Cast constants to float to avoid gcc converting to and from
[libav.git] / libavcodec / mpegaudiodec.c
1 /*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * MPEG Audio decoder.
25 */
26
27 #include "avcodec.h"
28 #include "get_bits.h"
29 #include "dsputil.h"
30
31 /*
32 * TODO:
33 * - in low precision mode, use more 16 bit multiplies in synth filter
34 * - test lsf / mpeg25 extensively.
35 */
36
37 #include "mpegaudio.h"
38 #include "mpegaudiodecheader.h"
39
40 #include "mathops.h"
41
42 #if CONFIG_FLOAT
43 # define SHR(a,b) ((a)*(1.0/(1<<(b))))
44 # define compute_antialias compute_antialias_float
45 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
46 # define FIXR(x) ((float)(x))
47 # define FIXHR(x) ((float)(x))
48 # define MULH3(x, y, s) ((s)*(y)*(x))
49 # define MULLx(x, y, s) ((y)*(x))
50 # define RENAME(a) a ## _float
51 #else
52 # define SHR(a,b) ((a)>>(b))
53 # define compute_antialias compute_antialias_integer
54 /* WARNING: only correct for posititive numbers */
55 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
56 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
57 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
58 # define MULH3(x, y, s) MULH((s)*(x), y)
59 # define MULLx(x, y, s) MULL(x,y,s)
60 # define RENAME(a) a
61 #endif
62
63 /****************/
64
65 #define HEADER_SIZE 4
66
67 #include "mpegaudiodata.h"
68 #include "mpegaudiodectab.h"
69
70 static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
71 static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
72
73 /* vlc structure for decoding layer 3 huffman tables */
74 static VLC huff_vlc[16];
75 static VLC_TYPE huff_vlc_tables[
76 0+128+128+128+130+128+154+166+
77 142+204+190+170+542+460+662+414
78 ][2];
79 static const int huff_vlc_tables_sizes[16] = {
80 0, 128, 128, 128, 130, 128, 154, 166,
81 142, 204, 190, 170, 542, 460, 662, 414
82 };
83 static VLC huff_quad_vlc[2];
84 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
85 static const int huff_quad_vlc_tables_sizes[2] = {
86 128, 16
87 };
88 /* computed from band_size_long */
89 static uint16_t band_index_long[9][23];
90 #include "mpegaudio_tablegen.h"
91 /* intensity stereo coef table */
92 static INTFLOAT is_table[2][16];
93 static INTFLOAT is_table_lsf[2][2][16];
94 static int32_t csa_table[8][4];
95 static float csa_table_float[8][4];
96 static INTFLOAT mdct_win[8][36];
97
98 /* lower 2 bits: modulo 3, higher bits: shift */
99 static uint16_t scale_factor_modshift[64];
100 /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
101 static int32_t scale_factor_mult[15][3];
102 /* mult table for layer 2 group quantization */
103
104 #define SCALE_GEN(v) \
105 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
106
107 static const int32_t scale_factor_mult2[3][3] = {
108 SCALE_GEN(4.0 / 3.0), /* 3 steps */
109 SCALE_GEN(4.0 / 5.0), /* 5 steps */
110 SCALE_GEN(4.0 / 9.0), /* 9 steps */
111 };
112
113 DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512];
114
115 /**
116 * Convert region offsets to region sizes and truncate
117 * size to big_values.
118 */
119 static void ff_region_offset2size(GranuleDef *g){
120 int i, k, j=0;
121 g->region_size[2] = (576 / 2);
122 for(i=0;i<3;i++) {
123 k = FFMIN(g->region_size[i], g->big_values);
124 g->region_size[i] = k - j;
125 j = k;
126 }
127 }
128
129 static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
130 if (g->block_type == 2)
131 g->region_size[0] = (36 / 2);
132 else {
133 if (s->sample_rate_index <= 2)
134 g->region_size[0] = (36 / 2);
135 else if (s->sample_rate_index != 8)
136 g->region_size[0] = (54 / 2);
137 else
138 g->region_size[0] = (108 / 2);
139 }
140 g->region_size[1] = (576 / 2);
141 }
142
143 static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
144 int l;
145 g->region_size[0] =
146 band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
147 /* should not overflow */
148 l = FFMIN(ra1 + ra2 + 2, 22);
149 g->region_size[1] =
150 band_index_long[s->sample_rate_index][l] >> 1;
151 }
152
153 static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
154 if (g->block_type == 2) {
155 if (g->switch_point) {
156 /* if switched mode, we handle the 36 first samples as
157 long blocks. For 8000Hz, we handle the 48 first
158 exponents as long blocks (XXX: check this!) */
159 if (s->sample_rate_index <= 2)
160 g->long_end = 8;
161 else if (s->sample_rate_index != 8)
162 g->long_end = 6;
163 else
164 g->long_end = 4; /* 8000 Hz */
165
166 g->short_start = 2 + (s->sample_rate_index != 8);
167 } else {
168 g->long_end = 0;
169 g->short_start = 0;
170 }
171 } else {
172 g->short_start = 13;
173 g->long_end = 22;
174 }
175 }
176
177 /* layer 1 unscaling */
178 /* n = number of bits of the mantissa minus 1 */
179 static inline int l1_unscale(int n, int mant, int scale_factor)
180 {
181 int shift, mod;
182 int64_t val;
183
184 shift = scale_factor_modshift[scale_factor];
185 mod = shift & 3;
186 shift >>= 2;
187 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
188 shift += n;
189 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
190 return (int)((val + (1LL << (shift - 1))) >> shift);
191 }
192
193 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
194 {
195 int shift, mod, val;
196
197 shift = scale_factor_modshift[scale_factor];
198 mod = shift & 3;
199 shift >>= 2;
200
201 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
202 /* NOTE: at this point, 0 <= shift <= 21 */
203 if (shift > 0)
204 val = (val + (1 << (shift - 1))) >> shift;
205 return val;
206 }
207
208 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
209 static inline int l3_unscale(int value, int exponent)
210 {
211 unsigned int m;
212 int e;
213
214 e = table_4_3_exp [4*value + (exponent&3)];
215 m = table_4_3_value[4*value + (exponent&3)];
216 e -= (exponent >> 2);
217 assert(e>=1);
218 if (e > 31)
219 return 0;
220 m = (m + (1 << (e-1))) >> e;
221
222 return m;
223 }
224
225 /* all integer n^(4/3) computation code */
226 #define DEV_ORDER 13
227
228 #define POW_FRAC_BITS 24
229 #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
230 #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
231 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
232
233 static int dev_4_3_coefs[DEV_ORDER];
234
235 #if 0 /* unused */
236 static int pow_mult3[3] = {
237 POW_FIX(1.0),
238 POW_FIX(1.25992104989487316476),
239 POW_FIX(1.58740105196819947474),
240 };
241 #endif
242
243 static av_cold void int_pow_init(void)
244 {
245 int i, a;
246
247 a = POW_FIX(1.0);
248 for(i=0;i<DEV_ORDER;i++) {
249 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
250 dev_4_3_coefs[i] = a;
251 }
252 }
253
254 #if 0 /* unused, remove? */
255 /* return the mantissa and the binary exponent */
256 static int int_pow(int i, int *exp_ptr)
257 {
258 int e, er, eq, j;
259 int a, a1;
260
261 /* renormalize */
262 a = i;
263 e = POW_FRAC_BITS;
264 while (a < (1 << (POW_FRAC_BITS - 1))) {
265 a = a << 1;
266 e--;
267 }
268 a -= (1 << POW_FRAC_BITS);
269 a1 = 0;
270 for(j = DEV_ORDER - 1; j >= 0; j--)
271 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
272 a = (1 << POW_FRAC_BITS) + a1;
273 /* exponent compute (exact) */
274 e = e * 4;
275 er = e % 3;
276 eq = e / 3;
277 a = POW_MULL(a, pow_mult3[er]);
278 while (a >= 2 * POW_FRAC_ONE) {
279 a = a >> 1;
280 eq++;
281 }
282 /* convert to float */
283 while (a < POW_FRAC_ONE) {
284 a = a << 1;
285 eq--;
286 }
287 /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
288 #if POW_FRAC_BITS > FRAC_BITS
289 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
290 /* correct overflow */
291 if (a >= 2 * (1 << FRAC_BITS)) {
292 a = a >> 1;
293 eq++;
294 }
295 #endif
296 *exp_ptr = eq;
297 return a;
298 }
299 #endif
300
301 static av_cold int decode_init(AVCodecContext * avctx)
302 {
303 MPADecodeContext *s = avctx->priv_data;
304 static int init=0;
305 int i, j, k;
306
307 s->avctx = avctx;
308
309 avctx->sample_fmt= OUT_FMT;
310 s->error_recognition= avctx->error_recognition;
311
312 if (!init && !avctx->parse_only) {
313 int offset;
314
315 /* scale factors table for layer 1/2 */
316 for(i=0;i<64;i++) {
317 int shift, mod;
318 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
319 shift = (i / 3);
320 mod = i % 3;
321 scale_factor_modshift[i] = mod | (shift << 2);
322 }
323
324 /* scale factor multiply for layer 1 */
325 for(i=0;i<15;i++) {
326 int n, norm;
327 n = i + 2;
328 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
329 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
330 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
331 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
332 dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
333 i, norm,
334 scale_factor_mult[i][0],
335 scale_factor_mult[i][1],
336 scale_factor_mult[i][2]);
337 }
338
339 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
340
341 /* huffman decode tables */
342 offset = 0;
343 for(i=1;i<16;i++) {
344 const HuffTable *h = &mpa_huff_tables[i];
345 int xsize, x, y;
346 uint8_t tmp_bits [512];
347 uint16_t tmp_codes[512];
348
349 memset(tmp_bits , 0, sizeof(tmp_bits ));
350 memset(tmp_codes, 0, sizeof(tmp_codes));
351
352 xsize = h->xsize;
353
354 j = 0;
355 for(x=0;x<xsize;x++) {
356 for(y=0;y<xsize;y++){
357 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
358 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
359 }
360 }
361
362 /* XXX: fail test */
363 huff_vlc[i].table = huff_vlc_tables+offset;
364 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
365 init_vlc(&huff_vlc[i], 7, 512,
366 tmp_bits, 1, 1, tmp_codes, 2, 2,
367 INIT_VLC_USE_NEW_STATIC);
368 offset += huff_vlc_tables_sizes[i];
369 }
370 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
371
372 offset = 0;
373 for(i=0;i<2;i++) {
374 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
375 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
376 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
377 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
378 INIT_VLC_USE_NEW_STATIC);
379 offset += huff_quad_vlc_tables_sizes[i];
380 }
381 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
382
383 for(i=0;i<9;i++) {
384 k = 0;
385 for(j=0;j<22;j++) {
386 band_index_long[i][j] = k;
387 k += band_size_long[i][j];
388 }
389 band_index_long[i][22] = k;
390 }
391
392 /* compute n ^ (4/3) and store it in mantissa/exp format */
393
394 int_pow_init();
395 mpegaudio_tableinit();
396
397 for(i=0;i<7;i++) {
398 float f;
399 INTFLOAT v;
400 if (i != 6) {
401 f = tan((double)i * M_PI / 12.0);
402 v = FIXR(f / (1.0 + f));
403 } else {
404 v = FIXR(1.0);
405 }
406 is_table[0][i] = v;
407 is_table[1][6 - i] = v;
408 }
409 /* invalid values */
410 for(i=7;i<16;i++)
411 is_table[0][i] = is_table[1][i] = 0.0;
412
413 for(i=0;i<16;i++) {
414 double f;
415 int e, k;
416
417 for(j=0;j<2;j++) {
418 e = -(j + 1) * ((i + 1) >> 1);
419 f = pow(2.0, e / 4.0);
420 k = i & 1;
421 is_table_lsf[j][k ^ 1][i] = FIXR(f);
422 is_table_lsf[j][k][i] = FIXR(1.0);
423 dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
424 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
425 }
426 }
427
428 for(i=0;i<8;i++) {
429 float ci, cs, ca;
430 ci = ci_table[i];
431 cs = 1.0 / sqrt(1.0 + ci * ci);
432 ca = cs * ci;
433 csa_table[i][0] = FIXHR(cs/4);
434 csa_table[i][1] = FIXHR(ca/4);
435 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
436 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
437 csa_table_float[i][0] = cs;
438 csa_table_float[i][1] = ca;
439 csa_table_float[i][2] = ca + cs;
440 csa_table_float[i][3] = ca - cs;
441 }
442
443 /* compute mdct windows */
444 for(i=0;i<36;i++) {
445 for(j=0; j<4; j++){
446 double d;
447
448 if(j==2 && i%3 != 1)
449 continue;
450
451 d= sin(M_PI * (i + 0.5) / 36.0);
452 if(j==1){
453 if (i>=30) d= 0;
454 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
455 else if(i>=18) d= 1;
456 }else if(j==3){
457 if (i< 6) d= 0;
458 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
459 else if(i< 18) d= 1;
460 }
461 //merge last stage of imdct into the window coefficients
462 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
463
464 if(j==2)
465 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
466 else
467 mdct_win[j][i ] = FIXHR((d / (1<<5)));
468 }
469 }
470
471 /* NOTE: we do frequency inversion adter the MDCT by changing
472 the sign of the right window coefs */
473 for(j=0;j<4;j++) {
474 for(i=0;i<36;i+=2) {
475 mdct_win[j + 4][i] = mdct_win[j][i];
476 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
477 }
478 }
479
480 init = 1;
481 }
482
483 if (avctx->codec_id == CODEC_ID_MP3ADU)
484 s->adu_mode = 1;
485 return 0;
486 }
487
488 /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
489
490 /* cos(i*pi/64) */
491
492 #define COS0_0 FIXHR(0.50060299823519630134/2)
493 #define COS0_1 FIXHR(0.50547095989754365998/2)
494 #define COS0_2 FIXHR(0.51544730992262454697/2)
495 #define COS0_3 FIXHR(0.53104259108978417447/2)
496 #define COS0_4 FIXHR(0.55310389603444452782/2)
497 #define COS0_5 FIXHR(0.58293496820613387367/2)
498 #define COS0_6 FIXHR(0.62250412303566481615/2)
499 #define COS0_7 FIXHR(0.67480834145500574602/2)
500 #define COS0_8 FIXHR(0.74453627100229844977/2)
501 #define COS0_9 FIXHR(0.83934964541552703873/2)
502 #define COS0_10 FIXHR(0.97256823786196069369/2)
503 #define COS0_11 FIXHR(1.16943993343288495515/4)
504 #define COS0_12 FIXHR(1.48416461631416627724/4)
505 #define COS0_13 FIXHR(2.05778100995341155085/8)
506 #define COS0_14 FIXHR(3.40760841846871878570/8)
507 #define COS0_15 FIXHR(10.19000812354805681150/32)
508
509 #define COS1_0 FIXHR(0.50241928618815570551/2)
510 #define COS1_1 FIXHR(0.52249861493968888062/2)
511 #define COS1_2 FIXHR(0.56694403481635770368/2)
512 #define COS1_3 FIXHR(0.64682178335999012954/2)
513 #define COS1_4 FIXHR(0.78815462345125022473/2)
514 #define COS1_5 FIXHR(1.06067768599034747134/4)
515 #define COS1_6 FIXHR(1.72244709823833392782/4)
516 #define COS1_7 FIXHR(5.10114861868916385802/16)
517
518 #define COS2_0 FIXHR(0.50979557910415916894/2)
519 #define COS2_1 FIXHR(0.60134488693504528054/2)
520 #define COS2_2 FIXHR(0.89997622313641570463/2)
521 #define COS2_3 FIXHR(2.56291544774150617881/8)
522
523 #define COS3_0 FIXHR(0.54119610014619698439/2)
524 #define COS3_1 FIXHR(1.30656296487637652785/4)
525
526 #define COS4_0 FIXHR(0.70710678118654752439/2)
527
528 /* butterfly operator */
529 #define BF(a, b, c, s)\
530 {\
531 tmp0 = tab[a] + tab[b];\
532 tmp1 = tab[a] - tab[b];\
533 tab[a] = tmp0;\
534 tab[b] = MULH3(tmp1, c, 1<<(s));\
535 }
536
537 #define BF1(a, b, c, d)\
538 {\
539 BF(a, b, COS4_0, 1);\
540 BF(c, d,-COS4_0, 1);\
541 tab[c] += tab[d];\
542 }
543
544 #define BF2(a, b, c, d)\
545 {\
546 BF(a, b, COS4_0, 1);\
547 BF(c, d,-COS4_0, 1);\
548 tab[c] += tab[d];\
549 tab[a] += tab[c];\
550 tab[c] += tab[b];\
551 tab[b] += tab[d];\
552 }
553
554 #define ADD(a, b) tab[a] += tab[b]
555
556 /* DCT32 without 1/sqrt(2) coef zero scaling. */
557 static void dct32(INTFLOAT *out, INTFLOAT *tab)
558 {
559 INTFLOAT tmp0, tmp1;
560
561 /* pass 1 */
562 BF( 0, 31, COS0_0 , 1);
563 BF(15, 16, COS0_15, 5);
564 /* pass 2 */
565 BF( 0, 15, COS1_0 , 1);
566 BF(16, 31,-COS1_0 , 1);
567 /* pass 1 */
568 BF( 7, 24, COS0_7 , 1);
569 BF( 8, 23, COS0_8 , 1);
570 /* pass 2 */
571 BF( 7, 8, COS1_7 , 4);
572 BF(23, 24,-COS1_7 , 4);
573 /* pass 3 */
574 BF( 0, 7, COS2_0 , 1);
575 BF( 8, 15,-COS2_0 , 1);
576 BF(16, 23, COS2_0 , 1);
577 BF(24, 31,-COS2_0 , 1);
578 /* pass 1 */
579 BF( 3, 28, COS0_3 , 1);
580 BF(12, 19, COS0_12, 2);
581 /* pass 2 */
582 BF( 3, 12, COS1_3 , 1);
583 BF(19, 28,-COS1_3 , 1);
584 /* pass 1 */
585 BF( 4, 27, COS0_4 , 1);
586 BF(11, 20, COS0_11, 2);
587 /* pass 2 */
588 BF( 4, 11, COS1_4 , 1);
589 BF(20, 27,-COS1_4 , 1);
590 /* pass 3 */
591 BF( 3, 4, COS2_3 , 3);
592 BF(11, 12,-COS2_3 , 3);
593 BF(19, 20, COS2_3 , 3);
594 BF(27, 28,-COS2_3 , 3);
595 /* pass 4 */
596 BF( 0, 3, COS3_0 , 1);
597 BF( 4, 7,-COS3_0 , 1);
598 BF( 8, 11, COS3_0 , 1);
599 BF(12, 15,-COS3_0 , 1);
600 BF(16, 19, COS3_0 , 1);
601 BF(20, 23,-COS3_0 , 1);
602 BF(24, 27, COS3_0 , 1);
603 BF(28, 31,-COS3_0 , 1);
604
605
606
607 /* pass 1 */
608 BF( 1, 30, COS0_1 , 1);
609 BF(14, 17, COS0_14, 3);
610 /* pass 2 */
611 BF( 1, 14, COS1_1 , 1);
612 BF(17, 30,-COS1_1 , 1);
613 /* pass 1 */
614 BF( 6, 25, COS0_6 , 1);
615 BF( 9, 22, COS0_9 , 1);
616 /* pass 2 */
617 BF( 6, 9, COS1_6 , 2);
618 BF(22, 25,-COS1_6 , 2);
619 /* pass 3 */
620 BF( 1, 6, COS2_1 , 1);
621 BF( 9, 14,-COS2_1 , 1);
622 BF(17, 22, COS2_1 , 1);
623 BF(25, 30,-COS2_1 , 1);
624
625 /* pass 1 */
626 BF( 2, 29, COS0_2 , 1);
627 BF(13, 18, COS0_13, 3);
628 /* pass 2 */
629 BF( 2, 13, COS1_2 , 1);
630 BF(18, 29,-COS1_2 , 1);
631 /* pass 1 */
632 BF( 5, 26, COS0_5 , 1);
633 BF(10, 21, COS0_10, 1);
634 /* pass 2 */
635 BF( 5, 10, COS1_5 , 2);
636 BF(21, 26,-COS1_5 , 2);
637 /* pass 3 */
638 BF( 2, 5, COS2_2 , 1);
639 BF(10, 13,-COS2_2 , 1);
640 BF(18, 21, COS2_2 , 1);
641 BF(26, 29,-COS2_2 , 1);
642 /* pass 4 */
643 BF( 1, 2, COS3_1 , 2);
644 BF( 5, 6,-COS3_1 , 2);
645 BF( 9, 10, COS3_1 , 2);
646 BF(13, 14,-COS3_1 , 2);
647 BF(17, 18, COS3_1 , 2);
648 BF(21, 22,-COS3_1 , 2);
649 BF(25, 26, COS3_1 , 2);
650 BF(29, 30,-COS3_1 , 2);
651
652 /* pass 5 */
653 BF1( 0, 1, 2, 3);
654 BF2( 4, 5, 6, 7);
655 BF1( 8, 9, 10, 11);
656 BF2(12, 13, 14, 15);
657 BF1(16, 17, 18, 19);
658 BF2(20, 21, 22, 23);
659 BF1(24, 25, 26, 27);
660 BF2(28, 29, 30, 31);
661
662 /* pass 6 */
663
664 ADD( 8, 12);
665 ADD(12, 10);
666 ADD(10, 14);
667 ADD(14, 9);
668 ADD( 9, 13);
669 ADD(13, 11);
670 ADD(11, 15);
671
672 out[ 0] = tab[0];
673 out[16] = tab[1];
674 out[ 8] = tab[2];
675 out[24] = tab[3];
676 out[ 4] = tab[4];
677 out[20] = tab[5];
678 out[12] = tab[6];
679 out[28] = tab[7];
680 out[ 2] = tab[8];
681 out[18] = tab[9];
682 out[10] = tab[10];
683 out[26] = tab[11];
684 out[ 6] = tab[12];
685 out[22] = tab[13];
686 out[14] = tab[14];
687 out[30] = tab[15];
688
689 ADD(24, 28);
690 ADD(28, 26);
691 ADD(26, 30);
692 ADD(30, 25);
693 ADD(25, 29);
694 ADD(29, 27);
695 ADD(27, 31);
696
697 out[ 1] = tab[16] + tab[24];
698 out[17] = tab[17] + tab[25];
699 out[ 9] = tab[18] + tab[26];
700 out[25] = tab[19] + tab[27];
701 out[ 5] = tab[20] + tab[28];
702 out[21] = tab[21] + tab[29];
703 out[13] = tab[22] + tab[30];
704 out[29] = tab[23] + tab[31];
705 out[ 3] = tab[24] + tab[20];
706 out[19] = tab[25] + tab[21];
707 out[11] = tab[26] + tab[22];
708 out[27] = tab[27] + tab[23];
709 out[ 7] = tab[28] + tab[18];
710 out[23] = tab[29] + tab[19];
711 out[15] = tab[30] + tab[17];
712 out[31] = tab[31];
713 }
714
715 #if CONFIG_FLOAT
716 static inline float round_sample(float *sum)
717 {
718 float sum1=*sum;
719 *sum = 0;
720 return sum1;
721 }
722
723 /* signed 16x16 -> 32 multiply add accumulate */
724 #define MACS(rt, ra, rb) rt+=(ra)*(rb)
725
726 /* signed 16x16 -> 32 multiply */
727 #define MULS(ra, rb) ((ra)*(rb))
728
729 #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
730
731 #elif FRAC_BITS <= 15
732
733 static inline int round_sample(int *sum)
734 {
735 int sum1;
736 sum1 = (*sum) >> OUT_SHIFT;
737 *sum &= (1<<OUT_SHIFT)-1;
738 return av_clip(sum1, OUT_MIN, OUT_MAX);
739 }
740
741 /* signed 16x16 -> 32 multiply add accumulate */
742 #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
743
744 /* signed 16x16 -> 32 multiply */
745 #define MULS(ra, rb) MUL16(ra, rb)
746
747 #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
748
749 #else
750
751 static inline int round_sample(int64_t *sum)
752 {
753 int sum1;
754 sum1 = (int)((*sum) >> OUT_SHIFT);
755 *sum &= (1<<OUT_SHIFT)-1;
756 return av_clip(sum1, OUT_MIN, OUT_MAX);
757 }
758
759 # define MULS(ra, rb) MUL64(ra, rb)
760 # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
761 # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
762 #endif
763
764 #define SUM8(op, sum, w, p) \
765 { \
766 op(sum, (w)[0 * 64], (p)[0 * 64]); \
767 op(sum, (w)[1 * 64], (p)[1 * 64]); \
768 op(sum, (w)[2 * 64], (p)[2 * 64]); \
769 op(sum, (w)[3 * 64], (p)[3 * 64]); \
770 op(sum, (w)[4 * 64], (p)[4 * 64]); \
771 op(sum, (w)[5 * 64], (p)[5 * 64]); \
772 op(sum, (w)[6 * 64], (p)[6 * 64]); \
773 op(sum, (w)[7 * 64], (p)[7 * 64]); \
774 }
775
776 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
777 { \
778 INTFLOAT tmp;\
779 tmp = p[0 * 64];\
780 op1(sum1, (w1)[0 * 64], tmp);\
781 op2(sum2, (w2)[0 * 64], tmp);\
782 tmp = p[1 * 64];\
783 op1(sum1, (w1)[1 * 64], tmp);\
784 op2(sum2, (w2)[1 * 64], tmp);\
785 tmp = p[2 * 64];\
786 op1(sum1, (w1)[2 * 64], tmp);\
787 op2(sum2, (w2)[2 * 64], tmp);\
788 tmp = p[3 * 64];\
789 op1(sum1, (w1)[3 * 64], tmp);\
790 op2(sum2, (w2)[3 * 64], tmp);\
791 tmp = p[4 * 64];\
792 op1(sum1, (w1)[4 * 64], tmp);\
793 op2(sum2, (w2)[4 * 64], tmp);\
794 tmp = p[5 * 64];\
795 op1(sum1, (w1)[5 * 64], tmp);\
796 op2(sum2, (w2)[5 * 64], tmp);\
797 tmp = p[6 * 64];\
798 op1(sum1, (w1)[6 * 64], tmp);\
799 op2(sum2, (w2)[6 * 64], tmp);\
800 tmp = p[7 * 64];\
801 op1(sum1, (w1)[7 * 64], tmp);\
802 op2(sum2, (w2)[7 * 64], tmp);\
803 }
804
805 void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
806 {
807 int i;
808
809 /* max = 18760, max sum over all 16 coefs : 44736 */
810 for(i=0;i<257;i++) {
811 INTFLOAT v;
812 v = ff_mpa_enwindow[i];
813 #if CONFIG_FLOAT
814 v *= 1.0 / (1LL<<(16 + FRAC_BITS));
815 #elif WFRAC_BITS < 16
816 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
817 #endif
818 window[i] = v;
819 if ((i & 63) != 0)
820 v = -v;
821 if (i != 0)
822 window[512 - i] = v;
823 }
824 }
825
826 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
827 32 samples. */
828 /* XXX: optimize by avoiding ring buffer usage */
829 void RENAME(ff_mpa_synth_filter)(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
830 MPA_INT *window, int *dither_state,
831 OUT_INT *samples, int incr,
832 INTFLOAT sb_samples[SBLIMIT])
833 {
834 register MPA_INT *synth_buf;
835 register const MPA_INT *w, *w2, *p;
836 int j, offset;
837 OUT_INT *samples2;
838 #if CONFIG_FLOAT
839 float sum, sum2;
840 #elif FRAC_BITS <= 15
841 int32_t tmp[32];
842 int sum, sum2;
843 #else
844 int64_t sum, sum2;
845 #endif
846
847 offset = *synth_buf_offset;
848 synth_buf = synth_buf_ptr + offset;
849
850 #if FRAC_BITS <= 15 && !CONFIG_FLOAT
851 dct32(tmp, sb_samples);
852 for(j=0;j<32;j++) {
853 /* NOTE: can cause a loss in precision if very high amplitude
854 sound */
855 synth_buf[j] = av_clip_int16(tmp[j]);
856 }
857 #else
858 dct32(synth_buf, sb_samples);
859 #endif
860
861 /* copy to avoid wrap */
862 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
863
864 samples2 = samples + 31 * incr;
865 w = window;
866 w2 = window + 31;
867
868 sum = *dither_state;
869 p = synth_buf + 16;
870 SUM8(MACS, sum, w, p);
871 p = synth_buf + 48;
872 SUM8(MLSS, sum, w + 32, p);
873 *samples = round_sample(&sum);
874 samples += incr;
875 w++;
876
877 /* we calculate two samples at the same time to avoid one memory
878 access per two sample */
879 for(j=1;j<16;j++) {
880 sum2 = 0;
881 p = synth_buf + 16 + j;
882 SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
883 p = synth_buf + 48 - j;
884 SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
885
886 *samples = round_sample(&sum);
887 samples += incr;
888 sum += sum2;
889 *samples2 = round_sample(&sum);
890 samples2 -= incr;
891 w++;
892 w2--;
893 }
894
895 p = synth_buf + 32;
896 SUM8(MLSS, sum, w + 32, p);
897 *samples = round_sample(&sum);
898 *dither_state= sum;
899
900 offset = (offset - 32) & 511;
901 *synth_buf_offset = offset;
902 }
903
904 #define C3 FIXHR(0.86602540378443864676/2)
905
906 /* 0.5 / cos(pi*(2*i+1)/36) */
907 static const INTFLOAT icos36[9] = {
908 FIXR(0.50190991877167369479),
909 FIXR(0.51763809020504152469), //0
910 FIXR(0.55168895948124587824),
911 FIXR(0.61038729438072803416),
912 FIXR(0.70710678118654752439), //1
913 FIXR(0.87172339781054900991),
914 FIXR(1.18310079157624925896),
915 FIXR(1.93185165257813657349), //2
916 FIXR(5.73685662283492756461),
917 };
918
919 /* 0.5 / cos(pi*(2*i+1)/36) */
920 static const INTFLOAT icos36h[9] = {
921 FIXHR(0.50190991877167369479/2),
922 FIXHR(0.51763809020504152469/2), //0
923 FIXHR(0.55168895948124587824/2),
924 FIXHR(0.61038729438072803416/2),
925 FIXHR(0.70710678118654752439/2), //1
926 FIXHR(0.87172339781054900991/2),
927 FIXHR(1.18310079157624925896/4),
928 FIXHR(1.93185165257813657349/4), //2
929 // FIXHR(5.73685662283492756461),
930 };
931
932 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
933 cases. */
934 static void imdct12(INTFLOAT *out, INTFLOAT *in)
935 {
936 INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
937
938 in0= in[0*3];
939 in1= in[1*3] + in[0*3];
940 in2= in[2*3] + in[1*3];
941 in3= in[3*3] + in[2*3];
942 in4= in[4*3] + in[3*3];
943 in5= in[5*3] + in[4*3];
944 in5 += in3;
945 in3 += in1;
946
947 in2= MULH3(in2, C3, 2);
948 in3= MULH3(in3, C3, 4);
949
950 t1 = in0 - in4;
951 t2 = MULH3(in1 - in5, icos36h[4], 2);
952
953 out[ 7]=
954 out[10]= t1 + t2;
955 out[ 1]=
956 out[ 4]= t1 - t2;
957
958 in0 += SHR(in4, 1);
959 in4 = in0 + in2;
960 in5 += 2*in1;
961 in1 = MULH3(in5 + in3, icos36h[1], 1);
962 out[ 8]=
963 out[ 9]= in4 + in1;
964 out[ 2]=
965 out[ 3]= in4 - in1;
966
967 in0 -= in2;
968 in5 = MULH3(in5 - in3, icos36h[7], 2);
969 out[ 0]=
970 out[ 5]= in0 - in5;
971 out[ 6]=
972 out[11]= in0 + in5;
973 }
974
975 /* cos(pi*i/18) */
976 #define C1 FIXHR(0.98480775301220805936/2)
977 #define C2 FIXHR(0.93969262078590838405/2)
978 #define C3 FIXHR(0.86602540378443864676/2)
979 #define C4 FIXHR(0.76604444311897803520/2)
980 #define C5 FIXHR(0.64278760968653932632/2)
981 #define C6 FIXHR(0.5/2)
982 #define C7 FIXHR(0.34202014332566873304/2)
983 #define C8 FIXHR(0.17364817766693034885/2)
984
985
986 /* using Lee like decomposition followed by hand coded 9 points DCT */
987 static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
988 {
989 int i, j;
990 INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
991 INTFLOAT tmp[18], *tmp1, *in1;
992
993 for(i=17;i>=1;i--)
994 in[i] += in[i-1];
995 for(i=17;i>=3;i-=2)
996 in[i] += in[i-2];
997
998 for(j=0;j<2;j++) {
999 tmp1 = tmp + j;
1000 in1 = in + j;
1001
1002 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1003
1004 t3 = in1[2*0] + SHR(in1[2*6],1);
1005 t1 = in1[2*0] - in1[2*6];
1006 tmp1[ 6] = t1 - SHR(t2,1);
1007 tmp1[16] = t1 + t2;
1008
1009 t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
1010 t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
1011 t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
1012
1013 tmp1[10] = t3 - t0 - t2;
1014 tmp1[ 2] = t3 + t0 + t1;
1015 tmp1[14] = t3 + t2 - t1;
1016
1017 tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
1018 t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
1019 t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
1020 t0 = MULH3(in1[2*3], C3, 2);
1021
1022 t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
1023
1024 tmp1[ 0] = t2 + t3 + t0;
1025 tmp1[12] = t2 + t1 - t0;
1026 tmp1[ 8] = t3 - t1 - t0;
1027 }
1028
1029 i = 0;
1030 for(j=0;j<4;j++) {
1031 t0 = tmp[i];
1032 t1 = tmp[i + 2];
1033 s0 = t1 + t0;
1034 s2 = t1 - t0;
1035
1036 t2 = tmp[i + 1];
1037 t3 = tmp[i + 3];
1038 s1 = MULH3(t3 + t2, icos36h[j], 2);
1039 s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
1040
1041 t0 = s0 + s1;
1042 t1 = s0 - s1;
1043 out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
1044 out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
1045 buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
1046 buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
1047
1048 t0 = s2 + s3;
1049 t1 = s2 - s3;
1050 out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
1051 out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
1052 buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
1053 buf[ + j] = MULH3(t0, win[18 + j], 1);
1054 i += 4;
1055 }
1056
1057 s0 = tmp[16];
1058 s1 = MULH3(tmp[17], icos36h[4], 2);
1059 t0 = s0 + s1;
1060 t1 = s0 - s1;
1061 out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
1062 out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
1063 buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
1064 buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
1065 }
1066
1067 /* return the number of decoded frames */
1068 static int mp_decode_layer1(MPADecodeContext *s)
1069 {
1070 int bound, i, v, n, ch, j, mant;
1071 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1072 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1073
1074 if (s->mode == MPA_JSTEREO)
1075 bound = (s->mode_ext + 1) * 4;
1076 else
1077 bound = SBLIMIT;
1078
1079 /* allocation bits */
1080 for(i=0;i<bound;i++) {
1081 for(ch=0;ch<s->nb_channels;ch++) {
1082 allocation[ch][i] = get_bits(&s->gb, 4);
1083 }
1084 }
1085 for(i=bound;i<SBLIMIT;i++) {
1086 allocation[0][i] = get_bits(&s->gb, 4);
1087 }
1088
1089 /* scale factors */
1090 for(i=0;i<bound;i++) {
1091 for(ch=0;ch<s->nb_channels;ch++) {
1092 if (allocation[ch][i])
1093 scale_factors[ch][i] = get_bits(&s->gb, 6);
1094 }
1095 }
1096 for(i=bound;i<SBLIMIT;i++) {
1097 if (allocation[0][i]) {
1098 scale_factors[0][i] = get_bits(&s->gb, 6);
1099 scale_factors[1][i] = get_bits(&s->gb, 6);
1100 }
1101 }
1102
1103 /* compute samples */
1104 for(j=0;j<12;j++) {
1105 for(i=0;i<bound;i++) {
1106 for(ch=0;ch<s->nb_channels;ch++) {
1107 n = allocation[ch][i];
1108 if (n) {
1109 mant = get_bits(&s->gb, n + 1);
1110 v = l1_unscale(n, mant, scale_factors[ch][i]);
1111 } else {
1112 v = 0;
1113 }
1114 s->sb_samples[ch][j][i] = v;
1115 }
1116 }
1117 for(i=bound;i<SBLIMIT;i++) {
1118 n = allocation[0][i];
1119 if (n) {
1120 mant = get_bits(&s->gb, n + 1);
1121 v = l1_unscale(n, mant, scale_factors[0][i]);
1122 s->sb_samples[0][j][i] = v;
1123 v = l1_unscale(n, mant, scale_factors[1][i]);
1124 s->sb_samples[1][j][i] = v;
1125 } else {
1126 s->sb_samples[0][j][i] = 0;
1127 s->sb_samples[1][j][i] = 0;
1128 }
1129 }
1130 }
1131 return 12;
1132 }
1133
1134 static int mp_decode_layer2(MPADecodeContext *s)
1135 {
1136 int sblimit; /* number of used subbands */
1137 const unsigned char *alloc_table;
1138 int table, bit_alloc_bits, i, j, ch, bound, v;
1139 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1140 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1141 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1142 int scale, qindex, bits, steps, k, l, m, b;
1143
1144 /* select decoding table */
1145 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
1146 s->sample_rate, s->lsf);
1147 sblimit = ff_mpa_sblimit_table[table];
1148 alloc_table = ff_mpa_alloc_tables[table];
1149
1150 if (s->mode == MPA_JSTEREO)
1151 bound = (s->mode_ext + 1) * 4;
1152 else
1153 bound = sblimit;
1154
1155 dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
1156
1157 /* sanity check */
1158 if( bound > sblimit ) bound = sblimit;
1159
1160 /* parse bit allocation */
1161 j = 0;
1162 for(i=0;i<bound;i++) {
1163 bit_alloc_bits = alloc_table[j];
1164 for(ch=0;ch<s->nb_channels;ch++) {
1165 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1166 }
1167 j += 1 << bit_alloc_bits;
1168 }
1169 for(i=bound;i<sblimit;i++) {
1170 bit_alloc_bits = alloc_table[j];
1171 v = get_bits(&s->gb, bit_alloc_bits);
1172 bit_alloc[0][i] = v;
1173 bit_alloc[1][i] = v;
1174 j += 1 << bit_alloc_bits;
1175 }
1176
1177 /* scale codes */
1178 for(i=0;i<sblimit;i++) {
1179 for(ch=0;ch<s->nb_channels;ch++) {
1180 if (bit_alloc[ch][i])
1181 scale_code[ch][i] = get_bits(&s->gb, 2);
1182 }
1183 }
1184
1185 /* scale factors */
1186 for(i=0;i<sblimit;i++) {
1187 for(ch=0;ch<s->nb_channels;ch++) {
1188 if (bit_alloc[ch][i]) {
1189 sf = scale_factors[ch][i];
1190 switch(scale_code[ch][i]) {
1191 default:
1192 case 0:
1193 sf[0] = get_bits(&s->gb, 6);
1194 sf[1] = get_bits(&s->gb, 6);
1195 sf[2] = get_bits(&s->gb, 6);
1196 break;
1197 case 2:
1198 sf[0] = get_bits(&s->gb, 6);
1199 sf[1] = sf[0];
1200 sf[2] = sf[0];
1201 break;
1202 case 1:
1203 sf[0] = get_bits(&s->gb, 6);
1204 sf[2] = get_bits(&s->gb, 6);
1205 sf[1] = sf[0];
1206 break;
1207 case 3:
1208 sf[0] = get_bits(&s->gb, 6);
1209 sf[2] = get_bits(&s->gb, 6);
1210 sf[1] = sf[2];
1211 break;
1212 }
1213 }
1214 }
1215 }
1216
1217 /* samples */
1218 for(k=0;k<3;k++) {
1219 for(l=0;l<12;l+=3) {
1220 j = 0;
1221 for(i=0;i<bound;i++) {
1222 bit_alloc_bits = alloc_table[j];
1223 for(ch=0;ch<s->nb_channels;ch++) {
1224 b = bit_alloc[ch][i];
1225 if (b) {
1226 scale = scale_factors[ch][i][k];
1227 qindex = alloc_table[j+b];
1228 bits = ff_mpa_quant_bits[qindex];
1229 if (bits < 0) {
1230 /* 3 values at the same time */
1231 v = get_bits(&s->gb, -bits);
1232 steps = ff_mpa_quant_steps[qindex];
1233 s->sb_samples[ch][k * 12 + l + 0][i] =
1234 l2_unscale_group(steps, v % steps, scale);
1235 v = v / steps;
1236 s->sb_samples[ch][k * 12 + l + 1][i] =
1237 l2_unscale_group(steps, v % steps, scale);
1238 v = v / steps;
1239 s->sb_samples[ch][k * 12 + l + 2][i] =
1240 l2_unscale_group(steps, v, scale);
1241 } else {
1242 for(m=0;m<3;m++) {
1243 v = get_bits(&s->gb, bits);
1244 v = l1_unscale(bits - 1, v, scale);
1245 s->sb_samples[ch][k * 12 + l + m][i] = v;
1246 }
1247 }
1248 } else {
1249 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1250 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1251 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1252 }
1253 }
1254 /* next subband in alloc table */
1255 j += 1 << bit_alloc_bits;
1256 }
1257 /* XXX: find a way to avoid this duplication of code */
1258 for(i=bound;i<sblimit;i++) {
1259 bit_alloc_bits = alloc_table[j];
1260 b = bit_alloc[0][i];
1261 if (b) {
1262 int mant, scale0, scale1;
1263 scale0 = scale_factors[0][i][k];
1264 scale1 = scale_factors[1][i][k];
1265 qindex = alloc_table[j+b];
1266 bits = ff_mpa_quant_bits[qindex];
1267 if (bits < 0) {
1268 /* 3 values at the same time */
1269 v = get_bits(&s->gb, -bits);
1270 steps = ff_mpa_quant_steps[qindex];
1271 mant = v % steps;
1272 v = v / steps;
1273 s->sb_samples[0][k * 12 + l + 0][i] =
1274 l2_unscale_group(steps, mant, scale0);
1275 s->sb_samples[1][k * 12 + l + 0][i] =
1276 l2_unscale_group(steps, mant, scale1);
1277 mant = v % steps;
1278 v = v / steps;
1279 s->sb_samples[0][k * 12 + l + 1][i] =
1280 l2_unscale_group(steps, mant, scale0);
1281 s->sb_samples[1][k * 12 + l + 1][i] =
1282 l2_unscale_group(steps, mant, scale1);
1283 s->sb_samples[0][k * 12 + l + 2][i] =
1284 l2_unscale_group(steps, v, scale0);
1285 s->sb_samples[1][k * 12 + l + 2][i] =
1286 l2_unscale_group(steps, v, scale1);
1287 } else {
1288 for(m=0;m<3;m++) {
1289 mant = get_bits(&s->gb, bits);
1290 s->sb_samples[0][k * 12 + l + m][i] =
1291 l1_unscale(bits - 1, mant, scale0);
1292 s->sb_samples[1][k * 12 + l + m][i] =
1293 l1_unscale(bits - 1, mant, scale1);
1294 }
1295 }
1296 } else {
1297 s->sb_samples[0][k * 12 + l + 0][i] = 0;
1298 s->sb_samples[0][k * 12 + l + 1][i] = 0;
1299 s->sb_samples[0][k * 12 + l + 2][i] = 0;
1300 s->sb_samples[1][k * 12 + l + 0][i] = 0;
1301 s->sb_samples[1][k * 12 + l + 1][i] = 0;
1302 s->sb_samples[1][k * 12 + l + 2][i] = 0;
1303 }
1304 /* next subband in alloc table */
1305 j += 1 << bit_alloc_bits;
1306 }
1307 /* fill remaining samples to zero */
1308 for(i=sblimit;i<SBLIMIT;i++) {
1309 for(ch=0;ch<s->nb_channels;ch++) {
1310 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1311 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1312 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1313 }
1314 }
1315 }
1316 }
1317 return 3 * 12;
1318 }
1319
1320 #define SPLIT(dst,sf,n)\
1321 if(n==3){\
1322 int m= (sf*171)>>9;\
1323 dst= sf - 3*m;\
1324 sf=m;\
1325 }else if(n==4){\
1326 dst= sf&3;\
1327 sf>>=2;\
1328 }else if(n==5){\
1329 int m= (sf*205)>>10;\
1330 dst= sf - 5*m;\
1331 sf=m;\
1332 }else if(n==6){\
1333 int m= (sf*171)>>10;\
1334 dst= sf - 6*m;\
1335 sf=m;\
1336 }else{\
1337 dst=0;\
1338 }
1339
1340 static av_always_inline void lsf_sf_expand(int *slen,
1341 int sf, int n1, int n2, int n3)
1342 {
1343 SPLIT(slen[3], sf, n3)
1344 SPLIT(slen[2], sf, n2)
1345 SPLIT(slen[1], sf, n1)
1346 slen[0] = sf;
1347 }
1348
1349 static void exponents_from_scale_factors(MPADecodeContext *s,
1350 GranuleDef *g,
1351 int16_t *exponents)
1352 {
1353 const uint8_t *bstab, *pretab;
1354 int len, i, j, k, l, v0, shift, gain, gains[3];
1355 int16_t *exp_ptr;
1356
1357 exp_ptr = exponents;
1358 gain = g->global_gain - 210;
1359 shift = g->scalefac_scale + 1;
1360
1361 bstab = band_size_long[s->sample_rate_index];
1362 pretab = mpa_pretab[g->preflag];
1363 for(i=0;i<g->long_end;i++) {
1364 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1365 len = bstab[i];
1366 for(j=len;j>0;j--)
1367 *exp_ptr++ = v0;
1368 }
1369
1370 if (g->short_start < 13) {
1371 bstab = band_size_short[s->sample_rate_index];
1372 gains[0] = gain - (g->subblock_gain[0] << 3);
1373 gains[1] = gain - (g->subblock_gain[1] << 3);
1374 gains[2] = gain - (g->subblock_gain[2] << 3);
1375 k = g->long_end;
1376 for(i=g->short_start;i<13;i++) {
1377 len = bstab[i];
1378 for(l=0;l<3;l++) {
1379 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1380 for(j=len;j>0;j--)
1381 *exp_ptr++ = v0;
1382 }
1383 }
1384 }
1385 }
1386
1387 /* handle n = 0 too */
1388 static inline int get_bitsz(GetBitContext *s, int n)
1389 {
1390 if (n == 0)
1391 return 0;
1392 else
1393 return get_bits(s, n);
1394 }
1395
1396
1397 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
1398 if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
1399 s->gb= s->in_gb;
1400 s->in_gb.buffer=NULL;
1401 assert((get_bits_count(&s->gb) & 7) == 0);
1402 skip_bits_long(&s->gb, *pos - *end_pos);
1403 *end_pos2=
1404 *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
1405 *pos= get_bits_count(&s->gb);
1406 }
1407 }
1408
1409 /* Following is a optimized code for
1410 INTFLOAT v = *src
1411 if(get_bits1(&s->gb))
1412 v = -v;
1413 *dst = v;
1414 */
1415 #if CONFIG_FLOAT
1416 #define READ_FLIP_SIGN(dst,src)\
1417 v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
1418 AV_WN32A(dst, v);
1419 #else
1420 #define READ_FLIP_SIGN(dst,src)\
1421 v= -get_bits1(&s->gb);\
1422 *(dst) = (*(src) ^ v) - v;
1423 #endif
1424
1425 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1426 int16_t *exponents, int end_pos2)
1427 {
1428 int s_index;
1429 int i;
1430 int last_pos, bits_left;
1431 VLC *vlc;
1432 int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1433
1434 /* low frequencies (called big values) */
1435 s_index = 0;
1436 for(i=0;i<3;i++) {
1437 int j, k, l, linbits;
1438 j = g->region_size[i];
1439 if (j == 0)
1440 continue;
1441 /* select vlc table */
1442 k = g->table_select[i];
1443 l = mpa_huff_data[k][0];
1444 linbits = mpa_huff_data[k][1];
1445 vlc = &huff_vlc[l];
1446
1447 if(!l){
1448 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
1449 s_index += 2*j;
1450 continue;
1451 }
1452
1453 /* read huffcode and compute each couple */
1454 for(;j>0;j--) {
1455 int exponent, x, y;
1456 int v;
1457 int pos= get_bits_count(&s->gb);
1458
1459 if (pos >= end_pos){
1460 // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1461 switch_buffer(s, &pos, &end_pos, &end_pos2);
1462 // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1463 if(pos >= end_pos)
1464 break;
1465 }
1466 y = get_vlc2(&s->gb, vlc->table, 7, 3);
1467
1468 if(!y){
1469 g->sb_hybrid[s_index ] =
1470 g->sb_hybrid[s_index+1] = 0;
1471 s_index += 2;
1472 continue;
1473 }
1474
1475 exponent= exponents[s_index];
1476
1477 dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
1478 i, g->region_size[i] - j, x, y, exponent);
1479 if(y&16){
1480 x = y >> 5;
1481 y = y & 0x0f;
1482 if (x < 15){
1483 READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x)
1484 }else{
1485 x += get_bitsz(&s->gb, linbits);
1486 v = l3_unscale(x, exponent);
1487 if (get_bits1(&s->gb))
1488 v = -v;
1489 g->sb_hybrid[s_index] = v;
1490 }
1491 if (y < 15){
1492 READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
1493 }else{
1494 y += get_bitsz(&s->gb, linbits);
1495 v = l3_unscale(y, exponent);
1496 if (get_bits1(&s->gb))
1497 v = -v;
1498 g->sb_hybrid[s_index+1] = v;
1499 }
1500 }else{
1501 x = y >> 5;
1502 y = y & 0x0f;
1503 x += y;
1504 if (x < 15){
1505 READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x)
1506 }else{
1507 x += get_bitsz(&s->gb, linbits);
1508 v = l3_unscale(x, exponent);
1509 if (get_bits1(&s->gb))
1510 v = -v;
1511 g->sb_hybrid[s_index+!!y] = v;
1512 }
1513 g->sb_hybrid[s_index+ !y] = 0;
1514 }
1515 s_index+=2;
1516 }
1517 }
1518
1519 /* high frequencies */
1520 vlc = &huff_quad_vlc[g->count1table_select];
1521 last_pos=0;
1522 while (s_index <= 572) {
1523 int pos, code;
1524 pos = get_bits_count(&s->gb);
1525 if (pos >= end_pos) {
1526 if (pos > end_pos2 && last_pos){
1527 /* some encoders generate an incorrect size for this
1528 part. We must go back into the data */
1529 s_index -= 4;
1530 skip_bits_long(&s->gb, last_pos - pos);
1531 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
1532 if(s->error_recognition >= FF_ER_COMPLIANT)
1533 s_index=0;
1534 break;
1535 }
1536 // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1537 switch_buffer(s, &pos, &end_pos, &end_pos2);
1538 // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1539 if(pos >= end_pos)
1540 break;
1541 }
1542 last_pos= pos;
1543
1544 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1545 dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
1546 g->sb_hybrid[s_index+0]=
1547 g->sb_hybrid[s_index+1]=
1548 g->sb_hybrid[s_index+2]=
1549 g->sb_hybrid[s_index+3]= 0;
1550 while(code){
1551 static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1552 int v;
1553 int pos= s_index+idxtab[code];
1554 code ^= 8>>idxtab[code];
1555 READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos])
1556 }
1557 s_index+=4;
1558 }
1559 /* skip extension bits */
1560 bits_left = end_pos2 - get_bits_count(&s->gb);
1561 //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1562 if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
1563 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1564 s_index=0;
1565 }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
1566 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1567 s_index=0;
1568 }
1569 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1570 skip_bits_long(&s->gb, bits_left);
1571
1572 i= get_bits_count(&s->gb);
1573 switch_buffer(s, &i, &end_pos, &end_pos2);
1574
1575 return 0;
1576 }
1577
1578 /* Reorder short blocks from bitstream order to interleaved order. It
1579 would be faster to do it in parsing, but the code would be far more
1580 complicated */
1581 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1582 {
1583 int i, j, len;
1584 INTFLOAT *ptr, *dst, *ptr1;
1585 INTFLOAT tmp[576];
1586
1587 if (g->block_type != 2)
1588 return;
1589
1590 if (g->switch_point) {
1591 if (s->sample_rate_index != 8) {
1592 ptr = g->sb_hybrid + 36;
1593 } else {
1594 ptr = g->sb_hybrid + 48;
1595 }
1596 } else {
1597 ptr = g->sb_hybrid;
1598 }
1599
1600 for(i=g->short_start;i<13;i++) {
1601 len = band_size_short[s->sample_rate_index][i];
1602 ptr1 = ptr;
1603 dst = tmp;
1604 for(j=len;j>0;j--) {
1605 *dst++ = ptr[0*len];
1606 *dst++ = ptr[1*len];
1607 *dst++ = ptr[2*len];
1608 ptr++;
1609 }
1610 ptr+=2*len;
1611 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1612 }
1613 }
1614
1615 #define ISQRT2 FIXR(0.70710678118654752440)
1616
1617 static void compute_stereo(MPADecodeContext *s,
1618 GranuleDef *g0, GranuleDef *g1)
1619 {
1620 int i, j, k, l;
1621 int sf_max, sf, len, non_zero_found;
1622 INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
1623 int non_zero_found_short[3];
1624
1625 /* intensity stereo */
1626 if (s->mode_ext & MODE_EXT_I_STEREO) {
1627 if (!s->lsf) {
1628 is_tab = is_table;
1629 sf_max = 7;
1630 } else {
1631 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1632 sf_max = 16;
1633 }
1634
1635 tab0 = g0->sb_hybrid + 576;
1636 tab1 = g1->sb_hybrid + 576;
1637
1638 non_zero_found_short[0] = 0;
1639 non_zero_found_short[1] = 0;
1640 non_zero_found_short[2] = 0;
1641 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1642 for(i = 12;i >= g1->short_start;i--) {
1643 /* for last band, use previous scale factor */
1644 if (i != 11)
1645 k -= 3;
1646 len = band_size_short[s->sample_rate_index][i];
1647 for(l=2;l>=0;l--) {
1648 tab0 -= len;
1649 tab1 -= len;
1650 if (!non_zero_found_short[l]) {
1651 /* test if non zero band. if so, stop doing i-stereo */
1652 for(j=0;j<len;j++) {
1653 if (tab1[j] != 0) {
1654 non_zero_found_short[l] = 1;
1655 goto found1;
1656 }
1657 }
1658 sf = g1->scale_factors[k + l];
1659 if (sf >= sf_max)
1660 goto found1;
1661
1662 v1 = is_tab[0][sf];
1663 v2 = is_tab[1][sf];
1664 for(j=0;j<len;j++) {
1665 tmp0 = tab0[j];
1666 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1667 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1668 }
1669 } else {
1670 found1:
1671 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1672 /* lower part of the spectrum : do ms stereo
1673 if enabled */
1674 for(j=0;j<len;j++) {
1675 tmp0 = tab0[j];
1676 tmp1 = tab1[j];
1677 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1678 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1679 }
1680 }
1681 }
1682 }
1683 }
1684
1685 non_zero_found = non_zero_found_short[0] |
1686 non_zero_found_short[1] |
1687 non_zero_found_short[2];
1688
1689 for(i = g1->long_end - 1;i >= 0;i--) {
1690 len = band_size_long[s->sample_rate_index][i];
1691 tab0 -= len;
1692 tab1 -= len;
1693 /* test if non zero band. if so, stop doing i-stereo */
1694 if (!non_zero_found) {
1695 for(j=0;j<len;j++) {
1696 if (tab1[j] != 0) {
1697 non_zero_found = 1;
1698 goto found2;
1699 }
1700 }
1701 /* for last band, use previous scale factor */
1702 k = (i == 21) ? 20 : i;
1703 sf = g1->scale_factors[k];
1704 if (sf >= sf_max)
1705 goto found2;
1706 v1 = is_tab[0][sf];
1707 v2 = is_tab[1][sf];
1708 for(j=0;j<len;j++) {
1709 tmp0 = tab0[j];
1710 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1711 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1712 }
1713 } else {
1714 found2:
1715 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1716 /* lower part of the spectrum : do ms stereo
1717 if enabled */
1718 for(j=0;j<len;j++) {
1719 tmp0 = tab0[j];
1720 tmp1 = tab1[j];
1721 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1722 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1723 }
1724 }
1725 }
1726 }
1727 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1728 /* ms stereo ONLY */
1729 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1730 global gain */
1731 tab0 = g0->sb_hybrid;
1732 tab1 = g1->sb_hybrid;
1733 for(i=0;i<576;i++) {
1734 tmp0 = tab0[i];
1735 tmp1 = tab1[i];
1736 tab0[i] = tmp0 + tmp1;
1737 tab1[i] = tmp0 - tmp1;
1738 }
1739 }
1740 }
1741
1742 static void compute_antialias_integer(MPADecodeContext *s,
1743 GranuleDef *g)
1744 {
1745 int32_t *ptr, *csa;
1746 int n, i;
1747
1748 /* we antialias only "long" bands */
1749 if (g->block_type == 2) {
1750 if (!g->switch_point)
1751 return;
1752 /* XXX: check this for 8000Hz case */
1753 n = 1;
1754 } else {
1755 n = SBLIMIT - 1;
1756 }
1757
1758 ptr = g->sb_hybrid + 18;
1759 for(i = n;i > 0;i--) {
1760 int tmp0, tmp1, tmp2;
1761 csa = &csa_table[0][0];
1762 #define INT_AA(j) \
1763 tmp0 = ptr[-1-j];\
1764 tmp1 = ptr[ j];\
1765 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1766 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1767 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1768
1769 INT_AA(0)
1770 INT_AA(1)
1771 INT_AA(2)
1772 INT_AA(3)
1773 INT_AA(4)
1774 INT_AA(5)
1775 INT_AA(6)
1776 INT_AA(7)
1777
1778 ptr += 18;
1779 }
1780 }
1781
1782 static void compute_antialias_float(MPADecodeContext *s,
1783 GranuleDef *g)
1784 {
1785 float *ptr;
1786 int n, i;
1787
1788 /* we antialias only "long" bands */
1789 if (g->block_type == 2) {
1790 if (!g->switch_point)
1791 return;
1792 /* XXX: check this for 8000Hz case */
1793 n = 1;
1794 } else {
1795 n = SBLIMIT - 1;
1796 }
1797
1798 ptr = g->sb_hybrid + 18;
1799 for(i = n;i > 0;i--) {
1800 float tmp0, tmp1;
1801 float *csa = &csa_table_float[0][0];
1802 #define FLOAT_AA(j)\
1803 tmp0= ptr[-1-j];\
1804 tmp1= ptr[ j];\
1805 ptr[-1-j] = tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j];\
1806 ptr[ j] = tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j];
1807
1808 FLOAT_AA(0)
1809 FLOAT_AA(1)
1810 FLOAT_AA(2)
1811 FLOAT_AA(3)
1812 FLOAT_AA(4)
1813 FLOAT_AA(5)
1814 FLOAT_AA(6)
1815 FLOAT_AA(7)
1816
1817 ptr += 18;
1818 }
1819 }
1820
1821 static void compute_imdct(MPADecodeContext *s,
1822 GranuleDef *g,
1823 INTFLOAT *sb_samples,
1824 INTFLOAT *mdct_buf)
1825 {
1826 INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
1827 INTFLOAT out2[12];
1828 int i, j, mdct_long_end, sblimit;
1829
1830 /* find last non zero block */
1831 ptr = g->sb_hybrid + 576;
1832 ptr1 = g->sb_hybrid + 2 * 18;
1833 while (ptr >= ptr1) {
1834 int32_t *p;
1835 ptr -= 6;
1836 p= (int32_t*)ptr;
1837 if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1838 break;
1839 }
1840 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1841
1842 if (g->block_type == 2) {
1843 /* XXX: check for 8000 Hz */
1844 if (g->switch_point)
1845 mdct_long_end = 2;
1846 else
1847 mdct_long_end = 0;
1848 } else {
1849 mdct_long_end = sblimit;
1850 }
1851
1852 buf = mdct_buf;
1853 ptr = g->sb_hybrid;
1854 for(j=0;j<mdct_long_end;j++) {
1855 /* apply window & overlap with previous buffer */
1856 out_ptr = sb_samples + j;
1857 /* select window */
1858 if (g->switch_point && j < 2)
1859 win1 = mdct_win[0];
1860 else
1861 win1 = mdct_win[g->block_type];
1862 /* select frequency inversion */
1863 win = win1 + ((4 * 36) & -(j & 1));
1864 imdct36(out_ptr, buf, ptr, win);
1865 out_ptr += 18*SBLIMIT;
1866 ptr += 18;
1867 buf += 18;
1868 }
1869 for(j=mdct_long_end;j<sblimit;j++) {
1870 /* select frequency inversion */
1871 win = mdct_win[2] + ((4 * 36) & -(j & 1));
1872 out_ptr = sb_samples + j;
1873
1874 for(i=0; i<6; i++){
1875 *out_ptr = buf[i];
1876 out_ptr += SBLIMIT;
1877 }
1878 imdct12(out2, ptr + 0);
1879 for(i=0;i<6;i++) {
1880 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
1881 buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
1882 out_ptr += SBLIMIT;
1883 }
1884 imdct12(out2, ptr + 1);
1885 for(i=0;i<6;i++) {
1886 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
1887 buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
1888 out_ptr += SBLIMIT;
1889 }
1890 imdct12(out2, ptr + 2);
1891 for(i=0;i<6;i++) {
1892 buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
1893 buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
1894 buf[i + 6*2] = 0;
1895 }
1896 ptr += 18;
1897 buf += 18;
1898 }
1899 /* zero bands */
1900 for(j=sblimit;j<SBLIMIT;j++) {
1901 /* overlap */
1902 out_ptr = sb_samples + j;
1903 for(i=0;i<18;i++) {
1904 *out_ptr = buf[i];
1905 buf[i] = 0;
1906 out_ptr += SBLIMIT;
1907 }
1908 buf += 18;
1909 }
1910 }
1911
1912 /* main layer3 decoding function */
1913 static int mp_decode_layer3(MPADecodeContext *s)
1914 {
1915 int nb_granules, main_data_begin, private_bits;
1916 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1917 GranuleDef *g;
1918 int16_t exponents[576]; //FIXME try INTFLOAT
1919
1920 /* read side info */
1921 if (s->lsf) {
1922 main_data_begin = get_bits(&s->gb, 8);
1923 private_bits = get_bits(&s->gb, s->nb_channels);
1924 nb_granules = 1;
1925 } else {
1926 main_data_begin = get_bits(&s->gb, 9);
1927 if (s->nb_channels == 2)
1928 private_bits = get_bits(&s->gb, 3);
1929 else
1930 private_bits = get_bits(&s->gb, 5);
1931 nb_granules = 2;
1932 for(ch=0;ch<s->nb_channels;ch++) {
1933 s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1934 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1935 }
1936 }
1937
1938 for(gr=0;gr<nb_granules;gr++) {
1939 for(ch=0;ch<s->nb_channels;ch++) {
1940 dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1941 g = &s->granules[ch][gr];
1942 g->part2_3_length = get_bits(&s->gb, 12);
1943 g->big_values = get_bits(&s->gb, 9);
1944 if(g->big_values > 288){
1945 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1946 return -1;
1947 }
1948
1949 g->global_gain = get_bits(&s->gb, 8);
1950 /* if MS stereo only is selected, we precompute the
1951 1/sqrt(2) renormalization factor */
1952 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1953 MODE_EXT_MS_STEREO)
1954 g->global_gain -= 2;
1955 if (s->lsf)
1956 g->scalefac_compress = get_bits(&s->gb, 9);
1957 else
1958 g->scalefac_compress = get_bits(&s->gb, 4);
1959 blocksplit_flag = get_bits1(&s->gb);
1960 if (blocksplit_flag) {
1961 g->block_type = get_bits(&s->gb, 2);
1962 if (g->block_type == 0){
1963 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1964 return -1;
1965 }
1966 g->switch_point = get_bits1(&s->gb);
1967 for(i=0;i<2;i++)
1968 g->table_select[i] = get_bits(&s->gb, 5);
1969 for(i=0;i<3;i++)
1970 g->subblock_gain[i] = get_bits(&s->gb, 3);
1971 ff_init_short_region(s, g);
1972 } else {
1973 int region_address1, region_address2;
1974 g->block_type = 0;
1975 g->switch_point = 0;
1976 for(i=0;i<3;i++)
1977 g->table_select[i] = get_bits(&s->gb, 5);
1978 /* compute huffman coded region sizes */
1979 region_address1 = get_bits(&s->gb, 4);
1980 region_address2 = get_bits(&s->gb, 3);
1981 dprintf(s->avctx, "region1=%d region2=%d\n",
1982 region_address1, region_address2);
1983 ff_init_long_region(s, g, region_address1, region_address2);
1984 }
1985 ff_region_offset2size(g);
1986 ff_compute_band_indexes(s, g);
1987
1988 g->preflag = 0;
1989 if (!s->lsf)
1990 g->preflag = get_bits1(&s->gb);
1991 g->scalefac_scale = get_bits1(&s->gb);
1992 g->count1table_select = get_bits1(&s->gb);
1993 dprintf(s->avctx, "block_type=%d switch_point=%d\n",
1994 g->block_type, g->switch_point);
1995 }
1996 }
1997
1998 if (!s->adu_mode) {
1999 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
2000 assert((get_bits_count(&s->gb) & 7) == 0);
2001 /* now we get bits from the main_data_begin offset */
2002 dprintf(s->avctx, "seekback: %d\n", main_data_begin);
2003 //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
2004
2005 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
2006 s->in_gb= s->gb;
2007 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
2008 skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
2009 }
2010
2011 for(gr=0;gr<nb_granules;gr++) {
2012 for(ch=0;ch<s->nb_channels;ch++) {
2013 g = &s->granules[ch][gr];
2014 if(get_bits_count(&s->gb)<0){
2015 av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
2016 main_data_begin, s->last_buf_size, gr);
2017 skip_bits_long(&s->gb, g->part2_3_length);
2018 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
2019 if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
2020 skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
2021 s->gb= s->in_gb;
2022 s->in_gb.buffer=NULL;
2023 }
2024 continue;
2025 }
2026
2027 bits_pos = get_bits_count(&s->gb);
2028
2029 if (!s->lsf) {
2030 uint8_t *sc;
2031 int slen, slen1, slen2;
2032
2033 /* MPEG1 scale factors */
2034 slen1 = slen_table[0][g->scalefac_compress];
2035 slen2 = slen_table[1][g->scalefac_compress];
2036 dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
2037 if (g->block_type == 2) {
2038 n = g->switch_point ? 17 : 18;
2039 j = 0;
2040 if(slen1){
2041 for(i=0;i<n;i++)
2042 g->scale_factors[j++] = get_bits(&s->gb, slen1);
2043 }else{
2044 for(i=0;i<n;i++)
2045 g->scale_factors[j++] = 0;
2046 }
2047 if(slen2){
2048 for(i=0;i<18;i++)
2049 g->scale_factors[j++] = get_bits(&s->gb, slen2);
2050 for(i=0;i<3;i++)
2051 g->scale_factors[j++] = 0;
2052 }else{
2053 for(i=0;i<21;i++)
2054 g->scale_factors[j++] = 0;
2055 }
2056 } else {
2057 sc = s->granules[ch][0].scale_factors;
2058 j = 0;
2059 for(k=0;k<4;k++) {
2060 n = (k == 0 ? 6 : 5);
2061 if ((g->scfsi & (0x8 >> k)) == 0) {
2062 slen = (k < 2) ? slen1 : slen2;
2063 if(slen){
2064 for(i=0;i<n;i++)
2065 g->scale_factors[j++] = get_bits(&s->gb, slen);
2066 }else{
2067 for(i=0;i<n;i++)
2068 g->scale_factors[j++] = 0;
2069 }
2070 } else {
2071 /* simply copy from last granule */
2072 for(i=0;i<n;i++) {
2073 g->scale_factors[j] = sc[j];
2074 j++;
2075 }
2076 }
2077 }
2078 g->scale_factors[j++] = 0;
2079 }
2080 } else {
2081 int tindex, tindex2, slen[4], sl, sf;
2082
2083 /* LSF scale factors */
2084 if (g->block_type == 2) {
2085 tindex = g->switch_point ? 2 : 1;
2086 } else {
2087 tindex = 0;
2088 }
2089 sf = g->scalefac_compress;
2090 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2091 /* intensity stereo case */
2092 sf >>= 1;
2093 if (sf < 180) {
2094 lsf_sf_expand(slen, sf, 6, 6, 0);
2095 tindex2 = 3;
2096 } else if (sf < 244) {
2097 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2098 tindex2 = 4;
2099 } else {
2100 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2101 tindex2 = 5;
2102 }
2103 } else {
2104 /* normal case */
2105 if (sf < 400) {
2106 lsf_sf_expand(slen, sf, 5, 4, 4);
2107 tindex2 = 0;
2108 } else if (sf < 500) {
2109 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2110 tindex2 = 1;
2111 } else {
2112 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2113 tindex2 = 2;
2114 g->preflag = 1;
2115 }
2116 }
2117
2118 j = 0;
2119 for(k=0;k<4;k++) {
2120 n = lsf_nsf_table[tindex2][tindex][k];
2121 sl = slen[k];
2122 if(sl){
2123 for(i=0;i<n;i++)
2124 g->scale_factors[j++] = get_bits(&s->gb, sl);
2125 }else{
2126 for(i=0;i<n;i++)
2127 g->scale_factors[j++] = 0;
2128 }
2129 }
2130 /* XXX: should compute exact size */
2131 for(;j<40;j++)
2132 g->scale_factors[j] = 0;
2133 }
2134
2135 exponents_from_scale_factors(s, g, exponents);
2136
2137 /* read Huffman coded residue */
2138 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
2139 } /* ch */
2140
2141 if (s->nb_channels == 2)
2142 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
2143
2144 for(ch=0;ch<s->nb_channels;ch++) {
2145 g = &s->granules[ch][gr];
2146
2147 reorder_block(s, g);
2148 compute_antialias(s, g);
2149 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2150 }
2151 } /* gr */
2152 if(get_bits_count(&s->gb)<0)
2153 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
2154 return nb_granules * 18;
2155 }
2156
2157 static int mp_decode_frame(MPADecodeContext *s,
2158 OUT_INT *samples, const uint8_t *buf, int buf_size)
2159 {
2160 int i, nb_frames, ch;
2161 OUT_INT *samples_ptr;
2162
2163 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
2164
2165 /* skip error protection field */
2166 if (s->error_protection)
2167 skip_bits(&s->gb, 16);
2168
2169 dprintf(s->avctx, "frame %d:\n", s->frame_count);
2170 switch(s->layer) {
2171 case 1:
2172 s->avctx->frame_size = 384;
2173 nb_frames = mp_decode_layer1(s);
2174 break;
2175 case 2:
2176 s->avctx->frame_size = 1152;
2177 nb_frames = mp_decode_layer2(s);
2178 break;
2179 case 3:
2180 s->avctx->frame_size = s->lsf ? 576 : 1152;
2181 default:
2182 nb_frames = mp_decode_layer3(s);
2183
2184 s->last_buf_size=0;
2185 if(s->in_gb.buffer){
2186 align_get_bits(&s->gb);
2187 i= get_bits_left(&s->gb)>>3;
2188 if(i >= 0 && i <= BACKSTEP_SIZE){
2189 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
2190 s->last_buf_size=i;
2191 }else
2192 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
2193 s->gb= s->in_gb;
2194 s->in_gb.buffer= NULL;
2195 }
2196
2197 align_get_bits(&s->gb);
2198 assert((get_bits_count(&s->gb) & 7) == 0);
2199 i= get_bits_left(&s->gb)>>3;
2200
2201 if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
2202 if(i<0)
2203 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
2204 i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
2205 }
2206 assert(i <= buf_size - HEADER_SIZE && i>= 0);
2207 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
2208 s->last_buf_size += i;
2209
2210 break;
2211 }
2212
2213 /* apply the synthesis filter */
2214 for(ch=0;ch<s->nb_channels;ch++) {
2215 samples_ptr = samples + ch;
2216 for(i=0;i<nb_frames;i++) {
2217 RENAME(ff_mpa_synth_filter)(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2218 RENAME(ff_mpa_synth_window), &s->dither_state,
2219 samples_ptr, s->nb_channels,
2220 s->sb_samples[ch][i]);
2221 samples_ptr += 32 * s->nb_channels;
2222 }
2223 }
2224
2225 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2226 }
2227
2228 static int decode_frame(AVCodecContext * avctx,
2229 void *data, int *data_size,
2230 AVPacket *avpkt)
2231 {
2232 const uint8_t *buf = avpkt->data;
2233 int buf_size = avpkt->size;
2234 MPADecodeContext *s = avctx->priv_data;
2235 uint32_t header;
2236 int out_size;
2237 OUT_INT *out_samples = data;
2238
2239 if(buf_size < HEADER_SIZE)
2240 return -1;
2241
2242 header = AV_RB32(buf);
2243 if(ff_mpa_check_header(header) < 0){
2244 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
2245 return -1;
2246 }
2247
2248 if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
2249 /* free format: prepare to compute frame size */
2250 s->frame_size = -1;
2251 return -1;
2252 }
2253 /* update codec info */
2254 avctx->channels = s->nb_channels;
2255 avctx->bit_rate = s->bit_rate;
2256 avctx->sub_id = s->layer;
2257
2258 if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
2259 return -1;
2260 *data_size = 0;
2261
2262 if(s->frame_size<=0 || s->frame_size > buf_size){
2263 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2264 return -1;
2265 }else if(s->frame_size < buf_size){
2266 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
2267 buf_size= s->frame_size;
2268 }
2269
2270 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2271 if(out_size>=0){
2272 *data_size = out_size;
2273 avctx->sample_rate = s->sample_rate;
2274 //FIXME maybe move the other codec info stuff from above here too
2275 }else
2276 av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
2277 s->frame_size = 0;
2278 return buf_size;
2279 }
2280
2281 static void flush(AVCodecContext *avctx){
2282 MPADecodeContext *s = avctx->priv_data;
2283 memset(s->synth_buf, 0, sizeof(s->synth_buf));
2284 s->last_buf_size= 0;
2285 }
2286
2287 #if CONFIG_MP3ADU_DECODER
2288 static int decode_frame_adu(AVCodecContext * avctx,
2289 void *data, int *data_size,
2290 AVPacket *avpkt)
2291 {
2292 const uint8_t *buf = avpkt->data;
2293 int buf_size = avpkt->size;
2294 MPADecodeContext *s = avctx->priv_data;
2295 uint32_t header;
2296 int len, out_size;
2297 OUT_INT *out_samples = data;
2298
2299 len = buf_size;
2300
2301 // Discard too short frames
2302 if (buf_size < HEADER_SIZE) {
2303 *data_size = 0;
2304 return buf_size;
2305 }
2306
2307
2308 if (len > MPA_MAX_CODED_FRAME_SIZE)
2309 len = MPA_MAX_CODED_FRAME_SIZE;
2310
2311 // Get header and restore sync word
2312 header = AV_RB32(buf) | 0xffe00000;
2313
2314 if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2315 *data_size = 0;
2316 return buf_size;
2317 }
2318
2319 ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
2320 /* update codec info */
2321 avctx->sample_rate = s->sample_rate;
2322 avctx->channels = s->nb_channels;
2323 avctx->bit_rate = s->bit_rate;
2324 avctx->sub_id = s->layer;
2325
2326 s->frame_size = len;
2327
2328 if (avctx->parse_only) {
2329 out_size = buf_size;
2330 } else {
2331 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2332 }
2333
2334 *data_size = out_size;
2335 return buf_size;
2336 }
2337 #endif /* CONFIG_MP3ADU_DECODER */
2338
2339 #if CONFIG_MP3ON4_DECODER
2340
2341 /**
2342 * Context for MP3On4 decoder
2343 */
2344 typedef struct MP3On4DecodeContext {
2345 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
2346 int syncword; ///< syncword patch
2347 const uint8_t *coff; ///< channels offsets in output buffer
2348 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
2349 } MP3On4DecodeContext;
2350
2351 #include "mpeg4audio.h"
2352
2353 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2354 static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
2355 /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2356 static const uint8_t chan_offset[8][5] = {
2357 {0},
2358 {0}, // C
2359 {0}, // FLR
2360 {2,0}, // C FLR
2361 {2,0,3}, // C FLR BS
2362 {4,0,2}, // C FLR BLRS
2363 {4,0,2,5}, // C FLR BLRS LFE
2364 {4,0,2,6,5}, // C FLR BLRS BLR LFE
2365 };
2366
2367
2368 static int decode_init_mp3on4(AVCodecContext * avctx)
2369 {
2370 MP3On4DecodeContext *s = avctx->priv_data;
2371 MPEG4AudioConfig cfg;
2372 int i;
2373
2374 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2375 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2376 return -1;
2377 }
2378
2379 ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
2380 if (!cfg.chan_config || cfg.chan_config > 7) {
2381 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2382 return -1;
2383 }
2384 s->frames = mp3Frames[cfg.chan_config];
2385 s->coff = chan_offset[cfg.chan_config];
2386 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
2387
2388 if (cfg.sample_rate < 16000)
2389 s->syncword = 0xffe00000;
2390 else
2391 s->syncword = 0xfff00000;
2392
2393 /* Init the first mp3 decoder in standard way, so that all tables get builded
2394 * We replace avctx->priv_data with the context of the first decoder so that
2395 * decode_init() does not have to be changed.
2396 * Other decoders will be initialized here copying data from the first context
2397 */
2398 // Allocate zeroed memory for the first decoder context
2399 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2400 // Put decoder context in place to make init_decode() happy
2401 avctx->priv_data = s->mp3decctx[0];
2402 decode_init(avctx);
2403 // Restore mp3on4 context pointer
2404 avctx->priv_data = s;
2405 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2406
2407 /* Create a separate codec/context for each frame (first is already ok).
2408 * Each frame is 1 or 2 channels - up to 5 frames allowed
2409 */
2410 for (i = 1; i < s->frames; i++) {
2411 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2412 s->mp3decctx[i]->adu_mode = 1;
2413 s->mp3decctx[i]->avctx = avctx;
2414 }
2415
2416 return 0;
2417 }
2418
2419
2420 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
2421 {
2422 MP3On4DecodeContext *s = avctx->priv_data;
2423 int i;
2424
2425 for (i = 0; i < s->frames; i++)
2426 if (s->mp3decctx[i])
2427 av_free(s->mp3decctx[i]);
2428
2429 return 0;
2430 }
2431
2432
2433 static int decode_frame_mp3on4(AVCodecContext * avctx,
2434 void *data, int *data_size,
2435 AVPacket *avpkt)
2436 {
2437 const uint8_t *buf = avpkt->data;
2438 int buf_size = avpkt->size;
2439 MP3On4DecodeContext *s = avctx->priv_data;
2440 MPADecodeContext *m;
2441 int fsize, len = buf_size, out_size = 0;
2442 uint32_t header;
2443 OUT_INT *out_samples = data;
2444 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2445 OUT_INT *outptr, *bp;
2446 int fr, j, n;
2447
2448 if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
2449 return -1;
2450
2451 *data_size = 0;
2452 // Discard too short frames
2453 if (buf_size < HEADER_SIZE)
2454 return -1;
2455
2456 // If only one decoder interleave is not needed
2457 outptr = s->frames == 1 ? out_samples : decoded_buf;
2458
2459 avctx->bit_rate = 0;
2460
2461 for (fr = 0; fr < s->frames; fr++) {
2462 fsize = AV_RB16(buf) >> 4;
2463 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
2464 m = s->mp3decctx[fr];
2465 assert (m != NULL);
2466
2467 header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
2468
2469 if (ff_mpa_check_header(header) < 0) // Bad header, discard block
2470 break;
2471
2472 ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
2473 out_size += mp_decode_frame(m, outptr, buf, fsize);
2474 buf += fsize;
2475 len -= fsize;
2476
2477 if(s->frames > 1) {
2478 n = m->avctx->frame_size*m->nb_channels;
2479 /* interleave output data */
2480 bp = out_samples + s->coff[fr];
2481 if(m->nb_channels == 1) {
2482 for(j = 0; j < n; j++) {
2483 *bp = decoded_buf[j];
2484 bp += avctx->channels;
2485 }
2486 } else {
2487 for(j = 0; j < n; j++) {
2488 bp[0] = decoded_buf[j++];
2489 bp[1] = decoded_buf[j];
2490 bp += avctx->channels;
2491 }
2492 }
2493 }
2494 avctx->bit_rate += m->bit_rate;
2495 }
2496
2497 /* update codec info */
2498 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2499
2500 *data_size = out_size;
2501 return buf_size;
2502 }
2503 #endif /* CONFIG_MP3ON4_DECODER */
2504
2505 #if !CONFIG_FLOAT
2506 #if CONFIG_MP1_DECODER
2507 AVCodec mp1_decoder =
2508 {
2509 "mp1",
2510 AVMEDIA_TYPE_AUDIO,
2511 CODEC_ID_MP1,
2512 sizeof(MPADecodeContext),
2513 decode_init,
2514 NULL,
2515 NULL,
2516 decode_frame,
2517 CODEC_CAP_PARSE_ONLY,
2518 .flush= flush,
2519 .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
2520 };
2521 #endif
2522 #if CONFIG_MP2_DECODER
2523 AVCodec mp2_decoder =
2524 {
2525 "mp2",
2526 AVMEDIA_TYPE_AUDIO,
2527 CODEC_ID_MP2,
2528 sizeof(MPADecodeContext),
2529 decode_init,
2530 NULL,
2531 NULL,
2532 decode_frame,
2533 CODEC_CAP_PARSE_ONLY,
2534 .flush= flush,
2535 .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
2536 };
2537 #endif
2538 #if CONFIG_MP3_DECODER
2539 AVCodec mp3_decoder =
2540 {
2541 "mp3",
2542 AVMEDIA_TYPE_AUDIO,
2543 CODEC_ID_MP3,
2544 sizeof(MPADecodeContext),
2545 decode_init,
2546 NULL,
2547 NULL,
2548 decode_frame,
2549 CODEC_CAP_PARSE_ONLY,
2550 .flush= flush,
2551 .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
2552 };
2553 #endif
2554 #if CONFIG_MP3ADU_DECODER
2555 AVCodec mp3adu_decoder =
2556 {
2557 "mp3adu",
2558 AVMEDIA_TYPE_AUDIO,
2559 CODEC_ID_MP3ADU,
2560 sizeof(MPADecodeContext),
2561 decode_init,
2562 NULL,
2563 NULL,
2564 decode_frame_adu,
2565 CODEC_CAP_PARSE_ONLY,
2566 .flush= flush,
2567 .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
2568 };
2569 #endif
2570 #if CONFIG_MP3ON4_DECODER
2571 AVCodec mp3on4_decoder =
2572 {
2573 "mp3on4",
2574 AVMEDIA_TYPE_AUDIO,
2575 CODEC_ID_MP3ON4,
2576 sizeof(MP3On4DecodeContext),
2577 decode_init_mp3on4,
2578 NULL,
2579 decode_close_mp3on4,
2580 decode_frame_mp3on4,
2581 .flush= flush,
2582 .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
2583 };
2584 #endif
2585 #endif