bb72da2e8212fd3ecc4b132baab526a0e2ad55bc
[libav.git] / libavcodec / mpegaudiodec.c
1 /*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19
20 /**
21 * @file mpegaudiodec.c
22 * MPEG Audio decoder.
23 */
24
25 //#define DEBUG
26 #include "avcodec.h"
27 #include "bitstream.h"
28 #include "dsputil.h"
29
30 /*
31 * TODO:
32 * - in low precision mode, use more 16 bit multiplies in synth filter
33 * - test lsf / mpeg25 extensively.
34 */
35
36 /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
37 audio decoder */
38 #ifdef CONFIG_MPEGAUDIO_HP
39 # define USE_HIGHPRECISION
40 #endif
41
42 #include "mpegaudio.h"
43
44 #define FRAC_ONE (1 << FRAC_BITS)
45
46 #ifdef ARCH_X86
47 # define MULL(ra, rb) \
48 ({ int rt, dummy; asm (\
49 "imull %3 \n\t"\
50 "shrdl %4, %%edx, %%eax \n\t"\
51 : "=a"(rt), "=d"(dummy)\
52 : "a" (ra), "rm" (rb), "i"(FRAC_BITS));\
53 rt; })
54 # define MUL64(ra, rb) \
55 ({ int64_t rt; asm ("imull %2\n\t" : "=A"(rt) : "a" (ra), "g" (rb)); rt; })
56 # define MULH(ra, rb) \
57 ({ int rt, dummy; asm ("imull %3\n\t" : "=d"(rt), "=a"(dummy): "a" (ra), "rm" (rb)); rt; })
58 #elif defined(ARCH_ARMV4L)
59 # define MULL(a, b) \
60 ({ int lo, hi;\
61 asm("smull %0, %1, %2, %3 \n\t"\
62 "mov %0, %0, lsr %4\n\t"\
63 "add %1, %0, %1, lsl %5\n\t"\
64 : "=&r"(lo), "=&r"(hi)\
65 : "r"(b), "r"(a), "i"(FRAC_BITS), "i"(32-FRAC_BITS));\
66 hi; })
67 # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
68 # define MULH(a, b) ({ int lo, hi; asm ("smull %0, %1, %2, %3" : "=&r"(lo), "=&r"(hi) : "r"(b), "r"(a)); hi; })
69 #else
70 # define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
71 # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
72 //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
73 static always_inline int MULH(int a, int b){
74 return ((int64_t)(a) * (int64_t)(b))>>32;
75 }
76 #endif
77 #define FIX(a) ((int)((a) * FRAC_ONE))
78 /* WARNING: only correct for posititive numbers */
79 #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
80 #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
81
82 #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
83
84 /****************/
85
86 #define HEADER_SIZE 4
87 #define BACKSTEP_SIZE 512
88 #define EXTRABYTES 24
89
90 struct GranuleDef;
91
92 typedef struct MPADecodeContext {
93 DECLARE_ALIGNED_8(uint8_t, last_buf[BACKSTEP_SIZE + EXTRABYTES + MPA_MAX_CODED_FRAME_SIZE]); //FIXME we dont need that much
94 int last_buf_size;
95 int frame_size;
96 int free_format_frame_size; /* frame size in case of free format
97 (zero if currently unknown) */
98 /* next header (used in free format parsing) */
99 uint32_t free_format_next_header;
100 int error_protection;
101 int layer;
102 int sample_rate;
103 int sample_rate_index; /* between 0 and 8 */
104 int bit_rate;
105 int old_frame_size;
106 GetBitContext gb;
107 GetBitContext in_gb;
108 int nb_channels;
109 int mode;
110 int mode_ext;
111 int lsf;
112 MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
113 int synth_buf_offset[MPA_MAX_CHANNELS];
114 int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
115 int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
116 #ifdef DEBUG
117 int frame_count;
118 #endif
119 void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
120 int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
121 unsigned int dither_state;
122 } MPADecodeContext;
123
124 /**
125 * Context for MP3On4 decoder
126 */
127 typedef struct MP3On4DecodeContext {
128 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
129 int chan_cfg; ///< channel config number
130 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
131 } MP3On4DecodeContext;
132
133 /* layer 3 "granule" */
134 typedef struct GranuleDef {
135 uint8_t scfsi;
136 int part2_3_length;
137 int big_values;
138 int global_gain;
139 int scalefac_compress;
140 uint8_t block_type;
141 uint8_t switch_point;
142 int table_select[3];
143 int subblock_gain[3];
144 uint8_t scalefac_scale;
145 uint8_t count1table_select;
146 int region_size[3]; /* number of huffman codes in each region */
147 int preflag;
148 int short_start, long_end; /* long/short band indexes */
149 uint8_t scale_factors[40];
150 int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
151 } GranuleDef;
152
153 #define MODE_EXT_MS_STEREO 2
154 #define MODE_EXT_I_STEREO 1
155
156 /* layer 3 huffman tables */
157 typedef struct HuffTable {
158 int xsize;
159 const uint8_t *bits;
160 const uint16_t *codes;
161 } HuffTable;
162
163 #include "mpegaudiodectab.h"
164
165 static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
166 static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
167
168 /* vlc structure for decoding layer 3 huffman tables */
169 static VLC huff_vlc[16];
170 static VLC huff_quad_vlc[2];
171 /* computed from band_size_long */
172 static uint16_t band_index_long[9][23];
173 /* XXX: free when all decoders are closed */
174 #define TABLE_4_3_SIZE (8191 + 16)*4
175 static int8_t *table_4_3_exp;
176 static uint32_t *table_4_3_value;
177 static uint32_t exp_table[512];
178 static uint32_t expval_table[512][16];
179 /* intensity stereo coef table */
180 static int32_t is_table[2][16];
181 static int32_t is_table_lsf[2][2][16];
182 static int32_t csa_table[8][4];
183 static float csa_table_float[8][4];
184 static int32_t mdct_win[8][36];
185
186 /* lower 2 bits: modulo 3, higher bits: shift */
187 static uint16_t scale_factor_modshift[64];
188 /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
189 static int32_t scale_factor_mult[15][3];
190 /* mult table for layer 2 group quantization */
191
192 #define SCALE_GEN(v) \
193 { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
194
195 static const int32_t scale_factor_mult2[3][3] = {
196 SCALE_GEN(4.0 / 3.0), /* 3 steps */
197 SCALE_GEN(4.0 / 5.0), /* 5 steps */
198 SCALE_GEN(4.0 / 9.0), /* 9 steps */
199 };
200
201 void ff_mpa_synth_init(MPA_INT *window);
202 static MPA_INT window[512] __attribute__((aligned(16)));
203
204 /* layer 1 unscaling */
205 /* n = number of bits of the mantissa minus 1 */
206 static inline int l1_unscale(int n, int mant, int scale_factor)
207 {
208 int shift, mod;
209 int64_t val;
210
211 shift = scale_factor_modshift[scale_factor];
212 mod = shift & 3;
213 shift >>= 2;
214 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
215 shift += n;
216 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
217 return (int)((val + (1LL << (shift - 1))) >> shift);
218 }
219
220 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
221 {
222 int shift, mod, val;
223
224 shift = scale_factor_modshift[scale_factor];
225 mod = shift & 3;
226 shift >>= 2;
227
228 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
229 /* NOTE: at this point, 0 <= shift <= 21 */
230 if (shift > 0)
231 val = (val + (1 << (shift - 1))) >> shift;
232 return val;
233 }
234
235 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
236 static inline int l3_unscale(int value, int exponent)
237 {
238 unsigned int m;
239 int e;
240
241 e = table_4_3_exp [4*value + (exponent&3)];
242 m = table_4_3_value[4*value + (exponent&3)];
243 e -= (exponent >> 2);
244 assert(e>=1);
245 if (e > 31)
246 return 0;
247 m = (m + (1 << (e-1))) >> e;
248
249 return m;
250 }
251
252 /* all integer n^(4/3) computation code */
253 #define DEV_ORDER 13
254
255 #define POW_FRAC_BITS 24
256 #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
257 #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
258 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
259
260 static int dev_4_3_coefs[DEV_ORDER];
261
262 #if 0 /* unused */
263 static int pow_mult3[3] = {
264 POW_FIX(1.0),
265 POW_FIX(1.25992104989487316476),
266 POW_FIX(1.58740105196819947474),
267 };
268 #endif
269
270 static void int_pow_init(void)
271 {
272 int i, a;
273
274 a = POW_FIX(1.0);
275 for(i=0;i<DEV_ORDER;i++) {
276 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
277 dev_4_3_coefs[i] = a;
278 }
279 }
280
281 #if 0 /* unused, remove? */
282 /* return the mantissa and the binary exponent */
283 static int int_pow(int i, int *exp_ptr)
284 {
285 int e, er, eq, j;
286 int a, a1;
287
288 /* renormalize */
289 a = i;
290 e = POW_FRAC_BITS;
291 while (a < (1 << (POW_FRAC_BITS - 1))) {
292 a = a << 1;
293 e--;
294 }
295 a -= (1 << POW_FRAC_BITS);
296 a1 = 0;
297 for(j = DEV_ORDER - 1; j >= 0; j--)
298 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
299 a = (1 << POW_FRAC_BITS) + a1;
300 /* exponent compute (exact) */
301 e = e * 4;
302 er = e % 3;
303 eq = e / 3;
304 a = POW_MULL(a, pow_mult3[er]);
305 while (a >= 2 * POW_FRAC_ONE) {
306 a = a >> 1;
307 eq++;
308 }
309 /* convert to float */
310 while (a < POW_FRAC_ONE) {
311 a = a << 1;
312 eq--;
313 }
314 /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
315 #if POW_FRAC_BITS > FRAC_BITS
316 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
317 /* correct overflow */
318 if (a >= 2 * (1 << FRAC_BITS)) {
319 a = a >> 1;
320 eq++;
321 }
322 #endif
323 *exp_ptr = eq;
324 return a;
325 }
326 #endif
327
328 static int decode_init(AVCodecContext * avctx)
329 {
330 MPADecodeContext *s = avctx->priv_data;
331 static int init=0;
332 int i, j, k;
333
334 #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
335 avctx->sample_fmt= SAMPLE_FMT_S32;
336 #else
337 avctx->sample_fmt= SAMPLE_FMT_S16;
338 #endif
339
340 if(avctx->antialias_algo != FF_AA_FLOAT)
341 s->compute_antialias= compute_antialias_integer;
342 else
343 s->compute_antialias= compute_antialias_float;
344
345 if (!init && !avctx->parse_only) {
346 /* scale factors table for layer 1/2 */
347 for(i=0;i<64;i++) {
348 int shift, mod;
349 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
350 shift = (i / 3);
351 mod = i % 3;
352 scale_factor_modshift[i] = mod | (shift << 2);
353 }
354
355 /* scale factor multiply for layer 1 */
356 for(i=0;i<15;i++) {
357 int n, norm;
358 n = i + 2;
359 norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
360 scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
361 scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
362 scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
363 dprintf("%d: norm=%x s=%x %x %x\n",
364 i, norm,
365 scale_factor_mult[i][0],
366 scale_factor_mult[i][1],
367 scale_factor_mult[i][2]);
368 }
369
370 ff_mpa_synth_init(window);
371
372 /* huffman decode tables */
373 for(i=1;i<16;i++) {
374 const HuffTable *h = &mpa_huff_tables[i];
375 int xsize, x, y;
376 unsigned int n;
377 uint8_t tmp_bits [512];
378 uint16_t tmp_codes[512];
379
380 memset(tmp_bits , 0, sizeof(tmp_bits ));
381 memset(tmp_codes, 0, sizeof(tmp_codes));
382
383 xsize = h->xsize;
384 n = xsize * xsize;
385
386 j = 0;
387 for(x=0;x<xsize;x++) {
388 for(y=0;y<xsize;y++){
389 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
390 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
391 }
392 }
393
394 /* XXX: fail test */
395 init_vlc(&huff_vlc[i], 7, 512,
396 tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
397 }
398 for(i=0;i<2;i++) {
399 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
400 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
401 }
402
403 for(i=0;i<9;i++) {
404 k = 0;
405 for(j=0;j<22;j++) {
406 band_index_long[i][j] = k;
407 k += band_size_long[i][j];
408 }
409 band_index_long[i][22] = k;
410 }
411
412 /* compute n ^ (4/3) and store it in mantissa/exp format */
413 table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
414 if(!table_4_3_exp)
415 return -1;
416 table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
417 if(!table_4_3_value)
418 return -1;
419
420 int_pow_init();
421 for(i=1;i<TABLE_4_3_SIZE;i++) {
422 double f, fm;
423 int e, m;
424 f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
425 fm = frexp(f, &e);
426 m = (uint32_t)(fm*(1LL<<31) + 0.5);
427 e+= FRAC_BITS - 31 + 5 - 100;
428
429 /* normalized to FRAC_BITS */
430 table_4_3_value[i] = m;
431 // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
432 table_4_3_exp[i] = -e;
433 }
434 for(i=0; i<512*16; i++){
435 int exponent= (i>>4);
436 double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
437 expval_table[exponent][i&15]= lrintf(f);
438 if((i&15)==1)
439 exp_table[exponent]= lrintf(f);
440 }
441
442 for(i=0;i<7;i++) {
443 float f;
444 int v;
445 if (i != 6) {
446 f = tan((double)i * M_PI / 12.0);
447 v = FIXR(f / (1.0 + f));
448 } else {
449 v = FIXR(1.0);
450 }
451 is_table[0][i] = v;
452 is_table[1][6 - i] = v;
453 }
454 /* invalid values */
455 for(i=7;i<16;i++)
456 is_table[0][i] = is_table[1][i] = 0.0;
457
458 for(i=0;i<16;i++) {
459 double f;
460 int e, k;
461
462 for(j=0;j<2;j++) {
463 e = -(j + 1) * ((i + 1) >> 1);
464 f = pow(2.0, e / 4.0);
465 k = i & 1;
466 is_table_lsf[j][k ^ 1][i] = FIXR(f);
467 is_table_lsf[j][k][i] = FIXR(1.0);
468 dprintf("is_table_lsf %d %d: %x %x\n",
469 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
470 }
471 }
472
473 for(i=0;i<8;i++) {
474 float ci, cs, ca;
475 ci = ci_table[i];
476 cs = 1.0 / sqrt(1.0 + ci * ci);
477 ca = cs * ci;
478 csa_table[i][0] = FIXHR(cs/4);
479 csa_table[i][1] = FIXHR(ca/4);
480 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
481 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
482 csa_table_float[i][0] = cs;
483 csa_table_float[i][1] = ca;
484 csa_table_float[i][2] = ca + cs;
485 csa_table_float[i][3] = ca - cs;
486 // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
487 // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
488 }
489
490 /* compute mdct windows */
491 for(i=0;i<36;i++) {
492 for(j=0; j<4; j++){
493 double d;
494
495 if(j==2 && i%3 != 1)
496 continue;
497
498 d= sin(M_PI * (i + 0.5) / 36.0);
499 if(j==1){
500 if (i>=30) d= 0;
501 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
502 else if(i>=18) d= 1;
503 }else if(j==3){
504 if (i< 6) d= 0;
505 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
506 else if(i< 18) d= 1;
507 }
508 //merge last stage of imdct into the window coefficients
509 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
510
511 if(j==2)
512 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
513 else
514 mdct_win[j][i ] = FIXHR((d / (1<<5)));
515 // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
516 }
517 }
518
519 /* NOTE: we do frequency inversion adter the MDCT by changing
520 the sign of the right window coefs */
521 for(j=0;j<4;j++) {
522 for(i=0;i<36;i+=2) {
523 mdct_win[j + 4][i] = mdct_win[j][i];
524 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
525 }
526 }
527
528 #if defined(DEBUG)
529 for(j=0;j<8;j++) {
530 av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
531 for(i=0;i<36;i++)
532 av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
533 av_log(avctx, AV_LOG_DEBUG, "\n");
534 }
535 #endif
536 init = 1;
537 }
538
539 #ifdef DEBUG
540 s->frame_count = 0;
541 #endif
542 if (avctx->codec_id == CODEC_ID_MP3ADU)
543 s->adu_mode = 1;
544 return 0;
545 }
546
547 /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
548
549 /* cos(i*pi/64) */
550
551 #define COS0_0 FIXHR(0.50060299823519630134/2)
552 #define COS0_1 FIXHR(0.50547095989754365998/2)
553 #define COS0_2 FIXHR(0.51544730992262454697/2)
554 #define COS0_3 FIXHR(0.53104259108978417447/2)
555 #define COS0_4 FIXHR(0.55310389603444452782/2)
556 #define COS0_5 FIXHR(0.58293496820613387367/2)
557 #define COS0_6 FIXHR(0.62250412303566481615/2)
558 #define COS0_7 FIXHR(0.67480834145500574602/2)
559 #define COS0_8 FIXHR(0.74453627100229844977/2)
560 #define COS0_9 FIXHR(0.83934964541552703873/2)
561 #define COS0_10 FIXHR(0.97256823786196069369/2)
562 #define COS0_11 FIXHR(1.16943993343288495515/4)
563 #define COS0_12 FIXHR(1.48416461631416627724/4)
564 #define COS0_13 FIXHR(2.05778100995341155085/8)
565 #define COS0_14 FIXHR(3.40760841846871878570/8)
566 #define COS0_15 FIXHR(10.19000812354805681150/32)
567
568 #define COS1_0 FIXHR(0.50241928618815570551/2)
569 #define COS1_1 FIXHR(0.52249861493968888062/2)
570 #define COS1_2 FIXHR(0.56694403481635770368/2)
571 #define COS1_3 FIXHR(0.64682178335999012954/2)
572 #define COS1_4 FIXHR(0.78815462345125022473/2)
573 #define COS1_5 FIXHR(1.06067768599034747134/4)
574 #define COS1_6 FIXHR(1.72244709823833392782/4)
575 #define COS1_7 FIXHR(5.10114861868916385802/16)
576
577 #define COS2_0 FIXHR(0.50979557910415916894/2)
578 #define COS2_1 FIXHR(0.60134488693504528054/2)
579 #define COS2_2 FIXHR(0.89997622313641570463/2)
580 #define COS2_3 FIXHR(2.56291544774150617881/8)
581
582 #define COS3_0 FIXHR(0.54119610014619698439/2)
583 #define COS3_1 FIXHR(1.30656296487637652785/4)
584
585 #define COS4_0 FIXHR(0.70710678118654752439/2)
586
587 /* butterfly operator */
588 #define BF(a, b, c, s)\
589 {\
590 tmp0 = tab[a] + tab[b];\
591 tmp1 = tab[a] - tab[b];\
592 tab[a] = tmp0;\
593 tab[b] = MULH(tmp1<<(s), c);\
594 }
595
596 #define BF1(a, b, c, d)\
597 {\
598 BF(a, b, COS4_0, 1);\
599 BF(c, d,-COS4_0, 1);\
600 tab[c] += tab[d];\
601 }
602
603 #define BF2(a, b, c, d)\
604 {\
605 BF(a, b, COS4_0, 1);\
606 BF(c, d,-COS4_0, 1);\
607 tab[c] += tab[d];\
608 tab[a] += tab[c];\
609 tab[c] += tab[b];\
610 tab[b] += tab[d];\
611 }
612
613 #define ADD(a, b) tab[a] += tab[b]
614
615 /* DCT32 without 1/sqrt(2) coef zero scaling. */
616 static void dct32(int32_t *out, int32_t *tab)
617 {
618 int tmp0, tmp1;
619
620 /* pass 1 */
621 BF( 0, 31, COS0_0 , 1);
622 BF(15, 16, COS0_15, 5);
623 /* pass 2 */
624 BF( 0, 15, COS1_0 , 1);
625 BF(16, 31,-COS1_0 , 1);
626 /* pass 1 */
627 BF( 7, 24, COS0_7 , 1);
628 BF( 8, 23, COS0_8 , 1);
629 /* pass 2 */
630 BF( 7, 8, COS1_7 , 4);
631 BF(23, 24,-COS1_7 , 4);
632 /* pass 3 */
633 BF( 0, 7, COS2_0 , 1);
634 BF( 8, 15,-COS2_0 , 1);
635 BF(16, 23, COS2_0 , 1);
636 BF(24, 31,-COS2_0 , 1);
637 /* pass 1 */
638 BF( 3, 28, COS0_3 , 1);
639 BF(12, 19, COS0_12, 2);
640 /* pass 2 */
641 BF( 3, 12, COS1_3 , 1);
642 BF(19, 28,-COS1_3 , 1);
643 /* pass 1 */
644 BF( 4, 27, COS0_4 , 1);
645 BF(11, 20, COS0_11, 2);
646 /* pass 2 */
647 BF( 4, 11, COS1_4 , 1);
648 BF(20, 27,-COS1_4 , 1);
649 /* pass 3 */
650 BF( 3, 4, COS2_3 , 3);
651 BF(11, 12,-COS2_3 , 3);
652 BF(19, 20, COS2_3 , 3);
653 BF(27, 28,-COS2_3 , 3);
654 /* pass 4 */
655 BF( 0, 3, COS3_0 , 1);
656 BF( 4, 7,-COS3_0 , 1);
657 BF( 8, 11, COS3_0 , 1);
658 BF(12, 15,-COS3_0 , 1);
659 BF(16, 19, COS3_0 , 1);
660 BF(20, 23,-COS3_0 , 1);
661 BF(24, 27, COS3_0 , 1);
662 BF(28, 31,-COS3_0 , 1);
663
664
665
666 /* pass 1 */
667 BF( 1, 30, COS0_1 , 1);
668 BF(14, 17, COS0_14, 3);
669 /* pass 2 */
670 BF( 1, 14, COS1_1 , 1);
671 BF(17, 30,-COS1_1 , 1);
672 /* pass 1 */
673 BF( 6, 25, COS0_6 , 1);
674 BF( 9, 22, COS0_9 , 1);
675 /* pass 2 */
676 BF( 6, 9, COS1_6 , 2);
677 BF(22, 25,-COS1_6 , 2);
678 /* pass 3 */
679 BF( 1, 6, COS2_1 , 1);
680 BF( 9, 14,-COS2_1 , 1);
681 BF(17, 22, COS2_1 , 1);
682 BF(25, 30,-COS2_1 , 1);
683
684 /* pass 1 */
685 BF( 2, 29, COS0_2 , 1);
686 BF(13, 18, COS0_13, 3);
687 /* pass 2 */
688 BF( 2, 13, COS1_2 , 1);
689 BF(18, 29,-COS1_2 , 1);
690 /* pass 1 */
691 BF( 5, 26, COS0_5 , 1);
692 BF(10, 21, COS0_10, 1);
693 /* pass 2 */
694 BF( 5, 10, COS1_5 , 2);
695 BF(21, 26,-COS1_5 , 2);
696 /* pass 3 */
697 BF( 2, 5, COS2_2 , 1);
698 BF(10, 13,-COS2_2 , 1);
699 BF(18, 21, COS2_2 , 1);
700 BF(26, 29,-COS2_2 , 1);
701 /* pass 4 */
702 BF( 1, 2, COS3_1 , 2);
703 BF( 5, 6,-COS3_1 , 2);
704 BF( 9, 10, COS3_1 , 2);
705 BF(13, 14,-COS3_1 , 2);
706 BF(17, 18, COS3_1 , 2);
707 BF(21, 22,-COS3_1 , 2);
708 BF(25, 26, COS3_1 , 2);
709 BF(29, 30,-COS3_1 , 2);
710
711 /* pass 5 */
712 BF1( 0, 1, 2, 3);
713 BF2( 4, 5, 6, 7);
714 BF1( 8, 9, 10, 11);
715 BF2(12, 13, 14, 15);
716 BF1(16, 17, 18, 19);
717 BF2(20, 21, 22, 23);
718 BF1(24, 25, 26, 27);
719 BF2(28, 29, 30, 31);
720
721 /* pass 6 */
722
723 ADD( 8, 12);
724 ADD(12, 10);
725 ADD(10, 14);
726 ADD(14, 9);
727 ADD( 9, 13);
728 ADD(13, 11);
729 ADD(11, 15);
730
731 out[ 0] = tab[0];
732 out[16] = tab[1];
733 out[ 8] = tab[2];
734 out[24] = tab[3];
735 out[ 4] = tab[4];
736 out[20] = tab[5];
737 out[12] = tab[6];
738 out[28] = tab[7];
739 out[ 2] = tab[8];
740 out[18] = tab[9];
741 out[10] = tab[10];
742 out[26] = tab[11];
743 out[ 6] = tab[12];
744 out[22] = tab[13];
745 out[14] = tab[14];
746 out[30] = tab[15];
747
748 ADD(24, 28);
749 ADD(28, 26);
750 ADD(26, 30);
751 ADD(30, 25);
752 ADD(25, 29);
753 ADD(29, 27);
754 ADD(27, 31);
755
756 out[ 1] = tab[16] + tab[24];
757 out[17] = tab[17] + tab[25];
758 out[ 9] = tab[18] + tab[26];
759 out[25] = tab[19] + tab[27];
760 out[ 5] = tab[20] + tab[28];
761 out[21] = tab[21] + tab[29];
762 out[13] = tab[22] + tab[30];
763 out[29] = tab[23] + tab[31];
764 out[ 3] = tab[24] + tab[20];
765 out[19] = tab[25] + tab[21];
766 out[11] = tab[26] + tab[22];
767 out[27] = tab[27] + tab[23];
768 out[ 7] = tab[28] + tab[18];
769 out[23] = tab[29] + tab[19];
770 out[15] = tab[30] + tab[17];
771 out[31] = tab[31];
772 }
773
774 #if FRAC_BITS <= 15
775
776 static inline int round_sample(int *sum)
777 {
778 int sum1;
779 sum1 = (*sum) >> OUT_SHIFT;
780 *sum &= (1<<OUT_SHIFT)-1;
781 if (sum1 < OUT_MIN)
782 sum1 = OUT_MIN;
783 else if (sum1 > OUT_MAX)
784 sum1 = OUT_MAX;
785 return sum1;
786 }
787
788 # if defined(ARCH_POWERPC_405)
789 /* signed 16x16 -> 32 multiply add accumulate */
790 # define MACS(rt, ra, rb) \
791 asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
792
793 /* signed 16x16 -> 32 multiply */
794 # define MULS(ra, rb) \
795 ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
796 # else
797 /* signed 16x16 -> 32 multiply add accumulate */
798 # define MACS(rt, ra, rb) rt += (ra) * (rb)
799
800 /* signed 16x16 -> 32 multiply */
801 # define MULS(ra, rb) ((ra) * (rb))
802 # endif
803 #else
804
805 static inline int round_sample(int64_t *sum)
806 {
807 int sum1;
808 sum1 = (int)((*sum) >> OUT_SHIFT);
809 *sum &= (1<<OUT_SHIFT)-1;
810 if (sum1 < OUT_MIN)
811 sum1 = OUT_MIN;
812 else if (sum1 > OUT_MAX)
813 sum1 = OUT_MAX;
814 return sum1;
815 }
816
817 # define MULS(ra, rb) MUL64(ra, rb)
818 #endif
819
820 #define SUM8(sum, op, w, p) \
821 { \
822 sum op MULS((w)[0 * 64], p[0 * 64]);\
823 sum op MULS((w)[1 * 64], p[1 * 64]);\
824 sum op MULS((w)[2 * 64], p[2 * 64]);\
825 sum op MULS((w)[3 * 64], p[3 * 64]);\
826 sum op MULS((w)[4 * 64], p[4 * 64]);\
827 sum op MULS((w)[5 * 64], p[5 * 64]);\
828 sum op MULS((w)[6 * 64], p[6 * 64]);\
829 sum op MULS((w)[7 * 64], p[7 * 64]);\
830 }
831
832 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
833 { \
834 int tmp;\
835 tmp = p[0 * 64];\
836 sum1 op1 MULS((w1)[0 * 64], tmp);\
837 sum2 op2 MULS((w2)[0 * 64], tmp);\
838 tmp = p[1 * 64];\
839 sum1 op1 MULS((w1)[1 * 64], tmp);\
840 sum2 op2 MULS((w2)[1 * 64], tmp);\
841 tmp = p[2 * 64];\
842 sum1 op1 MULS((w1)[2 * 64], tmp);\
843 sum2 op2 MULS((w2)[2 * 64], tmp);\
844 tmp = p[3 * 64];\
845 sum1 op1 MULS((w1)[3 * 64], tmp);\
846 sum2 op2 MULS((w2)[3 * 64], tmp);\
847 tmp = p[4 * 64];\
848 sum1 op1 MULS((w1)[4 * 64], tmp);\
849 sum2 op2 MULS((w2)[4 * 64], tmp);\
850 tmp = p[5 * 64];\
851 sum1 op1 MULS((w1)[5 * 64], tmp);\
852 sum2 op2 MULS((w2)[5 * 64], tmp);\
853 tmp = p[6 * 64];\
854 sum1 op1 MULS((w1)[6 * 64], tmp);\
855 sum2 op2 MULS((w2)[6 * 64], tmp);\
856 tmp = p[7 * 64];\
857 sum1 op1 MULS((w1)[7 * 64], tmp);\
858 sum2 op2 MULS((w2)[7 * 64], tmp);\
859 }
860
861 void ff_mpa_synth_init(MPA_INT *window)
862 {
863 int i;
864
865 /* max = 18760, max sum over all 16 coefs : 44736 */
866 for(i=0;i<257;i++) {
867 int v;
868 v = mpa_enwindow[i];
869 #if WFRAC_BITS < 16
870 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
871 #endif
872 window[i] = v;
873 if ((i & 63) != 0)
874 v = -v;
875 if (i != 0)
876 window[512 - i] = v;
877 }
878 }
879
880 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
881 32 samples. */
882 /* XXX: optimize by avoiding ring buffer usage */
883 void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
884 MPA_INT *window, int *dither_state,
885 OUT_INT *samples, int incr,
886 int32_t sb_samples[SBLIMIT])
887 {
888 int32_t tmp[32];
889 register MPA_INT *synth_buf;
890 register const MPA_INT *w, *w2, *p;
891 int j, offset, v;
892 OUT_INT *samples2;
893 #if FRAC_BITS <= 15
894 int sum, sum2;
895 #else
896 int64_t sum, sum2;
897 #endif
898
899 dct32(tmp, sb_samples);
900
901 offset = *synth_buf_offset;
902 synth_buf = synth_buf_ptr + offset;
903
904 for(j=0;j<32;j++) {
905 v = tmp[j];
906 #if FRAC_BITS <= 15
907 /* NOTE: can cause a loss in precision if very high amplitude
908 sound */
909 if (v > 32767)
910 v = 32767;
911 else if (v < -32768)
912 v = -32768;
913 #endif
914 synth_buf[j] = v;
915 }
916 /* copy to avoid wrap */
917 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
918
919 samples2 = samples + 31 * incr;
920 w = window;
921 w2 = window + 31;
922
923 sum = *dither_state;
924 p = synth_buf + 16;
925 SUM8(sum, +=, w, p);
926 p = synth_buf + 48;
927 SUM8(sum, -=, w + 32, p);
928 *samples = round_sample(&sum);
929 samples += incr;
930 w++;
931
932 /* we calculate two samples at the same time to avoid one memory
933 access per two sample */
934 for(j=1;j<16;j++) {
935 sum2 = 0;
936 p = synth_buf + 16 + j;
937 SUM8P2(sum, +=, sum2, -=, w, w2, p);
938 p = synth_buf + 48 - j;
939 SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
940
941 *samples = round_sample(&sum);
942 samples += incr;
943 sum += sum2;
944 *samples2 = round_sample(&sum);
945 samples2 -= incr;
946 w++;
947 w2--;
948 }
949
950 p = synth_buf + 32;
951 SUM8(sum, -=, w + 32, p);
952 *samples = round_sample(&sum);
953 *dither_state= sum;
954
955 offset = (offset - 32) & 511;
956 *synth_buf_offset = offset;
957 }
958
959 #define C3 FIXHR(0.86602540378443864676/2)
960
961 /* 0.5 / cos(pi*(2*i+1)/36) */
962 static const int icos36[9] = {
963 FIXR(0.50190991877167369479),
964 FIXR(0.51763809020504152469), //0
965 FIXR(0.55168895948124587824),
966 FIXR(0.61038729438072803416),
967 FIXR(0.70710678118654752439), //1
968 FIXR(0.87172339781054900991),
969 FIXR(1.18310079157624925896),
970 FIXR(1.93185165257813657349), //2
971 FIXR(5.73685662283492756461),
972 };
973
974 /* 0.5 / cos(pi*(2*i+1)/36) */
975 static const int icos36h[9] = {
976 FIXHR(0.50190991877167369479/2),
977 FIXHR(0.51763809020504152469/2), //0
978 FIXHR(0.55168895948124587824/2),
979 FIXHR(0.61038729438072803416/2),
980 FIXHR(0.70710678118654752439/2), //1
981 FIXHR(0.87172339781054900991/2),
982 FIXHR(1.18310079157624925896/4),
983 FIXHR(1.93185165257813657349/4), //2
984 // FIXHR(5.73685662283492756461),
985 };
986
987 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
988 cases. */
989 static void imdct12(int *out, int *in)
990 {
991 int in0, in1, in2, in3, in4, in5, t1, t2;
992
993 in0= in[0*3];
994 in1= in[1*3] + in[0*3];
995 in2= in[2*3] + in[1*3];
996 in3= in[3*3] + in[2*3];
997 in4= in[4*3] + in[3*3];
998 in5= in[5*3] + in[4*3];
999 in5 += in3;
1000 in3 += in1;
1001
1002 in2= MULH(2*in2, C3);
1003 in3= MULH(4*in3, C3);
1004
1005 t1 = in0 - in4;
1006 t2 = MULH(2*(in1 - in5), icos36h[4]);
1007
1008 out[ 7]=
1009 out[10]= t1 + t2;
1010 out[ 1]=
1011 out[ 4]= t1 - t2;
1012
1013 in0 += in4>>1;
1014 in4 = in0 + in2;
1015 in5 += 2*in1;
1016 in1 = MULH(in5 + in3, icos36h[1]);
1017 out[ 8]=
1018 out[ 9]= in4 + in1;
1019 out[ 2]=
1020 out[ 3]= in4 - in1;
1021
1022 in0 -= in2;
1023 in5 = MULH(2*(in5 - in3), icos36h[7]);
1024 out[ 0]=
1025 out[ 5]= in0 - in5;
1026 out[ 6]=
1027 out[11]= in0 + in5;
1028 }
1029
1030 /* cos(pi*i/18) */
1031 #define C1 FIXHR(0.98480775301220805936/2)
1032 #define C2 FIXHR(0.93969262078590838405/2)
1033 #define C3 FIXHR(0.86602540378443864676/2)
1034 #define C4 FIXHR(0.76604444311897803520/2)
1035 #define C5 FIXHR(0.64278760968653932632/2)
1036 #define C6 FIXHR(0.5/2)
1037 #define C7 FIXHR(0.34202014332566873304/2)
1038 #define C8 FIXHR(0.17364817766693034885/2)
1039
1040
1041 /* using Lee like decomposition followed by hand coded 9 points DCT */
1042 static void imdct36(int *out, int *buf, int *in, int *win)
1043 {
1044 int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
1045 int tmp[18], *tmp1, *in1;
1046
1047 for(i=17;i>=1;i--)
1048 in[i] += in[i-1];
1049 for(i=17;i>=3;i-=2)
1050 in[i] += in[i-2];
1051
1052 for(j=0;j<2;j++) {
1053 tmp1 = tmp + j;
1054 in1 = in + j;
1055 #if 0
1056 //more accurate but slower
1057 int64_t t0, t1, t2, t3;
1058 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1059
1060 t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
1061 t1 = in1[2*0] - in1[2*6];
1062 tmp1[ 6] = t1 - (t2>>1);
1063 tmp1[16] = t1 + t2;
1064
1065 t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
1066 t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
1067 t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
1068
1069 tmp1[10] = (t3 - t0 - t2) >> 32;
1070 tmp1[ 2] = (t3 + t0 + t1) >> 32;
1071 tmp1[14] = (t3 + t2 - t1) >> 32;
1072
1073 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1074 t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
1075 t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
1076 t0 = MUL64(2*in1[2*3], C3);
1077
1078 t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
1079
1080 tmp1[ 0] = (t2 + t3 + t0) >> 32;
1081 tmp1[12] = (t2 + t1 - t0) >> 32;
1082 tmp1[ 8] = (t3 - t1 - t0) >> 32;
1083 #else
1084 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1085
1086 t3 = in1[2*0] + (in1[2*6]>>1);
1087 t1 = in1[2*0] - in1[2*6];
1088 tmp1[ 6] = t1 - (t2>>1);
1089 tmp1[16] = t1 + t2;
1090
1091 t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
1092 t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
1093 t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
1094
1095 tmp1[10] = t3 - t0 - t2;
1096 tmp1[ 2] = t3 + t0 + t1;
1097 tmp1[14] = t3 + t2 - t1;
1098
1099 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1100 t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
1101 t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
1102 t0 = MULH(2*in1[2*3], C3);
1103
1104 t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
1105
1106 tmp1[ 0] = t2 + t3 + t0;
1107 tmp1[12] = t2 + t1 - t0;
1108 tmp1[ 8] = t3 - t1 - t0;
1109 #endif
1110 }
1111
1112 i = 0;
1113 for(j=0;j<4;j++) {
1114 t0 = tmp[i];
1115 t1 = tmp[i + 2];
1116 s0 = t1 + t0;
1117 s2 = t1 - t0;
1118
1119 t2 = tmp[i + 1];
1120 t3 = tmp[i + 3];
1121 s1 = MULH(2*(t3 + t2), icos36h[j]);
1122 s3 = MULL(t3 - t2, icos36[8 - j]);
1123
1124 t0 = s0 + s1;
1125 t1 = s0 - s1;
1126 out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
1127 out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
1128 buf[9 + j] = MULH(t0, win[18 + 9 + j]);
1129 buf[8 - j] = MULH(t0, win[18 + 8 - j]);
1130
1131 t0 = s2 + s3;
1132 t1 = s2 - s3;
1133 out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
1134 out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
1135 buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
1136 buf[ + j] = MULH(t0, win[18 + j]);
1137 i += 4;
1138 }
1139
1140 s0 = tmp[16];
1141 s1 = MULH(2*tmp[17], icos36h[4]);
1142 t0 = s0 + s1;
1143 t1 = s0 - s1;
1144 out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
1145 out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
1146 buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
1147 buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
1148 }
1149
1150 /* header decoding. MUST check the header before because no
1151 consistency check is done there. Return 1 if free format found and
1152 that the frame size must be computed externally */
1153 static int decode_header(MPADecodeContext *s, uint32_t header)
1154 {
1155 int sample_rate, frame_size, mpeg25, padding;
1156 int sample_rate_index, bitrate_index;
1157 if (header & (1<<20)) {
1158 s->lsf = (header & (1<<19)) ? 0 : 1;
1159 mpeg25 = 0;
1160 } else {
1161 s->lsf = 1;
1162 mpeg25 = 1;
1163 }
1164
1165 s->layer = 4 - ((header >> 17) & 3);
1166 /* extract frequency */
1167 sample_rate_index = (header >> 10) & 3;
1168 sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
1169 sample_rate_index += 3 * (s->lsf + mpeg25);
1170 s->sample_rate_index = sample_rate_index;
1171 s->error_protection = ((header >> 16) & 1) ^ 1;
1172 s->sample_rate = sample_rate;
1173
1174 bitrate_index = (header >> 12) & 0xf;
1175 padding = (header >> 9) & 1;
1176 //extension = (header >> 8) & 1;
1177 s->mode = (header >> 6) & 3;
1178 s->mode_ext = (header >> 4) & 3;
1179 //copyright = (header >> 3) & 1;
1180 //original = (header >> 2) & 1;
1181 //emphasis = header & 3;
1182
1183 if (s->mode == MPA_MONO)
1184 s->nb_channels = 1;
1185 else
1186 s->nb_channels = 2;
1187
1188 if (bitrate_index != 0) {
1189 frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
1190 s->bit_rate = frame_size * 1000;
1191 switch(s->layer) {
1192 case 1:
1193 frame_size = (frame_size * 12000) / sample_rate;
1194 frame_size = (frame_size + padding) * 4;
1195 break;
1196 case 2:
1197 frame_size = (frame_size * 144000) / sample_rate;
1198 frame_size += padding;
1199 break;
1200 default:
1201 case 3:
1202 frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
1203 frame_size += padding;
1204 break;
1205 }
1206 s->frame_size = frame_size;
1207 } else {
1208 /* if no frame size computed, signal it */
1209 if (!s->free_format_frame_size)
1210 return 1;
1211 /* free format: compute bitrate and real frame size from the
1212 frame size we extracted by reading the bitstream */
1213 s->frame_size = s->free_format_frame_size;
1214 switch(s->layer) {
1215 case 1:
1216 s->frame_size += padding * 4;
1217 s->bit_rate = (s->frame_size * sample_rate) / 48000;
1218 break;
1219 case 2:
1220 s->frame_size += padding;
1221 s->bit_rate = (s->frame_size * sample_rate) / 144000;
1222 break;
1223 default:
1224 case 3:
1225 s->frame_size += padding;
1226 s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
1227 break;
1228 }
1229 }
1230
1231 #if defined(DEBUG)
1232 dprintf("layer%d, %d Hz, %d kbits/s, ",
1233 s->layer, s->sample_rate, s->bit_rate);
1234 if (s->nb_channels == 2) {
1235 if (s->layer == 3) {
1236 if (s->mode_ext & MODE_EXT_MS_STEREO)
1237 dprintf("ms-");
1238 if (s->mode_ext & MODE_EXT_I_STEREO)
1239 dprintf("i-");
1240 }
1241 dprintf("stereo");
1242 } else {
1243 dprintf("mono");
1244 }
1245 dprintf("\n");
1246 #endif
1247 return 0;
1248 }
1249
1250 /* useful helper to get mpeg audio stream infos. Return -1 if error in
1251 header, otherwise the coded frame size in bytes */
1252 int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
1253 {
1254 MPADecodeContext s1, *s = &s1;
1255 memset( s, 0, sizeof(MPADecodeContext) );
1256
1257 if (ff_mpa_check_header(head) != 0)
1258 return -1;
1259
1260 if (decode_header(s, head) != 0) {
1261 return -1;
1262 }
1263
1264 switch(s->layer) {
1265 case 1:
1266 avctx->frame_size = 384;
1267 break;
1268 case 2:
1269 avctx->frame_size = 1152;
1270 break;
1271 default:
1272 case 3:
1273 if (s->lsf)
1274 avctx->frame_size = 576;
1275 else
1276 avctx->frame_size = 1152;
1277 break;
1278 }
1279
1280 avctx->sample_rate = s->sample_rate;
1281 avctx->channels = s->nb_channels;
1282 avctx->bit_rate = s->bit_rate;
1283 avctx->sub_id = s->layer;
1284 return s->frame_size;
1285 }
1286
1287 /* return the number of decoded frames */
1288 static int mp_decode_layer1(MPADecodeContext *s)
1289 {
1290 int bound, i, v, n, ch, j, mant;
1291 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1292 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1293
1294 if (s->mode == MPA_JSTEREO)
1295 bound = (s->mode_ext + 1) * 4;
1296 else
1297 bound = SBLIMIT;
1298
1299 /* allocation bits */
1300 for(i=0;i<bound;i++) {
1301 for(ch=0;ch<s->nb_channels;ch++) {
1302 allocation[ch][i] = get_bits(&s->gb, 4);
1303 }
1304 }
1305 for(i=bound;i<SBLIMIT;i++) {
1306 allocation[0][i] = get_bits(&s->gb, 4);
1307 }
1308
1309 /* scale factors */
1310 for(i=0;i<bound;i++) {
1311 for(ch=0;ch<s->nb_channels;ch++) {
1312 if (allocation[ch][i])
1313 scale_factors[ch][i] = get_bits(&s->gb, 6);
1314 }
1315 }
1316 for(i=bound;i<SBLIMIT;i++) {
1317 if (allocation[0][i]) {
1318 scale_factors[0][i] = get_bits(&s->gb, 6);
1319 scale_factors[1][i] = get_bits(&s->gb, 6);
1320 }
1321 }
1322
1323 /* compute samples */
1324 for(j=0;j<12;j++) {
1325 for(i=0;i<bound;i++) {
1326 for(ch=0;ch<s->nb_channels;ch++) {
1327 n = allocation[ch][i];
1328 if (n) {
1329 mant = get_bits(&s->gb, n + 1);
1330 v = l1_unscale(n, mant, scale_factors[ch][i]);
1331 } else {
1332 v = 0;
1333 }
1334 s->sb_samples[ch][j][i] = v;
1335 }
1336 }
1337 for(i=bound;i<SBLIMIT;i++) {
1338 n = allocation[0][i];
1339 if (n) {
1340 mant = get_bits(&s->gb, n + 1);
1341 v = l1_unscale(n, mant, scale_factors[0][i]);
1342 s->sb_samples[0][j][i] = v;
1343 v = l1_unscale(n, mant, scale_factors[1][i]);
1344 s->sb_samples[1][j][i] = v;
1345 } else {
1346 s->sb_samples[0][j][i] = 0;
1347 s->sb_samples[1][j][i] = 0;
1348 }
1349 }
1350 }
1351 return 12;
1352 }
1353
1354 /* bitrate is in kb/s */
1355 int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
1356 {
1357 int ch_bitrate, table;
1358
1359 ch_bitrate = bitrate / nb_channels;
1360 if (!lsf) {
1361 if ((freq == 48000 && ch_bitrate >= 56) ||
1362 (ch_bitrate >= 56 && ch_bitrate <= 80))
1363 table = 0;
1364 else if (freq != 48000 && ch_bitrate >= 96)
1365 table = 1;
1366 else if (freq != 32000 && ch_bitrate <= 48)
1367 table = 2;
1368 else
1369 table = 3;
1370 } else {
1371 table = 4;
1372 }
1373 return table;
1374 }
1375
1376 static int mp_decode_layer2(MPADecodeContext *s)
1377 {
1378 int sblimit; /* number of used subbands */
1379 const unsigned char *alloc_table;
1380 int table, bit_alloc_bits, i, j, ch, bound, v;
1381 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1382 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1383 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1384 int scale, qindex, bits, steps, k, l, m, b;
1385
1386 /* select decoding table */
1387 table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
1388 s->sample_rate, s->lsf);
1389 sblimit = sblimit_table[table];
1390 alloc_table = alloc_tables[table];
1391
1392 if (s->mode == MPA_JSTEREO)
1393 bound = (s->mode_ext + 1) * 4;
1394 else
1395 bound = sblimit;
1396
1397 dprintf("bound=%d sblimit=%d\n", bound, sblimit);
1398
1399 /* sanity check */
1400 if( bound > sblimit ) bound = sblimit;
1401
1402 /* parse bit allocation */
1403 j = 0;
1404 for(i=0;i<bound;i++) {
1405 bit_alloc_bits = alloc_table[j];
1406 for(ch=0;ch<s->nb_channels;ch++) {
1407 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1408 }
1409 j += 1 << bit_alloc_bits;
1410 }
1411 for(i=bound;i<sblimit;i++) {
1412 bit_alloc_bits = alloc_table[j];
1413 v = get_bits(&s->gb, bit_alloc_bits);
1414 bit_alloc[0][i] = v;
1415 bit_alloc[1][i] = v;
1416 j += 1 << bit_alloc_bits;
1417 }
1418
1419 #ifdef DEBUG
1420 {
1421 for(ch=0;ch<s->nb_channels;ch++) {
1422 for(i=0;i<sblimit;i++)
1423 dprintf(" %d", bit_alloc[ch][i]);
1424 dprintf("\n");
1425 }
1426 }
1427 #endif
1428
1429 /* scale codes */
1430 for(i=0;i<sblimit;i++) {
1431 for(ch=0;ch<s->nb_channels;ch++) {
1432 if (bit_alloc[ch][i])
1433 scale_code[ch][i] = get_bits(&s->gb, 2);
1434 }
1435 }
1436
1437 /* scale factors */
1438 for(i=0;i<sblimit;i++) {
1439 for(ch=0;ch<s->nb_channels;ch++) {
1440 if (bit_alloc[ch][i]) {
1441 sf = scale_factors[ch][i];
1442 switch(scale_code[ch][i]) {
1443 default:
1444 case 0:
1445 sf[0] = get_bits(&s->gb, 6);
1446 sf[1] = get_bits(&s->gb, 6);
1447 sf[2] = get_bits(&s->gb, 6);
1448 break;
1449 case 2:
1450 sf[0] = get_bits(&s->gb, 6);
1451 sf[1] = sf[0];
1452 sf[2] = sf[0];
1453 break;
1454 case 1:
1455 sf[0] = get_bits(&s->gb, 6);
1456 sf[2] = get_bits(&s->gb, 6);
1457 sf[1] = sf[0];
1458 break;
1459 case 3:
1460 sf[0] = get_bits(&s->gb, 6);
1461 sf[2] = get_bits(&s->gb, 6);
1462 sf[1] = sf[2];
1463 break;
1464 }
1465 }
1466 }
1467 }
1468
1469 #ifdef DEBUG
1470 for(ch=0;ch<s->nb_channels;ch++) {
1471 for(i=0;i<sblimit;i++) {
1472 if (bit_alloc[ch][i]) {
1473 sf = scale_factors[ch][i];
1474 dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
1475 } else {
1476 dprintf(" -");
1477 }
1478 }
1479 dprintf("\n");
1480 }
1481 #endif
1482
1483 /* samples */
1484 for(k=0;k<3;k++) {
1485 for(l=0;l<12;l+=3) {
1486 j = 0;
1487 for(i=0;i<bound;i++) {
1488 bit_alloc_bits = alloc_table[j];
1489 for(ch=0;ch<s->nb_channels;ch++) {
1490 b = bit_alloc[ch][i];
1491 if (b) {
1492 scale = scale_factors[ch][i][k];
1493 qindex = alloc_table[j+b];
1494 bits = quant_bits[qindex];
1495 if (bits < 0) {
1496 /* 3 values at the same time */
1497 v = get_bits(&s->gb, -bits);
1498 steps = quant_steps[qindex];
1499 s->sb_samples[ch][k * 12 + l + 0][i] =
1500 l2_unscale_group(steps, v % steps, scale);
1501 v = v / steps;
1502 s->sb_samples[ch][k * 12 + l + 1][i] =
1503 l2_unscale_group(steps, v % steps, scale);
1504 v = v / steps;
1505 s->sb_samples[ch][k * 12 + l + 2][i] =
1506 l2_unscale_group(steps, v, scale);
1507 } else {
1508 for(m=0;m<3;m++) {
1509 v = get_bits(&s->gb, bits);
1510 v = l1_unscale(bits - 1, v, scale);
1511 s->sb_samples[ch][k * 12 + l + m][i] = v;
1512 }
1513 }
1514 } else {
1515 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1516 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1517 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1518 }
1519 }
1520 /* next subband in alloc table */
1521 j += 1 << bit_alloc_bits;
1522 }
1523 /* XXX: find a way to avoid this duplication of code */
1524 for(i=bound;i<sblimit;i++) {
1525 bit_alloc_bits = alloc_table[j];
1526 b = bit_alloc[0][i];
1527 if (b) {
1528 int mant, scale0, scale1;
1529 scale0 = scale_factors[0][i][k];
1530 scale1 = scale_factors[1][i][k];
1531 qindex = alloc_table[j+b];
1532 bits = quant_bits[qindex];
1533 if (bits < 0) {
1534 /* 3 values at the same time */
1535 v = get_bits(&s->gb, -bits);
1536 steps = quant_steps[qindex];
1537 mant = v % steps;
1538 v = v / steps;
1539 s->sb_samples[0][k * 12 + l + 0][i] =
1540 l2_unscale_group(steps, mant, scale0);
1541 s->sb_samples[1][k * 12 + l + 0][i] =
1542 l2_unscale_group(steps, mant, scale1);
1543 mant = v % steps;
1544 v = v / steps;
1545 s->sb_samples[0][k * 12 + l + 1][i] =
1546 l2_unscale_group(steps, mant, scale0);
1547 s->sb_samples[1][k * 12 + l + 1][i] =
1548 l2_unscale_group(steps, mant, scale1);
1549 s->sb_samples[0][k * 12 + l + 2][i] =
1550 l2_unscale_group(steps, v, scale0);
1551 s->sb_samples[1][k * 12 + l + 2][i] =
1552 l2_unscale_group(steps, v, scale1);
1553 } else {
1554 for(m=0;m<3;m++) {
1555 mant = get_bits(&s->gb, bits);
1556 s->sb_samples[0][k * 12 + l + m][i] =
1557 l1_unscale(bits - 1, mant, scale0);
1558 s->sb_samples[1][k * 12 + l + m][i] =
1559 l1_unscale(bits - 1, mant, scale1);
1560 }
1561 }
1562 } else {
1563 s->sb_samples[0][k * 12 + l + 0][i] = 0;
1564 s->sb_samples[0][k * 12 + l + 1][i] = 0;
1565 s->sb_samples[0][k * 12 + l + 2][i] = 0;
1566 s->sb_samples[1][k * 12 + l + 0][i] = 0;
1567 s->sb_samples[1][k * 12 + l + 1][i] = 0;
1568 s->sb_samples[1][k * 12 + l + 2][i] = 0;
1569 }
1570 /* next subband in alloc table */
1571 j += 1 << bit_alloc_bits;
1572 }
1573 /* fill remaining samples to zero */
1574 for(i=sblimit;i<SBLIMIT;i++) {
1575 for(ch=0;ch<s->nb_channels;ch++) {
1576 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1577 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1578 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1579 }
1580 }
1581 }
1582 }
1583 return 3 * 12;
1584 }
1585
1586 static inline void lsf_sf_expand(int *slen,
1587 int sf, int n1, int n2, int n3)
1588 {
1589 if (n3) {
1590 slen[3] = sf % n3;
1591 sf /= n3;
1592 } else {
1593 slen[3] = 0;
1594 }
1595 if (n2) {
1596 slen[2] = sf % n2;
1597 sf /= n2;
1598 } else {
1599 slen[2] = 0;
1600 }
1601 slen[1] = sf % n1;
1602 sf /= n1;
1603 slen[0] = sf;
1604 }
1605
1606 static void exponents_from_scale_factors(MPADecodeContext *s,
1607 GranuleDef *g,
1608 int16_t *exponents)
1609 {
1610 const uint8_t *bstab, *pretab;
1611 int len, i, j, k, l, v0, shift, gain, gains[3];
1612 int16_t *exp_ptr;
1613
1614 exp_ptr = exponents;
1615 gain = g->global_gain - 210;
1616 shift = g->scalefac_scale + 1;
1617
1618 bstab = band_size_long[s->sample_rate_index];
1619 pretab = mpa_pretab[g->preflag];
1620 for(i=0;i<g->long_end;i++) {
1621 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1622 len = bstab[i];
1623 for(j=len;j>0;j--)
1624 *exp_ptr++ = v0;
1625 }
1626
1627 if (g->short_start < 13) {
1628 bstab = band_size_short[s->sample_rate_index];
1629 gains[0] = gain - (g->subblock_gain[0] << 3);
1630 gains[1] = gain - (g->subblock_gain[1] << 3);
1631 gains[2] = gain - (g->subblock_gain[2] << 3);
1632 k = g->long_end;
1633 for(i=g->short_start;i<13;i++) {
1634 len = bstab[i];
1635 for(l=0;l<3;l++) {
1636 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1637 for(j=len;j>0;j--)
1638 *exp_ptr++ = v0;
1639 }
1640 }
1641 }
1642 }
1643
1644 /* handle n = 0 too */
1645 static inline int get_bitsz(GetBitContext *s, int n)
1646 {
1647 if (n == 0)
1648 return 0;
1649 else
1650 return get_bits(s, n);
1651 }
1652
1653 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1654 int16_t *exponents, int end_pos2)
1655 {
1656 int s_index;
1657 int i;
1658 int last_pos, bits_left;
1659 VLC *vlc;
1660 int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1661
1662 /* low frequencies (called big values) */
1663 s_index = 0;
1664 for(i=0;i<3;i++) {
1665 int j, k, l, linbits;
1666 j = g->region_size[i];
1667 if (j == 0)
1668 continue;
1669 /* select vlc table */
1670 k = g->table_select[i];
1671 l = mpa_huff_data[k][0];
1672 linbits = mpa_huff_data[k][1];
1673 vlc = &huff_vlc[l];
1674
1675 if(!l){
1676 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*j);
1677 s_index += 2*j;
1678 continue;
1679 }
1680
1681 /* read huffcode and compute each couple */
1682 for(;j>0;j--) {
1683 int exponent, x, y, v;
1684 int pos= get_bits_count(&s->gb);
1685
1686 if (pos >= end_pos){
1687 // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1688 if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
1689 s->gb= s->in_gb;
1690 s->in_gb.buffer=NULL;
1691 assert((get_bits_count(&s->gb) & 7) == 0);
1692 skip_bits_long(&s->gb, pos - end_pos);
1693 end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
1694 pos= get_bits_count(&s->gb);
1695 }
1696 // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1697 if(pos >= end_pos)
1698 break;
1699 }
1700 y = get_vlc2(&s->gb, vlc->table, 7, 3);
1701
1702 if(!y){
1703 g->sb_hybrid[s_index ] =
1704 g->sb_hybrid[s_index+1] = 0;
1705 s_index += 2;
1706 continue;
1707 }
1708
1709 exponent= exponents[s_index];
1710
1711 dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
1712 i, g->region_size[i] - j, x, y, exponent);
1713 if(y&16){
1714 x = y >> 5;
1715 y = y & 0x0f;
1716 if (x < 15){
1717 v = expval_table[ exponent ][ x ];
1718 // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
1719 }else{
1720 x += get_bitsz(&s->gb, linbits);
1721 v = l3_unscale(x, exponent);
1722 }
1723 if (get_bits1(&s->gb))
1724 v = -v;
1725 g->sb_hybrid[s_index] = v;
1726 if (y < 15){
1727 v = expval_table[ exponent ][ y ];
1728 }else{
1729 y += get_bitsz(&s->gb, linbits);
1730 v = l3_unscale(y, exponent);
1731 }
1732 if (get_bits1(&s->gb))
1733 v = -v;
1734 g->sb_hybrid[s_index+1] = v;
1735 }else{
1736 x = y >> 5;
1737 y = y & 0x0f;
1738 x += y;
1739 if (x < 15){
1740 v = expval_table[ exponent ][ x ];
1741 }else{
1742 x += get_bitsz(&s->gb, linbits);
1743 v = l3_unscale(x, exponent);
1744 }
1745 if (get_bits1(&s->gb))
1746 v = -v;
1747 g->sb_hybrid[s_index+!!y] = v;
1748 }
1749 s_index+=2;
1750 }
1751 }
1752
1753 /* high frequencies */
1754 vlc = &huff_quad_vlc[g->count1table_select];
1755 last_pos=0;
1756 while (s_index <= 572) {
1757 int pos, code;
1758 pos = get_bits_count(&s->gb);
1759 if (pos >= end_pos) {
1760 // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1761 if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
1762 s->gb= s->in_gb;
1763 s->in_gb.buffer=NULL;
1764 assert((get_bits_count(&s->gb) & 7) == 0);
1765 skip_bits_long(&s->gb, pos - end_pos);
1766 end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
1767 pos= get_bits_count(&s->gb);
1768 }
1769 // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1770 if (pos > end_pos && last_pos){ //FIXME last_pos is messed if we switch buffers
1771 /* some encoders generate an incorrect size for this
1772 part. We must go back into the data */
1773 s_index -= 4;
1774 skip_bits_long(&s->gb, last_pos - pos);
1775 av_log(NULL, AV_LOG_ERROR, "overread, skip %d\n", last_pos&7);
1776 }
1777 if(pos >= end_pos)
1778 break;
1779 }
1780 last_pos= pos;
1781
1782 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1783 dprintf("t=%d code=%d\n", g->count1table_select, code);
1784 g->sb_hybrid[s_index+0]=
1785 g->sb_hybrid[s_index+1]=
1786 g->sb_hybrid[s_index+2]=
1787 g->sb_hybrid[s_index+3]= 0;
1788 while(code){
1789 const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1790 int v;
1791 int pos= s_index+idxtab[code];
1792 code ^= 8>>idxtab[code];
1793 v = exp_table[ exponents[pos] ];
1794 // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
1795 if(get_bits1(&s->gb))
1796 v = -v;
1797 g->sb_hybrid[pos] = v;
1798 }
1799 s_index+=4;
1800 }
1801 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1802
1803 /* skip extension bits */
1804 bits_left = end_pos - get_bits_count(&s->gb);
1805 //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1806 if (bits_left < 0) {
1807 dprintf("bits_left=%d\n", bits_left);
1808 return -1;
1809 }
1810 skip_bits_long(&s->gb, bits_left);
1811
1812 return 0;
1813 }
1814
1815 /* Reorder short blocks from bitstream order to interleaved order. It
1816 would be faster to do it in parsing, but the code would be far more
1817 complicated */
1818 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1819 {
1820 int i, j, len;
1821 int32_t *ptr, *dst, *ptr1;
1822 int32_t tmp[576];
1823
1824 if (g->block_type != 2)
1825 return;
1826
1827 if (g->switch_point) {
1828 if (s->sample_rate_index != 8) {
1829 ptr = g->sb_hybrid + 36;
1830 } else {
1831 ptr = g->sb_hybrid + 48;
1832 }
1833 } else {
1834 ptr = g->sb_hybrid;
1835 }
1836
1837 for(i=g->short_start;i<13;i++) {
1838 len = band_size_short[s->sample_rate_index][i];
1839 ptr1 = ptr;
1840 dst = tmp;
1841 for(j=len;j>0;j--) {
1842 *dst++ = ptr[0*len];
1843 *dst++ = ptr[1*len];
1844 *dst++ = ptr[2*len];
1845 ptr++;
1846 }
1847 ptr+=2*len;
1848 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1849 }
1850 }
1851
1852 #define ISQRT2 FIXR(0.70710678118654752440)
1853
1854 static void compute_stereo(MPADecodeContext *s,
1855 GranuleDef *g0, GranuleDef *g1)
1856 {
1857 int i, j, k, l;
1858 int32_t v1, v2;
1859 int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1860 int32_t (*is_tab)[16];
1861 int32_t *tab0, *tab1;
1862 int non_zero_found_short[3];
1863
1864 /* intensity stereo */
1865 if (s->mode_ext & MODE_EXT_I_STEREO) {
1866 if (!s->lsf) {
1867 is_tab = is_table;
1868 sf_max = 7;
1869 } else {
1870 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1871 sf_max = 16;
1872 }
1873
1874 tab0 = g0->sb_hybrid + 576;
1875 tab1 = g1->sb_hybrid + 576;
1876
1877 non_zero_found_short[0] = 0;
1878 non_zero_found_short[1] = 0;
1879 non_zero_found_short[2] = 0;
1880 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1881 for(i = 12;i >= g1->short_start;i--) {
1882 /* for last band, use previous scale factor */
1883 if (i != 11)
1884 k -= 3;
1885 len = band_size_short[s->sample_rate_index][i];
1886 for(l=2;l>=0;l--) {
1887 tab0 -= len;
1888 tab1 -= len;
1889 if (!non_zero_found_short[l]) {
1890 /* test if non zero band. if so, stop doing i-stereo */
1891 for(j=0;j<len;j++) {
1892 if (tab1[j] != 0) {
1893 non_zero_found_short[l] = 1;
1894 goto found1;
1895 }
1896 }
1897 sf = g1->scale_factors[k + l];
1898 if (sf >= sf_max)
1899 goto found1;
1900
1901 v1 = is_tab[0][sf];
1902 v2 = is_tab[1][sf];
1903 for(j=0;j<len;j++) {
1904 tmp0 = tab0[j];
1905 tab0[j] = MULL(tmp0, v1);
1906 tab1[j] = MULL(tmp0, v2);
1907 }
1908 } else {
1909 found1:
1910 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1911 /* lower part of the spectrum : do ms stereo
1912 if enabled */
1913 for(j=0;j<len;j++) {
1914 tmp0 = tab0[j];
1915 tmp1 = tab1[j];
1916 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1917 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1918 }
1919 }
1920 }
1921 }
1922 }
1923
1924 non_zero_found = non_zero_found_short[0] |
1925 non_zero_found_short[1] |
1926 non_zero_found_short[2];
1927
1928 for(i = g1->long_end - 1;i >= 0;i--) {
1929 len = band_size_long[s->sample_rate_index][i];
1930 tab0 -= len;
1931 tab1 -= len;
1932 /* test if non zero band. if so, stop doing i-stereo */
1933 if (!non_zero_found) {
1934 for(j=0;j<len;j++) {
1935 if (tab1[j] != 0) {
1936 non_zero_found = 1;
1937 goto found2;
1938 }
1939 }
1940 /* for last band, use previous scale factor */
1941 k = (i == 21) ? 20 : i;
1942 sf = g1->scale_factors[k];
1943 if (sf >= sf_max)
1944 goto found2;
1945 v1 = is_tab[0][sf];
1946 v2 = is_tab[1][sf];
1947 for(j=0;j<len;j++) {
1948 tmp0 = tab0[j];
1949 tab0[j] = MULL(tmp0, v1);
1950 tab1[j] = MULL(tmp0, v2);
1951 }
1952 } else {
1953 found2:
1954 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1955 /* lower part of the spectrum : do ms stereo
1956 if enabled */
1957 for(j=0;j<len;j++) {
1958 tmp0 = tab0[j];
1959 tmp1 = tab1[j];
1960 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
1961 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
1962 }
1963 }
1964 }
1965 }
1966 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1967 /* ms stereo ONLY */
1968 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1969 global gain */
1970 tab0 = g0->sb_hybrid;
1971 tab1 = g1->sb_hybrid;
1972 for(i=0;i<576;i++) {
1973 tmp0 = tab0[i];
1974 tmp1 = tab1[i];
1975 tab0[i] = tmp0 + tmp1;
1976 tab1[i] = tmp0 - tmp1;
1977 }
1978 }
1979 }
1980
1981 static void compute_antialias_integer(MPADecodeContext *s,
1982 GranuleDef *g)
1983 {
1984 int32_t *ptr, *csa;
1985 int n, i;
1986
1987 /* we antialias only "long" bands */
1988 if (g->block_type == 2) {
1989 if (!g->switch_point)
1990 return;
1991 /* XXX: check this for 8000Hz case */
1992 n = 1;
1993 } else {
1994 n = SBLIMIT - 1;
1995 }
1996
1997 ptr = g->sb_hybrid + 18;
1998 for(i = n;i > 0;i--) {
1999 int tmp0, tmp1, tmp2;
2000 csa = &csa_table[0][0];
2001 #define INT_AA(j) \
2002 tmp0 = ptr[-1-j];\
2003 tmp1 = ptr[ j];\
2004 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
2005 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
2006 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
2007
2008 INT_AA(0)
2009 INT_AA(1)
2010 INT_AA(2)
2011 INT_AA(3)
2012 INT_AA(4)
2013 INT_AA(5)
2014 INT_AA(6)
2015 INT_AA(7)
2016
2017 ptr += 18;
2018 }
2019 }
2020
2021 static void compute_antialias_float(MPADecodeContext *s,
2022 GranuleDef *g)
2023 {
2024 int32_t *ptr;
2025 int n, i;
2026
2027 /* we antialias only "long" bands */
2028 if (g->block_type == 2) {
2029 if (!g->switch_point)
2030 return;
2031 /* XXX: check this for 8000Hz case */
2032 n = 1;
2033 } else {
2034 n = SBLIMIT - 1;
2035 }
2036
2037 ptr = g->sb_hybrid + 18;
2038 for(i = n;i > 0;i--) {
2039 float tmp0, tmp1;
2040 float *csa = &csa_table_float[0][0];
2041 #define FLOAT_AA(j)\
2042 tmp0= ptr[-1-j];\
2043 tmp1= ptr[ j];\
2044 ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
2045 ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
2046
2047 FLOAT_AA(0)
2048 FLOAT_AA(1)
2049 FLOAT_AA(2)
2050 FLOAT_AA(3)
2051 FLOAT_AA(4)
2052 FLOAT_AA(5)
2053 FLOAT_AA(6)
2054 FLOAT_AA(7)
2055
2056 ptr += 18;
2057 }
2058 }
2059
2060 static void compute_imdct(MPADecodeContext *s,
2061 GranuleDef *g,
2062 int32_t *sb_samples,
2063 int32_t *mdct_buf)
2064 {
2065 int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
2066 int32_t out2[12];
2067 int i, j, mdct_long_end, v, sblimit;
2068
2069 /* find last non zero block */
2070 ptr = g->sb_hybrid + 576;
2071 ptr1 = g->sb_hybrid + 2 * 18;
2072 while (ptr >= ptr1) {
2073 ptr -= 6;
2074 v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
2075 if (v != 0)
2076 break;
2077 }
2078 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
2079
2080 if (g->block_type == 2) {
2081 /* XXX: check for 8000 Hz */
2082 if (g->switch_point)
2083 mdct_long_end = 2;
2084 else
2085 mdct_long_end = 0;
2086 } else {
2087 mdct_long_end = sblimit;
2088 }
2089
2090 buf = mdct_buf;
2091 ptr = g->sb_hybrid;
2092 for(j=0;j<mdct_long_end;j++) {
2093 /* apply window & overlap with previous buffer */
2094 out_ptr = sb_samples + j;
2095 /* select window */
2096 if (g->switch_point && j < 2)
2097 win1 = mdct_win[0];
2098 else
2099 win1 = mdct_win[g->block_type];
2100 /* select frequency inversion */
2101 win = win1 + ((4 * 36) & -(j & 1));
2102 imdct36(out_ptr, buf, ptr, win);
2103 out_ptr += 18*SBLIMIT;
2104 ptr += 18;
2105 buf += 18;
2106 }
2107 for(j=mdct_long_end;j<sblimit;j++) {
2108 /* select frequency inversion */
2109 win = mdct_win[2] + ((4 * 36) & -(j & 1));
2110 out_ptr = sb_samples + j;
2111
2112 for(i=0; i<6; i++){
2113 *out_ptr = buf[i];
2114 out_ptr += SBLIMIT;
2115 }
2116 imdct12(out2, ptr + 0);
2117 for(i=0;i<6;i++) {
2118 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
2119 buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
2120 out_ptr += SBLIMIT;
2121 }
2122 imdct12(out2, ptr + 1);
2123 for(i=0;i<6;i++) {
2124 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
2125 buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
2126 out_ptr += SBLIMIT;
2127 }
2128 imdct12(out2, ptr + 2);
2129 for(i=0;i<6;i++) {
2130 buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
2131 buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
2132 buf[i + 6*2] = 0;
2133 }
2134 ptr += 18;
2135 buf += 18;
2136 }
2137 /* zero bands */
2138 for(j=sblimit;j<SBLIMIT;j++) {
2139 /* overlap */
2140 out_ptr = sb_samples + j;
2141 for(i=0;i<18;i++) {
2142 *out_ptr = buf[i];
2143 buf[i] = 0;
2144 out_ptr += SBLIMIT;
2145 }
2146 buf += 18;
2147 }
2148 }
2149
2150 #if defined(DEBUG)
2151 void sample_dump(int fnum, int32_t *tab, int n)
2152 {
2153 static FILE *files[16], *f;
2154 char buf[512];
2155 int i;
2156 int32_t v;
2157
2158 f = files[fnum];
2159 if (!f) {
2160 snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
2161 fnum,
2162 #ifdef USE_HIGHPRECISION
2163 "hp"
2164 #else
2165 "lp"
2166 #endif
2167 );
2168 f = fopen(buf, "w");
2169 if (!f)
2170 return;
2171 files[fnum] = f;
2172 }
2173
2174 if (fnum == 0) {
2175 static int pos = 0;
2176 av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
2177 for(i=0;i<n;i++) {
2178 av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
2179 if ((i % 18) == 17)
2180 av_log(NULL, AV_LOG_DEBUG, "\n");
2181 }
2182 pos += n;
2183 }
2184 for(i=0;i<n;i++) {
2185 /* normalize to 23 frac bits */
2186 v = tab[i] << (23 - FRAC_BITS);
2187 fwrite(&v, 1, sizeof(int32_t), f);
2188 }
2189 }
2190 #endif
2191
2192
2193 /* main layer3 decoding function */
2194 static int mp_decode_layer3(MPADecodeContext *s)
2195 {
2196 int nb_granules, main_data_begin, private_bits;
2197 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
2198 GranuleDef granules[2][2], *g;
2199 int16_t exponents[576];
2200
2201 /* read side info */
2202 if (s->lsf) {
2203 main_data_begin = get_bits(&s->gb, 8);
2204 private_bits = get_bits(&s->gb, s->nb_channels);
2205 nb_granules = 1;
2206 } else {
2207 main_data_begin = get_bits(&s->gb, 9);
2208 if (s->nb_channels == 2)
2209 private_bits = get_bits(&s->gb, 3);
2210 else
2211 private_bits = get_bits(&s->gb, 5);
2212 nb_granules = 2;
2213 for(ch=0;ch<s->nb_channels;ch++) {
2214 granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
2215 granules[ch][1].scfsi = get_bits(&s->gb, 4);
2216 }
2217 }
2218
2219 for(gr=0;gr<nb_granules;gr++) {
2220 for(ch=0;ch<s->nb_channels;ch++) {
2221 dprintf("gr=%d ch=%d: side_info\n", gr, ch);
2222 g = &granules[ch][gr];
2223 g->part2_3_length = get_bits(&s->gb, 12);
2224 g->big_values = get_bits(&s->gb, 9);
2225 g->global_gain = get_bits(&s->gb, 8);
2226 /* if MS stereo only is selected, we precompute the
2227 1/sqrt(2) renormalization factor */
2228 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
2229 MODE_EXT_MS_STEREO)
2230 g->global_gain -= 2;
2231 if (s->lsf)
2232 g->scalefac_compress = get_bits(&s->gb, 9);
2233 else
2234 g->scalefac_compress = get_bits(&s->gb, 4);
2235 blocksplit_flag = get_bits(&s->gb, 1);
2236 if (blocksplit_flag) {
2237 g->block_type = get_bits(&s->gb, 2);
2238 if (g->block_type == 0)
2239 return -1;
2240 g->switch_point = get_bits(&s->gb, 1);
2241 for(i=0;i<2;i++)
2242 g->table_select[i] = get_bits(&s->gb, 5);
2243 for(i=0;i<3;i++)
2244 g->subblock_gain[i] = get_bits(&s->gb, 3);
2245 /* compute huffman coded region sizes */
2246 if (g->block_type == 2)
2247 g->region_size[0] = (36 / 2);
2248 else {
2249 if (s->sample_rate_index <= 2)
2250 g->region_size[0] = (36 / 2);
2251 else if (s->sample_rate_index != 8)
2252 g->region_size[0] = (54 / 2);
2253 else
2254 g->region_size[0] = (108 / 2);
2255 }
2256 g->region_size[1] = (576 / 2);
2257 } else {
2258 int region_address1, region_address2, l;
2259 g->block_type = 0;
2260 g->switch_point = 0;
2261 for(i=0;i<3;i++)
2262 g->table_select[i] = get_bits(&s->gb, 5);
2263 /* compute huffman coded region sizes */
2264 region_address1 = get_bits(&s->gb, 4);
2265 region_address2 = get_bits(&s->gb, 3);
2266 dprintf("region1=%d region2=%d\n",
2267 region_address1, region_address2);
2268 g->region_size[0] =
2269 band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
2270 l = region_address1 + region_address2 + 2;
2271 /* should not overflow */
2272 if (l > 22)
2273 l = 22;
2274 g->region_size[1] =
2275 band_index_long[s->sample_rate_index][l] >> 1;
2276 }
2277 /* convert region offsets to region sizes and truncate
2278 size to big_values */
2279 g->region_size[2] = (576 / 2);
2280 j = 0;
2281 for(i=0;i<3;i++) {
2282 k = FFMIN(g->region_size[i], g->big_values);
2283 g->region_size[i] = k - j;
2284 j = k;
2285 }
2286
2287 /* compute band indexes */
2288 if (g->block_type == 2) {
2289 if (g->switch_point) {
2290 /* if switched mode, we handle the 36 first samples as
2291 long blocks. For 8000Hz, we handle the 48 first
2292 exponents as long blocks (XXX: check this!) */
2293 if (s->sample_rate_index <= 2)
2294 g->long_end = 8;
2295 else if (s->sample_rate_index != 8)
2296 g->long_end = 6;
2297 else
2298 g->long_end = 4; /* 8000 Hz */
2299
2300 g->short_start = 2 + (s->sample_rate_index != 8);
2301 } else {
2302 g->long_end = 0;
2303 g->short_start = 0;
2304 }
2305 } else {
2306 g->short_start = 13;
2307 g->long_end = 22;
2308 }
2309
2310 g->preflag = 0;
2311 if (!s->lsf)
2312 g->preflag = get_bits(&s->gb, 1);
2313 g->scalefac_scale = get_bits(&s->gb, 1);
2314 g->count1table_select = get_bits(&s->gb, 1);
2315 dprintf("block_type=%d switch_point=%d\n",
2316 g->block_type, g->switch_point);
2317 }
2318 }
2319
2320 if (!s->adu_mode) {
2321 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
2322 /* now we get bits from the main_data_begin offset */
2323 dprintf("seekback: %d\n", main_data_begin);
2324 //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
2325 if(main_data_begin > s->last_buf_size)
2326 s->last_buf_size= main_data_begin;
2327
2328 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
2329 s->in_gb= s->gb;
2330 init_get_bits(&s->gb, s->last_buf + s->last_buf_size - main_data_begin, main_data_begin*8);
2331 /* prepare next buffer */
2332 s->old_frame_size = s->frame_size;
2333 }
2334
2335 for(gr=0;gr<nb_granules;gr++) {
2336 for(ch=0;ch<s->nb_channels;ch++) {
2337 g = &granules[ch][gr];
2338
2339 bits_pos = get_bits_count(&s->gb);
2340
2341 if (!s->lsf) {
2342 uint8_t *sc;
2343 int slen, slen1, slen2;
2344
2345 /* MPEG1 scale factors */
2346 slen1 = slen_table[0][g->scalefac_compress];
2347 slen2 = slen_table[1][g->scalefac_compress];
2348 dprintf("slen1=%d slen2=%d\n", slen1, slen2);
2349 if (g->block_type == 2) {
2350 n = g->switch_point ? 17 : 18;
2351 j = 0;
2352 if(slen1){
2353 for(i=0;i<n;i++)
2354 g->scale_factors[j++] = get_bits(&s->gb, slen1);
2355 }else{
2356 for(i=0;i<n;i++)
2357 g->scale_factors[j++] = 0;
2358 }
2359 if(slen2){
2360 for(i=0;i<18;i++)
2361 g->scale_factors[j++] = get_bits(&s->gb, slen2);
2362 for(i=0;i<3;i++)
2363 g->scale_factors[j++] = 0;
2364 }else{
2365 for(i=0;i<21;i++)
2366 g->scale_factors[j++] = 0;
2367 }
2368 } else {
2369 sc = granules[ch][0].scale_factors;
2370 j = 0;
2371 for(k=0;k<4;k++) {
2372 n = (k == 0 ? 6 : 5);
2373 if ((g->scfsi & (0x8 >> k)) == 0) {
2374 slen = (k < 2) ? slen1 : slen2;
2375 if(slen){
2376 for(i=0;i<n;i++)
2377 g->scale_factors[j++] = get_bits(&s->gb, slen);
2378 }else{
2379 for(i=0;i<n;i++)
2380 g->scale_factors[j++] = 0;
2381 }
2382 } else {
2383 /* simply copy from last granule */
2384 for(i=0;i<n;i++) {
2385 g->scale_factors[j] = sc[j];
2386 j++;
2387 }
2388 }
2389 }
2390 g->scale_factors[j++] = 0;
2391 }
2392 #if defined(DEBUG)
2393 {
2394 dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
2395 g->scfsi, gr, ch);
2396 for(i=0;i<j;i++)
2397 dprintf(" %d", g->scale_factors[i]);
2398 dprintf("\n");
2399 }
2400 #endif
2401 } else {
2402 int tindex, tindex2, slen[4], sl, sf;
2403
2404 /* LSF scale factors */
2405 if (g->block_type == 2) {
2406 tindex = g->switch_point ? 2 : 1;
2407 } else {
2408 tindex = 0;
2409 }
2410 sf = g->scalefac_compress;
2411 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2412 /* intensity stereo case */
2413 sf >>= 1;
2414 if (sf < 180) {
2415 lsf_sf_expand(slen, sf, 6, 6, 0);
2416 tindex2 = 3;
2417 } else if (sf < 244) {
2418 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2419 tindex2 = 4;
2420 } else {
2421 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2422 tindex2 = 5;
2423 }
2424 } else {
2425 /* normal case */
2426 if (sf < 400) {
2427 lsf_sf_expand(slen, sf, 5, 4, 4);
2428 tindex2 = 0;
2429 } else if (sf < 500) {
2430 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2431 tindex2 = 1;
2432 } else {
2433 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2434 tindex2 = 2;
2435 g->preflag = 1;
2436 }
2437 }
2438
2439 j = 0;
2440 for(k=0;k<4;k++) {
2441 n = lsf_nsf_table[tindex2][tindex][k];
2442 sl = slen[k];
2443 if(sl){
2444 for(i=0;i<n;i++)
2445 g->scale_factors[j++] = get_bits(&s->gb, sl);
2446 }else{
2447 for(i=0;i<n;i++)
2448 g->scale_factors[j++] = 0;
2449 }
2450 }
2451 /* XXX: should compute exact size */
2452 for(;j<40;j++)
2453 g->scale_factors[j] = 0;
2454 #if defined(DEBUG)
2455 {
2456 dprintf("gr=%d ch=%d scale_factors:\n",
2457 gr, ch);
2458 for(i=0;i<40;i++)
2459 dprintf(" %d", g->scale_factors[i]);
2460 dprintf("\n");
2461 }
2462 #endif
2463 }
2464
2465 exponents_from_scale_factors(s, g, exponents);
2466
2467 /* read Huffman coded residue */
2468 if (huffman_decode(s, g, exponents,
2469 bits_pos + g->part2_3_length) < 0)
2470 return -1;
2471 #if defined(DEBUG)
2472 sample_dump(0, g->sb_hybrid, 576);
2473 #endif
2474 } /* ch */
2475
2476 if (s->nb_channels == 2)
2477 compute_stereo(s, &granules[0][gr], &granules[1][gr]);
2478
2479 for(ch=0;ch<s->nb_channels;ch++) {
2480 g = &granules[ch][gr];
2481
2482 reorder_block(s, g);
2483 #if defined(DEBUG)
2484 sample_dump(0, g->sb_hybrid, 576);
2485 #endif
2486 s->compute_antialias(s, g);
2487 #if defined(DEBUG)
2488 sample_dump(1, g->sb_hybrid, 576);
2489 #endif
2490 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2491 #if defined(DEBUG)
2492 sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
2493 #endif
2494 }
2495 } /* gr */
2496 return nb_granules * 18;
2497 }
2498
2499 static int mp_decode_frame(MPADecodeContext *s,
2500 OUT_INT *samples, const uint8_t *buf, int buf_size)
2501 {
2502 int i, nb_frames, ch;
2503 OUT_INT *samples_ptr;
2504
2505 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
2506
2507 /* skip error protection field */
2508 if (s->error_protection)
2509 get_bits(&s->gb, 16);
2510
2511 dprintf("frame %d:\n", s->frame_count);
2512 switch(s->layer) {
2513 case 1:
2514 nb_frames = mp_decode_layer1(s);
2515 break;
2516 case 2:
2517 nb_frames = mp_decode_layer2(s);
2518 break;
2519 case 3:
2520 default:
2521 nb_frames = mp_decode_layer3(s);
2522
2523 if(s->in_gb.buffer)
2524 s->gb= s->in_gb;
2525 align_get_bits(&s->gb);
2526 assert((get_bits_count(&s->gb) & 7) == 0);
2527 s->last_buf_size= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2528 memcpy(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), s->last_buf_size);
2529
2530 break;
2531 }
2532 #if defined(DEBUG)
2533 for(i=0;i<nb_frames;i++) {
2534 for(ch=0;ch<s->nb_channels;ch++) {
2535 int j;
2536 dprintf("%d-%d:", i, ch);
2537 for(j=0;j<SBLIMIT;j++)
2538 dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
2539 dprintf("\n");
2540 }
2541 }
2542 #endif
2543 /* apply the synthesis filter */
2544 for(ch=0;ch<s->nb_channels;ch++) {
2545 samples_ptr = samples + ch;
2546 for(i=0;i<nb_frames;i++) {
2547 ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2548 window, &s->dither_state,
2549 samples_ptr, s->nb_channels,
2550 s->sb_samples[ch][i]);
2551 samples_ptr += 32 * s->nb_channels;
2552 }
2553 }
2554 #ifdef DEBUG
2555 s->frame_count++;
2556 #endif
2557 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2558 }
2559
2560 static int decode_frame(AVCodecContext * avctx,
2561 void *data, int *data_size,
2562 uint8_t * buf, int buf_size)
2563 {
2564 MPADecodeContext *s = avctx->priv_data;
2565 uint32_t header;
2566 int out_size;
2567 OUT_INT *out_samples = data;
2568
2569 retry:
2570 if(buf_size < HEADER_SIZE)
2571 return -1;
2572
2573 header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
2574 if(ff_mpa_check_header(header) < 0){
2575 buf++;
2576 // buf_size--;
2577 av_log(avctx, AV_LOG_ERROR, "header missing skiping one byte\n");
2578 goto retry;
2579 }
2580
2581 if (decode_header(s, header) == 1) {
2582 /* free format: prepare to compute frame size */
2583 s->frame_size = -1;
2584 return -1;
2585 }
2586 /* update codec info */
2587 avctx->sample_rate = s->sample_rate;
2588 avctx->channels = s->nb_channels;
2589 avctx->bit_rate = s->bit_rate;
2590 avctx->sub_id = s->layer;
2591 switch(s->layer) {
2592 case 1:
2593 avctx->frame_size = 384;
2594 break;
2595 case 2:
2596 avctx->frame_size = 1152;
2597 break;
2598 case 3:
2599 if (s->lsf)
2600 avctx->frame_size = 576;
2601 else
2602 avctx->frame_size = 1152;
2603 break;
2604 }
2605
2606 if(s->frame_size<=0 || s->frame_size < buf_size){
2607 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2608 return -1;
2609 }
2610
2611 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2612 if(out_size>=0)
2613 *data_size = out_size;
2614 else
2615 av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
2616 s->frame_size = 0;
2617 return buf_size;
2618 }
2619
2620
2621 static int decode_frame_adu(AVCodecContext * avctx,
2622 void *data, int *data_size,
2623 uint8_t * buf, int buf_size)
2624 {
2625 MPADecodeContext *s = avctx->priv_data;
2626 uint32_t header;
2627 int len, out_size;
2628 OUT_INT *out_samples = data;
2629
2630 len = buf_size;
2631
2632 // Discard too short frames
2633 if (buf_size < HEADER_SIZE) {
2634 *data_size = 0;
2635 return buf_size;
2636 }
2637
2638
2639 if (len > MPA_MAX_CODED_FRAME_SIZE)
2640 len = MPA_MAX_CODED_FRAME_SIZE;
2641
2642 // Get header and restore sync word
2643 header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
2644
2645 if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2646 *data_size = 0;
2647 return buf_size;
2648 }
2649
2650 decode_header(s, header);
2651 /* update codec info */
2652 avctx->sample_rate = s->sample_rate;
2653 avctx->channels = s->nb_channels;
2654 avctx->bit_rate = s->bit_rate;
2655 avctx->sub_id = s->layer;
2656
2657 avctx->frame_size=s->frame_size = len;
2658
2659 if (avctx->parse_only) {
2660 out_size = buf_size;
2661 } else {
2662 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2663 }
2664
2665 *data_size = out_size;
2666 return buf_size;
2667 }
2668
2669
2670 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2671 static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
2672 static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
2673 /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2674 static int chan_offset[9][5] = {
2675 {0},
2676 {0}, // C
2677 {0}, // FLR
2678 {2,0}, // C FLR
2679 {2,0,3}, // C FLR BS
2680 {4,0,2}, // C FLR BLRS
2681 {4,0,2,5}, // C FLR BLRS LFE
2682 {4,0,2,6,5}, // C FLR BLRS BLR LFE
2683 {0,2} // FLR BLRS
2684 };
2685
2686
2687 static int decode_init_mp3on4(AVCodecContext * avctx)
2688 {
2689 MP3On4DecodeContext *s = avctx->priv_data;
2690 int i;
2691
2692 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2693 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2694 return -1;
2695 }
2696
2697 s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
2698 s->frames = mp3Frames[s->chan_cfg];
2699 if(!s->frames) {
2700 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2701 return -1;
2702 }
2703 avctx->channels = mp3Channels[s->chan_cfg];
2704
2705 /* Init the first mp3 decoder in standard way, so that all tables get builded
2706 * We replace avctx->priv_data with the context of the first decoder so that
2707 * decode_init() does not have to be changed.
2708 * Other decoders will be inited here copying data from the first context
2709 */
2710 // Allocate zeroed memory for the first decoder context
2711 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2712 // Put decoder context in place to make init_decode() happy
2713 avctx->priv_data = s->mp3decctx[0];
2714 decode_init(avctx);
2715 // Restore mp3on4 context pointer
2716 avctx->priv_data = s;
2717 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2718
2719 /* Create a separate codec/context for each frame (first is already ok).
2720 * Each frame is 1 or 2 channels - up to 5 frames allowed
2721 */
2722 for (i = 1; i < s->frames; i++) {
2723 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2724 s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
2725 s->mp3decctx[i]->adu_mode = 1;
2726 }
2727
2728 return 0;
2729 }
2730
2731
2732 static int decode_close_mp3on4(AVCodecContext * avctx)
2733 {
2734 MP3On4DecodeContext *s = avctx->priv_data;
2735 int i;
2736
2737 for (i = 0; i < s->frames; i++)
2738 if (s->mp3decctx[i])
2739 av_free(s->mp3decctx[i]);
2740
2741 return 0;
2742 }
2743
2744
2745 static int decode_frame_mp3on4(AVCodecContext * avctx,
2746 void *data, int *data_size,
2747 uint8_t * buf, int buf_size)
2748 {
2749 MP3On4DecodeContext *s = avctx->priv_data;
2750 MPADecodeContext *m;
2751 int len, out_size = 0;
2752 uint32_t header;
2753 OUT_INT *out_samples = data;
2754 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2755 OUT_INT *outptr, *bp;
2756 int fsize;
2757 unsigned char *start2 = buf, *start;
2758 int fr, i, j, n;
2759 int off = avctx->channels;
2760 int *coff = chan_offset[s->chan_cfg];
2761
2762 len = buf_size;
2763
2764 // Discard too short frames
2765 if (buf_size < HEADER_SIZE) {
2766 *data_size = 0;
2767 return buf_size;
2768 }
2769
2770 // If only one decoder interleave is not needed
2771 outptr = s->frames == 1 ? out_samples : decoded_buf;
2772
2773 for (fr = 0; fr < s->frames; fr++) {
2774 start = start2;
2775 fsize = (start[0] << 4) | (start[1] >> 4);
2776 start2 += fsize;
2777 if (fsize > len)
2778 fsize = len;
2779 len -= fsize;
2780 if (fsize > MPA_MAX_CODED_FRAME_SIZE)
2781 fsize = MPA_MAX_CODED_FRAME_SIZE;
2782 m = s->mp3decctx[fr];
2783 assert (m != NULL);
2784
2785 // Get header
2786 header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
2787
2788 if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
2789 *data_size = 0;
2790 return buf_size;
2791 }
2792
2793 decode_header(m, header);
2794 mp_decode_frame(m, decoded_buf, start, fsize);
2795
2796 n = MPA_FRAME_SIZE * m->nb_channels;
2797 out_size += n * sizeof(OUT_INT);
2798 if(s->frames > 1) {
2799 /* interleave output data */
2800 bp = out_samples + coff[fr];
2801 if(m->nb_channels == 1) {
2802 for(j = 0; j < n; j++) {
2803 *bp = decoded_buf[j];
2804 bp += off;
2805 }
2806 } else {
2807 for(j = 0; j < n; j++) {
2808 bp[0] = decoded_buf[j++];
2809 bp[1] = decoded_buf[j];
2810 bp += off;
2811 }
2812 }
2813 }
2814 }
2815
2816 /* update codec info */
2817 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2818 avctx->frame_size= buf_size;
2819 avctx->bit_rate = 0;
2820 for (i = 0; i < s->frames; i++)
2821 avctx->bit_rate += s->mp3decctx[i]->bit_rate;
2822
2823 *data_size = out_size;
2824 return buf_size;
2825 }
2826
2827
2828 AVCodec mp2_decoder =
2829 {
2830 "mp2",
2831 CODEC_TYPE_AUDIO,
2832 CODEC_ID_MP2,
2833 sizeof(MPADecodeContext),
2834 decode_init,
2835 NULL,
2836 NULL,
2837 decode_frame,
2838 CODEC_CAP_PARSE_ONLY,
2839 };
2840
2841 AVCodec mp3_decoder =
2842 {
2843 "mp3",
2844 CODEC_TYPE_AUDIO,
2845 CODEC_ID_MP3,
2846 sizeof(MPADecodeContext),
2847 decode_init,
2848 NULL,
2849 NULL,
2850 decode_frame,
2851 CODEC_CAP_PARSE_ONLY,
2852 };
2853
2854 AVCodec mp3adu_decoder =
2855 {
2856 "mp3adu",
2857 CODEC_TYPE_AUDIO,
2858 CODEC_ID_MP3ADU,
2859 sizeof(MPADecodeContext),
2860 decode_init,
2861 NULL,
2862 NULL,
2863 decode_frame_adu,
2864 CODEC_CAP_PARSE_ONLY,
2865 };
2866
2867 AVCodec mp3on4_decoder =
2868 {
2869 "mp3on4",
2870 CODEC_TYPE_AUDIO,
2871 CODEC_ID_MP3ON4,
2872 sizeof(MP3On4DecodeContext),
2873 decode_init_mp3on4,
2874 NULL,
2875 decode_close_mp3on4,
2876 decode_frame_mp3on4,
2877 0
2878 };