fft: ppc: Place ff_fft_calc_interleave_altivec() under correct ifdefs
[libav.git] / libavcodec / ppc / fft_init.c
1 /*
2 * FFT/IFFT transforms
3 * AltiVec-enabled
4 * Copyright (c) 2009 Loren Merritt
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include "config.h"
24 #include "libavutil/cpu.h"
25 #include "libavutil/ppc/cpu.h"
26 #include "libavutil/ppc/types_altivec.h"
27 #include "libavutil/ppc/util_altivec.h"
28 #include "libavcodec/fft.h"
29
30 /**
31 * Do a complex FFT with the parameters defined in ff_fft_init().
32 * The input data must be permuted before with s->revtab table.
33 * No 1.0 / sqrt(n) normalization is done.
34 * AltiVec-enabled:
35 * This code assumes that the 'z' pointer is 16 bytes-aligned.
36 * It also assumes all FFTComplex are 8 bytes-aligned pairs of floats.
37 */
38
39 void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
40 void ff_fft_calc_interleave_altivec(FFTContext *s, FFTComplex *z);
41
42 #if HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN
43 static void imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
44 {
45 int j, k;
46 int n = 1 << s->mdct_bits;
47 int n4 = n >> 2;
48 int n8 = n >> 3;
49 int n32 = n >> 5;
50 const uint16_t *revtabj = s->revtab;
51 const uint16_t *revtabk = s->revtab+n4;
52 const vec_f *tcos = (const vec_f*)(s->tcos+n8);
53 const vec_f *tsin = (const vec_f*)(s->tsin+n8);
54 const vec_f *pin = (const vec_f*)(input+n4);
55 vec_f *pout = (vec_f*)(output+n4);
56
57 /* pre rotation */
58 k = n32-1;
59 do {
60 vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
61 #define CMULA(p,o0,o1,o2,o3)\
62 a = pin[ k*2+p]; /* { z[k].re, z[k].im, z[k+1].re, z[k+1].im } */\
63 b = pin[-k*2-p-1]; /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
64 re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re, z[k+1].re, z[-k-2].re, z[-k-1].re } */\
65 im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im, z[k].im } */\
66 cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
67 sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
68 r##p = im*cos - re*sin;\
69 i##p = re*cos + im*sin;
70 #define STORE2(v,dst)\
71 j = dst;\
72 vec_ste(v, 0, output+j*2);\
73 vec_ste(v, 4, output+j*2);
74 #define STORE8(p)\
75 a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
76 b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
77 c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
78 d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
79 STORE2(a, revtabk[ p*2-4]);\
80 STORE2(b, revtabk[ p*2-3]);\
81 STORE2(c, revtabj[-p*2+2]);\
82 STORE2(d, revtabj[-p*2+3]);
83
84 cos0 = tcos[k];
85 sin0 = tsin[k];
86 cos1 = tcos[-k-1];
87 sin1 = tsin[-k-1];
88 CMULA(0, 0,1,2,3);
89 CMULA(1, 2,3,0,1);
90 STORE8(0);
91 STORE8(1);
92 revtabj += 4;
93 revtabk -= 4;
94 k--;
95 } while(k >= 0);
96
97 ff_fft_calc_altivec(s, (FFTComplex*)output);
98
99 /* post rotation + reordering */
100 j = -n32;
101 k = n32-1;
102 do {
103 vec_f cos,sin,re,im,a,b,c,d;
104 #define CMULB(d0,d1,o)\
105 re = pout[o*2];\
106 im = pout[o*2+1];\
107 cos = tcos[o];\
108 sin = tsin[o];\
109 d0 = im*sin - re*cos;\
110 d1 = re*sin + im*cos;
111
112 CMULB(a,b,j);
113 CMULB(c,d,k);
114 pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
115 pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
116 pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
117 pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
118 j++;
119 k--;
120 } while(k >= 0);
121 }
122
123 static void imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
124 {
125 int k;
126 int n = 1 << s->mdct_bits;
127 int n4 = n >> 2;
128 int n16 = n >> 4;
129 vec_u32 sign = {1U<<31,1U<<31,1U<<31,1U<<31};
130 vec_u32 *p0 = (vec_u32*)(output+n4);
131 vec_u32 *p1 = (vec_u32*)(output+n4*3);
132
133 imdct_half_altivec(s, output + n4, input);
134
135 for (k = 0; k < n16; k++) {
136 vec_u32 a = p0[k] ^ sign;
137 vec_u32 b = p1[-k-1];
138 p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
139 p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
140 }
141 }
142 #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
143
144 av_cold void ff_fft_init_ppc(FFTContext *s)
145 {
146 #if HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN
147 if (!PPC_ALTIVEC(av_get_cpu_flags()))
148 return;
149
150 s->fft_calc = ff_fft_calc_interleave_altivec;
151 if (s->mdct_bits >= 5) {
152 s->imdct_calc = imdct_calc_altivec;
153 s->imdct_half = imdct_half_altivec;
154 }
155 #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
156 }