nonzero AC terms, so the
696 * simplification applies less often (typically 5% to 10% of the time).
697 * On machines with very fast multiplication, it's possible that the
698 * test takes more time than it's worth. In that case this section
699 * may be commented out.
702 d0
= dataptr
[DCTSIZE
*0];
703 d1
= dataptr
[DCTSIZE
*1];
704 d2
= dataptr
[DCTSIZE
*2];
705 d3
= dataptr
[DCTSIZE
*3];
706 d4
= dataptr
[DCTSIZE
*4];
707 d5
= dataptr
[DCTSIZE
*5];
708 d6
= dataptr
[DCTSIZE
*6];
709 d7
= dataptr
[DCTSIZE
*7];
711 /* Even part: reverse the even part of the forward DCT. */
712 /* The rotator is sqrt(2)*c(-6). */
717 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
718 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
719 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
720 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
722 tmp0
= (d0
+ d4
) << CONST_BITS
;
723 tmp1
= (d0
- d4
) << CONST_BITS
;
730 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
731 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
732 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
733 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
735 tmp0
= d4
<< CONST_BITS
;
740 tmp12
= -(tmp0
+ tmp2
);
744 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
745 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
746 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
748 tmp0
= (d0
+ d4
) << CONST_BITS
;
749 tmp1
= (d0
- d4
) << CONST_BITS
;
756 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
757 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
758 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
760 tmp0
= d4
<< CONST_BITS
;
765 tmp12
= -(tmp0
+ tmp2
);
771 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
772 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
773 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
774 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
776 tmp0
= d0
<< CONST_BITS
;
783 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
784 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
785 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
786 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
795 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
796 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
797 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
799 tmp0
= d0
<< CONST_BITS
;
806 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
807 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
808 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
821 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
822 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
823 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
825 tmp0
= (d0
+ d4
) << CONST_BITS
;
826 tmp1
= (d0
- d4
) << CONST_BITS
;
833 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
834 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
835 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
837 tmp0
= d4
<< CONST_BITS
;
842 tmp12
= -(tmp0
+ tmp2
);
846 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
847 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
848 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
850 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
851 tmp10
= tmp13
= d4
<< CONST_BITS
;
852 tmp11
= tmp12
= -tmp10
;
858 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
859 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
860 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
862 tmp0
= d0
<< CONST_BITS
;
869 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
870 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
871 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
880 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
881 tmp10
= tmp13
= tmp11
= tmp12
= d0
<< CONST_BITS
;
883 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
884 tmp10
= tmp13
= tmp11
= tmp12
= 0;
890 /* Odd part per figure 8; the matrix is unitary and hence its
891 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
897 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
902 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
);
904 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
905 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
906 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
907 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
908 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
909 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
910 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
911 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
921 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
925 z5
= MULTIPLY(z3
+ d5
, FIX_1_175875602
);
927 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
928 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
929 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
930 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
931 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
932 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
933 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
945 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
950 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
);
952 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
953 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
954 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
955 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
956 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
957 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
958 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
968 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
969 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
970 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
971 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
972 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
973 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
974 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
975 z5
= MULTIPLY(d5
+ d7
, FIX_1_175875602
);
989 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
992 z5
= MULTIPLY(z3
+ d1
, FIX_1_175875602
);
994 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
995 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
996 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
997 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
998 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
999 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
1000 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
1010 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
1013 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
1014 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
1015 tmp2
= MULTIPLY(d3
, FIX_0_509795579
);
1016 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
1017 z5
= MULTIPLY(z3
, FIX_1_175875602
);
1018 z3
= MULTIPLY(-z3
, FIX_0_785694958
);
1027 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
1029 z5
= MULTIPLY(z1
, FIX_1_175875602
);
1031 z1
= MULTIPLY(z1
, FIX_0_275899380
);
1032 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
1033 tmp0
= MULTIPLY(-d7
, FIX_1_662939225
);
1034 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
1035 tmp3
= MULTIPLY(d1
, FIX_1_111140466
);
1042 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
1043 tmp0
= MULTIPLY(-d7
, FIX_1_387039845
);
1044 tmp1
= MULTIPLY(d7
, FIX_1_175875602
);
1045 tmp2
= MULTIPLY(-d7
, FIX_0_785694958
);
1046 tmp3
= MULTIPLY(d7
, FIX_0_275899380
);
1054 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
1057 z5
= MULTIPLY(d3
+ z4
, FIX_1_175875602
);
1059 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
1060 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
1061 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
1062 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
1063 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
1064 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
1065 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
1075 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
1078 z5
= MULTIPLY(z2
, FIX_1_175875602
);
1079 tmp1
= MULTIPLY(d5
, FIX_1_662939225
);
1080 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
1081 z2
= MULTIPLY(-z2
, FIX_1_387039845
);
1082 tmp2
= MULTIPLY(d3
, FIX_1_111140466
);
1083 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
1092 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
1095 z5
= MULTIPLY(z4
, FIX_1_175875602
);
1096 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
1097 tmp3
= MULTIPLY(d1
, FIX_0_601344887
);
1098 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
1099 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
1100 z4
= MULTIPLY(z4
, FIX_0_785694958
);
1107 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
1108 tmp0
= MULTIPLY(d5
, FIX_1_175875602
);
1109 tmp1
= MULTIPLY(d5
, FIX_0_275899380
);
1110 tmp2
= MULTIPLY(-d5
, FIX_1_387039845
);
1111 tmp3
= MULTIPLY(d5
, FIX_0_785694958
);
1117 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
1119 tmp3
= MULTIPLY(d1
, FIX_0_211164243
);
1120 tmp2
= MULTIPLY(-d3
, FIX_1_451774981
);
1121 z1
= MULTIPLY(d1
, FIX_1_061594337
);
1122 z2
= MULTIPLY(-d3
, FIX_2_172734803
);
1123 z4
= MULTIPLY(z5
, FIX_0_785694958
);
1124 z5
= MULTIPLY(z5
, FIX_1_175875602
);
1131 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
1132 tmp0
= MULTIPLY(-d3
, FIX_0_785694958
);
1133 tmp1
= MULTIPLY(-d3
, FIX_1_387039845
);
1134 tmp2
= MULTIPLY(-d3
, FIX_0_275899380
);
1135 tmp3
= MULTIPLY(d3
, FIX_1_175875602
);
1139 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
1140 tmp0
= MULTIPLY(d1
, FIX_0_275899380
);
1141 tmp1
= MULTIPLY(d1
, FIX_0_785694958
);
1142 tmp2
= MULTIPLY(d1
, FIX_1_175875602
);
1143 tmp3
= MULTIPLY(d1
, FIX_1_387039845
);
1145 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
1146 tmp0
= tmp1
= tmp2
= tmp3
= 0;
1152 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1154 dataptr
[DCTSIZE
*0] = (DCTELEM
) DESCALE(tmp10
+ tmp3
,
1155 CONST_BITS
+PASS1_BITS
+3);
1156 dataptr
[DCTSIZE
*7] = (DCTELEM
) DESCALE(tmp10
- tmp3
,
1157 CONST_BITS
+PASS1_BITS
+3);
1158 dataptr
[DCTSIZE
*1] = (DCTELEM
) DESCALE(tmp11
+ tmp2
,
1159 CONST_BITS
+PASS1_BITS
+3);
1160 dataptr
[DCTSIZE
*6] = (DCTELEM
) DESCALE(tmp11
- tmp2
,
1161 CONST_BITS
+PASS1_BITS
+3);
1162 dataptr
[DCTSIZE
*2] = (DCTELEM
) DESCALE(tmp12
+ tmp1
,
1163 CONST_BITS
+PASS1_BITS
+3);
1164 dataptr
[DCTSIZE
*5] = (DCTELEM
) DESCALE(tmp12
- tmp1
,
1165 CONST_BITS
+PASS1_BITS
+3);
1166 dataptr
[DCTSIZE
*3] = (DCTELEM
) DESCALE(tmp13
+ tmp0
,
1167 CONST_BITS
+PASS1_BITS
+3);
1168 dataptr
[DCTSIZE
*4] = (DCTELEM
) DESCALE(tmp13
- tmp0
,
1169 CONST_BITS
+PASS1_BITS
+3);
1171 dataptr
++; /* advance pointer to next column */
1179 void j_rev_dct4(DCTBLOCK data
)
1181 int32_t tmp0
, tmp1
, tmp2
, tmp3
;
1182 int32_t tmp10
, tmp11
, tmp12
, tmp13
;
1184 int32_t d0
, d2
, d4
, d6
;
1185 register DCTELEM
*dataptr
;
1188 /* Pass 1: process rows. */
1189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
1190 /* furthermore, we scale the results by 2**PASS1_BITS. */
1194 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
1195 /* Due to quantization, we will usually find that many of the input
1196 * coefficients are zero, especially the AC terms. We can exploit this
1197 * by short-circuiting the IDCT calculation for any row in which all
1198 * the AC terms are zero. In that case each output is equal to the
1199 * DC coefficient (with scale factor as needed).
1200 * With typical images and quantization tables, half or more of the
1201 * row DCT calculations can be simplified this way.
1204 register int *idataptr
= (int*)dataptr
;
1206 /* WARNING: we do the same permutation as MMX idct to simplify the
1213 if ((d2
| d4
| d6
) == 0) {
1214 /* AC terms all zero */
1216 /* Compute a 32 bit value to assign. */
1217 DCTELEM dcval
= (DCTELEM
) (d0
<< PASS1_BITS
);
1218 register int v
= (dcval
& 0xffff) | ((dcval
<< 16) & 0xffff0000);
1224 dataptr
+= DCTSTRIDE
; /* advance pointer to next row */
1228 /* Even part: reverse the even part of the forward DCT. */
1229 /* The rotator is sqrt(2)*c(-6). */
1234 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1235 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1236 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1237 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1239 tmp0
= (d0
+ d4
) << CONST_BITS
;
1240 tmp1
= (d0
- d4
) << CONST_BITS
;
1242 tmp10
= tmp0
+ tmp3
;
1243 tmp13
= tmp0
- tmp3
;
1244 tmp11
= tmp1
+ tmp2
;
1245 tmp12
= tmp1
- tmp2
;
1247 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
1248 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1249 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1250 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1252 tmp0
= d4
<< CONST_BITS
;
1254 tmp10
= tmp0
+ tmp3
;
1255 tmp13
= tmp0
- tmp3
;
1256 tmp11
= tmp2
- tmp0
;
1257 tmp12
= -(tmp0
+ tmp2
);
1261 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1262 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1263 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1265 tmp0
= (d0
+ d4
) << CONST_BITS
;
1266 tmp1
= (d0
- d4
) << CONST_BITS
;
1268 tmp10
= tmp0
+ tmp3
;
1269 tmp13
= tmp0
- tmp3
;
1270 tmp11
= tmp1
+ tmp2
;
1271 tmp12
= tmp1
- tmp2
;
1273 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
1274 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1275 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1277 tmp0
= d4
<< CONST_BITS
;
1279 tmp10
= tmp0
+ tmp3
;
1280 tmp13
= tmp0
- tmp3
;
1281 tmp11
= tmp2
- tmp0
;
1282 tmp12
= -(tmp0
+ tmp2
);
1288 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
1289 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1290 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1291 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1293 tmp0
= d0
<< CONST_BITS
;
1295 tmp10
= tmp0
+ tmp3
;
1296 tmp13
= tmp0
- tmp3
;
1297 tmp11
= tmp0
+ tmp2
;
1298 tmp12
= tmp0
- tmp2
;
1300 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
1301 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1302 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1303 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1312 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
1313 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1314 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1316 tmp0
= d0
<< CONST_BITS
;
1318 tmp10
= tmp0
+ tmp3
;
1319 tmp13
= tmp0
- tmp3
;
1320 tmp11
= tmp0
+ tmp2
;
1321 tmp12
= tmp0
- tmp2
;
1323 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
1324 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1325 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1338 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1339 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1340 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1342 tmp0
= (d0
+ d4
) << CONST_BITS
;
1343 tmp1
= (d0
- d4
) << CONST_BITS
;
1345 tmp10
= tmp0
+ tmp3
;
1346 tmp13
= tmp0
- tmp3
;
1347 tmp11
= tmp1
+ tmp2
;
1348 tmp12
= tmp1
- tmp2
;
1350 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
1351 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1352 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1354 tmp0
= d4
<< CONST_BITS
;
1356 tmp10
= tmp0
+ tmp3
;
1357 tmp13
= tmp0
- tmp3
;
1358 tmp11
= tmp2
- tmp0
;
1359 tmp12
= -(tmp0
+ tmp2
);
1363 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1364 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
1365 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
1367 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
1368 tmp10
= tmp13
= d4
<< CONST_BITS
;
1369 tmp11
= tmp12
= -tmp10
;
1375 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
1376 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1377 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1379 tmp0
= d0
<< CONST_BITS
;
1381 tmp10
= tmp0
+ tmp3
;
1382 tmp13
= tmp0
- tmp3
;
1383 tmp11
= tmp0
+ tmp2
;
1384 tmp12
= tmp0
- tmp2
;
1386 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
1387 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1388 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1397 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
1398 tmp10
= tmp13
= tmp11
= tmp12
= d0
<< CONST_BITS
;
1400 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
1401 tmp10
= tmp13
= tmp11
= tmp12
= 0;
1407 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1409 dataptr
[0] = (DCTELEM
) DESCALE(tmp10
, CONST_BITS
-PASS1_BITS
);
1410 dataptr
[1] = (DCTELEM
) DESCALE(tmp11
, CONST_BITS
-PASS1_BITS
);
1411 dataptr
[2] = (DCTELEM
) DESCALE(tmp12
, CONST_BITS
-PASS1_BITS
);
1412 dataptr
[3] = (DCTELEM
) DESCALE(tmp13
, CONST_BITS
-PASS1_BITS
);
1414 dataptr
+= DCTSTRIDE
; /* advance pointer to next row */
1417 /* Pass 2: process columns. */
1418 /* Note that we must descale the results by a factor of 8 == 2**3, */
1419 /* and also undo the PASS1_BITS scaling. */
1422 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
1423 /* Columns of zeroes can be exploited in the same way as we did with rows.
1424 * However, the row calculation has created many nonzero AC terms, so the
1425 * simplification applies less often (typically 5% to 10% of the time).
1426 * On machines with very fast multiplication, it's possible that the
1427 * test takes more time than it's worth. In that case this section
1428 * may be commented out.
1431 d0
= dataptr
[DCTSTRIDE
*0];
1432 d2
= dataptr
[DCTSTRIDE
*1];
1433 d4
= dataptr
[DCTSTRIDE
*2];
1434 d6
= dataptr
[DCTSTRIDE
*3];
1436 /* Even part: reverse the even part of the forward DCT. */
1437 /* The rotator is sqrt(2)*c(-6). */
1442 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1443 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1444 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1445 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1447 tmp0
= (d0
+ d4
) << CONST_BITS
;
1448 tmp1
= (d0
- d4
) << CONST_BITS
;
1450 tmp10
= tmp0
+ tmp3
;
1451 tmp13
= tmp0
- tmp3
;
1452 tmp11
= tmp1
+ tmp2
;
1453 tmp12
= tmp1
- tmp2
;
1455 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
1456 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1457 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1458 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1460 tmp0
= d4
<< CONST_BITS
;
1462 tmp10
= tmp0
+ tmp3
;
1463 tmp13
= tmp0
- tmp3
;
1464 tmp11
= tmp2
- tmp0
;
1465 tmp12
= -(tmp0
+ tmp2
);
1469 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1470 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1471 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1473 tmp0
= (d0
+ d4
) << CONST_BITS
;
1474 tmp1
= (d0
- d4
) << CONST_BITS
;
1476 tmp10
= tmp0
+ tmp3
;
1477 tmp13
= tmp0
- tmp3
;
1478 tmp11
= tmp1
+ tmp2
;
1479 tmp12
= tmp1
- tmp2
;
1481 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
1482 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1483 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1485 tmp0
= d4
<< CONST_BITS
;
1487 tmp10
= tmp0
+ tmp3
;
1488 tmp13
= tmp0
- tmp3
;
1489 tmp11
= tmp2
- tmp0
;
1490 tmp12
= -(tmp0
+ tmp2
);
1496 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
1497 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1498 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1499 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1501 tmp0
= d0
<< CONST_BITS
;
1503 tmp10
= tmp0
+ tmp3
;
1504 tmp13
= tmp0
- tmp3
;
1505 tmp11
= tmp0
+ tmp2
;
1506 tmp12
= tmp0
- tmp2
;
1508 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
1509 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1510 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1511 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1520 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
1521 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1522 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1524 tmp0
= d0
<< CONST_BITS
;
1526 tmp10
= tmp0
+ tmp3
;
1527 tmp13
= tmp0
- tmp3
;
1528 tmp11
= tmp0
+ tmp2
;
1529 tmp12
= tmp0
- tmp2
;
1531 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
1532 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1533 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1546 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1547 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1548 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1550 tmp0
= (d0
+ d4
) << CONST_BITS
;
1551 tmp1
= (d0
- d4
) << CONST_BITS
;
1553 tmp10
= tmp0
+ tmp3
;
1554 tmp13
= tmp0
- tmp3
;
1555 tmp11
= tmp1
+ tmp2
;
1556 tmp12
= tmp1
- tmp2
;
1558 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
1559 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1560 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1562 tmp0
= d4
<< CONST_BITS
;
1564 tmp10
= tmp0
+ tmp3
;
1565 tmp13
= tmp0
- tmp3
;
1566 tmp11
= tmp2
- tmp0
;
1567 tmp12
= -(tmp0
+ tmp2
);
1571 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1572 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
1573 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
1575 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
1576 tmp10
= tmp13
= d4
<< CONST_BITS
;
1577 tmp11
= tmp12
= -tmp10
;
1583 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
1584 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1585 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1587 tmp0
= d0
<< CONST_BITS
;
1589 tmp10
= tmp0
+ tmp3
;
1590 tmp13
= tmp0
- tmp3
;
1591 tmp11
= tmp0
+ tmp2
;
1592 tmp12
= tmp0
- tmp2
;
1594 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
1595 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1596 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1605 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
1606 tmp10
= tmp13
= tmp11
= tmp12
= d0
<< CONST_BITS
;
1608 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
1609 tmp10
= tmp13
= tmp11
= tmp12
= 0;
1615 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1617 dataptr
[DCTSTRIDE
*0] = (DCTELEM
) DESCALE(tmp10
,
1618 CONST_BITS
+PASS1_BITS
+3);
1619 dataptr
[DCTSTRIDE
*1] = (DCTELEM
) DESCALE(tmp11
,
1620 CONST_BITS
+PASS1_BITS
+3);
1621 dataptr
[DCTSTRIDE
*2] = (DCTELEM
) DESCALE(tmp12
,
1622 CONST_BITS
+PASS1_BITS
+3);
1623 dataptr
[DCTSTRIDE
*3] = (DCTELEM
) DESCALE(tmp13
,
1624 CONST_BITS
+PASS1_BITS
+3);
1626 dataptr
++; /* advance pointer to next column */