Change the order of parameters for ff_eval_expr() and
[libav.git] / libavcodec / ratecontrol.c
1 /*
2 * Rate control for video encoders
3 *
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Rate control for video encoders.
26 */
27
28 #include "libavutil/intmath.h"
29 #include "avcodec.h"
30 #include "dsputil.h"
31 #include "ratecontrol.h"
32 #include "mpegvideo.h"
33 #include "eval.h"
34
35 #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
36 #include <assert.h>
37
38 #ifndef M_E
39 #define M_E 2.718281828
40 #endif
41
42 static int init_pass2(MpegEncContext *s);
43 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
44
45 void ff_write_pass1_stats(MpegEncContext *s){
46 snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
47 s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
48 s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
49 s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
50 }
51
52 static inline double qp2bits(RateControlEntry *rce, double qp){
53 if(qp<=0.0){
54 av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
55 }
56 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
57 }
58
59 static inline double bits2qp(RateControlEntry *rce, double bits){
60 if(bits<0.9){
61 av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
62 }
63 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
64 }
65
66 int ff_rate_control_init(MpegEncContext *s)
67 {
68 RateControlContext *rcc= &s->rc_context;
69 int i;
70 const char *error = NULL;
71 static const char * const const_names[]={
72 "PI",
73 "E",
74 "iTex",
75 "pTex",
76 "tex",
77 "mv",
78 "fCode",
79 "iCount",
80 "mcVar",
81 "var",
82 "isI",
83 "isP",
84 "isB",
85 "avgQP",
86 "qComp",
87 /* "lastIQP",
88 "lastPQP",
89 "lastBQP",
90 "nextNonBQP",*/
91 "avgIITex",
92 "avgPITex",
93 "avgPPTex",
94 "avgBPTex",
95 "avgTex",
96 NULL
97 };
98 static double (* const func1[])(void *, double)={
99 (void *)bits2qp,
100 (void *)qp2bits,
101 NULL
102 };
103 static const char * const func1_names[]={
104 "bits2qp",
105 "qp2bits",
106 NULL
107 };
108 emms_c();
109
110 rcc->rc_eq_eval = ff_parse_expr(s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, &error);
111 if (!rcc->rc_eq_eval) {
112 av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
113 return -1;
114 }
115
116 for(i=0; i<5; i++){
117 rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
118 rcc->pred[i].count= 1.0;
119
120 rcc->pred[i].decay= 0.4;
121 rcc->i_cplx_sum [i]=
122 rcc->p_cplx_sum [i]=
123 rcc->mv_bits_sum[i]=
124 rcc->qscale_sum [i]=
125 rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
126 rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
127 }
128 rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
129
130 if(s->flags&CODEC_FLAG_PASS2){
131 int i;
132 char *p;
133
134 /* find number of pics */
135 p= s->avctx->stats_in;
136 for(i=-1; p; i++){
137 p= strchr(p+1, ';');
138 }
139 i+= s->max_b_frames;
140 if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
141 return -1;
142 rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
143 rcc->num_entries= i;
144
145 /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
146 for(i=0; i<rcc->num_entries; i++){
147 RateControlEntry *rce= &rcc->entry[i];
148 rce->pict_type= rce->new_pict_type=FF_P_TYPE;
149 rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
150 rce->misc_bits= s->mb_num + 10;
151 rce->mb_var_sum= s->mb_num*100;
152 }
153
154 /* read stats */
155 p= s->avctx->stats_in;
156 for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
157 RateControlEntry *rce;
158 int picture_number;
159 int e;
160 char *next;
161
162 next= strchr(p, ';');
163 if(next){
164 (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
165 next++;
166 }
167 e= sscanf(p, " in:%d ", &picture_number);
168
169 assert(picture_number >= 0);
170 assert(picture_number < rcc->num_entries);
171 rce= &rcc->entry[picture_number];
172
173 e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
174 &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
175 &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
176 if(e!=14){
177 av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
178 return -1;
179 }
180
181 p= next;
182 }
183
184 if(init_pass2(s) < 0) return -1;
185
186 //FIXME maybe move to end
187 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
188 #if CONFIG_LIBXVID
189 return ff_xvid_rate_control_init(s);
190 #else
191 av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
192 return -1;
193 #endif
194 }
195 }
196
197 if(!(s->flags&CODEC_FLAG_PASS2)){
198
199 rcc->short_term_qsum=0.001;
200 rcc->short_term_qcount=0.001;
201
202 rcc->pass1_rc_eq_output_sum= 0.001;
203 rcc->pass1_wanted_bits=0.001;
204
205 if(s->avctx->qblur > 1.0){
206 av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
207 return -1;
208 }
209 /* init stuff with the user specified complexity */
210 if(s->avctx->rc_initial_cplx){
211 for(i=0; i<60*30; i++){
212 double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
213 RateControlEntry rce;
214
215 if (i%((s->gop_size+3)/4)==0) rce.pict_type= FF_I_TYPE;
216 else if(i%(s->max_b_frames+1)) rce.pict_type= FF_B_TYPE;
217 else rce.pict_type= FF_P_TYPE;
218
219 rce.new_pict_type= rce.pict_type;
220 rce.mc_mb_var_sum= bits*s->mb_num/100000;
221 rce.mb_var_sum = s->mb_num;
222 rce.qscale = FF_QP2LAMBDA * 2;
223 rce.f_code = 2;
224 rce.b_code = 1;
225 rce.misc_bits= 1;
226
227 if(s->pict_type== FF_I_TYPE){
228 rce.i_count = s->mb_num;
229 rce.i_tex_bits= bits;
230 rce.p_tex_bits= 0;
231 rce.mv_bits= 0;
232 }else{
233 rce.i_count = 0; //FIXME we do know this approx
234 rce.i_tex_bits= 0;
235 rce.p_tex_bits= bits*0.9;
236 rce.mv_bits= bits*0.1;
237 }
238 rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
239 rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
240 rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
241 rcc->frame_count[rce.pict_type] ++;
242
243 get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
244 rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
245 }
246 }
247
248 }
249
250 return 0;
251 }
252
253 void ff_rate_control_uninit(MpegEncContext *s)
254 {
255 RateControlContext *rcc= &s->rc_context;
256 emms_c();
257
258 ff_free_expr(rcc->rc_eq_eval);
259 av_freep(&rcc->entry);
260
261 #if CONFIG_LIBXVID
262 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
263 ff_xvid_rate_control_uninit(s);
264 #endif
265 }
266
267 int ff_vbv_update(MpegEncContext *s, int frame_size){
268 RateControlContext *rcc= &s->rc_context;
269 const double fps= 1/av_q2d(s->avctx->time_base);
270 const int buffer_size= s->avctx->rc_buffer_size;
271 const double min_rate= s->avctx->rc_min_rate/fps;
272 const double max_rate= s->avctx->rc_max_rate/fps;
273
274 //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
275 if(buffer_size){
276 int left;
277
278 rcc->buffer_index-= frame_size;
279 if(rcc->buffer_index < 0){
280 av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
281 rcc->buffer_index= 0;
282 }
283
284 left= buffer_size - rcc->buffer_index - 1;
285 rcc->buffer_index += av_clip(left, min_rate, max_rate);
286
287 if(rcc->buffer_index > buffer_size){
288 int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
289
290 if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
291 stuffing=4;
292 rcc->buffer_index -= 8*stuffing;
293
294 if(s->avctx->debug & FF_DEBUG_RC)
295 av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
296
297 return stuffing;
298 }
299 }
300 return 0;
301 }
302
303 /**
304 * modifies the bitrate curve from pass1 for one frame
305 */
306 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
307 RateControlContext *rcc= &s->rc_context;
308 AVCodecContext *a= s->avctx;
309 double q, bits;
310 const int pict_type= rce->new_pict_type;
311 const double mb_num= s->mb_num;
312 int i;
313
314 double const_values[]={
315 M_PI,
316 M_E,
317 rce->i_tex_bits*rce->qscale,
318 rce->p_tex_bits*rce->qscale,
319 (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
320 rce->mv_bits/mb_num,
321 rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
322 rce->i_count/mb_num,
323 rce->mc_mb_var_sum/mb_num,
324 rce->mb_var_sum/mb_num,
325 rce->pict_type == FF_I_TYPE,
326 rce->pict_type == FF_P_TYPE,
327 rce->pict_type == FF_B_TYPE,
328 rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
329 a->qcompress,
330 /* rcc->last_qscale_for[FF_I_TYPE],
331 rcc->last_qscale_for[FF_P_TYPE],
332 rcc->last_qscale_for[FF_B_TYPE],
333 rcc->next_non_b_qscale,*/
334 rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE],
335 rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
336 rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
337 rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE],
338 (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
339 0
340 };
341
342 bits= ff_eval_expr(rcc->rc_eq_eval, const_values, rce);
343 if (isnan(bits)) {
344 av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
345 return -1;
346 }
347
348 rcc->pass1_rc_eq_output_sum+= bits;
349 bits*=rate_factor;
350 if(bits<0.0) bits=0.0;
351 bits+= 1.0; //avoid 1/0 issues
352
353 /* user override */
354 for(i=0; i<s->avctx->rc_override_count; i++){
355 RcOverride *rco= s->avctx->rc_override;
356 if(rco[i].start_frame > frame_num) continue;
357 if(rco[i].end_frame < frame_num) continue;
358
359 if(rco[i].qscale)
360 bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
361 else
362 bits*= rco[i].quality_factor;
363 }
364
365 q= bits2qp(rce, bits);
366
367 /* I/B difference */
368 if (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0)
369 q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
370 else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0)
371 q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
372 if(q<1) q=1;
373
374 return q;
375 }
376
377 static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
378 RateControlContext *rcc= &s->rc_context;
379 AVCodecContext *a= s->avctx;
380 const int pict_type= rce->new_pict_type;
381 const double last_p_q = rcc->last_qscale_for[FF_P_TYPE];
382 const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
383
384 if (pict_type==FF_I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==FF_P_TYPE))
385 q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
386 else if(pict_type==FF_B_TYPE && a->b_quant_factor>0.0)
387 q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
388 if(q<1) q=1;
389
390 /* last qscale / qdiff stuff */
391 if(rcc->last_non_b_pict_type==pict_type || pict_type!=FF_I_TYPE){
392 double last_q= rcc->last_qscale_for[pict_type];
393 const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
394
395 if (q > last_q + maxdiff) q= last_q + maxdiff;
396 else if(q < last_q - maxdiff) q= last_q - maxdiff;
397 }
398
399 rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
400
401 if(pict_type!=FF_B_TYPE)
402 rcc->last_non_b_pict_type= pict_type;
403
404 return q;
405 }
406
407 /**
408 * gets the qmin & qmax for pict_type
409 */
410 static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
411 int qmin= s->avctx->lmin;
412 int qmax= s->avctx->lmax;
413
414 assert(qmin <= qmax);
415
416 if(pict_type==FF_B_TYPE){
417 qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
418 qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
419 }else if(pict_type==FF_I_TYPE){
420 qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
421 qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
422 }
423
424 qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
425 qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
426
427 if(qmax<qmin) qmax= qmin;
428
429 *qmin_ret= qmin;
430 *qmax_ret= qmax;
431 }
432
433 static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
434 RateControlContext *rcc= &s->rc_context;
435 int qmin, qmax;
436 const int pict_type= rce->new_pict_type;
437 const double buffer_size= s->avctx->rc_buffer_size;
438 const double fps= 1/av_q2d(s->avctx->time_base);
439 const double min_rate= s->avctx->rc_min_rate / fps;
440 const double max_rate= s->avctx->rc_max_rate / fps;
441
442 get_qminmax(&qmin, &qmax, s, pict_type);
443
444 /* modulation */
445 if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE)
446 q*= s->avctx->rc_qmod_amp;
447
448 //printf("q:%f\n", q);
449 /* buffer overflow/underflow protection */
450 if(buffer_size){
451 double expected_size= rcc->buffer_index;
452 double q_limit;
453
454 if(min_rate){
455 double d= 2*(buffer_size - expected_size)/buffer_size;
456 if(d>1.0) d=1.0;
457 else if(d<0.0001) d=0.0001;
458 q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
459
460 q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
461 if(q > q_limit){
462 if(s->avctx->debug&FF_DEBUG_RC){
463 av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
464 }
465 q= q_limit;
466 }
467 }
468
469 if(max_rate){
470 double d= 2*expected_size/buffer_size;
471 if(d>1.0) d=1.0;
472 else if(d<0.0001) d=0.0001;
473 q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
474
475 q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
476 if(q < q_limit){
477 if(s->avctx->debug&FF_DEBUG_RC){
478 av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
479 }
480 q= q_limit;
481 }
482 }
483 }
484 //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
485 if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
486 if (q<qmin) q=qmin;
487 else if(q>qmax) q=qmax;
488 }else{
489 double min2= log(qmin);
490 double max2= log(qmax);
491
492 q= log(q);
493 q= (q - min2)/(max2-min2) - 0.5;
494 q*= -4.0;
495 q= 1.0/(1.0 + exp(q));
496 q= q*(max2-min2) + min2;
497
498 q= exp(q);
499 }
500
501 return q;
502 }
503
504 //----------------------------------
505 // 1 Pass Code
506
507 static double predict_size(Predictor *p, double q, double var)
508 {
509 return p->coeff*var / (q*p->count);
510 }
511
512 /*
513 static double predict_qp(Predictor *p, double size, double var)
514 {
515 //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
516 return p->coeff*var / (size*p->count);
517 }
518 */
519
520 static void update_predictor(Predictor *p, double q, double var, double size)
521 {
522 double new_coeff= size*q / (var + 1);
523 if(var<10) return;
524
525 p->count*= p->decay;
526 p->coeff*= p->decay;
527 p->count++;
528 p->coeff+= new_coeff;
529 }
530
531 static void adaptive_quantization(MpegEncContext *s, double q){
532 int i;
533 const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
534 const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
535 const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
536 const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
537 const float p_masking = s->avctx->p_masking;
538 const float border_masking = s->avctx->border_masking;
539 float bits_sum= 0.0;
540 float cplx_sum= 0.0;
541 float cplx_tab[s->mb_num];
542 float bits_tab[s->mb_num];
543 const int qmin= s->avctx->mb_lmin;
544 const int qmax= s->avctx->mb_lmax;
545 Picture * const pic= &s->current_picture;
546 const int mb_width = s->mb_width;
547 const int mb_height = s->mb_height;
548
549 for(i=0; i<s->mb_num; i++){
550 const int mb_xy= s->mb_index2xy[i];
551 float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
552 float spat_cplx= sqrt(pic->mb_var[mb_xy]);
553 const int lumi= pic->mb_mean[mb_xy];
554 float bits, cplx, factor;
555 int mb_x = mb_xy % s->mb_stride;
556 int mb_y = mb_xy / s->mb_stride;
557 int mb_distance;
558 float mb_factor = 0.0;
559 #if 0
560 if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
561 if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
562 #endif
563 if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
564 if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
565
566 if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
567 cplx= spat_cplx;
568 factor= 1.0 + p_masking;
569 }else{
570 cplx= temp_cplx;
571 factor= pow(temp_cplx, - temp_cplx_masking);
572 }
573 factor*=pow(spat_cplx, - spatial_cplx_masking);
574
575 if(lumi>127)
576 factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
577 else
578 factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
579
580 if(mb_x < mb_width/5){
581 mb_distance = mb_width/5 - mb_x;
582 mb_factor = (float)mb_distance / (float)(mb_width/5);
583 }else if(mb_x > 4*mb_width/5){
584 mb_distance = mb_x - 4*mb_width/5;
585 mb_factor = (float)mb_distance / (float)(mb_width/5);
586 }
587 if(mb_y < mb_height/5){
588 mb_distance = mb_height/5 - mb_y;
589 mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
590 }else if(mb_y > 4*mb_height/5){
591 mb_distance = mb_y - 4*mb_height/5;
592 mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
593 }
594
595 factor*= 1.0 - border_masking*mb_factor;
596
597 if(factor<0.00001) factor= 0.00001;
598
599 bits= cplx*factor;
600 cplx_sum+= cplx;
601 bits_sum+= bits;
602 cplx_tab[i]= cplx;
603 bits_tab[i]= bits;
604 }
605
606 /* handle qmin/qmax clipping */
607 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
608 float factor= bits_sum/cplx_sum;
609 for(i=0; i<s->mb_num; i++){
610 float newq= q*cplx_tab[i]/bits_tab[i];
611 newq*= factor;
612
613 if (newq > qmax){
614 bits_sum -= bits_tab[i];
615 cplx_sum -= cplx_tab[i]*q/qmax;
616 }
617 else if(newq < qmin){
618 bits_sum -= bits_tab[i];
619 cplx_sum -= cplx_tab[i]*q/qmin;
620 }
621 }
622 if(bits_sum < 0.001) bits_sum= 0.001;
623 if(cplx_sum < 0.001) cplx_sum= 0.001;
624 }
625
626 for(i=0; i<s->mb_num; i++){
627 const int mb_xy= s->mb_index2xy[i];
628 float newq= q*cplx_tab[i]/bits_tab[i];
629 int intq;
630
631 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
632 newq*= bits_sum/cplx_sum;
633 }
634
635 intq= (int)(newq + 0.5);
636
637 if (intq > qmax) intq= qmax;
638 else if(intq < qmin) intq= qmin;
639 //if(i%s->mb_width==0) printf("\n");
640 //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
641 s->lambda_table[mb_xy]= intq;
642 }
643 }
644
645 void ff_get_2pass_fcode(MpegEncContext *s){
646 RateControlContext *rcc= &s->rc_context;
647 int picture_number= s->picture_number;
648 RateControlEntry *rce;
649
650 rce= &rcc->entry[picture_number];
651 s->f_code= rce->f_code;
652 s->b_code= rce->b_code;
653 }
654
655 //FIXME rd or at least approx for dquant
656
657 float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
658 {
659 float q;
660 int qmin, qmax;
661 float br_compensation;
662 double diff;
663 double short_term_q;
664 double fps;
665 int picture_number= s->picture_number;
666 int64_t wanted_bits;
667 RateControlContext *rcc= &s->rc_context;
668 AVCodecContext *a= s->avctx;
669 RateControlEntry local_rce, *rce;
670 double bits;
671 double rate_factor;
672 int var;
673 const int pict_type= s->pict_type;
674 Picture * const pic= &s->current_picture;
675 emms_c();
676
677 #if CONFIG_LIBXVID
678 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
679 return ff_xvid_rate_estimate_qscale(s, dry_run);
680 #endif
681
682 get_qminmax(&qmin, &qmax, s, pict_type);
683
684 fps= 1/av_q2d(s->avctx->time_base);
685 //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
686 /* update predictors */
687 if(picture_number>2 && !dry_run){
688 const int last_var= s->last_pict_type == FF_I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
689 update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
690 }
691
692 if(s->flags&CODEC_FLAG_PASS2){
693 assert(picture_number>=0);
694 assert(picture_number<rcc->num_entries);
695 rce= &rcc->entry[picture_number];
696 wanted_bits= rce->expected_bits;
697 }else{
698 Picture *dts_pic;
699 rce= &local_rce;
700
701 //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
702 //but the reordering is simpler for now until h.264 b pyramid must be handeld
703 if(s->pict_type == FF_B_TYPE || s->low_delay)
704 dts_pic= s->current_picture_ptr;
705 else
706 dts_pic= s->last_picture_ptr;
707
708 //if(dts_pic)
709 // av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
710
711 if(!dts_pic || dts_pic->pts == AV_NOPTS_VALUE)
712 wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
713 else
714 wanted_bits= (uint64_t)(s->bit_rate*(double)dts_pic->pts/fps);
715 }
716
717 diff= s->total_bits - wanted_bits;
718 br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
719 if(br_compensation<=0.0) br_compensation=0.001;
720
721 var= pict_type == FF_I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
722
723 short_term_q = 0; /* avoid warning */
724 if(s->flags&CODEC_FLAG_PASS2){
725 if(pict_type!=FF_I_TYPE)
726 assert(pict_type == rce->new_pict_type);
727
728 q= rce->new_qscale / br_compensation;
729 //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
730 }else{
731 rce->pict_type=
732 rce->new_pict_type= pict_type;
733 rce->mc_mb_var_sum= pic->mc_mb_var_sum;
734 rce->mb_var_sum = pic-> mb_var_sum;
735 rce->qscale = FF_QP2LAMBDA * 2;
736 rce->f_code = s->f_code;
737 rce->b_code = s->b_code;
738 rce->misc_bits= 1;
739
740 bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
741 if(pict_type== FF_I_TYPE){
742 rce->i_count = s->mb_num;
743 rce->i_tex_bits= bits;
744 rce->p_tex_bits= 0;
745 rce->mv_bits= 0;
746 }else{
747 rce->i_count = 0; //FIXME we do know this approx
748 rce->i_tex_bits= 0;
749 rce->p_tex_bits= bits*0.9;
750
751 rce->mv_bits= bits*0.1;
752 }
753 rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
754 rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
755 rcc->mv_bits_sum[pict_type] += rce->mv_bits;
756 rcc->frame_count[pict_type] ++;
757
758 bits= rce->i_tex_bits + rce->p_tex_bits;
759 rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
760
761 q= get_qscale(s, rce, rate_factor, picture_number);
762 if (q < 0)
763 return -1;
764
765 assert(q>0.0);
766 //printf("%f ", q);
767 q= get_diff_limited_q(s, rce, q);
768 //printf("%f ", q);
769 assert(q>0.0);
770
771 if(pict_type==FF_P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
772 rcc->short_term_qsum*=a->qblur;
773 rcc->short_term_qcount*=a->qblur;
774
775 rcc->short_term_qsum+= q;
776 rcc->short_term_qcount++;
777 //printf("%f ", q);
778 q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
779 //printf("%f ", q);
780 }
781 assert(q>0.0);
782
783 q= modify_qscale(s, rce, q, picture_number);
784
785 rcc->pass1_wanted_bits+= s->bit_rate/fps;
786
787 assert(q>0.0);
788 }
789
790 if(s->avctx->debug&FF_DEBUG_RC){
791 av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
792 av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
793 br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
794 );
795 }
796
797 if (q<qmin) q=qmin;
798 else if(q>qmax) q=qmax;
799
800 if(s->adaptive_quant)
801 adaptive_quantization(s, q);
802 else
803 q= (int)(q + 0.5);
804
805 if(!dry_run){
806 rcc->last_qscale= q;
807 rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
808 rcc->last_mb_var_sum= pic->mb_var_sum;
809 }
810 #if 0
811 {
812 static int mvsum=0, texsum=0;
813 mvsum += s->mv_bits;
814 texsum += s->i_tex_bits + s->p_tex_bits;
815 printf("%d %d//\n\n", mvsum, texsum);
816 }
817 #endif
818 return q;
819 }
820
821 //----------------------------------------------
822 // 2-Pass code
823
824 static int init_pass2(MpegEncContext *s)
825 {
826 RateControlContext *rcc= &s->rc_context;
827 AVCodecContext *a= s->avctx;
828 int i, toobig;
829 double fps= 1/av_q2d(s->avctx->time_base);
830 double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
831 uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
832 uint64_t all_const_bits;
833 uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
834 double rate_factor=0;
835 double step;
836 //int last_i_frame=-10000000;
837 const int filter_size= (int)(a->qblur*4) | 1;
838 double expected_bits;
839 double *qscale, *blurred_qscale, qscale_sum;
840
841 /* find complexity & const_bits & decide the pict_types */
842 for(i=0; i<rcc->num_entries; i++){
843 RateControlEntry *rce= &rcc->entry[i];
844
845 rce->new_pict_type= rce->pict_type;
846 rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
847 rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
848 rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
849 rcc->frame_count[rce->pict_type] ++;
850
851 complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
852 const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
853 }
854 all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE];
855
856 if(all_available_bits < all_const_bits){
857 av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
858 return -1;
859 }
860
861 qscale= av_malloc(sizeof(double)*rcc->num_entries);
862 blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
863 toobig = 0;
864
865 for(step=256*256; step>0.0000001; step*=0.5){
866 expected_bits=0;
867 rate_factor+= step;
868
869 rcc->buffer_index= s->avctx->rc_buffer_size/2;
870
871 /* find qscale */
872 for(i=0; i<rcc->num_entries; i++){
873 qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
874 }
875 assert(filter_size%2==1);
876
877 /* fixed I/B QP relative to P mode */
878 for(i=rcc->num_entries-1; i>=0; i--){
879 RateControlEntry *rce= &rcc->entry[i];
880
881 qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
882 }
883
884 /* smooth curve */
885 for(i=0; i<rcc->num_entries; i++){
886 RateControlEntry *rce= &rcc->entry[i];
887 const int pict_type= rce->new_pict_type;
888 int j;
889 double q=0.0, sum=0.0;
890
891 for(j=0; j<filter_size; j++){
892 int index= i+j-filter_size/2;
893 double d= index-i;
894 double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
895
896 if(index < 0 || index >= rcc->num_entries) continue;
897 if(pict_type != rcc->entry[index].new_pict_type) continue;
898 q+= qscale[index] * coeff;
899 sum+= coeff;
900 }
901 blurred_qscale[i]= q/sum;
902 }
903
904 /* find expected bits */
905 for(i=0; i<rcc->num_entries; i++){
906 RateControlEntry *rce= &rcc->entry[i];
907 double bits;
908 rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
909 bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
910 //printf("%d %f\n", rce->new_bits, blurred_qscale[i]);
911 bits += 8*ff_vbv_update(s, bits);
912
913 rce->expected_bits= expected_bits;
914 expected_bits += bits;
915 }
916
917 /*
918 av_log(s->avctx, AV_LOG_INFO,
919 "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
920 expected_bits, (int)all_available_bits, rate_factor);
921 */
922 if(expected_bits > all_available_bits) {
923 rate_factor-= step;
924 ++toobig;
925 }
926 }
927 av_free(qscale);
928 av_free(blurred_qscale);
929
930 /* check bitrate calculations and print info */
931 qscale_sum = 0.0;
932 for(i=0; i<rcc->num_entries; i++){
933 /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
934 i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
935 qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
936 }
937 assert(toobig <= 40);
938 av_log(s->avctx, AV_LOG_DEBUG,
939 "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
940 s->bit_rate,
941 (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
942 av_log(s->avctx, AV_LOG_DEBUG,
943 "[lavc rc] estimated target average qp: %.3f\n",
944 (float)qscale_sum / rcc->num_entries);
945 if (toobig == 0) {
946 av_log(s->avctx, AV_LOG_INFO,
947 "[lavc rc] Using all of requested bitrate is not "
948 "necessary for this video with these parameters.\n");
949 } else if (toobig == 40) {
950 av_log(s->avctx, AV_LOG_ERROR,
951 "[lavc rc] Error: bitrate too low for this video "
952 "with these parameters.\n");
953 return -1;
954 } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
955 av_log(s->avctx, AV_LOG_ERROR,
956 "[lavc rc] Error: 2pass curve failed to converge\n");
957 return -1;
958 }
959
960 return 0;
961 }