cosmetics: typo fixes
[libav.git] / libavcodec / ratecontrol.c
1 /*
2 * Rate control for video encoders
3 *
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file ratecontrol.c
25 * Rate control for video encoders.
26 */
27
28 #include "avcodec.h"
29 #include "dsputil.h"
30 #include "ratecontrol.h"
31 #include "mpegvideo.h"
32 #include "eval.h"
33
34 #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
35 #include <assert.h>
36
37 #ifndef M_E
38 #define M_E 2.718281828
39 #endif
40
41 static int init_pass2(MpegEncContext *s);
42 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
43
44 void ff_write_pass1_stats(MpegEncContext *s){
45 snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
46 s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
47 s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
48 s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
49 }
50
51 static inline double qp2bits(RateControlEntry *rce, double qp){
52 if(qp<=0.0){
53 av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
54 }
55 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
56 }
57
58 static inline double bits2qp(RateControlEntry *rce, double bits){
59 if(bits<0.9){
60 av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
61 }
62 return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
63 }
64
65 int ff_rate_control_init(MpegEncContext *s)
66 {
67 RateControlContext *rcc= &s->rc_context;
68 int i;
69 const char *error = NULL;
70 static const char *const_names[]={
71 "PI",
72 "E",
73 "iTex",
74 "pTex",
75 "tex",
76 "mv",
77 "fCode",
78 "iCount",
79 "mcVar",
80 "var",
81 "isI",
82 "isP",
83 "isB",
84 "avgQP",
85 "qComp",
86 /* "lastIQP",
87 "lastPQP",
88 "lastBQP",
89 "nextNonBQP",*/
90 "avgIITex",
91 "avgPITex",
92 "avgPPTex",
93 "avgBPTex",
94 "avgTex",
95 NULL
96 };
97 static double (*func1[])(void *, double)={
98 (void *)bits2qp,
99 (void *)qp2bits,
100 NULL
101 };
102 static const char *func1_names[]={
103 "bits2qp",
104 "qp2bits",
105 NULL
106 };
107 emms_c();
108
109 rcc->rc_eq_eval = ff_parse(s->avctx->rc_eq, const_names, func1, func1_names, NULL, NULL, &error);
110 if (!rcc->rc_eq_eval) {
111 av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
112 return -1;
113 }
114
115 for(i=0; i<5; i++){
116 rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
117 rcc->pred[i].count= 1.0;
118
119 rcc->pred[i].decay= 0.4;
120 rcc->i_cplx_sum [i]=
121 rcc->p_cplx_sum [i]=
122 rcc->mv_bits_sum[i]=
123 rcc->qscale_sum [i]=
124 rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
125 rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
126 }
127 rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
128
129 if(s->flags&CODEC_FLAG_PASS2){
130 int i;
131 char *p;
132
133 /* find number of pics */
134 p= s->avctx->stats_in;
135 for(i=-1; p; i++){
136 p= strchr(p+1, ';');
137 }
138 i+= s->max_b_frames;
139 if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
140 return -1;
141 rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
142 rcc->num_entries= i;
143
144 /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
145 for(i=0; i<rcc->num_entries; i++){
146 RateControlEntry *rce= &rcc->entry[i];
147 rce->pict_type= rce->new_pict_type=FF_P_TYPE;
148 rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
149 rce->misc_bits= s->mb_num + 10;
150 rce->mb_var_sum= s->mb_num*100;
151 }
152
153 /* read stats */
154 p= s->avctx->stats_in;
155 for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
156 RateControlEntry *rce;
157 int picture_number;
158 int e;
159 char *next;
160
161 next= strchr(p, ';');
162 if(next){
163 (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
164 next++;
165 }
166 e= sscanf(p, " in:%d ", &picture_number);
167
168 assert(picture_number >= 0);
169 assert(picture_number < rcc->num_entries);
170 rce= &rcc->entry[picture_number];
171
172 e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
173 &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
174 &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
175 if(e!=14){
176 av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
177 return -1;
178 }
179
180 p= next;
181 }
182
183 if(init_pass2(s) < 0) return -1;
184
185 //FIXME maybe move to end
186 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
187 #ifdef CONFIG_LIBXVID
188 return ff_xvid_rate_control_init(s);
189 #else
190 av_log(s->avctx, AV_LOG_ERROR, "XviD ratecontrol requires libavcodec compiled with XviD support\n");
191 return -1;
192 #endif
193 }
194 }
195
196 if(!(s->flags&CODEC_FLAG_PASS2)){
197
198 rcc->short_term_qsum=0.001;
199 rcc->short_term_qcount=0.001;
200
201 rcc->pass1_rc_eq_output_sum= 0.001;
202 rcc->pass1_wanted_bits=0.001;
203
204 if(s->avctx->qblur > 1.0){
205 av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
206 return -1;
207 }
208 /* init stuff with the user specified complexity */
209 if(s->avctx->rc_initial_cplx){
210 for(i=0; i<60*30; i++){
211 double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
212 RateControlEntry rce;
213 double q;
214
215 if (i%((s->gop_size+3)/4)==0) rce.pict_type= FF_I_TYPE;
216 else if(i%(s->max_b_frames+1)) rce.pict_type= FF_B_TYPE;
217 else rce.pict_type= FF_P_TYPE;
218
219 rce.new_pict_type= rce.pict_type;
220 rce.mc_mb_var_sum= bits*s->mb_num/100000;
221 rce.mb_var_sum = s->mb_num;
222 rce.qscale = FF_QP2LAMBDA * 2;
223 rce.f_code = 2;
224 rce.b_code = 1;
225 rce.misc_bits= 1;
226
227 if(s->pict_type== FF_I_TYPE){
228 rce.i_count = s->mb_num;
229 rce.i_tex_bits= bits;
230 rce.p_tex_bits= 0;
231 rce.mv_bits= 0;
232 }else{
233 rce.i_count = 0; //FIXME we do know this approx
234 rce.i_tex_bits= 0;
235 rce.p_tex_bits= bits*0.9;
236 rce.mv_bits= bits*0.1;
237 }
238 rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
239 rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
240 rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
241 rcc->frame_count[rce.pict_type] ++;
242
243 bits= rce.i_tex_bits + rce.p_tex_bits;
244
245 q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
246 rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
247 }
248 }
249
250 }
251
252 return 0;
253 }
254
255 void ff_rate_control_uninit(MpegEncContext *s)
256 {
257 RateControlContext *rcc= &s->rc_context;
258 emms_c();
259
260 ff_eval_free(rcc->rc_eq_eval);
261 av_freep(&rcc->entry);
262
263 #ifdef CONFIG_LIBXVID
264 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
265 ff_xvid_rate_control_uninit(s);
266 #endif
267 }
268
269 int ff_vbv_update(MpegEncContext *s, int frame_size){
270 RateControlContext *rcc= &s->rc_context;
271 const double fps= 1/av_q2d(s->avctx->time_base);
272 const int buffer_size= s->avctx->rc_buffer_size;
273 const double min_rate= s->avctx->rc_min_rate/fps;
274 const double max_rate= s->avctx->rc_max_rate/fps;
275
276 //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
277 if(buffer_size){
278 int left;
279
280 rcc->buffer_index-= frame_size;
281 if(rcc->buffer_index < 0){
282 av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
283 rcc->buffer_index= 0;
284 }
285
286 left= buffer_size - rcc->buffer_index - 1;
287 rcc->buffer_index += av_clip(left, min_rate, max_rate);
288
289 if(rcc->buffer_index > buffer_size){
290 int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
291
292 if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
293 stuffing=4;
294 rcc->buffer_index -= 8*stuffing;
295
296 if(s->avctx->debug & FF_DEBUG_RC)
297 av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
298
299 return stuffing;
300 }
301 }
302 return 0;
303 }
304
305 /**
306 * modifies the bitrate curve from pass1 for one frame
307 */
308 static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
309 RateControlContext *rcc= &s->rc_context;
310 AVCodecContext *a= s->avctx;
311 double q, bits;
312 const int pict_type= rce->new_pict_type;
313 const double mb_num= s->mb_num;
314 int i;
315
316 double const_values[]={
317 M_PI,
318 M_E,
319 rce->i_tex_bits*rce->qscale,
320 rce->p_tex_bits*rce->qscale,
321 (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
322 rce->mv_bits/mb_num,
323 rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
324 rce->i_count/mb_num,
325 rce->mc_mb_var_sum/mb_num,
326 rce->mb_var_sum/mb_num,
327 rce->pict_type == FF_I_TYPE,
328 rce->pict_type == FF_P_TYPE,
329 rce->pict_type == FF_B_TYPE,
330 rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
331 a->qcompress,
332 /* rcc->last_qscale_for[FF_I_TYPE],
333 rcc->last_qscale_for[FF_P_TYPE],
334 rcc->last_qscale_for[FF_B_TYPE],
335 rcc->next_non_b_qscale,*/
336 rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE],
337 rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
338 rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
339 rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE],
340 (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
341 0
342 };
343
344 bits= ff_parse_eval(rcc->rc_eq_eval, const_values, rce);
345 if (isnan(bits)) {
346 av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
347 return -1;
348 }
349
350 rcc->pass1_rc_eq_output_sum+= bits;
351 bits*=rate_factor;
352 if(bits<0.0) bits=0.0;
353 bits+= 1.0; //avoid 1/0 issues
354
355 /* user override */
356 for(i=0; i<s->avctx->rc_override_count; i++){
357 RcOverride *rco= s->avctx->rc_override;
358 if(rco[i].start_frame > frame_num) continue;
359 if(rco[i].end_frame < frame_num) continue;
360
361 if(rco[i].qscale)
362 bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
363 else
364 bits*= rco[i].quality_factor;
365 }
366
367 q= bits2qp(rce, bits);
368
369 /* I/B difference */
370 if (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0)
371 q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
372 else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0)
373 q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
374 if(q<1) q=1;
375
376 return q;
377 }
378
379 static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
380 RateControlContext *rcc= &s->rc_context;
381 AVCodecContext *a= s->avctx;
382 const int pict_type= rce->new_pict_type;
383 const double last_p_q = rcc->last_qscale_for[FF_P_TYPE];
384 const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
385
386 if (pict_type==FF_I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==FF_P_TYPE))
387 q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
388 else if(pict_type==FF_B_TYPE && a->b_quant_factor>0.0)
389 q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
390 if(q<1) q=1;
391
392 /* last qscale / qdiff stuff */
393 if(rcc->last_non_b_pict_type==pict_type || pict_type!=FF_I_TYPE){
394 double last_q= rcc->last_qscale_for[pict_type];
395 const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
396
397 if (q > last_q + maxdiff) q= last_q + maxdiff;
398 else if(q < last_q - maxdiff) q= last_q - maxdiff;
399 }
400
401 rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
402
403 if(pict_type!=FF_B_TYPE)
404 rcc->last_non_b_pict_type= pict_type;
405
406 return q;
407 }
408
409 /**
410 * gets the qmin & qmax for pict_type
411 */
412 static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
413 int qmin= s->avctx->lmin;
414 int qmax= s->avctx->lmax;
415
416 assert(qmin <= qmax);
417
418 if(pict_type==FF_B_TYPE){
419 qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
420 qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
421 }else if(pict_type==FF_I_TYPE){
422 qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
423 qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
424 }
425
426 qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
427 qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
428
429 if(qmax<qmin) qmax= qmin;
430
431 *qmin_ret= qmin;
432 *qmax_ret= qmax;
433 }
434
435 static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
436 RateControlContext *rcc= &s->rc_context;
437 int qmin, qmax;
438 double bits;
439 const int pict_type= rce->new_pict_type;
440 const double buffer_size= s->avctx->rc_buffer_size;
441 const double fps= 1/av_q2d(s->avctx->time_base);
442 const double min_rate= s->avctx->rc_min_rate / fps;
443 const double max_rate= s->avctx->rc_max_rate / fps;
444
445 get_qminmax(&qmin, &qmax, s, pict_type);
446
447 /* modulation */
448 if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE)
449 q*= s->avctx->rc_qmod_amp;
450
451 bits= qp2bits(rce, q);
452 //printf("q:%f\n", q);
453 /* buffer overflow/underflow protection */
454 if(buffer_size){
455 double expected_size= rcc->buffer_index;
456 double q_limit;
457
458 if(min_rate){
459 double d= 2*(buffer_size - expected_size)/buffer_size;
460 if(d>1.0) d=1.0;
461 else if(d<0.0001) d=0.0001;
462 q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
463
464 q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
465 if(q > q_limit){
466 if(s->avctx->debug&FF_DEBUG_RC){
467 av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
468 }
469 q= q_limit;
470 }
471 }
472
473 if(max_rate){
474 double d= 2*expected_size/buffer_size;
475 if(d>1.0) d=1.0;
476 else if(d<0.0001) d=0.0001;
477 q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
478
479 q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
480 if(q < q_limit){
481 if(s->avctx->debug&FF_DEBUG_RC){
482 av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
483 }
484 q= q_limit;
485 }
486 }
487 }
488 //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
489 if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
490 if (q<qmin) q=qmin;
491 else if(q>qmax) q=qmax;
492 }else{
493 double min2= log(qmin);
494 double max2= log(qmax);
495
496 q= log(q);
497 q= (q - min2)/(max2-min2) - 0.5;
498 q*= -4.0;
499 q= 1.0/(1.0 + exp(q));
500 q= q*(max2-min2) + min2;
501
502 q= exp(q);
503 }
504
505 return q;
506 }
507
508 //----------------------------------
509 // 1 Pass Code
510
511 static double predict_size(Predictor *p, double q, double var)
512 {
513 return p->coeff*var / (q*p->count);
514 }
515
516 /*
517 static double predict_qp(Predictor *p, double size, double var)
518 {
519 //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
520 return p->coeff*var / (size*p->count);
521 }
522 */
523
524 static void update_predictor(Predictor *p, double q, double var, double size)
525 {
526 double new_coeff= size*q / (var + 1);
527 if(var<10) return;
528
529 p->count*= p->decay;
530 p->coeff*= p->decay;
531 p->count++;
532 p->coeff+= new_coeff;
533 }
534
535 static void adaptive_quantization(MpegEncContext *s, double q){
536 int i;
537 const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
538 const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
539 const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
540 const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
541 const float p_masking = s->avctx->p_masking;
542 const float border_masking = s->avctx->border_masking;
543 float bits_sum= 0.0;
544 float cplx_sum= 0.0;
545 float cplx_tab[s->mb_num];
546 float bits_tab[s->mb_num];
547 const int qmin= s->avctx->mb_lmin;
548 const int qmax= s->avctx->mb_lmax;
549 Picture * const pic= &s->current_picture;
550 const int mb_width = s->mb_width;
551 const int mb_height = s->mb_height;
552
553 for(i=0; i<s->mb_num; i++){
554 const int mb_xy= s->mb_index2xy[i];
555 float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
556 float spat_cplx= sqrt(pic->mb_var[mb_xy]);
557 const int lumi= pic->mb_mean[mb_xy];
558 float bits, cplx, factor;
559 int mb_x = mb_xy % s->mb_stride;
560 int mb_y = mb_xy / s->mb_stride;
561 int mb_distance;
562 float mb_factor = 0.0;
563 #if 0
564 if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
565 if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
566 #endif
567 if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
568 if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
569
570 if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
571 cplx= spat_cplx;
572 factor= 1.0 + p_masking;
573 }else{
574 cplx= temp_cplx;
575 factor= pow(temp_cplx, - temp_cplx_masking);
576 }
577 factor*=pow(spat_cplx, - spatial_cplx_masking);
578
579 if(lumi>127)
580 factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
581 else
582 factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
583
584 if(mb_x < mb_width/5){
585 mb_distance = mb_width/5 - mb_x;
586 mb_factor = (float)mb_distance / (float)(mb_width/5);
587 }else if(mb_x > 4*mb_width/5){
588 mb_distance = mb_x - 4*mb_width/5;
589 mb_factor = (float)mb_distance / (float)(mb_width/5);
590 }
591 if(mb_y < mb_height/5){
592 mb_distance = mb_height/5 - mb_y;
593 mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
594 }else if(mb_y > 4*mb_height/5){
595 mb_distance = mb_y - 4*mb_height/5;
596 mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
597 }
598
599 factor*= 1.0 - border_masking*mb_factor;
600
601 if(factor<0.00001) factor= 0.00001;
602
603 bits= cplx*factor;
604 cplx_sum+= cplx;
605 bits_sum+= bits;
606 cplx_tab[i]= cplx;
607 bits_tab[i]= bits;
608 }
609
610 /* handle qmin/qmax clipping */
611 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
612 float factor= bits_sum/cplx_sum;
613 for(i=0; i<s->mb_num; i++){
614 float newq= q*cplx_tab[i]/bits_tab[i];
615 newq*= factor;
616
617 if (newq > qmax){
618 bits_sum -= bits_tab[i];
619 cplx_sum -= cplx_tab[i]*q/qmax;
620 }
621 else if(newq < qmin){
622 bits_sum -= bits_tab[i];
623 cplx_sum -= cplx_tab[i]*q/qmin;
624 }
625 }
626 if(bits_sum < 0.001) bits_sum= 0.001;
627 if(cplx_sum < 0.001) cplx_sum= 0.001;
628 }
629
630 for(i=0; i<s->mb_num; i++){
631 const int mb_xy= s->mb_index2xy[i];
632 float newq= q*cplx_tab[i]/bits_tab[i];
633 int intq;
634
635 if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
636 newq*= bits_sum/cplx_sum;
637 }
638
639 intq= (int)(newq + 0.5);
640
641 if (intq > qmax) intq= qmax;
642 else if(intq < qmin) intq= qmin;
643 //if(i%s->mb_width==0) printf("\n");
644 //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
645 s->lambda_table[mb_xy]= intq;
646 }
647 }
648
649 void ff_get_2pass_fcode(MpegEncContext *s){
650 RateControlContext *rcc= &s->rc_context;
651 int picture_number= s->picture_number;
652 RateControlEntry *rce;
653
654 rce= &rcc->entry[picture_number];
655 s->f_code= rce->f_code;
656 s->b_code= rce->b_code;
657 }
658
659 //FIXME rd or at least approx for dquant
660
661 float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
662 {
663 float q;
664 int qmin, qmax;
665 float br_compensation;
666 double diff;
667 double short_term_q;
668 double fps;
669 int picture_number= s->picture_number;
670 int64_t wanted_bits;
671 RateControlContext *rcc= &s->rc_context;
672 AVCodecContext *a= s->avctx;
673 RateControlEntry local_rce, *rce;
674 double bits;
675 double rate_factor;
676 int var;
677 const int pict_type= s->pict_type;
678 Picture * const pic= &s->current_picture;
679 emms_c();
680
681 #ifdef CONFIG_LIBXVID
682 if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
683 return ff_xvid_rate_estimate_qscale(s, dry_run);
684 #endif
685
686 get_qminmax(&qmin, &qmax, s, pict_type);
687
688 fps= 1/av_q2d(s->avctx->time_base);
689 //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
690 /* update predictors */
691 if(picture_number>2 && !dry_run){
692 const int last_var= s->last_pict_type == FF_I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
693 update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
694 }
695
696 if(s->flags&CODEC_FLAG_PASS2){
697 assert(picture_number>=0);
698 assert(picture_number<rcc->num_entries);
699 rce= &rcc->entry[picture_number];
700 wanted_bits= rce->expected_bits;
701 }else{
702 Picture *dts_pic;
703 rce= &local_rce;
704
705 //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
706 //but the reordering is simpler for now until h.264 b pyramid must be handeld
707 if(s->pict_type == FF_B_TYPE || s->low_delay)
708 dts_pic= s->current_picture_ptr;
709 else
710 dts_pic= s->last_picture_ptr;
711
712 //if(dts_pic)
713 // av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
714
715 if(!dts_pic || dts_pic->pts == AV_NOPTS_VALUE)
716 wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
717 else
718 wanted_bits= (uint64_t)(s->bit_rate*(double)dts_pic->pts/fps);
719 }
720
721 diff= s->total_bits - wanted_bits;
722 br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
723 if(br_compensation<=0.0) br_compensation=0.001;
724
725 var= pict_type == FF_I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
726
727 short_term_q = 0; /* avoid warning */
728 if(s->flags&CODEC_FLAG_PASS2){
729 if(pict_type!=FF_I_TYPE)
730 assert(pict_type == rce->new_pict_type);
731
732 q= rce->new_qscale / br_compensation;
733 //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
734 }else{
735 rce->pict_type=
736 rce->new_pict_type= pict_type;
737 rce->mc_mb_var_sum= pic->mc_mb_var_sum;
738 rce->mb_var_sum = pic-> mb_var_sum;
739 rce->qscale = FF_QP2LAMBDA * 2;
740 rce->f_code = s->f_code;
741 rce->b_code = s->b_code;
742 rce->misc_bits= 1;
743
744 bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
745 if(pict_type== FF_I_TYPE){
746 rce->i_count = s->mb_num;
747 rce->i_tex_bits= bits;
748 rce->p_tex_bits= 0;
749 rce->mv_bits= 0;
750 }else{
751 rce->i_count = 0; //FIXME we do know this approx
752 rce->i_tex_bits= 0;
753 rce->p_tex_bits= bits*0.9;
754
755 rce->mv_bits= bits*0.1;
756 }
757 rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
758 rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
759 rcc->mv_bits_sum[pict_type] += rce->mv_bits;
760 rcc->frame_count[pict_type] ++;
761
762 bits= rce->i_tex_bits + rce->p_tex_bits;
763 rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
764
765 q= get_qscale(s, rce, rate_factor, picture_number);
766 if (q < 0)
767 return -1;
768
769 assert(q>0.0);
770 //printf("%f ", q);
771 q= get_diff_limited_q(s, rce, q);
772 //printf("%f ", q);
773 assert(q>0.0);
774
775 if(pict_type==FF_P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
776 rcc->short_term_qsum*=a->qblur;
777 rcc->short_term_qcount*=a->qblur;
778
779 rcc->short_term_qsum+= q;
780 rcc->short_term_qcount++;
781 //printf("%f ", q);
782 q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
783 //printf("%f ", q);
784 }
785 assert(q>0.0);
786
787 q= modify_qscale(s, rce, q, picture_number);
788
789 rcc->pass1_wanted_bits+= s->bit_rate/fps;
790
791 assert(q>0.0);
792 }
793
794 if(s->avctx->debug&FF_DEBUG_RC){
795 av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
796 av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
797 br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
798 );
799 }
800
801 if (q<qmin) q=qmin;
802 else if(q>qmax) q=qmax;
803
804 if(s->adaptive_quant)
805 adaptive_quantization(s, q);
806 else
807 q= (int)(q + 0.5);
808
809 if(!dry_run){
810 rcc->last_qscale= q;
811 rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
812 rcc->last_mb_var_sum= pic->mb_var_sum;
813 }
814 #if 0
815 {
816 static int mvsum=0, texsum=0;
817 mvsum += s->mv_bits;
818 texsum += s->i_tex_bits + s->p_tex_bits;
819 printf("%d %d//\n\n", mvsum, texsum);
820 }
821 #endif
822 return q;
823 }
824
825 //----------------------------------------------
826 // 2-Pass code
827
828 static int init_pass2(MpegEncContext *s)
829 {
830 RateControlContext *rcc= &s->rc_context;
831 AVCodecContext *a= s->avctx;
832 int i, toobig;
833 double fps= 1/av_q2d(s->avctx->time_base);
834 double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
835 uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
836 uint64_t all_const_bits;
837 uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
838 double rate_factor=0;
839 double step;
840 //int last_i_frame=-10000000;
841 const int filter_size= (int)(a->qblur*4) | 1;
842 double expected_bits;
843 double *qscale, *blured_qscale, qscale_sum;
844
845 /* find complexity & const_bits & decide the pict_types */
846 for(i=0; i<rcc->num_entries; i++){
847 RateControlEntry *rce= &rcc->entry[i];
848
849 rce->new_pict_type= rce->pict_type;
850 rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
851 rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
852 rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
853 rcc->frame_count[rce->pict_type] ++;
854
855 complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
856 const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
857 }
858 all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE];
859
860 if(all_available_bits < all_const_bits){
861 av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
862 return -1;
863 }
864
865 qscale= av_malloc(sizeof(double)*rcc->num_entries);
866 blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
867 toobig = 0;
868
869 for(step=256*256; step>0.0000001; step*=0.5){
870 expected_bits=0;
871 rate_factor+= step;
872
873 rcc->buffer_index= s->avctx->rc_buffer_size/2;
874
875 /* find qscale */
876 for(i=0; i<rcc->num_entries; i++){
877 qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
878 }
879 assert(filter_size%2==1);
880
881 /* fixed I/B QP relative to P mode */
882 for(i=rcc->num_entries-1; i>=0; i--){
883 RateControlEntry *rce= &rcc->entry[i];
884
885 qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
886 }
887
888 /* smooth curve */
889 for(i=0; i<rcc->num_entries; i++){
890 RateControlEntry *rce= &rcc->entry[i];
891 const int pict_type= rce->new_pict_type;
892 int j;
893 double q=0.0, sum=0.0;
894
895 for(j=0; j<filter_size; j++){
896 int index= i+j-filter_size/2;
897 double d= index-i;
898 double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
899
900 if(index < 0 || index >= rcc->num_entries) continue;
901 if(pict_type != rcc->entry[index].new_pict_type) continue;
902 q+= qscale[index] * coeff;
903 sum+= coeff;
904 }
905 blured_qscale[i]= q/sum;
906 }
907
908 /* find expected bits */
909 for(i=0; i<rcc->num_entries; i++){
910 RateControlEntry *rce= &rcc->entry[i];
911 double bits;
912 rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
913 bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
914 //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
915 bits += 8*ff_vbv_update(s, bits);
916
917 rce->expected_bits= expected_bits;
918 expected_bits += bits;
919 }
920
921 /*
922 av_log(s->avctx, AV_LOG_INFO,
923 "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
924 expected_bits, (int)all_available_bits, rate_factor);
925 */
926 if(expected_bits > all_available_bits) {
927 rate_factor-= step;
928 ++toobig;
929 }
930 }
931 av_free(qscale);
932 av_free(blured_qscale);
933
934 /* check bitrate calculations and print info */
935 qscale_sum = 0.0;
936 for(i=0; i<rcc->num_entries; i++){
937 /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
938 i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
939 qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
940 }
941 assert(toobig <= 40);
942 av_log(s->avctx, AV_LOG_DEBUG,
943 "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
944 s->bit_rate,
945 (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
946 av_log(s->avctx, AV_LOG_DEBUG,
947 "[lavc rc] estimated target average qp: %.3f\n",
948 (float)qscale_sum / rcc->num_entries);
949 if (toobig == 0) {
950 av_log(s->avctx, AV_LOG_INFO,
951 "[lavc rc] Using all of requested bitrate is not "
952 "necessary for this video with these parameters.\n");
953 } else if (toobig == 40) {
954 av_log(s->avctx, AV_LOG_ERROR,
955 "[lavc rc] Error: bitrate too low for this video "
956 "with these parameters.\n");
957 return -1;
958 } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
959 av_log(s->avctx, AV_LOG_ERROR,
960 "[lavc rc] Error: 2pass curve failed to converge\n");
961 return -1;
962 }
963
964 return 0;
965 }