2 * Copyright (c) 2002 Dieter Shirley
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include "mpegvideo.h"
29 #include "gcc_fixes.h"
31 #include "dsputil_ppc.h"
32 #include "util_altivec.h"
33 // Swaps two variables (used for altivec registers)
36 __typeof__(a) swap_temp=a; \
41 // transposes a matrix consisting of four vectors with four elements each
42 #define TRANSPOSE4(a,b,c,d) \
44 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
45 __typeof__(a) _trans_acl = vec_mergel(a, c); \
46 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
47 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
49 a = vec_mergeh(_trans_ach, _trans_bdh); \
50 b = vec_mergel(_trans_ach, _trans_bdh); \
51 c = vec_mergeh(_trans_acl, _trans_bdl); \
52 d = vec_mergel(_trans_acl, _trans_bdl); \
56 // Loads a four-byte value (int or float) from the target address
57 // into every element in the target vector. Only works if the
58 // target address is four-byte aligned (which should be always).
59 #define LOAD4(vec, address) \
61 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
62 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
63 vec = vec_ld(0, _load_addr); \
64 vec = vec_perm(vec, vec, _perm_vec); \
65 vec = vec_splat(vec, 0); \
72 // slower, for dumb non-apple GCC
73 #define FOUROF(a) {a,a,a,a}
75 int dct_quantize_altivec(MpegEncContext
* s
,
77 int qscale
, int* overflow
)
80 vector
float row0
, row1
, row2
, row3
, row4
, row5
, row6
, row7
;
81 vector
float alt0
, alt1
, alt2
, alt3
, alt4
, alt5
, alt6
, alt7
;
82 const vector
float zero
= (const vector
float)FOUROF(0.);
83 // used after quantize step
86 // Load the data into the row/alt vectors
88 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
90 data0
= vec_ld(0, data
);
91 data1
= vec_ld(16, data
);
92 data2
= vec_ld(32, data
);
93 data3
= vec_ld(48, data
);
94 data4
= vec_ld(64, data
);
95 data5
= vec_ld(80, data
);
96 data6
= vec_ld(96, data
);
97 data7
= vec_ld(112, data
);
99 // Transpose the data before we start
100 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
102 // load the data into floating point vectors. We load
103 // the high half of each row into the main row vectors
104 // and the low half into the alt vectors.
105 row0
= vec_ctf(vec_unpackh(data0
), 0);
106 alt0
= vec_ctf(vec_unpackl(data0
), 0);
107 row1
= vec_ctf(vec_unpackh(data1
), 0);
108 alt1
= vec_ctf(vec_unpackl(data1
), 0);
109 row2
= vec_ctf(vec_unpackh(data2
), 0);
110 alt2
= vec_ctf(vec_unpackl(data2
), 0);
111 row3
= vec_ctf(vec_unpackh(data3
), 0);
112 alt3
= vec_ctf(vec_unpackl(data3
), 0);
113 row4
= vec_ctf(vec_unpackh(data4
), 0);
114 alt4
= vec_ctf(vec_unpackl(data4
), 0);
115 row5
= vec_ctf(vec_unpackh(data5
), 0);
116 alt5
= vec_ctf(vec_unpackl(data5
), 0);
117 row6
= vec_ctf(vec_unpackh(data6
), 0);
118 alt6
= vec_ctf(vec_unpackl(data6
), 0);
119 row7
= vec_ctf(vec_unpackh(data7
), 0);
120 alt7
= vec_ctf(vec_unpackl(data7
), 0);
123 // The following block could exist as a separate an altivec dct
124 // function. However, if we put it inline, the DCT data can remain
125 // in the vector local variables, as floats, which we'll use during the
128 const vector
float vec_0_298631336
= (vector
float)FOUROF(0.298631336f
);
129 const vector
float vec_0_390180644
= (vector
float)FOUROF(-0.390180644f
);
130 const vector
float vec_0_541196100
= (vector
float)FOUROF(0.541196100f
);
131 const vector
float vec_0_765366865
= (vector
float)FOUROF(0.765366865f
);
132 const vector
float vec_0_899976223
= (vector
float)FOUROF(-0.899976223f
);
133 const vector
float vec_1_175875602
= (vector
float)FOUROF(1.175875602f
);
134 const vector
float vec_1_501321110
= (vector
float)FOUROF(1.501321110f
);
135 const vector
float vec_1_847759065
= (vector
float)FOUROF(-1.847759065f
);
136 const vector
float vec_1_961570560
= (vector
float)FOUROF(-1.961570560f
);
137 const vector
float vec_2_053119869
= (vector
float)FOUROF(2.053119869f
);
138 const vector
float vec_2_562915447
= (vector
float)FOUROF(-2.562915447f
);
139 const vector
float vec_3_072711026
= (vector
float)FOUROF(3.072711026f
);
142 int whichPass
, whichHalf
;
144 for(whichPass
= 1; whichPass
<=2; whichPass
++)
146 for(whichHalf
= 1; whichHalf
<=2; whichHalf
++)
148 vector
float tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
149 vector
float tmp10
, tmp11
, tmp12
, tmp13
;
150 vector
float z1
, z2
, z3
, z4
, z5
;
152 tmp0
= vec_add(row0
, row7
); // tmp0 = dataptr[0] + dataptr[7];
153 tmp7
= vec_sub(row0
, row7
); // tmp7 = dataptr[0] - dataptr[7];
154 tmp3
= vec_add(row3
, row4
); // tmp3 = dataptr[3] + dataptr[4];
155 tmp4
= vec_sub(row3
, row4
); // tmp4 = dataptr[3] - dataptr[4];
156 tmp1
= vec_add(row1
, row6
); // tmp1 = dataptr[1] + dataptr[6];
157 tmp6
= vec_sub(row1
, row6
); // tmp6 = dataptr[1] - dataptr[6];
158 tmp2
= vec_add(row2
, row5
); // tmp2 = dataptr[2] + dataptr[5];
159 tmp5
= vec_sub(row2
, row5
); // tmp5 = dataptr[2] - dataptr[5];
161 tmp10
= vec_add(tmp0
, tmp3
); // tmp10 = tmp0 + tmp3;
162 tmp13
= vec_sub(tmp0
, tmp3
); // tmp13 = tmp0 - tmp3;
163 tmp11
= vec_add(tmp1
, tmp2
); // tmp11 = tmp1 + tmp2;
164 tmp12
= vec_sub(tmp1
, tmp2
); // tmp12 = tmp1 - tmp2;
167 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
168 row0
= vec_add(tmp10
, tmp11
);
170 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
171 row4
= vec_sub(tmp10
, tmp11
);
174 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
175 z1
= vec_madd(vec_add(tmp12
, tmp13
), vec_0_541196100
, (vector
float)zero
);
177 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
178 // CONST_BITS-PASS1_BITS);
179 row2
= vec_madd(tmp13
, vec_0_765366865
, z1
);
181 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
182 // CONST_BITS-PASS1_BITS);
183 row6
= vec_madd(tmp12
, vec_1_847759065
, z1
);
185 z1
= vec_add(tmp4
, tmp7
); // z1 = tmp4 + tmp7;
186 z2
= vec_add(tmp5
, tmp6
); // z2 = tmp5 + tmp6;
187 z3
= vec_add(tmp4
, tmp6
); // z3 = tmp4 + tmp6;
188 z4
= vec_add(tmp5
, tmp7
); // z4 = tmp5 + tmp7;
190 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
191 z5
= vec_madd(vec_add(z3
, z4
), vec_1_175875602
, (vector
float)zero
);
193 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
194 z3
= vec_madd(z3
, vec_1_961570560
, z5
);
196 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
197 z4
= vec_madd(z4
, vec_0_390180644
, z5
);
199 // The following adds are rolled into the multiplies above
200 // z3 = vec_add(z3, z5); // z3 += z5;
201 // z4 = vec_add(z4, z5); // z4 += z5;
203 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
204 // Wow! It's actually more effecient to roll this multiply
205 // into the adds below, even thought the multiply gets done twice!
206 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
208 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
209 // Same with this one...
210 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
212 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
213 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
214 row7
= vec_madd(tmp4
, vec_0_298631336
, vec_madd(z1
, vec_0_899976223
, z3
));
216 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
217 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
218 row5
= vec_madd(tmp5
, vec_2_053119869
, vec_madd(z2
, vec_2_562915447
, z4
));
220 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
221 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
222 row3
= vec_madd(tmp6
, vec_3_072711026
, vec_madd(z2
, vec_2_562915447
, z3
));
224 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
225 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
226 row1
= vec_madd(z1
, vec_0_899976223
, vec_madd(tmp7
, vec_1_501321110
, z4
));
228 // Swap the row values with the alts. If this is the first half,
229 // this sets up the low values to be acted on in the second half.
230 // If this is the second half, it puts the high values back in
231 // the row values where they are expected to be when we're done.
244 // transpose the data for the second pass
246 // First, block transpose the upper right with lower left.
252 // Now, transpose each block of four
253 TRANSPOSE4(row0
, row1
, row2
, row3
);
254 TRANSPOSE4(row4
, row5
, row6
, row7
);
255 TRANSPOSE4(alt0
, alt1
, alt2
, alt3
);
256 TRANSPOSE4(alt4
, alt5
, alt6
, alt7
);
261 // perform the quantize step, using the floating point data
262 // still in the row/alt registers
265 const vector
signed int* qmat
;
266 vector
float bias
, negBias
;
270 vector
signed int baseVector
;
272 // We must cache element 0 in the intra case
273 // (it needs special handling).
274 baseVector
= vec_cts(vec_splat(row0
, 0), 0);
275 vec_ste(baseVector
, 0, &oldBaseValue
);
277 qmat
= (vector
signed int*)s
->q_intra_matrix
[qscale
];
278 biasAddr
= &(s
->intra_quant_bias
);
282 qmat
= (vector
signed int*)s
->q_inter_matrix
[qscale
];
283 biasAddr
= &(s
->inter_quant_bias
);
286 // Load the bias vector (We add 0.5 to the bias so that we're
287 // rounding when we convert to int, instead of flooring.)
289 vector
signed int biasInt
;
290 const vector
float negOneFloat
= (vector
float)FOUROF(-1.0f
);
291 LOAD4(biasInt
, biasAddr
);
292 bias
= vec_ctf(biasInt
, QUANT_BIAS_SHIFT
);
293 negBias
= vec_madd(bias
, negOneFloat
, zero
);
297 vector
float q0
, q1
, q2
, q3
, q4
, q5
, q6
, q7
;
299 q0
= vec_ctf(qmat
[0], QMAT_SHIFT
);
300 q1
= vec_ctf(qmat
[2], QMAT_SHIFT
);
301 q2
= vec_ctf(qmat
[4], QMAT_SHIFT
);
302 q3
= vec_ctf(qmat
[6], QMAT_SHIFT
);
303 q4
= vec_ctf(qmat
[8], QMAT_SHIFT
);
304 q5
= vec_ctf(qmat
[10], QMAT_SHIFT
);
305 q6
= vec_ctf(qmat
[12], QMAT_SHIFT
);
306 q7
= vec_ctf(qmat
[14], QMAT_SHIFT
);
308 row0
= vec_sel(vec_madd(row0
, q0
, negBias
), vec_madd(row0
, q0
, bias
),
309 vec_cmpgt(row0
, zero
));
310 row1
= vec_sel(vec_madd(row1
, q1
, negBias
), vec_madd(row1
, q1
, bias
),
311 vec_cmpgt(row1
, zero
));
312 row2
= vec_sel(vec_madd(row2
, q2
, negBias
), vec_madd(row2
, q2
, bias
),
313 vec_cmpgt(row2
, zero
));
314 row3
= vec_sel(vec_madd(row3
, q3
, negBias
), vec_madd(row3
, q3
, bias
),
315 vec_cmpgt(row3
, zero
));
316 row4
= vec_sel(vec_madd(row4
, q4
, negBias
), vec_madd(row4
, q4
, bias
),
317 vec_cmpgt(row4
, zero
));
318 row5
= vec_sel(vec_madd(row5
, q5
, negBias
), vec_madd(row5
, q5
, bias
),
319 vec_cmpgt(row5
, zero
));
320 row6
= vec_sel(vec_madd(row6
, q6
, negBias
), vec_madd(row6
, q6
, bias
),
321 vec_cmpgt(row6
, zero
));
322 row7
= vec_sel(vec_madd(row7
, q7
, negBias
), vec_madd(row7
, q7
, bias
),
323 vec_cmpgt(row7
, zero
));
325 q0
= vec_ctf(qmat
[1], QMAT_SHIFT
);
326 q1
= vec_ctf(qmat
[3], QMAT_SHIFT
);
327 q2
= vec_ctf(qmat
[5], QMAT_SHIFT
);
328 q3
= vec_ctf(qmat
[7], QMAT_SHIFT
);
329 q4
= vec_ctf(qmat
[9], QMAT_SHIFT
);
330 q5
= vec_ctf(qmat
[11], QMAT_SHIFT
);
331 q6
= vec_ctf(qmat
[13], QMAT_SHIFT
);
332 q7
= vec_ctf(qmat
[15], QMAT_SHIFT
);
334 alt0
= vec_sel(vec_madd(alt0
, q0
, negBias
), vec_madd(alt0
, q0
, bias
),
335 vec_cmpgt(alt0
, zero
));
336 alt1
= vec_sel(vec_madd(alt1
, q1
, negBias
), vec_madd(alt1
, q1
, bias
),
337 vec_cmpgt(alt1
, zero
));
338 alt2
= vec_sel(vec_madd(alt2
, q2
, negBias
), vec_madd(alt2
, q2
, bias
),
339 vec_cmpgt(alt2
, zero
));
340 alt3
= vec_sel(vec_madd(alt3
, q3
, negBias
), vec_madd(alt3
, q3
, bias
),
341 vec_cmpgt(alt3
, zero
));
342 alt4
= vec_sel(vec_madd(alt4
, q4
, negBias
), vec_madd(alt4
, q4
, bias
),
343 vec_cmpgt(alt4
, zero
));
344 alt5
= vec_sel(vec_madd(alt5
, q5
, negBias
), vec_madd(alt5
, q5
, bias
),
345 vec_cmpgt(alt5
, zero
));
346 alt6
= vec_sel(vec_madd(alt6
, q6
, negBias
), vec_madd(alt6
, q6
, bias
),
347 vec_cmpgt(alt6
, zero
));
348 alt7
= vec_sel(vec_madd(alt7
, q7
, negBias
), vec_madd(alt7
, q7
, bias
),
349 vec_cmpgt(alt7
, zero
));
355 // Store the data back into the original block
357 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
359 data0
= vec_pack(vec_cts(row0
, 0), vec_cts(alt0
, 0));
360 data1
= vec_pack(vec_cts(row1
, 0), vec_cts(alt1
, 0));
361 data2
= vec_pack(vec_cts(row2
, 0), vec_cts(alt2
, 0));
362 data3
= vec_pack(vec_cts(row3
, 0), vec_cts(alt3
, 0));
363 data4
= vec_pack(vec_cts(row4
, 0), vec_cts(alt4
, 0));
364 data5
= vec_pack(vec_cts(row5
, 0), vec_cts(alt5
, 0));
365 data6
= vec_pack(vec_cts(row6
, 0), vec_cts(alt6
, 0));
366 data7
= vec_pack(vec_cts(row7
, 0), vec_cts(alt7
, 0));
369 // Clamp for overflow
370 vector
signed int max_q_int
, min_q_int
;
371 vector
signed short max_q
, min_q
;
373 LOAD4(max_q_int
, &(s
->max_qcoeff
));
374 LOAD4(min_q_int
, &(s
->min_qcoeff
));
376 max_q
= vec_pack(max_q_int
, max_q_int
);
377 min_q
= vec_pack(min_q_int
, min_q_int
);
379 data0
= vec_max(vec_min(data0
, max_q
), min_q
);
380 data1
= vec_max(vec_min(data1
, max_q
), min_q
);
381 data2
= vec_max(vec_min(data2
, max_q
), min_q
);
382 data4
= vec_max(vec_min(data4
, max_q
), min_q
);
383 data5
= vec_max(vec_min(data5
, max_q
), min_q
);
384 data6
= vec_max(vec_min(data6
, max_q
), min_q
);
385 data7
= vec_max(vec_min(data7
, max_q
), min_q
);
389 vector
bool char zero_01
, zero_23
, zero_45
, zero_67
;
390 vector
signed char scanIndices_01
, scanIndices_23
, scanIndices_45
, scanIndices_67
;
391 vector
signed char negOne
= vec_splat_s8(-1);
392 vector
signed char* scanPtr
=
393 (vector
signed char*)(s
->intra_scantable
.inverse
);
394 signed char lastNonZeroChar
;
396 // Determine the largest non-zero index.
397 zero_01
= vec_pack(vec_cmpeq(data0
, (vector
signed short)zero
),
398 vec_cmpeq(data1
, (vector
signed short)zero
));
399 zero_23
= vec_pack(vec_cmpeq(data2
, (vector
signed short)zero
),
400 vec_cmpeq(data3
, (vector
signed short)zero
));
401 zero_45
= vec_pack(vec_cmpeq(data4
, (vector
signed short)zero
),
402 vec_cmpeq(data5
, (vector
signed short)zero
));
403 zero_67
= vec_pack(vec_cmpeq(data6
, (vector
signed short)zero
),
404 vec_cmpeq(data7
, (vector
signed short)zero
));
407 scanIndices_01
= vec_sel(scanPtr
[0], negOne
, zero_01
);
408 scanIndices_23
= vec_sel(scanPtr
[1], negOne
, zero_23
);
409 scanIndices_45
= vec_sel(scanPtr
[2], negOne
, zero_45
);
410 scanIndices_67
= vec_sel(scanPtr
[3], negOne
, zero_67
);
413 scanIndices_01
= vec_max(scanIndices_01
, scanIndices_23
);
414 scanIndices_45
= vec_max(scanIndices_45
, scanIndices_67
);
417 scanIndices_01
= vec_max(scanIndices_01
, scanIndices_45
);
420 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
421 vec_mergel(scanIndices_01
, negOne
));
424 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
425 vec_mergel(scanIndices_01
, negOne
));
428 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
429 vec_mergel(scanIndices_01
, negOne
));
432 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
433 vec_mergel(scanIndices_01
, negOne
));
435 scanIndices_01
= vec_splat(scanIndices_01
, 0);
438 vec_ste(scanIndices_01
, 0, &lastNonZeroChar
);
440 lastNonZero
= lastNonZeroChar
;
442 // While the data is still in vectors we check for the transpose IDCT permute
443 // and handle it using the vector unit if we can. This is the permute used
444 // by the altivec idct, so it is common when using the altivec dct.
446 if ((lastNonZero
> 0) && (s
->dsp
.idct_permutation_type
== FF_TRANSPOSE_IDCT_PERM
))
448 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
451 vec_st(data0
, 0, data
);
452 vec_st(data1
, 16, data
);
453 vec_st(data2
, 32, data
);
454 vec_st(data3
, 48, data
);
455 vec_st(data4
, 64, data
);
456 vec_st(data5
, 80, data
);
457 vec_st(data6
, 96, data
);
458 vec_st(data7
, 112, data
);
462 // special handling of block[0]
468 oldBaseValue
/= s
->y_dc_scale
;
470 oldBaseValue
/= s
->c_dc_scale
;
473 // Divide by 8, rounding the result
474 data
[0] = (oldBaseValue
+ 4) >> 3;
477 // We handled the transpose permutation above and we don't
478 // need to permute the "no" permutation case.
479 if ((lastNonZero
> 0) &&
480 (s
->dsp
.idct_permutation_type
!= FF_TRANSPOSE_IDCT_PERM
) &&
481 (s
->dsp
.idct_permutation_type
!= FF_NO_IDCT_PERM
))
483 ff_block_permute(data
, s
->dsp
.idct_permutation
,
484 s
->intra_scantable
.scantable
, lastNonZero
);
492 AltiVec version of dct_unquantize_h263
493 this code assumes `block' is 16 bytes-aligned
495 void dct_unquantize_h263_altivec(MpegEncContext
*s
,
496 DCTELEM
*block
, int n
, int qscale
)
498 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num
, 1);
499 int i
, level
, qmul
, qadd
;
502 assert(s
->block_last_index
[n
]>=0);
504 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num
, 1);
506 qadd
= (qscale
- 1) | 1;
512 block
[0] = block
[0] * s
->y_dc_scale
;
514 block
[0] = block
[0] * s
->c_dc_scale
;
518 nCoeffs
= 63; //does not always use zigzag table
521 nCoeffs
= s
->intra_scantable
.raster_end
[ s
->block_last_index
[n
] ];
525 register const vector
signed short vczero
= (const vector
signed short)vec_splat_s16(0);
526 DECLARE_ALIGNED_16(short, qmul8
[]) =
528 qmul
, qmul
, qmul
, qmul
,
529 qmul
, qmul
, qmul
, qmul
531 DECLARE_ALIGNED_16(short, qadd8
[]) =
533 qadd
, qadd
, qadd
, qadd
,
534 qadd
, qadd
, qadd
, qadd
536 DECLARE_ALIGNED_16(short, nqadd8
[]) =
538 -qadd
, -qadd
, -qadd
, -qadd
,
539 -qadd
, -qadd
, -qadd
, -qadd
541 register vector
signed short blockv
, qmulv
, qaddv
, nqaddv
, temp1
;
542 register vector
bool short blockv_null
, blockv_neg
;
543 register short backup_0
= block
[0];
546 qmulv
= vec_ld(0, qmul8
);
547 qaddv
= vec_ld(0, qadd8
);
548 nqaddv
= vec_ld(0, nqadd8
);
550 #if 0 // block *is* 16 bytes-aligned, it seems.
551 // first make sure block[j] is 16 bytes-aligned
552 for(j
= 0; (j
<= nCoeffs
) && ((((unsigned long)block
) + (j
<< 1)) & 0x0000000F) ; j
++) {
556 level
= level
* qmul
- qadd
;
558 level
= level
* qmul
+ qadd
;
565 // vectorize all the 16 bytes-aligned blocks
567 for(; (j
+ 7) <= nCoeffs
; j
+=8)
569 blockv
= vec_ld(j
<< 1, block
);
570 blockv_neg
= vec_cmplt(blockv
, vczero
);
571 blockv_null
= vec_cmpeq(blockv
, vczero
);
572 // choose between +qadd or -qadd as the third operand
573 temp1
= vec_sel(qaddv
, nqaddv
, blockv_neg
);
574 // multiply & add (block{i,i+7} * qmul [+-] qadd)
575 temp1
= vec_mladd(blockv
, qmulv
, temp1
);
576 // put 0 where block[{i,i+7} used to have 0
577 blockv
= vec_sel(temp1
, blockv
, blockv_null
);
578 vec_st(blockv
, j
<< 1, block
);
581 // if nCoeffs isn't a multiple of 8, finish the job
582 // using good old scalar units.
583 // (we could do it using a truncated vector,
584 // but I'm not sure it's worth the hassle)
585 for(; j
<= nCoeffs
; j
++) {
589 level
= level
* qmul
- qadd
;
591 level
= level
* qmul
+ qadd
;
598 { // cheat. this avoid special-casing the first iteration
602 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num
, nCoeffs
== 63);
606 extern void idct_put_altivec(uint8_t *dest
, int line_size
, int16_t *block
);
607 extern void idct_add_altivec(uint8_t *dest
, int line_size
, int16_t *block
);
609 void MPV_common_init_altivec(MpegEncContext
*s
)
611 if (s
->avctx
->lowres
==0)
613 if ((s
->avctx
->idct_algo
== FF_IDCT_AUTO
) ||
614 (s
->avctx
->idct_algo
== FF_IDCT_ALTIVEC
))
616 s
->dsp
.idct_put
= idct_put_altivec
;
617 s
->dsp
.idct_add
= idct_add_altivec
;
618 s
->dsp
.idct_permutation_type
= FF_TRANSPOSE_IDCT_PERM
;
622 // Test to make sure that the dct required alignments are met.
623 if ((((long)(s
->q_intra_matrix
) & 0x0f) != 0) ||
624 (((long)(s
->q_inter_matrix
) & 0x0f) != 0))
626 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: q-matrix blocks must be 16-byte aligned "
627 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
631 if (((long)(s
->intra_scantable
.inverse
) & 0x0f) != 0)
633 av_log(s
->avctx
, AV_LOG_INFO
, "Internal Error: scan table blocks must be 16-byte aligned "
634 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
639 if ((s
->avctx
->dct_algo
== FF_DCT_AUTO
) ||
640 (s
->avctx
->dct_algo
== FF_DCT_ALTIVEC
))
642 #if 0 /* seems to cause trouble under some circumstances */
643 s
->dct_quantize
= dct_quantize_altivec
;
645 s
->dct_unquantize_h263_intra
= dct_unquantize_h263_altivec
;
646 s
->dct_unquantize_h263_inter
= dct_unquantize_h263_altivec
;