2 * Copyright (c) 2002 Dieter Shirley
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "libavcodec/dsputil.h"
27 #include "libavcodec/mpegvideo.h"
29 #include "dsputil_ppc.h"
30 #include "util_altivec.h"
31 #include "types_altivec.h"
32 #include "dsputil_altivec.h"
34 // Swaps two variables (used for altivec registers)
37 __typeof__(a) swap_temp=a; \
42 // transposes a matrix consisting of four vectors with four elements each
43 #define TRANSPOSE4(a,b,c,d) \
45 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
46 __typeof__(a) _trans_acl = vec_mergel(a, c); \
47 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
48 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
50 a = vec_mergeh(_trans_ach, _trans_bdh); \
51 b = vec_mergel(_trans_ach, _trans_bdh); \
52 c = vec_mergeh(_trans_acl, _trans_bdl); \
53 d = vec_mergel(_trans_acl, _trans_bdl); \
57 // Loads a four-byte value (int or float) from the target address
58 // into every element in the target vector. Only works if the
59 // target address is four-byte aligned (which should be always).
60 #define LOAD4(vec, address) \
62 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
63 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
64 vec = vec_ld(0, _load_addr); \
65 vec = vec_perm(vec, vec, _perm_vec); \
66 vec = vec_splat(vec, 0); \
70 #define FOUROF(a) {a,a,a,a}
72 static int dct_quantize_altivec(MpegEncContext
* s
,
74 int qscale
, int* overflow
)
77 vector
float row0
, row1
, row2
, row3
, row4
, row5
, row6
, row7
;
78 vector
float alt0
, alt1
, alt2
, alt3
, alt4
, alt5
, alt6
, alt7
;
79 const vector
float zero
= (const vector
float)FOUROF(0.);
80 // used after quantize step
83 // Load the data into the row/alt vectors
85 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
87 data0
= vec_ld(0, data
);
88 data1
= vec_ld(16, data
);
89 data2
= vec_ld(32, data
);
90 data3
= vec_ld(48, data
);
91 data4
= vec_ld(64, data
);
92 data5
= vec_ld(80, data
);
93 data6
= vec_ld(96, data
);
94 data7
= vec_ld(112, data
);
96 // Transpose the data before we start
97 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
99 // load the data into floating point vectors. We load
100 // the high half of each row into the main row vectors
101 // and the low half into the alt vectors.
102 row0
= vec_ctf(vec_unpackh(data0
), 0);
103 alt0
= vec_ctf(vec_unpackl(data0
), 0);
104 row1
= vec_ctf(vec_unpackh(data1
), 0);
105 alt1
= vec_ctf(vec_unpackl(data1
), 0);
106 row2
= vec_ctf(vec_unpackh(data2
), 0);
107 alt2
= vec_ctf(vec_unpackl(data2
), 0);
108 row3
= vec_ctf(vec_unpackh(data3
), 0);
109 alt3
= vec_ctf(vec_unpackl(data3
), 0);
110 row4
= vec_ctf(vec_unpackh(data4
), 0);
111 alt4
= vec_ctf(vec_unpackl(data4
), 0);
112 row5
= vec_ctf(vec_unpackh(data5
), 0);
113 alt5
= vec_ctf(vec_unpackl(data5
), 0);
114 row6
= vec_ctf(vec_unpackh(data6
), 0);
115 alt6
= vec_ctf(vec_unpackl(data6
), 0);
116 row7
= vec_ctf(vec_unpackh(data7
), 0);
117 alt7
= vec_ctf(vec_unpackl(data7
), 0);
120 // The following block could exist as a separate an altivec dct
121 // function. However, if we put it inline, the DCT data can remain
122 // in the vector local variables, as floats, which we'll use during the
125 const vector
float vec_0_298631336
= (vector
float)FOUROF(0.298631336f
);
126 const vector
float vec_0_390180644
= (vector
float)FOUROF(-0.390180644f
);
127 const vector
float vec_0_541196100
= (vector
float)FOUROF(0.541196100f
);
128 const vector
float vec_0_765366865
= (vector
float)FOUROF(0.765366865f
);
129 const vector
float vec_0_899976223
= (vector
float)FOUROF(-0.899976223f
);
130 const vector
float vec_1_175875602
= (vector
float)FOUROF(1.175875602f
);
131 const vector
float vec_1_501321110
= (vector
float)FOUROF(1.501321110f
);
132 const vector
float vec_1_847759065
= (vector
float)FOUROF(-1.847759065f
);
133 const vector
float vec_1_961570560
= (vector
float)FOUROF(-1.961570560f
);
134 const vector
float vec_2_053119869
= (vector
float)FOUROF(2.053119869f
);
135 const vector
float vec_2_562915447
= (vector
float)FOUROF(-2.562915447f
);
136 const vector
float vec_3_072711026
= (vector
float)FOUROF(3.072711026f
);
139 int whichPass
, whichHalf
;
141 for(whichPass
= 1; whichPass
<=2; whichPass
++) {
142 for(whichHalf
= 1; whichHalf
<=2; whichHalf
++) {
143 vector
float tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
144 vector
float tmp10
, tmp11
, tmp12
, tmp13
;
145 vector
float z1
, z2
, z3
, z4
, z5
;
147 tmp0
= vec_add(row0
, row7
); // tmp0 = dataptr[0] + dataptr[7];
148 tmp7
= vec_sub(row0
, row7
); // tmp7 = dataptr[0] - dataptr[7];
149 tmp3
= vec_add(row3
, row4
); // tmp3 = dataptr[3] + dataptr[4];
150 tmp4
= vec_sub(row3
, row4
); // tmp4 = dataptr[3] - dataptr[4];
151 tmp1
= vec_add(row1
, row6
); // tmp1 = dataptr[1] + dataptr[6];
152 tmp6
= vec_sub(row1
, row6
); // tmp6 = dataptr[1] - dataptr[6];
153 tmp2
= vec_add(row2
, row5
); // tmp2 = dataptr[2] + dataptr[5];
154 tmp5
= vec_sub(row2
, row5
); // tmp5 = dataptr[2] - dataptr[5];
156 tmp10
= vec_add(tmp0
, tmp3
); // tmp10 = tmp0 + tmp3;
157 tmp13
= vec_sub(tmp0
, tmp3
); // tmp13 = tmp0 - tmp3;
158 tmp11
= vec_add(tmp1
, tmp2
); // tmp11 = tmp1 + tmp2;
159 tmp12
= vec_sub(tmp1
, tmp2
); // tmp12 = tmp1 - tmp2;
162 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
163 row0
= vec_add(tmp10
, tmp11
);
165 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
166 row4
= vec_sub(tmp10
, tmp11
);
169 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
170 z1
= vec_madd(vec_add(tmp12
, tmp13
), vec_0_541196100
, (vector
float)zero
);
172 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
173 // CONST_BITS-PASS1_BITS);
174 row2
= vec_madd(tmp13
, vec_0_765366865
, z1
);
176 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
177 // CONST_BITS-PASS1_BITS);
178 row6
= vec_madd(tmp12
, vec_1_847759065
, z1
);
180 z1
= vec_add(tmp4
, tmp7
); // z1 = tmp4 + tmp7;
181 z2
= vec_add(tmp5
, tmp6
); // z2 = tmp5 + tmp6;
182 z3
= vec_add(tmp4
, tmp6
); // z3 = tmp4 + tmp6;
183 z4
= vec_add(tmp5
, tmp7
); // z4 = tmp5 + tmp7;
185 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
186 z5
= vec_madd(vec_add(z3
, z4
), vec_1_175875602
, (vector
float)zero
);
188 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
189 z3
= vec_madd(z3
, vec_1_961570560
, z5
);
191 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
192 z4
= vec_madd(z4
, vec_0_390180644
, z5
);
194 // The following adds are rolled into the multiplies above
195 // z3 = vec_add(z3, z5); // z3 += z5;
196 // z4 = vec_add(z4, z5); // z4 += z5;
198 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
199 // Wow! It's actually more efficient to roll this multiply
200 // into the adds below, even thought the multiply gets done twice!
201 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
203 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
204 // Same with this one...
205 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
207 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
208 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
209 row7
= vec_madd(tmp4
, vec_0_298631336
, vec_madd(z1
, vec_0_899976223
, z3
));
211 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
212 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
213 row5
= vec_madd(tmp5
, vec_2_053119869
, vec_madd(z2
, vec_2_562915447
, z4
));
215 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
216 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
217 row3
= vec_madd(tmp6
, vec_3_072711026
, vec_madd(z2
, vec_2_562915447
, z3
));
219 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
220 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
221 row1
= vec_madd(z1
, vec_0_899976223
, vec_madd(tmp7
, vec_1_501321110
, z4
));
223 // Swap the row values with the alts. If this is the first half,
224 // this sets up the low values to be acted on in the second half.
225 // If this is the second half, it puts the high values back in
226 // the row values where they are expected to be when we're done.
237 if (whichPass
== 1) {
238 // transpose the data for the second pass
240 // First, block transpose the upper right with lower left.
246 // Now, transpose each block of four
247 TRANSPOSE4(row0
, row1
, row2
, row3
);
248 TRANSPOSE4(row4
, row5
, row6
, row7
);
249 TRANSPOSE4(alt0
, alt1
, alt2
, alt3
);
250 TRANSPOSE4(alt4
, alt5
, alt6
, alt7
);
255 // perform the quantize step, using the floating point data
256 // still in the row/alt registers
259 const vector
signed int* qmat
;
260 vector
float bias
, negBias
;
263 vector
signed int baseVector
;
265 // We must cache element 0 in the intra case
266 // (it needs special handling).
267 baseVector
= vec_cts(vec_splat(row0
, 0), 0);
268 vec_ste(baseVector
, 0, &oldBaseValue
);
270 qmat
= (vector
signed int*)s
->q_intra_matrix
[qscale
];
271 biasAddr
= &(s
->intra_quant_bias
);
273 qmat
= (vector
signed int*)s
->q_inter_matrix
[qscale
];
274 biasAddr
= &(s
->inter_quant_bias
);
277 // Load the bias vector (We add 0.5 to the bias so that we're
278 // rounding when we convert to int, instead of flooring.)
280 vector
signed int biasInt
;
281 const vector
float negOneFloat
= (vector
float)FOUROF(-1.0f
);
282 LOAD4(biasInt
, biasAddr
);
283 bias
= vec_ctf(biasInt
, QUANT_BIAS_SHIFT
);
284 negBias
= vec_madd(bias
, negOneFloat
, zero
);
288 vector
float q0
, q1
, q2
, q3
, q4
, q5
, q6
, q7
;
290 q0
= vec_ctf(qmat
[0], QMAT_SHIFT
);
291 q1
= vec_ctf(qmat
[2], QMAT_SHIFT
);
292 q2
= vec_ctf(qmat
[4], QMAT_SHIFT
);
293 q3
= vec_ctf(qmat
[6], QMAT_SHIFT
);
294 q4
= vec_ctf(qmat
[8], QMAT_SHIFT
);
295 q5
= vec_ctf(qmat
[10], QMAT_SHIFT
);
296 q6
= vec_ctf(qmat
[12], QMAT_SHIFT
);
297 q7
= vec_ctf(qmat
[14], QMAT_SHIFT
);
299 row0
= vec_sel(vec_madd(row0
, q0
, negBias
), vec_madd(row0
, q0
, bias
),
300 vec_cmpgt(row0
, zero
));
301 row1
= vec_sel(vec_madd(row1
, q1
, negBias
), vec_madd(row1
, q1
, bias
),
302 vec_cmpgt(row1
, zero
));
303 row2
= vec_sel(vec_madd(row2
, q2
, negBias
), vec_madd(row2
, q2
, bias
),
304 vec_cmpgt(row2
, zero
));
305 row3
= vec_sel(vec_madd(row3
, q3
, negBias
), vec_madd(row3
, q3
, bias
),
306 vec_cmpgt(row3
, zero
));
307 row4
= vec_sel(vec_madd(row4
, q4
, negBias
), vec_madd(row4
, q4
, bias
),
308 vec_cmpgt(row4
, zero
));
309 row5
= vec_sel(vec_madd(row5
, q5
, negBias
), vec_madd(row5
, q5
, bias
),
310 vec_cmpgt(row5
, zero
));
311 row6
= vec_sel(vec_madd(row6
, q6
, negBias
), vec_madd(row6
, q6
, bias
),
312 vec_cmpgt(row6
, zero
));
313 row7
= vec_sel(vec_madd(row7
, q7
, negBias
), vec_madd(row7
, q7
, bias
),
314 vec_cmpgt(row7
, zero
));
316 q0
= vec_ctf(qmat
[1], QMAT_SHIFT
);
317 q1
= vec_ctf(qmat
[3], QMAT_SHIFT
);
318 q2
= vec_ctf(qmat
[5], QMAT_SHIFT
);
319 q3
= vec_ctf(qmat
[7], QMAT_SHIFT
);
320 q4
= vec_ctf(qmat
[9], QMAT_SHIFT
);
321 q5
= vec_ctf(qmat
[11], QMAT_SHIFT
);
322 q6
= vec_ctf(qmat
[13], QMAT_SHIFT
);
323 q7
= vec_ctf(qmat
[15], QMAT_SHIFT
);
325 alt0
= vec_sel(vec_madd(alt0
, q0
, negBias
), vec_madd(alt0
, q0
, bias
),
326 vec_cmpgt(alt0
, zero
));
327 alt1
= vec_sel(vec_madd(alt1
, q1
, negBias
), vec_madd(alt1
, q1
, bias
),
328 vec_cmpgt(alt1
, zero
));
329 alt2
= vec_sel(vec_madd(alt2
, q2
, negBias
), vec_madd(alt2
, q2
, bias
),
330 vec_cmpgt(alt2
, zero
));
331 alt3
= vec_sel(vec_madd(alt3
, q3
, negBias
), vec_madd(alt3
, q3
, bias
),
332 vec_cmpgt(alt3
, zero
));
333 alt4
= vec_sel(vec_madd(alt4
, q4
, negBias
), vec_madd(alt4
, q4
, bias
),
334 vec_cmpgt(alt4
, zero
));
335 alt5
= vec_sel(vec_madd(alt5
, q5
, negBias
), vec_madd(alt5
, q5
, bias
),
336 vec_cmpgt(alt5
, zero
));
337 alt6
= vec_sel(vec_madd(alt6
, q6
, negBias
), vec_madd(alt6
, q6
, bias
),
338 vec_cmpgt(alt6
, zero
));
339 alt7
= vec_sel(vec_madd(alt7
, q7
, negBias
), vec_madd(alt7
, q7
, bias
),
340 vec_cmpgt(alt7
, zero
));
346 // Store the data back into the original block
348 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
350 data0
= vec_pack(vec_cts(row0
, 0), vec_cts(alt0
, 0));
351 data1
= vec_pack(vec_cts(row1
, 0), vec_cts(alt1
, 0));
352 data2
= vec_pack(vec_cts(row2
, 0), vec_cts(alt2
, 0));
353 data3
= vec_pack(vec_cts(row3
, 0), vec_cts(alt3
, 0));
354 data4
= vec_pack(vec_cts(row4
, 0), vec_cts(alt4
, 0));
355 data5
= vec_pack(vec_cts(row5
, 0), vec_cts(alt5
, 0));
356 data6
= vec_pack(vec_cts(row6
, 0), vec_cts(alt6
, 0));
357 data7
= vec_pack(vec_cts(row7
, 0), vec_cts(alt7
, 0));
360 // Clamp for overflow
361 vector
signed int max_q_int
, min_q_int
;
362 vector
signed short max_q
, min_q
;
364 LOAD4(max_q_int
, &(s
->max_qcoeff
));
365 LOAD4(min_q_int
, &(s
->min_qcoeff
));
367 max_q
= vec_pack(max_q_int
, max_q_int
);
368 min_q
= vec_pack(min_q_int
, min_q_int
);
370 data0
= vec_max(vec_min(data0
, max_q
), min_q
);
371 data1
= vec_max(vec_min(data1
, max_q
), min_q
);
372 data2
= vec_max(vec_min(data2
, max_q
), min_q
);
373 data4
= vec_max(vec_min(data4
, max_q
), min_q
);
374 data5
= vec_max(vec_min(data5
, max_q
), min_q
);
375 data6
= vec_max(vec_min(data6
, max_q
), min_q
);
376 data7
= vec_max(vec_min(data7
, max_q
), min_q
);
380 vector
bool char zero_01
, zero_23
, zero_45
, zero_67
;
381 vector
signed char scanIndexes_01
, scanIndexes_23
, scanIndexes_45
, scanIndexes_67
;
382 vector
signed char negOne
= vec_splat_s8(-1);
383 vector
signed char* scanPtr
=
384 (vector
signed char*)(s
->intra_scantable
.inverse
);
385 signed char lastNonZeroChar
;
387 // Determine the largest non-zero index.
388 zero_01
= vec_pack(vec_cmpeq(data0
, (vector
signed short)zero
),
389 vec_cmpeq(data1
, (vector
signed short)zero
));
390 zero_23
= vec_pack(vec_cmpeq(data2
, (vector
signed short)zero
),
391 vec_cmpeq(data3
, (vector
signed short)zero
));
392 zero_45
= vec_pack(vec_cmpeq(data4
, (vector
signed short)zero
),
393 vec_cmpeq(data5
, (vector
signed short)zero
));
394 zero_67
= vec_pack(vec_cmpeq(data6
, (vector
signed short)zero
),
395 vec_cmpeq(data7
, (vector
signed short)zero
));
398 scanIndexes_01
= vec_sel(scanPtr
[0], negOne
, zero_01
);
399 scanIndexes_23
= vec_sel(scanPtr
[1], negOne
, zero_23
);
400 scanIndexes_45
= vec_sel(scanPtr
[2], negOne
, zero_45
);
401 scanIndexes_67
= vec_sel(scanPtr
[3], negOne
, zero_67
);
404 scanIndexes_01
= vec_max(scanIndexes_01
, scanIndexes_23
);
405 scanIndexes_45
= vec_max(scanIndexes_45
, scanIndexes_67
);
408 scanIndexes_01
= vec_max(scanIndexes_01
, scanIndexes_45
);
411 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
412 vec_mergel(scanIndexes_01
, negOne
));
415 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
416 vec_mergel(scanIndexes_01
, negOne
));
419 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
420 vec_mergel(scanIndexes_01
, negOne
));
423 scanIndexes_01
= vec_max(vec_mergeh(scanIndexes_01
, negOne
),
424 vec_mergel(scanIndexes_01
, negOne
));
426 scanIndexes_01
= vec_splat(scanIndexes_01
, 0);
429 vec_ste(scanIndexes_01
, 0, &lastNonZeroChar
);
431 lastNonZero
= lastNonZeroChar
;
433 // While the data is still in vectors we check for the transpose IDCT permute
434 // and handle it using the vector unit if we can. This is the permute used
435 // by the altivec idct, so it is common when using the altivec dct.
437 if ((lastNonZero
> 0) && (s
->dsp
.idct_permutation_type
== FF_TRANSPOSE_IDCT_PERM
)) {
438 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
441 vec_st(data0
, 0, data
);
442 vec_st(data1
, 16, data
);
443 vec_st(data2
, 32, data
);
444 vec_st(data3
, 48, data
);
445 vec_st(data4
, 64, data
);
446 vec_st(data5
, 80, data
);
447 vec_st(data6
, 96, data
);
448 vec_st(data7
, 112, data
);
452 // special handling of block[0]
456 oldBaseValue
/= s
->y_dc_scale
;
458 oldBaseValue
/= s
->c_dc_scale
;
461 // Divide by 8, rounding the result
462 data
[0] = (oldBaseValue
+ 4) >> 3;
465 // We handled the transpose permutation above and we don't
466 // need to permute the "no" permutation case.
467 if ((lastNonZero
> 0) &&
468 (s
->dsp
.idct_permutation_type
!= FF_TRANSPOSE_IDCT_PERM
) &&
469 (s
->dsp
.idct_permutation_type
!= FF_NO_IDCT_PERM
)) {
470 ff_block_permute(data
, s
->dsp
.idct_permutation
,
471 s
->intra_scantable
.scantable
, lastNonZero
);
477 /* AltiVec version of dct_unquantize_h263
478 this code assumes `block' is 16 bytes-aligned */
479 static void dct_unquantize_h263_altivec(MpegEncContext
*s
,
480 DCTELEM
*block
, int n
, int qscale
)
482 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num
, 1);
483 int i
, level
, qmul
, qadd
;
486 assert(s
->block_last_index
[n
]>=0);
488 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num
, 1);
490 qadd
= (qscale
- 1) | 1;
496 block
[0] = block
[0] * s
->y_dc_scale
;
498 block
[0] = block
[0] * s
->c_dc_scale
;
502 nCoeffs
= 63; //does not always use zigzag table
505 nCoeffs
= s
->intra_scantable
.raster_end
[ s
->block_last_index
[n
] ];
509 register const vector
signed short vczero
= (const vector
signed short)vec_splat_s16(0);
510 DECLARE_ALIGNED(16, short, qmul8
) = qmul
;
511 DECLARE_ALIGNED(16, short, qadd8
) = qadd
;
512 register vector
signed short blockv
, qmulv
, qaddv
, nqaddv
, temp1
;
513 register vector
bool short blockv_null
, blockv_neg
;
514 register short backup_0
= block
[0];
517 qmulv
= vec_splat((vec_s16
)vec_lde(0, &qmul8
), 0);
518 qaddv
= vec_splat((vec_s16
)vec_lde(0, &qadd8
), 0);
519 nqaddv
= vec_sub(vczero
, qaddv
);
521 #if 0 // block *is* 16 bytes-aligned, it seems.
522 // first make sure block[j] is 16 bytes-aligned
523 for(j
= 0; (j
<= nCoeffs
) && ((((unsigned long)block
) + (j
<< 1)) & 0x0000000F) ; j
++) {
527 level
= level
* qmul
- qadd
;
529 level
= level
* qmul
+ qadd
;
536 // vectorize all the 16 bytes-aligned blocks
538 for(; (j
+ 7) <= nCoeffs
; j
+=8) {
539 blockv
= vec_ld(j
<< 1, block
);
540 blockv_neg
= vec_cmplt(blockv
, vczero
);
541 blockv_null
= vec_cmpeq(blockv
, vczero
);
542 // choose between +qadd or -qadd as the third operand
543 temp1
= vec_sel(qaddv
, nqaddv
, blockv_neg
);
544 // multiply & add (block{i,i+7} * qmul [+-] qadd)
545 temp1
= vec_mladd(blockv
, qmulv
, temp1
);
546 // put 0 where block[{i,i+7} used to have 0
547 blockv
= vec_sel(temp1
, blockv
, blockv_null
);
548 vec_st(blockv
, j
<< 1, block
);
551 // if nCoeffs isn't a multiple of 8, finish the job
552 // using good old scalar units.
553 // (we could do it using a truncated vector,
554 // but I'm not sure it's worth the hassle)
555 for(; j
<= nCoeffs
; j
++) {
559 level
= level
* qmul
- qadd
;
561 level
= level
* qmul
+ qadd
;
568 // cheat. this avoid special-casing the first iteration
572 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num
, nCoeffs
== 63);
576 void MPV_common_init_altivec(MpegEncContext
*s
)
578 if ((mm_flags
& FF_MM_ALTIVEC
) == 0) return;
580 if (s
->avctx
->lowres
==0) {
581 if ((s
->avctx
->idct_algo
== FF_IDCT_AUTO
) ||
582 (s
->avctx
->idct_algo
== FF_IDCT_ALTIVEC
)) {
583 s
->dsp
.idct_put
= idct_put_altivec
;
584 s
->dsp
.idct_add
= idct_add_altivec
;
585 s
->dsp
.idct_permutation_type
= FF_TRANSPOSE_IDCT_PERM
;
589 // Test to make sure that the dct required alignments are met.
590 if ((((long)(s
->q_intra_matrix
) & 0x0f) != 0) ||
591 (((long)(s
->q_inter_matrix
) & 0x0f) != 0)) {
592 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: q-matrix blocks must be 16-byte aligned "
593 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
597 if (((long)(s
->intra_scantable
.inverse
) & 0x0f) != 0) {
598 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: scan table blocks must be 16-byte aligned "
599 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
604 if ((s
->avctx
->dct_algo
== FF_DCT_AUTO
) ||
605 (s
->avctx
->dct_algo
== FF_DCT_ALTIVEC
)) {
606 #if 0 /* seems to cause trouble under some circumstances */
607 s
->dct_quantize
= dct_quantize_altivec
;
609 s
->dct_unquantize_h263_intra
= dct_unquantize_h263_altivec
;
610 s
->dct_unquantize_h263_inter
= dct_unquantize_h263_altivec
;