2 * Copyright (c) 2002 Dieter Shirley
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "../dsputil.h"
22 #include "../mpegvideo.h"
24 #include "gcc_fixes.h"
26 #include "dsputil_altivec.h"
28 // Swaps two variables (used for altivec registers)
31 __typeof__(a) swap_temp=a; \
36 // transposes a matrix consisting of four vectors with four elements each
37 #define TRANSPOSE4(a,b,c,d) \
39 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
40 __typeof__(a) _trans_acl = vec_mergel(a, c); \
41 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
42 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
44 a = vec_mergeh(_trans_ach, _trans_bdh); \
45 b = vec_mergel(_trans_ach, _trans_bdh); \
46 c = vec_mergeh(_trans_acl, _trans_bdl); \
47 d = vec_mergel(_trans_acl, _trans_bdl); \
50 #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
52 __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
53 __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
55 _A1 = vec_mergeh (a, e); \
56 _B1 = vec_mergel (a, e); \
57 _C1 = vec_mergeh (b, f); \
58 _D1 = vec_mergel (b, f); \
59 _E1 = vec_mergeh (c, g); \
60 _F1 = vec_mergel (c, g); \
61 _G1 = vec_mergeh (d, h); \
62 _H1 = vec_mergel (d, h); \
64 _A2 = vec_mergeh (_A1, _E1); \
65 _B2 = vec_mergel (_A1, _E1); \
66 _C2 = vec_mergeh (_B1, _F1); \
67 _D2 = vec_mergel (_B1, _F1); \
68 _E2 = vec_mergeh (_C1, _G1); \
69 _F2 = vec_mergel (_C1, _G1); \
70 _G2 = vec_mergeh (_D1, _H1); \
71 _H2 = vec_mergel (_D1, _H1); \
73 a = vec_mergeh (_A2, _E2); \
74 b = vec_mergel (_A2, _E2); \
75 c = vec_mergeh (_B2, _F2); \
76 d = vec_mergel (_B2, _F2); \
77 e = vec_mergeh (_C2, _G2); \
78 f = vec_mergel (_C2, _G2); \
79 g = vec_mergeh (_D2, _H2); \
80 h = vec_mergel (_D2, _H2); \
84 // Loads a four-byte value (int or float) from the target address
85 // into every element in the target vector. Only works if the
86 // target address is four-byte aligned (which should be always).
87 #define LOAD4(vec, address) \
89 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
90 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
91 vec = vec_ld(0, _load_addr); \
92 vec = vec_perm(vec, vec, _perm_vec); \
93 vec = vec_splat(vec, 0); \
100 // slower, for dumb non-apple GCC
101 #define FOUROF(a) {a,a,a,a}
103 int dct_quantize_altivec(MpegEncContext
* s
,
104 DCTELEM
* data
, int n
,
105 int qscale
, int* overflow
)
108 vector
float row0
, row1
, row2
, row3
, row4
, row5
, row6
, row7
;
109 vector
float alt0
, alt1
, alt2
, alt3
, alt4
, alt5
, alt6
, alt7
;
110 const_vector
float zero
= (const_vector
float)FOUROF(0.);
111 // used after quantise step
112 int oldBaseValue
= 0;
114 // Load the data into the row/alt vectors
116 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
118 data0
= vec_ld(0, data
);
119 data1
= vec_ld(16, data
);
120 data2
= vec_ld(32, data
);
121 data3
= vec_ld(48, data
);
122 data4
= vec_ld(64, data
);
123 data5
= vec_ld(80, data
);
124 data6
= vec_ld(96, data
);
125 data7
= vec_ld(112, data
);
127 // Transpose the data before we start
128 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
130 // load the data into floating point vectors. We load
131 // the high half of each row into the main row vectors
132 // and the low half into the alt vectors.
133 row0
= vec_ctf(vec_unpackh(data0
), 0);
134 alt0
= vec_ctf(vec_unpackl(data0
), 0);
135 row1
= vec_ctf(vec_unpackh(data1
), 0);
136 alt1
= vec_ctf(vec_unpackl(data1
), 0);
137 row2
= vec_ctf(vec_unpackh(data2
), 0);
138 alt2
= vec_ctf(vec_unpackl(data2
), 0);
139 row3
= vec_ctf(vec_unpackh(data3
), 0);
140 alt3
= vec_ctf(vec_unpackl(data3
), 0);
141 row4
= vec_ctf(vec_unpackh(data4
), 0);
142 alt4
= vec_ctf(vec_unpackl(data4
), 0);
143 row5
= vec_ctf(vec_unpackh(data5
), 0);
144 alt5
= vec_ctf(vec_unpackl(data5
), 0);
145 row6
= vec_ctf(vec_unpackh(data6
), 0);
146 alt6
= vec_ctf(vec_unpackl(data6
), 0);
147 row7
= vec_ctf(vec_unpackh(data7
), 0);
148 alt7
= vec_ctf(vec_unpackl(data7
), 0);
151 // The following block could exist as a separate an altivec dct
152 // function. However, if we put it inline, the DCT data can remain
153 // in the vector local variables, as floats, which we'll use during the
156 const vector
float vec_0_298631336
= (vector
float)FOUROF(0.298631336f
);
157 const vector
float vec_0_390180644
= (vector
float)FOUROF(-0.390180644f
);
158 const vector
float vec_0_541196100
= (vector
float)FOUROF(0.541196100f
);
159 const vector
float vec_0_765366865
= (vector
float)FOUROF(0.765366865f
);
160 const vector
float vec_0_899976223
= (vector
float)FOUROF(-0.899976223f
);
161 const vector
float vec_1_175875602
= (vector
float)FOUROF(1.175875602f
);
162 const vector
float vec_1_501321110
= (vector
float)FOUROF(1.501321110f
);
163 const vector
float vec_1_847759065
= (vector
float)FOUROF(-1.847759065f
);
164 const vector
float vec_1_961570560
= (vector
float)FOUROF(-1.961570560f
);
165 const vector
float vec_2_053119869
= (vector
float)FOUROF(2.053119869f
);
166 const vector
float vec_2_562915447
= (vector
float)FOUROF(-2.562915447f
);
167 const vector
float vec_3_072711026
= (vector
float)FOUROF(3.072711026f
);
170 int whichPass
, whichHalf
;
172 for(whichPass
= 1; whichPass
<=2; whichPass
++)
174 for(whichHalf
= 1; whichHalf
<=2; whichHalf
++)
176 vector
float tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
177 vector
float tmp10
, tmp11
, tmp12
, tmp13
;
178 vector
float z1
, z2
, z3
, z4
, z5
;
180 tmp0
= vec_add(row0
, row7
); // tmp0 = dataptr[0] + dataptr[7];
181 tmp7
= vec_sub(row0
, row7
); // tmp7 = dataptr[0] - dataptr[7];
182 tmp3
= vec_add(row3
, row4
); // tmp3 = dataptr[3] + dataptr[4];
183 tmp4
= vec_sub(row3
, row4
); // tmp4 = dataptr[3] - dataptr[4];
184 tmp1
= vec_add(row1
, row6
); // tmp1 = dataptr[1] + dataptr[6];
185 tmp6
= vec_sub(row1
, row6
); // tmp6 = dataptr[1] - dataptr[6];
186 tmp2
= vec_add(row2
, row5
); // tmp2 = dataptr[2] + dataptr[5];
187 tmp5
= vec_sub(row2
, row5
); // tmp5 = dataptr[2] - dataptr[5];
189 tmp10
= vec_add(tmp0
, tmp3
); // tmp10 = tmp0 + tmp3;
190 tmp13
= vec_sub(tmp0
, tmp3
); // tmp13 = tmp0 - tmp3;
191 tmp11
= vec_add(tmp1
, tmp2
); // tmp11 = tmp1 + tmp2;
192 tmp12
= vec_sub(tmp1
, tmp2
); // tmp12 = tmp1 - tmp2;
195 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
196 row0
= vec_add(tmp10
, tmp11
);
198 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
199 row4
= vec_sub(tmp10
, tmp11
);
202 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
203 z1
= vec_madd(vec_add(tmp12
, tmp13
), vec_0_541196100
, (vector
float)zero
);
205 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
206 // CONST_BITS-PASS1_BITS);
207 row2
= vec_madd(tmp13
, vec_0_765366865
, z1
);
209 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
210 // CONST_BITS-PASS1_BITS);
211 row6
= vec_madd(tmp12
, vec_1_847759065
, z1
);
213 z1
= vec_add(tmp4
, tmp7
); // z1 = tmp4 + tmp7;
214 z2
= vec_add(tmp5
, tmp6
); // z2 = tmp5 + tmp6;
215 z3
= vec_add(tmp4
, tmp6
); // z3 = tmp4 + tmp6;
216 z4
= vec_add(tmp5
, tmp7
); // z4 = tmp5 + tmp7;
218 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
219 z5
= vec_madd(vec_add(z3
, z4
), vec_1_175875602
, (vector
float)zero
);
221 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
222 z3
= vec_madd(z3
, vec_1_961570560
, z5
);
224 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
225 z4
= vec_madd(z4
, vec_0_390180644
, z5
);
227 // The following adds are rolled into the multiplies above
228 // z3 = vec_add(z3, z5); // z3 += z5;
229 // z4 = vec_add(z4, z5); // z4 += z5;
231 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
232 // Wow! It's actually more effecient to roll this multiply
233 // into the adds below, even thought the multiply gets done twice!
234 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
236 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
237 // Same with this one...
238 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
240 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
241 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
242 row7
= vec_madd(tmp4
, vec_0_298631336
, vec_madd(z1
, vec_0_899976223
, z3
));
244 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
245 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
246 row5
= vec_madd(tmp5
, vec_2_053119869
, vec_madd(z2
, vec_2_562915447
, z4
));
248 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
249 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
250 row3
= vec_madd(tmp6
, vec_3_072711026
, vec_madd(z2
, vec_2_562915447
, z3
));
252 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
253 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
254 row1
= vec_madd(z1
, vec_0_899976223
, vec_madd(tmp7
, vec_1_501321110
, z4
));
256 // Swap the row values with the alts. If this is the first half,
257 // this sets up the low values to be acted on in the second half.
258 // If this is the second half, it puts the high values back in
259 // the row values where they are expected to be when we're done.
272 // transpose the data for the second pass
274 // First, block transpose the upper right with lower left.
280 // Now, transpose each block of four
281 TRANSPOSE4(row0
, row1
, row2
, row3
);
282 TRANSPOSE4(row4
, row5
, row6
, row7
);
283 TRANSPOSE4(alt0
, alt1
, alt2
, alt3
);
284 TRANSPOSE4(alt4
, alt5
, alt6
, alt7
);
289 // perform the quantise step, using the floating point data
290 // still in the row/alt registers
293 const vector
signed int* qmat
;
294 vector
float bias
, negBias
;
298 vector
signed int baseVector
;
300 // We must cache element 0 in the intra case
301 // (it needs special handling).
302 baseVector
= vec_cts(vec_splat(row0
, 0), 0);
303 vec_ste(baseVector
, 0, &oldBaseValue
);
305 qmat
= (vector
signed int*)s
->q_intra_matrix
[qscale
];
306 biasAddr
= &(s
->intra_quant_bias
);
310 qmat
= (vector
signed int*)s
->q_inter_matrix
[qscale
];
311 biasAddr
= &(s
->inter_quant_bias
);
314 // Load the bias vector (We add 0.5 to the bias so that we're
315 // rounding when we convert to int, instead of flooring.)
317 vector
signed int biasInt
;
318 const vector
float negOneFloat
= (vector
float)FOUROF(-1.0f
);
319 LOAD4(biasInt
, biasAddr
);
320 bias
= vec_ctf(biasInt
, QUANT_BIAS_SHIFT
);
321 negBias
= vec_madd(bias
, negOneFloat
, zero
);
325 vector
float q0
, q1
, q2
, q3
, q4
, q5
, q6
, q7
;
327 q0
= vec_ctf(qmat
[0], QMAT_SHIFT
);
328 q1
= vec_ctf(qmat
[2], QMAT_SHIFT
);
329 q2
= vec_ctf(qmat
[4], QMAT_SHIFT
);
330 q3
= vec_ctf(qmat
[6], QMAT_SHIFT
);
331 q4
= vec_ctf(qmat
[8], QMAT_SHIFT
);
332 q5
= vec_ctf(qmat
[10], QMAT_SHIFT
);
333 q6
= vec_ctf(qmat
[12], QMAT_SHIFT
);
334 q7
= vec_ctf(qmat
[14], QMAT_SHIFT
);
336 row0
= vec_sel(vec_madd(row0
, q0
, negBias
), vec_madd(row0
, q0
, bias
),
337 vec_cmpgt(row0
, zero
));
338 row1
= vec_sel(vec_madd(row1
, q1
, negBias
), vec_madd(row1
, q1
, bias
),
339 vec_cmpgt(row1
, zero
));
340 row2
= vec_sel(vec_madd(row2
, q2
, negBias
), vec_madd(row2
, q2
, bias
),
341 vec_cmpgt(row2
, zero
));
342 row3
= vec_sel(vec_madd(row3
, q3
, negBias
), vec_madd(row3
, q3
, bias
),
343 vec_cmpgt(row3
, zero
));
344 row4
= vec_sel(vec_madd(row4
, q4
, negBias
), vec_madd(row4
, q4
, bias
),
345 vec_cmpgt(row4
, zero
));
346 row5
= vec_sel(vec_madd(row5
, q5
, negBias
), vec_madd(row5
, q5
, bias
),
347 vec_cmpgt(row5
, zero
));
348 row6
= vec_sel(vec_madd(row6
, q6
, negBias
), vec_madd(row6
, q6
, bias
),
349 vec_cmpgt(row6
, zero
));
350 row7
= vec_sel(vec_madd(row7
, q7
, negBias
), vec_madd(row7
, q7
, bias
),
351 vec_cmpgt(row7
, zero
));
353 q0
= vec_ctf(qmat
[1], QMAT_SHIFT
);
354 q1
= vec_ctf(qmat
[3], QMAT_SHIFT
);
355 q2
= vec_ctf(qmat
[5], QMAT_SHIFT
);
356 q3
= vec_ctf(qmat
[7], QMAT_SHIFT
);
357 q4
= vec_ctf(qmat
[9], QMAT_SHIFT
);
358 q5
= vec_ctf(qmat
[11], QMAT_SHIFT
);
359 q6
= vec_ctf(qmat
[13], QMAT_SHIFT
);
360 q7
= vec_ctf(qmat
[15], QMAT_SHIFT
);
362 alt0
= vec_sel(vec_madd(alt0
, q0
, negBias
), vec_madd(alt0
, q0
, bias
),
363 vec_cmpgt(alt0
, zero
));
364 alt1
= vec_sel(vec_madd(alt1
, q1
, negBias
), vec_madd(alt1
, q1
, bias
),
365 vec_cmpgt(alt1
, zero
));
366 alt2
= vec_sel(vec_madd(alt2
, q2
, negBias
), vec_madd(alt2
, q2
, bias
),
367 vec_cmpgt(alt2
, zero
));
368 alt3
= vec_sel(vec_madd(alt3
, q3
, negBias
), vec_madd(alt3
, q3
, bias
),
369 vec_cmpgt(alt3
, zero
));
370 alt4
= vec_sel(vec_madd(alt4
, q4
, negBias
), vec_madd(alt4
, q4
, bias
),
371 vec_cmpgt(alt4
, zero
));
372 alt5
= vec_sel(vec_madd(alt5
, q5
, negBias
), vec_madd(alt5
, q5
, bias
),
373 vec_cmpgt(alt5
, zero
));
374 alt6
= vec_sel(vec_madd(alt6
, q6
, negBias
), vec_madd(alt6
, q6
, bias
),
375 vec_cmpgt(alt6
, zero
));
376 alt7
= vec_sel(vec_madd(alt7
, q7
, negBias
), vec_madd(alt7
, q7
, bias
),
377 vec_cmpgt(alt7
, zero
));
383 // Store the data back into the original block
385 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
387 data0
= vec_pack(vec_cts(row0
, 0), vec_cts(alt0
, 0));
388 data1
= vec_pack(vec_cts(row1
, 0), vec_cts(alt1
, 0));
389 data2
= vec_pack(vec_cts(row2
, 0), vec_cts(alt2
, 0));
390 data3
= vec_pack(vec_cts(row3
, 0), vec_cts(alt3
, 0));
391 data4
= vec_pack(vec_cts(row4
, 0), vec_cts(alt4
, 0));
392 data5
= vec_pack(vec_cts(row5
, 0), vec_cts(alt5
, 0));
393 data6
= vec_pack(vec_cts(row6
, 0), vec_cts(alt6
, 0));
394 data7
= vec_pack(vec_cts(row7
, 0), vec_cts(alt7
, 0));
397 // Clamp for overflow
398 vector
signed int max_q_int
, min_q_int
;
399 vector
signed short max_q
, min_q
;
401 LOAD4(max_q_int
, &(s
->max_qcoeff
));
402 LOAD4(min_q_int
, &(s
->min_qcoeff
));
404 max_q
= vec_pack(max_q_int
, max_q_int
);
405 min_q
= vec_pack(min_q_int
, min_q_int
);
407 data0
= vec_max(vec_min(data0
, max_q
), min_q
);
408 data1
= vec_max(vec_min(data1
, max_q
), min_q
);
409 data2
= vec_max(vec_min(data2
, max_q
), min_q
);
410 data4
= vec_max(vec_min(data4
, max_q
), min_q
);
411 data5
= vec_max(vec_min(data5
, max_q
), min_q
);
412 data6
= vec_max(vec_min(data6
, max_q
), min_q
);
413 data7
= vec_max(vec_min(data7
, max_q
), min_q
);
417 vector
bool char zero_01
, zero_23
, zero_45
, zero_67
;
418 vector
signed char scanIndices_01
, scanIndices_23
, scanIndices_45
, scanIndices_67
;
419 vector
signed char negOne
= vec_splat_s8(-1);
420 vector
signed char* scanPtr
=
421 (vector
signed char*)(s
->intra_scantable
.inverse
);
422 signed char lastNonZeroChar
;
424 // Determine the largest non-zero index.
425 zero_01
= vec_pack(vec_cmpeq(data0
, (vector
signed short)zero
),
426 vec_cmpeq(data1
, (vector
signed short)zero
));
427 zero_23
= vec_pack(vec_cmpeq(data2
, (vector
signed short)zero
),
428 vec_cmpeq(data3
, (vector
signed short)zero
));
429 zero_45
= vec_pack(vec_cmpeq(data4
, (vector
signed short)zero
),
430 vec_cmpeq(data5
, (vector
signed short)zero
));
431 zero_67
= vec_pack(vec_cmpeq(data6
, (vector
signed short)zero
),
432 vec_cmpeq(data7
, (vector
signed short)zero
));
435 scanIndices_01
= vec_sel(scanPtr
[0], negOne
, zero_01
);
436 scanIndices_23
= vec_sel(scanPtr
[1], negOne
, zero_23
);
437 scanIndices_45
= vec_sel(scanPtr
[2], negOne
, zero_45
);
438 scanIndices_67
= vec_sel(scanPtr
[3], negOne
, zero_67
);
441 scanIndices_01
= vec_max(scanIndices_01
, scanIndices_23
);
442 scanIndices_45
= vec_max(scanIndices_45
, scanIndices_67
);
445 scanIndices_01
= vec_max(scanIndices_01
, scanIndices_45
);
448 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
449 vec_mergel(scanIndices_01
, negOne
));
452 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
453 vec_mergel(scanIndices_01
, negOne
));
456 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
457 vec_mergel(scanIndices_01
, negOne
));
460 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
461 vec_mergel(scanIndices_01
, negOne
));
463 scanIndices_01
= vec_splat(scanIndices_01
, 0);
466 vec_ste(scanIndices_01
, 0, &lastNonZeroChar
);
468 lastNonZero
= lastNonZeroChar
;
470 // While the data is still in vectors we check for the transpose IDCT permute
471 // and handle it using the vector unit if we can. This is the permute used
472 // by the altivec idct, so it is common when using the altivec dct.
474 if ((lastNonZero
> 0) && (s
->dsp
.idct_permutation_type
== FF_TRANSPOSE_IDCT_PERM
))
476 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
479 vec_st(data0
, 0, data
);
480 vec_st(data1
, 16, data
);
481 vec_st(data2
, 32, data
);
482 vec_st(data3
, 48, data
);
483 vec_st(data4
, 64, data
);
484 vec_st(data5
, 80, data
);
485 vec_st(data6
, 96, data
);
486 vec_st(data7
, 112, data
);
490 // special handling of block[0]
496 oldBaseValue
/= s
->y_dc_scale
;
498 oldBaseValue
/= s
->c_dc_scale
;
501 // Divide by 8, rounding the result
502 data
[0] = (oldBaseValue
+ 4) >> 3;
505 // We handled the tranpose permutation above and we don't
506 // need to permute the "no" permutation case.
507 if ((lastNonZero
> 0) &&
508 (s
->dsp
.idct_permutation_type
!= FF_TRANSPOSE_IDCT_PERM
) &&
509 (s
->dsp
.idct_permutation_type
!= FF_NO_IDCT_PERM
))
511 ff_block_permute(data
, s
->dsp
.idct_permutation
,
512 s
->intra_scantable
.scantable
, lastNonZero
);
520 AltiVec version of dct_unquantize_h263
521 this code assumes `block' is 16 bytes-aligned
523 void dct_unquantize_h263_altivec(MpegEncContext
*s
,
524 DCTELEM
*block
, int n
, int qscale
)
526 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num
, 1);
527 int i
, level
, qmul
, qadd
;
530 assert(s
->block_last_index
[n
]>=0);
532 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num
, 1);
534 qadd
= (qscale
- 1) | 1;
540 block
[0] = block
[0] * s
->y_dc_scale
;
542 block
[0] = block
[0] * s
->c_dc_scale
;
546 nCoeffs
= 63; //does not allways use zigzag table
549 nCoeffs
= s
->intra_scantable
.raster_end
[ s
->block_last_index
[n
] ];
552 #ifdef ALTIVEC_USE_REFERENCE_C_CODE
553 for(;i
<=nCoeffs
;i
++) {
557 level
= level
* qmul
- qadd
;
559 level
= level
* qmul
+ qadd
;
564 #else /* ALTIVEC_USE_REFERENCE_C_CODE */
566 register const_vector
signed short vczero
= (const_vector
signed short)vec_splat_s16(0);
567 short __attribute__ ((aligned(16))) qmul8
[] =
569 qmul
, qmul
, qmul
, qmul
,
570 qmul
, qmul
, qmul
, qmul
572 short __attribute__ ((aligned(16))) qadd8
[] =
574 qadd
, qadd
, qadd
, qadd
,
575 qadd
, qadd
, qadd
, qadd
577 short __attribute__ ((aligned(16))) nqadd8
[] =
579 -qadd
, -qadd
, -qadd
, -qadd
,
580 -qadd
, -qadd
, -qadd
, -qadd
582 register vector
signed short blockv
, qmulv
, qaddv
, nqaddv
, temp1
;
583 register vector
bool short blockv_null
, blockv_neg
;
584 register short backup_0
= block
[0];
587 qmulv
= vec_ld(0, qmul8
);
588 qaddv
= vec_ld(0, qadd8
);
589 nqaddv
= vec_ld(0, nqadd8
);
591 #if 0 // block *is* 16 bytes-aligned, it seems.
592 // first make sure block[j] is 16 bytes-aligned
593 for(j
= 0; (j
<= nCoeffs
) && ((((unsigned long)block
) + (j
<< 1)) & 0x0000000F) ; j
++) {
597 level
= level
* qmul
- qadd
;
599 level
= level
* qmul
+ qadd
;
606 // vectorize all the 16 bytes-aligned blocks
608 for(; (j
+ 7) <= nCoeffs
; j
+=8)
610 blockv
= vec_ld(j
<< 1, block
);
611 blockv_neg
= vec_cmplt(blockv
, vczero
);
612 blockv_null
= vec_cmpeq(blockv
, vczero
);
613 // choose between +qadd or -qadd as the third operand
614 temp1
= vec_sel(qaddv
, nqaddv
, blockv_neg
);
615 // multiply & add (block{i,i+7} * qmul [+-] qadd)
616 temp1
= vec_mladd(blockv
, qmulv
, temp1
);
617 // put 0 where block[{i,i+7} used to have 0
618 blockv
= vec_sel(temp1
, blockv
, blockv_null
);
619 vec_st(blockv
, j
<< 1, block
);
622 // if nCoeffs isn't a multiple of 8, finish the job
623 // using good old scalar units.
624 // (we could do it using a truncated vector,
625 // but I'm not sure it's worth the hassle)
626 for(; j
<= nCoeffs
; j
++) {
630 level
= level
* qmul
- qadd
;
632 level
= level
* qmul
+ qadd
;
639 { // cheat. this avoid special-casing the first iteration
643 #endif /* ALTIVEC_USE_REFERENCE_C_CODE */
645 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num
, nCoeffs
== 63);