2 * Copyright (c) 2002 Dieter Shirley
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "../dsputil.h"
22 #include "../mpegvideo.h"
24 #include "gcc_fixes.h"
26 #include "dsputil_altivec.h"
28 // Swaps two variables (used for altivec registers)
31 __typeof__(a) swap_temp=a; \
36 // transposes a matrix consisting of four vectors with four elements each
37 #define TRANSPOSE4(a,b,c,d) \
39 __typeof__(a) _trans_ach = vec_mergeh(a, c); \
40 __typeof__(a) _trans_acl = vec_mergel(a, c); \
41 __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
42 __typeof__(a) _trans_bdl = vec_mergel(b, d); \
44 a = vec_mergeh(_trans_ach, _trans_bdh); \
45 b = vec_mergel(_trans_ach, _trans_bdh); \
46 c = vec_mergeh(_trans_acl, _trans_bdl); \
47 d = vec_mergel(_trans_acl, _trans_bdl); \
50 #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
52 __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
53 __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
55 _A1 = vec_mergeh (a, e); \
56 _B1 = vec_mergel (a, e); \
57 _C1 = vec_mergeh (b, f); \
58 _D1 = vec_mergel (b, f); \
59 _E1 = vec_mergeh (c, g); \
60 _F1 = vec_mergel (c, g); \
61 _G1 = vec_mergeh (d, h); \
62 _H1 = vec_mergel (d, h); \
64 _A2 = vec_mergeh (_A1, _E1); \
65 _B2 = vec_mergel (_A1, _E1); \
66 _C2 = vec_mergeh (_B1, _F1); \
67 _D2 = vec_mergel (_B1, _F1); \
68 _E2 = vec_mergeh (_C1, _G1); \
69 _F2 = vec_mergel (_C1, _G1); \
70 _G2 = vec_mergeh (_D1, _H1); \
71 _H2 = vec_mergel (_D1, _H1); \
73 a = vec_mergeh (_A2, _E2); \
74 b = vec_mergel (_A2, _E2); \
75 c = vec_mergeh (_B2, _F2); \
76 d = vec_mergel (_B2, _F2); \
77 e = vec_mergeh (_C2, _G2); \
78 f = vec_mergel (_C2, _G2); \
79 g = vec_mergeh (_D2, _H2); \
80 h = vec_mergel (_D2, _H2); \
84 // Loads a four-byte value (int or float) from the target address
85 // into every element in the target vector. Only works if the
86 // target address is four-byte aligned (which should be always).
87 #define LOAD4(vec, address) \
89 __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
90 vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
91 vec = vec_ld(0, _load_addr); \
92 vec = vec_perm(vec, vec, _perm_vec); \
93 vec = vec_splat(vec, 0); \
100 // slower, for dumb non-apple GCC
101 #define FOUROF(a) {a,a,a,a}
103 int dct_quantize_altivec(MpegEncContext
* s
,
104 DCTELEM
* data
, int n
,
105 int qscale
, int* overflow
)
108 vector
float row0
, row1
, row2
, row3
, row4
, row5
, row6
, row7
;
109 vector
float alt0
, alt1
, alt2
, alt3
, alt4
, alt5
, alt6
, alt7
;
110 const vector
float zero
= (const vector
float)FOUROF(0.);
112 // Load the data into the row/alt vectors
114 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
116 data0
= vec_ld(0, data
);
117 data1
= vec_ld(16, data
);
118 data2
= vec_ld(32, data
);
119 data3
= vec_ld(48, data
);
120 data4
= vec_ld(64, data
);
121 data5
= vec_ld(80, data
);
122 data6
= vec_ld(96, data
);
123 data7
= vec_ld(112, data
);
125 // Transpose the data before we start
126 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
128 // load the data into floating point vectors. We load
129 // the high half of each row into the main row vectors
130 // and the low half into the alt vectors.
131 row0
= vec_ctf(vec_unpackh(data0
), 0);
132 alt0
= vec_ctf(vec_unpackl(data0
), 0);
133 row1
= vec_ctf(vec_unpackh(data1
), 0);
134 alt1
= vec_ctf(vec_unpackl(data1
), 0);
135 row2
= vec_ctf(vec_unpackh(data2
), 0);
136 alt2
= vec_ctf(vec_unpackl(data2
), 0);
137 row3
= vec_ctf(vec_unpackh(data3
), 0);
138 alt3
= vec_ctf(vec_unpackl(data3
), 0);
139 row4
= vec_ctf(vec_unpackh(data4
), 0);
140 alt4
= vec_ctf(vec_unpackl(data4
), 0);
141 row5
= vec_ctf(vec_unpackh(data5
), 0);
142 alt5
= vec_ctf(vec_unpackl(data5
), 0);
143 row6
= vec_ctf(vec_unpackh(data6
), 0);
144 alt6
= vec_ctf(vec_unpackl(data6
), 0);
145 row7
= vec_ctf(vec_unpackh(data7
), 0);
146 alt7
= vec_ctf(vec_unpackl(data7
), 0);
149 // The following block could exist as a separate an altivec dct
150 // function. However, if we put it inline, the DCT data can remain
151 // in the vector local variables, as floats, which we'll use during the
154 const vector
float vec_0_298631336
= (vector
float)FOUROF(0.298631336f
);
155 const vector
float vec_0_390180644
= (vector
float)FOUROF(-0.390180644f
);
156 const vector
float vec_0_541196100
= (vector
float)FOUROF(0.541196100f
);
157 const vector
float vec_0_765366865
= (vector
float)FOUROF(0.765366865f
);
158 const vector
float vec_0_899976223
= (vector
float)FOUROF(-0.899976223f
);
159 const vector
float vec_1_175875602
= (vector
float)FOUROF(1.175875602f
);
160 const vector
float vec_1_501321110
= (vector
float)FOUROF(1.501321110f
);
161 const vector
float vec_1_847759065
= (vector
float)FOUROF(-1.847759065f
);
162 const vector
float vec_1_961570560
= (vector
float)FOUROF(-1.961570560f
);
163 const vector
float vec_2_053119869
= (vector
float)FOUROF(2.053119869f
);
164 const vector
float vec_2_562915447
= (vector
float)FOUROF(-2.562915447f
);
165 const vector
float vec_3_072711026
= (vector
float)FOUROF(3.072711026f
);
168 int whichPass
, whichHalf
;
170 for(whichPass
= 1; whichPass
<=2; whichPass
++)
172 for(whichHalf
= 1; whichHalf
<=2; whichHalf
++)
174 vector
float tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
175 vector
float tmp10
, tmp11
, tmp12
, tmp13
;
176 vector
float z1
, z2
, z3
, z4
, z5
;
178 tmp0
= vec_add(row0
, row7
); // tmp0 = dataptr[0] + dataptr[7];
179 tmp7
= vec_sub(row0
, row7
); // tmp7 = dataptr[0] - dataptr[7];
180 tmp3
= vec_add(row3
, row4
); // tmp3 = dataptr[3] + dataptr[4];
181 tmp4
= vec_sub(row3
, row4
); // tmp4 = dataptr[3] - dataptr[4];
182 tmp1
= vec_add(row1
, row6
); // tmp1 = dataptr[1] + dataptr[6];
183 tmp6
= vec_sub(row1
, row6
); // tmp6 = dataptr[1] - dataptr[6];
184 tmp2
= vec_add(row2
, row5
); // tmp2 = dataptr[2] + dataptr[5];
185 tmp5
= vec_sub(row2
, row5
); // tmp5 = dataptr[2] - dataptr[5];
187 tmp10
= vec_add(tmp0
, tmp3
); // tmp10 = tmp0 + tmp3;
188 tmp13
= vec_sub(tmp0
, tmp3
); // tmp13 = tmp0 - tmp3;
189 tmp11
= vec_add(tmp1
, tmp2
); // tmp11 = tmp1 + tmp2;
190 tmp12
= vec_sub(tmp1
, tmp2
); // tmp12 = tmp1 - tmp2;
193 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
194 row0
= vec_add(tmp10
, tmp11
);
196 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
197 row4
= vec_sub(tmp10
, tmp11
);
200 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
201 z1
= vec_madd(vec_add(tmp12
, tmp13
), vec_0_541196100
, (vector
float)zero
);
203 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
204 // CONST_BITS-PASS1_BITS);
205 row2
= vec_madd(tmp13
, vec_0_765366865
, z1
);
207 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
208 // CONST_BITS-PASS1_BITS);
209 row6
= vec_madd(tmp12
, vec_1_847759065
, z1
);
211 z1
= vec_add(tmp4
, tmp7
); // z1 = tmp4 + tmp7;
212 z2
= vec_add(tmp5
, tmp6
); // z2 = tmp5 + tmp6;
213 z3
= vec_add(tmp4
, tmp6
); // z3 = tmp4 + tmp6;
214 z4
= vec_add(tmp5
, tmp7
); // z4 = tmp5 + tmp7;
216 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
217 z5
= vec_madd(vec_add(z3
, z4
), vec_1_175875602
, (vector
float)zero
);
219 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
220 z3
= vec_madd(z3
, vec_1_961570560
, z5
);
222 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
223 z4
= vec_madd(z4
, vec_0_390180644
, z5
);
225 // The following adds are rolled into the multiplies above
226 // z3 = vec_add(z3, z5); // z3 += z5;
227 // z4 = vec_add(z4, z5); // z4 += z5;
229 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
230 // Wow! It's actually more effecient to roll this multiply
231 // into the adds below, even thought the multiply gets done twice!
232 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
234 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
235 // Same with this one...
236 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
238 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
239 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
240 row7
= vec_madd(tmp4
, vec_0_298631336
, vec_madd(z1
, vec_0_899976223
, z3
));
242 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
243 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
244 row5
= vec_madd(tmp5
, vec_2_053119869
, vec_madd(z2
, vec_2_562915447
, z4
));
246 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
247 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
248 row3
= vec_madd(tmp6
, vec_3_072711026
, vec_madd(z2
, vec_2_562915447
, z3
));
250 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
251 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
252 row1
= vec_madd(z1
, vec_0_899976223
, vec_madd(tmp7
, vec_1_501321110
, z4
));
254 // Swap the row values with the alts. If this is the first half,
255 // this sets up the low values to be acted on in the second half.
256 // If this is the second half, it puts the high values back in
257 // the row values where they are expected to be when we're done.
270 // transpose the data for the second pass
272 // First, block transpose the upper right with lower left.
278 // Now, transpose each block of four
279 TRANSPOSE4(row0
, row1
, row2
, row3
);
280 TRANSPOSE4(row4
, row5
, row6
, row7
);
281 TRANSPOSE4(alt0
, alt1
, alt2
, alt3
);
282 TRANSPOSE4(alt4
, alt5
, alt6
, alt7
);
287 // used after quantise step
288 int oldBaseValue
= 0;
290 // perform the quantise step, using the floating point data
291 // still in the row/alt registers
294 const vector
signed int* qmat
;
295 vector
float bias
, negBias
;
299 vector
signed int baseVector
;
301 // We must cache element 0 in the intra case
302 // (it needs special handling).
303 baseVector
= vec_cts(vec_splat(row0
, 0), 0);
304 vec_ste(baseVector
, 0, &oldBaseValue
);
306 qmat
= (vector
signed int*)s
->q_intra_matrix
[qscale
];
307 biasAddr
= &(s
->intra_quant_bias
);
311 qmat
= (vector
signed int*)s
->q_inter_matrix
[qscale
];
312 biasAddr
= &(s
->inter_quant_bias
);
315 // Load the bias vector (We add 0.5 to the bias so that we're
316 // rounding when we convert to int, instead of flooring.)
318 vector
signed int biasInt
;
319 const vector
float negOneFloat
= (vector
float)FOUROF(-1.0f
);
320 LOAD4(biasInt
, biasAddr
);
321 bias
= vec_ctf(biasInt
, QUANT_BIAS_SHIFT
);
322 negBias
= vec_madd(bias
, negOneFloat
, zero
);
326 vector
float q0
, q1
, q2
, q3
, q4
, q5
, q6
, q7
;
328 q0
= vec_ctf(qmat
[0], QMAT_SHIFT
);
329 q1
= vec_ctf(qmat
[2], QMAT_SHIFT
);
330 q2
= vec_ctf(qmat
[4], QMAT_SHIFT
);
331 q3
= vec_ctf(qmat
[6], QMAT_SHIFT
);
332 q4
= vec_ctf(qmat
[8], QMAT_SHIFT
);
333 q5
= vec_ctf(qmat
[10], QMAT_SHIFT
);
334 q6
= vec_ctf(qmat
[12], QMAT_SHIFT
);
335 q7
= vec_ctf(qmat
[14], QMAT_SHIFT
);
337 row0
= vec_sel(vec_madd(row0
, q0
, negBias
), vec_madd(row0
, q0
, bias
),
338 vec_cmpgt(row0
, zero
));
339 row1
= vec_sel(vec_madd(row1
, q1
, negBias
), vec_madd(row1
, q1
, bias
),
340 vec_cmpgt(row1
, zero
));
341 row2
= vec_sel(vec_madd(row2
, q2
, negBias
), vec_madd(row2
, q2
, bias
),
342 vec_cmpgt(row2
, zero
));
343 row3
= vec_sel(vec_madd(row3
, q3
, negBias
), vec_madd(row3
, q3
, bias
),
344 vec_cmpgt(row3
, zero
));
345 row4
= vec_sel(vec_madd(row4
, q4
, negBias
), vec_madd(row4
, q4
, bias
),
346 vec_cmpgt(row4
, zero
));
347 row5
= vec_sel(vec_madd(row5
, q5
, negBias
), vec_madd(row5
, q5
, bias
),
348 vec_cmpgt(row5
, zero
));
349 row6
= vec_sel(vec_madd(row6
, q6
, negBias
), vec_madd(row6
, q6
, bias
),
350 vec_cmpgt(row6
, zero
));
351 row7
= vec_sel(vec_madd(row7
, q7
, negBias
), vec_madd(row7
, q7
, bias
),
352 vec_cmpgt(row7
, zero
));
354 q0
= vec_ctf(qmat
[1], QMAT_SHIFT
);
355 q1
= vec_ctf(qmat
[3], QMAT_SHIFT
);
356 q2
= vec_ctf(qmat
[5], QMAT_SHIFT
);
357 q3
= vec_ctf(qmat
[7], QMAT_SHIFT
);
358 q4
= vec_ctf(qmat
[9], QMAT_SHIFT
);
359 q5
= vec_ctf(qmat
[11], QMAT_SHIFT
);
360 q6
= vec_ctf(qmat
[13], QMAT_SHIFT
);
361 q7
= vec_ctf(qmat
[15], QMAT_SHIFT
);
363 alt0
= vec_sel(vec_madd(alt0
, q0
, negBias
), vec_madd(alt0
, q0
, bias
),
364 vec_cmpgt(alt0
, zero
));
365 alt1
= vec_sel(vec_madd(alt1
, q1
, negBias
), vec_madd(alt1
, q1
, bias
),
366 vec_cmpgt(alt1
, zero
));
367 alt2
= vec_sel(vec_madd(alt2
, q2
, negBias
), vec_madd(alt2
, q2
, bias
),
368 vec_cmpgt(alt2
, zero
));
369 alt3
= vec_sel(vec_madd(alt3
, q3
, negBias
), vec_madd(alt3
, q3
, bias
),
370 vec_cmpgt(alt3
, zero
));
371 alt4
= vec_sel(vec_madd(alt4
, q4
, negBias
), vec_madd(alt4
, q4
, bias
),
372 vec_cmpgt(alt4
, zero
));
373 alt5
= vec_sel(vec_madd(alt5
, q5
, negBias
), vec_madd(alt5
, q5
, bias
),
374 vec_cmpgt(alt5
, zero
));
375 alt6
= vec_sel(vec_madd(alt6
, q6
, negBias
), vec_madd(alt6
, q6
, bias
),
376 vec_cmpgt(alt6
, zero
));
377 alt7
= vec_sel(vec_madd(alt7
, q7
, negBias
), vec_madd(alt7
, q7
, bias
),
378 vec_cmpgt(alt7
, zero
));
384 // Store the data back into the original block
386 vector
signed short data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
;
388 data0
= vec_pack(vec_cts(row0
, 0), vec_cts(alt0
, 0));
389 data1
= vec_pack(vec_cts(row1
, 0), vec_cts(alt1
, 0));
390 data2
= vec_pack(vec_cts(row2
, 0), vec_cts(alt2
, 0));
391 data3
= vec_pack(vec_cts(row3
, 0), vec_cts(alt3
, 0));
392 data4
= vec_pack(vec_cts(row4
, 0), vec_cts(alt4
, 0));
393 data5
= vec_pack(vec_cts(row5
, 0), vec_cts(alt5
, 0));
394 data6
= vec_pack(vec_cts(row6
, 0), vec_cts(alt6
, 0));
395 data7
= vec_pack(vec_cts(row7
, 0), vec_cts(alt7
, 0));
398 // Clamp for overflow
399 vector
signed int max_q_int
, min_q_int
;
400 vector
signed short max_q
, min_q
;
402 LOAD4(max_q_int
, &(s
->max_qcoeff
));
403 LOAD4(min_q_int
, &(s
->min_qcoeff
));
405 max_q
= vec_pack(max_q_int
, max_q_int
);
406 min_q
= vec_pack(min_q_int
, min_q_int
);
408 data0
= vec_max(vec_min(data0
, max_q
), min_q
);
409 data1
= vec_max(vec_min(data1
, max_q
), min_q
);
410 data2
= vec_max(vec_min(data2
, max_q
), min_q
);
411 data4
= vec_max(vec_min(data4
, max_q
), min_q
);
412 data5
= vec_max(vec_min(data5
, max_q
), min_q
);
413 data6
= vec_max(vec_min(data6
, max_q
), min_q
);
414 data7
= vec_max(vec_min(data7
, max_q
), min_q
);
417 vector
bool char zero_01
, zero_23
, zero_45
, zero_67
;
418 vector
signed char scanIndices_01
, scanIndices_23
, scanIndices_45
, scanIndices_67
;
419 vector
signed char negOne
= vec_splat_s8(-1);
420 vector
signed char* scanPtr
=
421 (vector
signed char*)(s
->intra_scantable
.inverse
);
423 // Determine the largest non-zero index.
424 zero_01
= vec_pack(vec_cmpeq(data0
, (vector
short)zero
),
425 vec_cmpeq(data1
, (vector
short)zero
));
426 zero_23
= vec_pack(vec_cmpeq(data2
, (vector
short)zero
),
427 vec_cmpeq(data3
, (vector
short)zero
));
428 zero_45
= vec_pack(vec_cmpeq(data4
, (vector
short)zero
),
429 vec_cmpeq(data5
, (vector
short)zero
));
430 zero_67
= vec_pack(vec_cmpeq(data6
, (vector
short)zero
),
431 vec_cmpeq(data7
, (vector
short)zero
));
434 scanIndices_01
= vec_sel(scanPtr
[0], negOne
, zero_01
);
435 scanIndices_23
= vec_sel(scanPtr
[1], negOne
, zero_23
);
436 scanIndices_45
= vec_sel(scanPtr
[2], negOne
, zero_45
);
437 scanIndices_67
= vec_sel(scanPtr
[3], negOne
, zero_67
);
440 scanIndices_01
= vec_max(scanIndices_01
, scanIndices_23
);
441 scanIndices_45
= vec_max(scanIndices_45
, scanIndices_67
);
444 scanIndices_01
= vec_max(scanIndices_01
, scanIndices_45
);
447 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
448 vec_mergel(scanIndices_01
, negOne
));
451 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
452 vec_mergel(scanIndices_01
, negOne
));
455 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
456 vec_mergel(scanIndices_01
, negOne
));
459 scanIndices_01
= vec_max(vec_mergeh(scanIndices_01
, negOne
),
460 vec_mergel(scanIndices_01
, negOne
));
462 scanIndices_01
= vec_splat(scanIndices_01
, 0);
464 signed char lastNonZeroChar
;
466 vec_ste(scanIndices_01
, 0, &lastNonZeroChar
);
468 lastNonZero
= lastNonZeroChar
;
470 // While the data is still in vectors we check for the transpose IDCT permute
471 // and handle it using the vector unit if we can. This is the permute used
472 // by the altivec idct, so it is common when using the altivec dct.
474 if ((lastNonZero
> 0) && (s
->dsp
.idct_permutation_type
== FF_TRANSPOSE_IDCT_PERM
))
476 TRANSPOSE8(data0
, data1
, data2
, data3
, data4
, data5
, data6
, data7
);
479 vec_st(data0
, 0, data
);
480 vec_st(data1
, 16, data
);
481 vec_st(data2
, 32, data
);
482 vec_st(data3
, 48, data
);
483 vec_st(data4
, 64, data
);
484 vec_st(data5
, 80, data
);
485 vec_st(data6
, 96, data
);
486 vec_st(data7
, 112, data
);
489 // special handling of block[0]
495 oldBaseValue
/= s
->y_dc_scale
;
497 oldBaseValue
/= s
->c_dc_scale
;
500 // Divide by 8, rounding the result
501 data
[0] = (oldBaseValue
+ 4) >> 3;
504 // We handled the tranpose permutation above and we don't
505 // need to permute the "no" permutation case.
506 if ((lastNonZero
> 0) &&
507 (s
->dsp
.idct_permutation_type
!= FF_TRANSPOSE_IDCT_PERM
) &&
508 (s
->dsp
.idct_permutation_type
!= FF_NO_IDCT_PERM
))
510 ff_block_permute(data
, s
->dsp
.idct_permutation
,
511 s
->intra_scantable
.scantable
, lastNonZero
);
519 AltiVec version of dct_unquantize_h263
520 this code assumes `block' is 16 bytes-aligned
522 void dct_unquantize_h263_altivec(MpegEncContext
*s
,
523 DCTELEM
*block
, int n
, int qscale
)
525 POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num
, 1);
526 int i
, level
, qmul
, qadd
;
529 assert(s
->block_last_index
[n
]>=0);
531 POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num
, 1);
533 qadd
= (qscale
- 1) | 1;
539 block
[0] = block
[0] * s
->y_dc_scale
;
541 block
[0] = block
[0] * s
->c_dc_scale
;
545 nCoeffs
= 63; //does not allways use zigzag table
548 nCoeffs
= s
->intra_scantable
.raster_end
[ s
->block_last_index
[n
] ];
551 #ifdef ALTIVEC_USE_REFERENCE_C_CODE
552 for(;i
<=nCoeffs
;i
++) {
556 level
= level
* qmul
- qadd
;
558 level
= level
* qmul
+ qadd
;
563 #else /* ALTIVEC_USE_REFERENCE_C_CODE */
565 register const vector
short vczero
= (const vector
short)vec_splat_s16(0);
566 short __attribute__ ((aligned(16))) qmul8
[] =
568 qmul
, qmul
, qmul
, qmul
,
569 qmul
, qmul
, qmul
, qmul
571 short __attribute__ ((aligned(16))) qadd8
[] =
573 qadd
, qadd
, qadd
, qadd
,
574 qadd
, qadd
, qadd
, qadd
576 short __attribute__ ((aligned(16))) nqadd8
[] =
578 -qadd
, -qadd
, -qadd
, -qadd
,
579 -qadd
, -qadd
, -qadd
, -qadd
581 register vector
short blockv
, qmulv
, qaddv
, nqaddv
, temp1
;
582 register vector
bool short blockv_null
, blockv_neg
;
583 register short backup_0
= block
[0];
586 qmulv
= vec_ld(0, qmul8
);
587 qaddv
= vec_ld(0, qadd8
);
588 nqaddv
= vec_ld(0, nqadd8
);
590 #if 0 // block *is* 16 bytes-aligned, it seems.
591 // first make sure block[j] is 16 bytes-aligned
592 for(j
= 0; (j
<= nCoeffs
) && ((((unsigned long)block
) + (j
<< 1)) & 0x0000000F) ; j
++) {
596 level
= level
* qmul
- qadd
;
598 level
= level
* qmul
+ qadd
;
605 // vectorize all the 16 bytes-aligned blocks
607 for(; (j
+ 7) <= nCoeffs
; j
+=8)
609 blockv
= vec_ld(j
<< 1, block
);
610 blockv_neg
= vec_cmplt(blockv
, vczero
);
611 blockv_null
= vec_cmpeq(blockv
, vczero
);
612 // choose between +qadd or -qadd as the third operand
613 temp1
= vec_sel(qaddv
, nqaddv
, blockv_neg
);
614 // multiply & add (block{i,i+7} * qmul [+-] qadd)
615 temp1
= vec_mladd(blockv
, qmulv
, temp1
);
616 // put 0 where block[{i,i+7} used to have 0
617 blockv
= vec_sel(temp1
, blockv
, blockv_null
);
618 vec_st(blockv
, j
<< 1, block
);
621 // if nCoeffs isn't a multiple of 8, finish the job
622 // using good old scalar units.
623 // (we could do it using a truncated vector,
624 // but I'm not sure it's worth the hassle)
625 for(; j
<= nCoeffs
; j
++) {
629 level
= level
* qmul
- qadd
;
631 level
= level
* qmul
+ qadd
;
638 { // cheat. this avoid special-casing the first iteration
642 #endif /* ALTIVEC_USE_REFERENCE_C_CODE */
644 POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num
, nCoeffs
== 63);