Move eval.c and eval.h from libavcodec to libavutil, and make the eval
[libav.git] / libavcodec / ratecontrol.c
1 /*
2 * Rate control for video encoders
3 *
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Rate control for video encoders.
26 */
27
28 #include "libavutil/intmath.h"
29 #include "avcodec.h"
30 #include "dsputil.h"
31 #include "ratecontrol.h"
32 #include "mpegvideo.h"
33 #include "libavutil/eval.h"
34
35 #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
36 #include <assert.h>
37
38 #ifndef M_E
39 #define M_E 2.718281828
40 #endif
41
42 static int init_pass2(MpegEncContext *s);
43 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
44
45 void ff_write_pass1_stats(MpegEncContext *s){
46 snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
47 s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
48 s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
49 s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
50 }
51
52 static inline double qp2bits(RateControlEntry *rce, double qp){
53 if(qp<=0.0){
54 av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
55 }
56 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
57 }
58
59 static inline double bits2qp(RateControlEntry *rce, double bits){
60 if(bits<0.9){
61 av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
62 }
63 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
64 }
65
66 int ff_rate_control_init(MpegEncContext *s)
67 {
68 RateControlContext *rcc= &s->rc_context;
69 int i, res;
70 static const char * const const_names[]={
71 "PI",
72 "E",
73 "iTex",
74 "pTex",
75 "tex",
76 "mv",
77 "fCode",
78 "iCount",
79 "mcVar",
80 "var",
81 "isI",
82 "isP",
83 "isB",
84 "avgQP",
85 "qComp",
86 /* "lastIQP",
87 "lastPQP",
88 "lastBQP",
89 "nextNonBQP",*/
90 "avgIITex",
91 "avgPITex",
92 "avgPPTex",
93 "avgBPTex",
94 "avgTex",
95 NULL
96 };
97 static double (* const func1[])(void *, double)={
98 (void *)bits2qp,
99 (void *)qp2bits,
100 NULL
101 };
102 static const char * const func1_names[]={
103 "bits2qp",
104 "qp2bits",
105 NULL
106 };
107 emms_c();
108
109 res = av_parse_expr(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx);
110 if (res < 0) {
111 av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
112 return res;
113 }
114
115 for(i=0; i<5; i++){
116 rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
117 rcc->pred[i].count= 1.0;
118
119 rcc->pred[i].decay= 0.4;
120 rcc->i_cplx_sum [i]=
121 rcc->p_cplx_sum [i]=
122 rcc->mv_bits_sum[i]=
123 rcc->qscale_sum [i]=
124 rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
125 rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
126 }
127 rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
128
129 if(s->flags&CODEC_FLAG_PASS2){
130 int i;
131 char *p;
132
133 /* find number of pics */
134 p= s->avctx->stats_in;
135 for(i=-1; p; i++){
136 p= strchr(p+1, ';');
137 }
138 i+= s->max_b_frames;
139 if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
140 return -1;
141 rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
142 rcc->num_entries= i;
143
144 /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
145 for(i=0; i<rcc->num_entries; i++){
146 RateControlEntry *rce= &rcc->entry[i];
147 rce->pict_type= rce->new_pict_type=FF_P_TYPE;
148 rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
149 rce->misc_bits= s->mb_num + 10;
150 rce->mb_var_sum= s->mb_num*100;
151 }
152
153 /* read stats */
154 p= s->avctx->stats_in;
155 for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
156 RateControlEntry *rce;
157 int picture_number;
158 int e;
159 char *next;
160
161 next= strchr(p, ';');
162 if(next){
163 (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
164 next++;
165 }
166 e= sscanf(p, " in:%d ", &picture_number);
167
168 assert(picture_number >= 0);
169 assert(picture_number < rcc->num_entries);
170 rce= &rcc->entry[picture_number];
171
172 e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
173 &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
174 &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
175 if(e!=14){
176 av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
177 return -1;
178 }
179
180 p= next;
181 }
182
183 if(init_pass2(s) < 0) return -1;
184
185 //FIXME maybe move to end
186 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
187 #if CONFIG_LIBXVID
188 return ff_xvid_rate_control_init(s);
189 #else
190 av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
191 return -1;
192 #endif
193 }
194 }
195
196 if(!(s->flags&CODEC_FLAG_PASS2)){
197
198 rcc->short_term_qsum=0.001;
199 rcc->short_term_qcount=0.001;
200
201 rcc->pass1_rc_eq_output_sum= 0.001;
202 rcc->pass1_wanted_bits=0.001;
203
204 if(s->avctx->qblur > 1.0){
205 av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
206 return -1;
207 }
208 /* init stuff with the user specified complexity */
209 if(s->avctx->rc_initial_cplx){
210 for(i=0; i<60*30; i++){
211 double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
212 RateControlEntry rce;
213
214 if (i%((s->gop_size+3)/4)==0) rce.pict_type= FF_I_TYPE;
215 else if(i%(s->max_b_frames+1)) rce.pict_type= FF_B_TYPE;
216 else rce.pict_type= FF_P_TYPE;
217
218 rce.new_pict_type= rce.pict_type;
219 rce.mc_mb_var_sum= bits*s->mb_num/100000;
220 rce.mb_var_sum = s->mb_num;
221 rce.qscale = FF_QP2LAMBDA * 2;
222 rce.f_code = 2;
223 rce.b_code = 1;
224 rce.misc_bits= 1;
225
226 if(s->pict_type== FF_I_TYPE){
227 rce.i_count = s->mb_num;
228 rce.i_tex_bits= bits;
229 rce.p_tex_bits= 0;
230 rce.mv_bits= 0;
231 }else{
232 rce.i_count = 0; //FIXME we do know this approx
233 rce.i_tex_bits= 0;
234 rce.p_tex_bits= bits*0.9;
235 rce.mv_bits= bits*0.1;
236 }
237 rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
238 rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
239 rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
240 rcc->frame_count[rce.pict_type] ++;
241
242 get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
243 rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
244 }
245 }
246
247 }
248
249 return 0;
250 }
251
252 void ff_rate_control_uninit(MpegEncContext *s)
253 {
254 RateControlContext *rcc= &s->rc_context;
255 emms_c();
256
257 av_free_expr(rcc->rc_eq_eval);
258 av_freep(&rcc->entry);
259
260 #if CONFIG_LIBXVID
261 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
262 ff_xvid_rate_control_uninit(s);
263 #endif
264 }
265
266 int ff_vbv_update(MpegEncContext *s, int frame_size){
267 RateControlContext *rcc= &s->rc_context;
268 const double fps= 1/av_q2d(s->avctx->time_base);
269 const int buffer_size= s->avctx->rc_buffer_size;
270 const double min_rate= s->avctx->rc_min_rate/fps;
271 const double max_rate= s->avctx->rc_max_rate/fps;
272
273 //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
274 if(buffer_size){
275 int left;
276
277 rcc->buffer_index-= frame_size;
278 if(rcc->buffer_index < 0){
279 av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
280 rcc->buffer_index= 0;
281 }
282
283 left= buffer_size - rcc->buffer_index - 1;
284 rcc->buffer_index += av_clip(left, min_rate, max_rate);
285
286 if(rcc->buffer_index > buffer_size){
287 int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
288
289 if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
290 stuffing=4;
291 rcc->buffer_index -= 8*stuffing;
292
293 if(s->avctx->debug & FF_DEBUG_RC)
294 av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
295
296 return stuffing;
297 }
298 }
299 return 0;
300 }
301
302 /**
303 * modifies the bitrate curve from pass1 for one frame
304 */
305 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
306 RateControlContext *rcc= &s->rc_context;
307 AVCodecContext *a= s->avctx;
308 double q, bits;
309 const int pict_type= rce->new_pict_type;
310 const double mb_num= s->mb_num;
311 int i;
312
313 double const_values[]={
314 M_PI,
315 M_E,
316 rce->i_tex_bits*rce->qscale,
317 rce->p_tex_bits*rce->qscale,
318 (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
319 rce->mv_bits/mb_num,
320 rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
321 rce->i_count/mb_num,
322 rce->mc_mb_var_sum/mb_num,
323 rce->mb_var_sum/mb_num,
324 rce->pict_type == FF_I_TYPE,
325 rce->pict_type == FF_P_TYPE,
326 rce->pict_type == FF_B_TYPE,
327 rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
328 a->qcompress,
329 /* rcc->last_qscale_for[FF_I_TYPE],
330 rcc->last_qscale_for[FF_P_TYPE],
331 rcc->last_qscale_for[FF_B_TYPE],
332 rcc->next_non_b_qscale,*/
333 rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE],
334 rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
335 rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
336 rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE],
337 (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
338 0
339 };
340
341 bits = av_eval_expr(rcc->rc_eq_eval, const_values, rce);
342 if (isnan(bits)) {
343 av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
344 return -1;
345 }
346
347 rcc->pass1_rc_eq_output_sum+= bits;
348 bits*=rate_factor;
349 if(bits<0.0) bits=0.0;
350 bits+= 1.0; //avoid 1/0 issues
351
352 /* user override */
353 for(i=0; i<s->avctx->rc_override_count; i++){
354 RcOverride *rco= s->avctx->rc_override;
355 if(rco[i].start_frame > frame_num) continue;
356 if(rco[i].end_frame < frame_num) continue;
357
358 if(rco[i].qscale)
359 bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
360 else
361 bits*= rco[i].quality_factor;
362 }
363
364 q= bits2qp(rce, bits);
365
366 /* I/B difference */
367 if (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0)
368 q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
369 else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0)
370 q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
371 if(q<1) q=1;
372
373 return q;
374 }
375
376 static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
377 RateControlContext *rcc= &s->rc_context;
378 AVCodecContext *a= s->avctx;
379 const int pict_type= rce->new_pict_type;
380 const double last_p_q = rcc->last_qscale_for[FF_P_TYPE];
381 const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
382
383 if (pict_type==FF_I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==FF_P_TYPE))
384 q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
385 else if(pict_type==FF_B_TYPE && a->b_quant_factor>0.0)
386 q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
387 if(q<1) q=1;
388
389 /* last qscale / qdiff stuff */
390 if(rcc->last_non_b_pict_type==pict_type || pict_type!=FF_I_TYPE){
391 double last_q= rcc->last_qscale_for[pict_type];
392 const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
393
394 if (q > last_q + maxdiff) q= last_q + maxdiff;
395 else if(q < last_q - maxdiff) q= last_q - maxdiff;
396 }
397
398 rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
399
400 if(pict_type!=FF_B_TYPE)
401 rcc->last_non_b_pict_type= pict_type;
402
403 return q;
404 }
405
406 /**
407 * gets the qmin & qmax for pict_type
408 */
409 static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
410 int qmin= s->avctx->lmin;
411 int qmax= s->avctx->lmax;
412
413 assert(qmin <= qmax);
414
415 if(pict_type==FF_B_TYPE){
416 qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
417 qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
418 }else if(pict_type==FF_I_TYPE){
419 qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
420 qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
421 }
422
423 qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
424 qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
425
426 if(qmax<qmin) qmax= qmin;
427
428 *qmin_ret= qmin;
429 *qmax_ret= qmax;
430 }
431
432 static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
433 RateControlContext *rcc= &s->rc_context;
434 int qmin, qmax;
435 const int pict_type= rce->new_pict_type;
436 const double buffer_size= s->avctx->rc_buffer_size;
437 const double fps= 1/av_q2d(s->avctx->time_base);
438 const double min_rate= s->avctx->rc_min_rate / fps;
439 const double max_rate= s->avctx->rc_max_rate / fps;
440
441 get_qminmax(&qmin, &qmax, s, pict_type);
442
443 /* modulation */
444 if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE)
445 q*= s->avctx->rc_qmod_amp;
446
447 //printf("q:%f\n", q);
448 /* buffer overflow/underflow protection */
449 if(buffer_size){
450 double expected_size= rcc->buffer_index;
451 double q_limit;
452
453 if(min_rate){
454 double d= 2*(buffer_size - expected_size)/buffer_size;
455 if(d>1.0) d=1.0;
456 else if(d<0.0001) d=0.0001;
457 q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
458
459 q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
460 if(q > q_limit){
461 if(s->avctx->debug&FF_DEBUG_RC){
462 av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
463 }
464 q= q_limit;
465 }
466 }
467
468 if(max_rate){
469 double d= 2*expected_size/buffer_size;
470 if(d>1.0) d=1.0;
471 else if(d<0.0001) d=0.0001;
472 q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
473
474 q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
475 if(q < q_limit){
476 if(s->avctx->debug&FF_DEBUG_RC){
477 av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
478 }
479 q= q_limit;
480 }
481 }
482 }
483 //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
484 if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
485 if (q<qmin) q=qmin;
486 else if(q>qmax) q=qmax;
487 }else{
488 double min2= log(qmin);
489 double max2= log(qmax);
490
491 q= log(q);
492 q= (q - min2)/(max2-min2) - 0.5;
493 q*= -4.0;
494 q= 1.0/(1.0 + exp(q));
495 q= q*(max2-min2) + min2;
496
497 q= exp(q);
498 }
499
500 return q;
501 }
502
503 //----------------------------------
504 // 1 Pass Code
505
506 static double predict_size(Predictor *p, double q, double var)
507 {
508 return p->coeff*var / (q*p->count);
509 }
510
511 /*
512 static double predict_qp(Predictor *p, double size, double var)
513 {
514 //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
515 return p->coeff*var / (size*p->count);
516 }
517 */
518
519 static void update_predictor(Predictor *p, double q, double var, double size)
520 {
521 double new_coeff= size*q / (var + 1);
522 if(var<10) return;
523
524 p->count*= p->decay;
525 p->coeff*= p->decay;
526 p->count++;
527 p->coeff+= new_coeff;
528 }
529
530 static void adaptive_quantization(MpegEncContext *s, double q){
531 int i;
532 const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
533 const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
534 const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
535 const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
536 const float p_masking = s->avctx->p_masking;
537 const float border_masking = s->avctx->border_masking;
538 float bits_sum= 0.0;
539 float cplx_sum= 0.0;
540 float cplx_tab[s->mb_num];
541 float bits_tab[s->mb_num];
542 const int qmin= s->avctx->mb_lmin;
543 const int qmax= s->avctx->mb_lmax;
544 Picture * const pic= &s->current_picture;
545 const int mb_width = s->mb_width;
546 const int mb_height = s->mb_height;
547
548 for(i=0; i<s->mb_num; i++){
549 const int mb_xy= s->mb_index2xy[i];
550 float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
551 float spat_cplx= sqrt(pic->mb_var[mb_xy]);
552 const int lumi= pic->mb_mean[mb_xy];
553 float bits, cplx, factor;
554 int mb_x = mb_xy % s->mb_stride;
555 int mb_y = mb_xy / s->mb_stride;
556 int mb_distance;
557 float mb_factor = 0.0;
558 #if 0
559 if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
560 if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
561 #endif
562 if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
563 if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
564
565 if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
566 cplx= spat_cplx;
567 factor= 1.0 + p_masking;
568 }else{
569 cplx= temp_cplx;
570 factor= pow(temp_cplx, - temp_cplx_masking);
571 }
572 factor*=pow(spat_cplx, - spatial_cplx_masking);
573
574 if(lumi>127)
575 factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
576 else
577 factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
578
579 if(mb_x < mb_width/5){
580 mb_distance = mb_width/5 - mb_x;
581 mb_factor = (float)mb_distance / (float)(mb_width/5);
582 }else if(mb_x > 4*mb_width/5){
583 mb_distance = mb_x - 4*mb_width/5;
584 mb_factor = (float)mb_distance / (float)(mb_width/5);
585 }
586 if(mb_y < mb_height/5){
587 mb_distance = mb_height/5 - mb_y;
588 mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
589 }else if(mb_y > 4*mb_height/5){
590 mb_distance = mb_y - 4*mb_height/5;
591 mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
592 }
593
594 factor*= 1.0 - border_masking*mb_factor;
595
596 if(factor<0.00001) factor= 0.00001;
597
598 bits= cplx*factor;
599 cplx_sum+= cplx;
600 bits_sum+= bits;
601 cplx_tab[i]= cplx;
602 bits_tab[i]= bits;
603 }
604
605 /* handle qmin/qmax clipping */
606 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
607 float factor= bits_sum/cplx_sum;
608 for(i=0; i<s->mb_num; i++){
609 float newq= q*cplx_tab[i]/bits_tab[i];
610 newq*= factor;
611
612 if (newq > qmax){
613 bits_sum -= bits_tab[i];
614 cplx_sum -= cplx_tab[i]*q/qmax;
615 }
616 else if(newq < qmin){
617 bits_sum -= bits_tab[i];
618 cplx_sum -= cplx_tab[i]*q/qmin;
619 }
620 }
621 if(bits_sum < 0.001) bits_sum= 0.001;
622 if(cplx_sum < 0.001) cplx_sum= 0.001;
623 }
624
625 for(i=0; i<s->mb_num; i++){
626 const int mb_xy= s->mb_index2xy[i];
627 float newq= q*cplx_tab[i]/bits_tab[i];
628 int intq;
629
630 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
631 newq*= bits_sum/cplx_sum;
632 }
633
634 intq= (int)(newq + 0.5);
635
636 if (intq > qmax) intq= qmax;
637 else if(intq < qmin) intq= qmin;
638 //if(i%s->mb_width==0) printf("\n");
639 //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
640 s->lambda_table[mb_xy]= intq;
641 }
642 }
643
644 void ff_get_2pass_fcode(MpegEncContext *s){
645 RateControlContext *rcc= &s->rc_context;
646 int picture_number= s->picture_number;
647 RateControlEntry *rce;
648
649 rce= &rcc->entry[picture_number];
650 s->f_code= rce->f_code;
651 s->b_code= rce->b_code;
652 }
653
654 //FIXME rd or at least approx for dquant
655
656 float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
657 {
658 float q;
659 int qmin, qmax;
660 float br_compensation;
661 double diff;
662 double short_term_q;
663 double fps;
664 int picture_number= s->picture_number;
665 int64_t wanted_bits;
666 RateControlContext *rcc= &s->rc_context;
667 AVCodecContext *a= s->avctx;
668 RateControlEntry local_rce, *rce;
669 double bits;
670 double rate_factor;
671 int var;
672 const int pict_type= s->pict_type;
673 Picture * const pic= &s->current_picture;
674 emms_c();
675
676 #if CONFIG_LIBXVID
677 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
678 return ff_xvid_rate_estimate_qscale(s, dry_run);
679 #endif
680
681 get_qminmax(&qmin, &qmax, s, pict_type);
682
683 fps= 1/av_q2d(s->avctx->time_base);
684 //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
685 /* update predictors */
686 if(picture_number>2 && !dry_run){
687 const int last_var= s->last_pict_type == FF_I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
688 update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
689 }
690
691 if(s->flags&CODEC_FLAG_PASS2){
692 assert(picture_number>=0);
693 assert(picture_number<rcc->num_entries);
694 rce= &rcc->entry[picture_number];
695 wanted_bits= rce->expected_bits;
696 }else{
697 Picture *dts_pic;
698 rce= &local_rce;
699
700 //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
701 //but the reordering is simpler for now until h.264 b pyramid must be handeld
702 if(s->pict_type == FF_B_TYPE || s->low_delay)
703 dts_pic= s->current_picture_ptr;
704 else
705 dts_pic= s->last_picture_ptr;
706
707 //if(dts_pic)
708 // av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
709
710 if(!dts_pic || dts_pic->pts == AV_NOPTS_VALUE)
711 wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
712 else
713 wanted_bits= (uint64_t)(s->bit_rate*(double)dts_pic->pts/fps);
714 }
715
716 diff= s->total_bits - wanted_bits;
717 br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
718 if(br_compensation<=0.0) br_compensation=0.001;
719
720 var= pict_type == FF_I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
721
722 short_term_q = 0; /* avoid warning */
723 if(s->flags&CODEC_FLAG_PASS2){
724 if(pict_type!=FF_I_TYPE)
725 assert(pict_type == rce->new_pict_type);
726
727 q= rce->new_qscale / br_compensation;
728 //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
729 }else{
730 rce->pict_type=
731 rce->new_pict_type= pict_type;
732 rce->mc_mb_var_sum= pic->mc_mb_var_sum;
733 rce->mb_var_sum = pic-> mb_var_sum;
734 rce->qscale = FF_QP2LAMBDA * 2;
735 rce->f_code = s->f_code;
736 rce->b_code = s->b_code;
737 rce->misc_bits= 1;
738
739 bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
740 if(pict_type== FF_I_TYPE){
741 rce->i_count = s->mb_num;
742 rce->i_tex_bits= bits;
743 rce->p_tex_bits= 0;
744 rce->mv_bits= 0;
745 }else{
746 rce->i_count = 0; //FIXME we do know this approx
747 rce->i_tex_bits= 0;
748 rce->p_tex_bits= bits*0.9;
749
750 rce->mv_bits= bits*0.1;
751 }
752 rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
753 rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
754 rcc->mv_bits_sum[pict_type] += rce->mv_bits;
755 rcc->frame_count[pict_type] ++;
756
757 bits= rce->i_tex_bits + rce->p_tex_bits;
758 rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
759
760 q= get_qscale(s, rce, rate_factor, picture_number);
761 if (q < 0)
762 return -1;
763
764 assert(q>0.0);
765 //printf("%f ", q);
766 q= get_diff_limited_q(s, rce, q);
767 //printf("%f ", q);
768 assert(q>0.0);
769
770 if(pict_type==FF_P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
771 rcc->short_term_qsum*=a->qblur;
772 rcc->short_term_qcount*=a->qblur;
773
774 rcc->short_term_qsum+= q;
775 rcc->short_term_qcount++;
776 //printf("%f ", q);
777 q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
778 //printf("%f ", q);
779 }
780 assert(q>0.0);
781
782 q= modify_qscale(s, rce, q, picture_number);
783
784 rcc->pass1_wanted_bits+= s->bit_rate/fps;
785
786 assert(q>0.0);
787 }
788
789 if(s->avctx->debug&FF_DEBUG_RC){
790 av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
791 av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
792 br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
793 );
794 }
795
796 if (q<qmin) q=qmin;
797 else if(q>qmax) q=qmax;
798
799 if(s->adaptive_quant)
800 adaptive_quantization(s, q);
801 else
802 q= (int)(q + 0.5);
803
804 if(!dry_run){
805 rcc->last_qscale= q;
806 rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
807 rcc->last_mb_var_sum= pic->mb_var_sum;
808 }
809 #if 0
810 {
811 static int mvsum=0, texsum=0;
812 mvsum += s->mv_bits;
813 texsum += s->i_tex_bits + s->p_tex_bits;
814 printf("%d %d//\n\n", mvsum, texsum);
815 }
816 #endif
817 return q;
818 }
819
820 //----------------------------------------------
821 // 2-Pass code
822
823 static int init_pass2(MpegEncContext *s)
824 {
825 RateControlContext *rcc= &s->rc_context;
826 AVCodecContext *a= s->avctx;
827 int i, toobig;
828 double fps= 1/av_q2d(s->avctx->time_base);
829 double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
830 uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
831 uint64_t all_const_bits;
832 uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
833 double rate_factor=0;
834 double step;
835 //int last_i_frame=-10000000;
836 const int filter_size= (int)(a->qblur*4) | 1;
837 double expected_bits;
838 double *qscale, *blurred_qscale, qscale_sum;
839
840 /* find complexity & const_bits & decide the pict_types */
841 for(i=0; i<rcc->num_entries; i++){
842 RateControlEntry *rce= &rcc->entry[i];
843
844 rce->new_pict_type= rce->pict_type;
845 rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
846 rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
847 rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
848 rcc->frame_count[rce->pict_type] ++;
849
850 complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
851 const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
852 }
853 all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE];
854
855 if(all_available_bits < all_const_bits){
856 av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
857 return -1;
858 }
859
860 qscale= av_malloc(sizeof(double)*rcc->num_entries);
861 blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
862 toobig = 0;
863
864 for(step=256*256; step>0.0000001; step*=0.5){
865 expected_bits=0;
866 rate_factor+= step;
867
868 rcc->buffer_index= s->avctx->rc_buffer_size/2;
869
870 /* find qscale */
871 for(i=0; i<rcc->num_entries; i++){
872 qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
873 }
874 assert(filter_size%2==1);
875
876 /* fixed I/B QP relative to P mode */
877 for(i=rcc->num_entries-1; i>=0; i--){
878 RateControlEntry *rce= &rcc->entry[i];
879
880 qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
881 }
882
883 /* smooth curve */
884 for(i=0; i<rcc->num_entries; i++){
885 RateControlEntry *rce= &rcc->entry[i];
886 const int pict_type= rce->new_pict_type;
887 int j;
888 double q=0.0, sum=0.0;
889
890 for(j=0; j<filter_size; j++){
891 int index= i+j-filter_size/2;
892 double d= index-i;
893 double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
894
895 if(index < 0 || index >= rcc->num_entries) continue;
896 if(pict_type != rcc->entry[index].new_pict_type) continue;
897 q+= qscale[index] * coeff;
898 sum+= coeff;
899 }
900 blurred_qscale[i]= q/sum;
901 }
902
903 /* find expected bits */
904 for(i=0; i<rcc->num_entries; i++){
905 RateControlEntry *rce= &rcc->entry[i];
906 double bits;
907 rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
908 bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
909 //printf("%d %f\n", rce->new_bits, blurred_qscale[i]);
910 bits += 8*ff_vbv_update(s, bits);
911
912 rce->expected_bits= expected_bits;
913 expected_bits += bits;
914 }
915
916 /*
917 av_log(s->avctx, AV_LOG_INFO,
918 "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
919 expected_bits, (int)all_available_bits, rate_factor);
920 */
921 if(expected_bits > all_available_bits) {
922 rate_factor-= step;
923 ++toobig;
924 }
925 }
926 av_free(qscale);
927 av_free(blurred_qscale);
928
929 /* check bitrate calculations and print info */
930 qscale_sum = 0.0;
931 for(i=0; i<rcc->num_entries; i++){
932 /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
933 i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
934 qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
935 }
936 assert(toobig <= 40);
937 av_log(s->avctx, AV_LOG_DEBUG,
938 "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
939 s->bit_rate,
940 (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
941 av_log(s->avctx, AV_LOG_DEBUG,
942 "[lavc rc] estimated target average qp: %.3f\n",
943 (float)qscale_sum / rcc->num_entries);
944 if (toobig == 0) {
945 av_log(s->avctx, AV_LOG_INFO,
946 "[lavc rc] Using all of requested bitrate is not "
947 "necessary for this video with these parameters.\n");
948 } else if (toobig == 40) {
949 av_log(s->avctx, AV_LOG_ERROR,
950 "[lavc rc] Error: bitrate too low for this video "
951 "with these parameters.\n");
952 return -1;
953 } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
954 av_log(s->avctx, AV_LOG_ERROR,
955 "[lavc rc] Error: 2pass curve failed to converge\n");
956 return -1;
957 }
958
959 return 0;
960 }