rv40: Return more meaningful error codes
[libav.git] / libavcodec / rv40.c
1 /*
2 * RV40 decoder
3 * Copyright (c) 2007 Konstantin Shishkov
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * RV40 decoder
25 */
26
27 #include "libavutil/imgutils.h"
28
29 #include "avcodec.h"
30 #include "mpegutils.h"
31 #include "mpegvideo.h"
32 #include "golomb.h"
33
34 #include "rv34.h"
35 #include "rv40vlc2.h"
36 #include "rv40data.h"
37
38 static VLC aic_top_vlc;
39 static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
40 static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
41
42 static const int16_t mode2_offs[] = {
43 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
44 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
45 };
46
47 /**
48 * Initialize all tables.
49 */
50 static av_cold void rv40_init_tables(void)
51 {
52 int i;
53 static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
54 static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
55 static VLC_TYPE aic_mode2_table[11814][2];
56 static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
57 static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
58
59 aic_top_vlc.table = aic_table;
60 aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
61 init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
62 rv40_aic_top_vlc_bits, 1, 1,
63 rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
64 for(i = 0; i < AIC_MODE1_NUM; i++){
65 // Every tenth VLC table is empty
66 if((i % 10) == 9) continue;
67 aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
68 aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
69 init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
70 aic_mode1_vlc_bits[i], 1, 1,
71 aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
72 }
73 for(i = 0; i < AIC_MODE2_NUM; i++){
74 aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
75 aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
76 init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
77 aic_mode2_vlc_bits[i], 1, 1,
78 aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
79 }
80 for(i = 0; i < NUM_PTYPE_VLCS; i++){
81 ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
82 ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
83 ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
84 ptype_vlc_bits[i], 1, 1,
85 ptype_vlc_codes[i], 1, 1,
86 ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
87 }
88 for(i = 0; i < NUM_BTYPE_VLCS; i++){
89 btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
90 btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
91 ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
92 btype_vlc_bits[i], 1, 1,
93 btype_vlc_codes[i], 1, 1,
94 btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
95 }
96 }
97
98 /**
99 * Get stored dimension from bitstream.
100 *
101 * If the width/height is the standard one then it's coded as a 3-bit index.
102 * Otherwise it is coded as escaped 8-bit portions.
103 */
104 static int get_dimension(GetBitContext *gb, const int *dim)
105 {
106 int t = get_bits(gb, 3);
107 int val = dim[t];
108 if(val < 0)
109 val = dim[get_bits1(gb) - val];
110 if(!val){
111 do{
112 t = get_bits(gb, 8);
113 val += t << 2;
114 }while(t == 0xFF);
115 }
116 return val;
117 }
118
119 /**
120 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
121 */
122 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
123 {
124 *w = get_dimension(gb, rv40_standard_widths);
125 *h = get_dimension(gb, rv40_standard_heights);
126 }
127
128 static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
129 {
130 int mb_bits;
131 int w = r->s.width, h = r->s.height;
132 int mb_size;
133 int ret;
134
135 memset(si, 0, sizeof(SliceInfo));
136 if(get_bits1(gb))
137 return AVERROR_INVALIDDATA;
138 si->type = get_bits(gb, 2);
139 if(si->type == 1) si->type = 0;
140 si->quant = get_bits(gb, 5);
141 if(get_bits(gb, 2))
142 return AVERROR_INVALIDDATA;
143 si->vlc_set = get_bits(gb, 2);
144 skip_bits1(gb);
145 si->pts = get_bits(gb, 13);
146 if(!si->type || !get_bits1(gb))
147 rv40_parse_picture_size(gb, &w, &h);
148 if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0)
149 return ret;
150 si->width = w;
151 si->height = h;
152 mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
153 mb_bits = ff_rv34_get_start_offset(gb, mb_size);
154 si->start = get_bits(gb, mb_bits);
155
156 return 0;
157 }
158
159 /**
160 * Decode 4x4 intra types array.
161 */
162 static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
163 {
164 MpegEncContext *s = &r->s;
165 int i, j, k, v;
166 int A, B, C;
167 int pattern;
168 int8_t *ptr;
169
170 for(i = 0; i < 4; i++, dst += r->intra_types_stride){
171 if(!i && s->first_slice_line){
172 pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
173 dst[0] = (pattern >> 2) & 2;
174 dst[1] = (pattern >> 1) & 2;
175 dst[2] = pattern & 2;
176 dst[3] = (pattern << 1) & 2;
177 continue;
178 }
179 ptr = dst;
180 for(j = 0; j < 4; j++){
181 /* Coefficients are read using VLC chosen by the prediction pattern
182 * The first one (used for retrieving a pair of coefficients) is
183 * constructed from the top, top right and left coefficients
184 * The second one (used for retrieving only one coefficient) is
185 * top + 10 * left.
186 */
187 A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
188 B = ptr[-r->intra_types_stride];
189 C = ptr[-1];
190 pattern = A + (B << 4) + (C << 8);
191 for(k = 0; k < MODE2_PATTERNS_NUM; k++)
192 if(pattern == rv40_aic_table_index[k])
193 break;
194 if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
195 v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
196 *ptr++ = v/9;
197 *ptr++ = v%9;
198 j++;
199 }else{
200 if(B != -1 && C != -1)
201 v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
202 else{ // tricky decoding
203 v = 0;
204 switch(C){
205 case -1: // code 0 -> 1, 1 -> 0
206 if(B < 2)
207 v = get_bits1(gb) ^ 1;
208 break;
209 case 0:
210 case 2: // code 0 -> 2, 1 -> 0
211 v = (get_bits1(gb) ^ 1) << 1;
212 break;
213 }
214 }
215 *ptr++ = v;
216 }
217 }
218 }
219 return 0;
220 }
221
222 /**
223 * Decode macroblock information.
224 */
225 static int rv40_decode_mb_info(RV34DecContext *r)
226 {
227 MpegEncContext *s = &r->s;
228 GetBitContext *gb = &s->gb;
229 int q, i;
230 int prev_type = 0;
231 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
232
233 if(!r->s.mb_skip_run)
234 r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
235
236 if(--r->s.mb_skip_run)
237 return RV34_MB_SKIP;
238
239 if(r->avail_cache[6-4]){
240 int blocks[RV34_MB_TYPES] = {0};
241 int count = 0;
242 if(r->avail_cache[6-1])
243 blocks[r->mb_type[mb_pos - 1]]++;
244 blocks[r->mb_type[mb_pos - s->mb_stride]]++;
245 if(r->avail_cache[6-2])
246 blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
247 if(r->avail_cache[6-5])
248 blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
249 for(i = 0; i < RV34_MB_TYPES; i++){
250 if(blocks[i] > count){
251 count = blocks[i];
252 prev_type = i;
253 if(count>1)
254 break;
255 }
256 }
257 } else if (r->avail_cache[6-1])
258 prev_type = r->mb_type[mb_pos - 1];
259
260 if(s->pict_type == AV_PICTURE_TYPE_P){
261 prev_type = block_num_to_ptype_vlc_num[prev_type];
262 q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
263 if(q < PBTYPE_ESCAPE)
264 return q;
265 q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
266 av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
267 }else{
268 prev_type = block_num_to_btype_vlc_num[prev_type];
269 q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
270 if(q < PBTYPE_ESCAPE)
271 return q;
272 q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
273 av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
274 }
275 return 0;
276 }
277
278 enum RV40BlockPos{
279 POS_CUR,
280 POS_TOP,
281 POS_LEFT,
282 POS_BOTTOM,
283 };
284
285 #define MASK_CUR 0x0001
286 #define MASK_RIGHT 0x0008
287 #define MASK_BOTTOM 0x0010
288 #define MASK_TOP 0x1000
289 #define MASK_Y_TOP_ROW 0x000F
290 #define MASK_Y_LAST_ROW 0xF000
291 #define MASK_Y_LEFT_COL 0x1111
292 #define MASK_Y_RIGHT_COL 0x8888
293 #define MASK_C_TOP_ROW 0x0003
294 #define MASK_C_LAST_ROW 0x000C
295 #define MASK_C_LEFT_COL 0x0005
296 #define MASK_C_RIGHT_COL 0x000A
297
298 static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
299 static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
300
301 static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
302 uint8_t *src, int stride, int dmode,
303 int lim_q1, int lim_p1,
304 int alpha, int beta, int beta2,
305 int chroma, int edge, int dir)
306 {
307 int filter_p1, filter_q1;
308 int strong;
309 int lims;
310
311 strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
312 edge, &filter_p1, &filter_q1);
313
314 lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
315
316 if (strong) {
317 rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
318 lims, dmode, chroma);
319 } else if (filter_p1 & filter_q1) {
320 rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
321 lims, lim_q1, lim_p1);
322 } else if (filter_p1 | filter_q1) {
323 rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
324 alpha, beta, lims >> 1, lim_q1 >> 1,
325 lim_p1 >> 1);
326 }
327 }
328
329 /**
330 * RV40 loop filtering function
331 */
332 static void rv40_loop_filter(RV34DecContext *r, int row)
333 {
334 MpegEncContext *s = &r->s;
335 int mb_pos, mb_x;
336 int i, j, k;
337 uint8_t *Y, *C;
338 int alpha, beta, betaY, betaC;
339 int q;
340 int mbtype[4]; ///< current macroblock and its neighbours types
341 /**
342 * flags indicating that macroblock can be filtered with strong filter
343 * it is set only for intra coded MB and MB with DCs coded separately
344 */
345 int mb_strong[4];
346 int clip[4]; ///< MB filter clipping value calculated from filtering strength
347 /**
348 * coded block patterns for luma part of current macroblock and its neighbours
349 * Format:
350 * LSB corresponds to the top left block,
351 * each nibble represents one row of subblocks.
352 */
353 int cbp[4];
354 /**
355 * coded block patterns for chroma part of current macroblock and its neighbours
356 * Format is the same as for luma with two subblocks in a row.
357 */
358 int uvcbp[4][2];
359 /**
360 * This mask represents the pattern of luma subblocks that should be filtered
361 * in addition to the coded ones because because they lie at the edge of
362 * 8x8 block with different enough motion vectors
363 */
364 unsigned mvmasks[4];
365
366 mb_pos = row * s->mb_stride;
367 for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
368 int mbtype = s->current_picture_ptr->mb_type[mb_pos];
369 if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
370 r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
371 if(IS_INTRA(mbtype))
372 r->cbp_chroma[mb_pos] = 0xFF;
373 }
374 mb_pos = row * s->mb_stride;
375 for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
376 int y_h_deblock, y_v_deblock;
377 int c_v_deblock[2], c_h_deblock[2];
378 int clip_left;
379 int avail[4];
380 unsigned y_to_deblock;
381 int c_to_deblock[2];
382
383 q = s->current_picture_ptr->qscale_table[mb_pos];
384 alpha = rv40_alpha_tab[q];
385 beta = rv40_beta_tab [q];
386 betaY = betaC = beta * 3;
387 if(s->width * s->height <= 176*144)
388 betaY += beta;
389
390 avail[0] = 1;
391 avail[1] = row;
392 avail[2] = mb_x;
393 avail[3] = row < s->mb_height - 1;
394 for(i = 0; i < 4; i++){
395 if(avail[i]){
396 int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
397 mvmasks[i] = r->deblock_coefs[pos];
398 mbtype [i] = s->current_picture_ptr->mb_type[pos];
399 cbp [i] = r->cbp_luma[pos];
400 uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
401 uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
402 }else{
403 mvmasks[i] = 0;
404 mbtype [i] = mbtype[0];
405 cbp [i] = 0;
406 uvcbp[i][0] = uvcbp[i][1] = 0;
407 }
408 mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
409 clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
410 }
411 y_to_deblock = mvmasks[POS_CUR]
412 | (mvmasks[POS_BOTTOM] << 16);
413 /* This pattern contains bits signalling that horizontal edges of
414 * the current block can be filtered.
415 * That happens when either of adjacent subblocks is coded or lies on
416 * the edge of 8x8 blocks with motion vectors differing by more than
417 * 3/4 pel in any component (any edge orientation for some reason).
418 */
419 y_h_deblock = y_to_deblock
420 | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
421 | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
422 /* This pattern contains bits signalling that vertical edges of
423 * the current block can be filtered.
424 * That happens when either of adjacent subblocks is coded or lies on
425 * the edge of 8x8 blocks with motion vectors differing by more than
426 * 3/4 pel in any component (any edge orientation for some reason).
427 */
428 y_v_deblock = y_to_deblock
429 | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
430 | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
431 if(!mb_x)
432 y_v_deblock &= ~MASK_Y_LEFT_COL;
433 if(!row)
434 y_h_deblock &= ~MASK_Y_TOP_ROW;
435 if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
436 y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
437 /* Calculating chroma patterns is similar and easier since there is
438 * no motion vector pattern for them.
439 */
440 for(i = 0; i < 2; i++){
441 c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
442 c_v_deblock[i] = c_to_deblock[i]
443 | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
444 | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
445 c_h_deblock[i] = c_to_deblock[i]
446 | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
447 | (uvcbp[POS_CUR][i] << 2);
448 if(!mb_x)
449 c_v_deblock[i] &= ~MASK_C_LEFT_COL;
450 if(!row)
451 c_h_deblock[i] &= ~MASK_C_TOP_ROW;
452 if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
453 c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
454 }
455
456 for(j = 0; j < 16; j += 4){
457 Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
458 for(i = 0; i < 4; i++, Y += 4){
459 int ij = i + j;
460 int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
461 int dither = j ? ij : i*4;
462
463 // if bottom block is coded then we can filter its top edge
464 // (or bottom edge of this block, which is the same)
465 if(y_h_deblock & (MASK_BOTTOM << ij)){
466 rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
467 s->linesize, dither,
468 y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
469 clip_cur, alpha, beta, betaY,
470 0, 0, 0);
471 }
472 // filter left block edge in ordinary mode (with low filtering strength)
473 if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
474 if(!i)
475 clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
476 else
477 clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
478 rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
479 clip_cur,
480 clip_left,
481 alpha, beta, betaY, 0, 0, 1);
482 }
483 // filter top edge of the current macroblock when filtering strength is high
484 if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
485 rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
486 clip_cur,
487 mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
488 alpha, beta, betaY, 0, 1, 0);
489 }
490 // filter left block edge in edge mode (with high filtering strength)
491 if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
492 clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
493 rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
494 clip_cur,
495 clip_left,
496 alpha, beta, betaY, 0, 1, 1);
497 }
498 }
499 }
500 for(k = 0; k < 2; k++){
501 for(j = 0; j < 2; j++){
502 C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
503 for(i = 0; i < 2; i++, C += 4){
504 int ij = i + j*2;
505 int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
506 if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
507 int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
508 rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
509 clip_bot,
510 clip_cur,
511 alpha, beta, betaC, 1, 0, 0);
512 }
513 if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
514 if(!i)
515 clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
516 else
517 clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
518 rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
519 clip_cur,
520 clip_left,
521 alpha, beta, betaC, 1, 0, 1);
522 }
523 if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
524 int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
525 rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
526 clip_cur,
527 clip_top,
528 alpha, beta, betaC, 1, 1, 0);
529 }
530 if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
531 clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
532 rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
533 clip_cur,
534 clip_left,
535 alpha, beta, betaC, 1, 1, 1);
536 }
537 }
538 }
539 }
540 }
541 }
542
543 /**
544 * Initialize decoder.
545 */
546 static av_cold int rv40_decode_init(AVCodecContext *avctx)
547 {
548 RV34DecContext *r = avctx->priv_data;
549 int ret;
550
551 r->rv30 = 0;
552 if ((ret = ff_rv34_decode_init(avctx)) < 0)
553 return ret;
554 if(!aic_top_vlc.bits)
555 rv40_init_tables();
556 r->parse_slice_header = rv40_parse_slice_header;
557 r->decode_intra_types = rv40_decode_intra_types;
558 r->decode_mb_info = rv40_decode_mb_info;
559 r->loop_filter = rv40_loop_filter;
560 r->luma_dc_quant_i = rv40_luma_dc_quant[0];
561 r->luma_dc_quant_p = rv40_luma_dc_quant[1];
562 return 0;
563 }
564
565 AVCodec ff_rv40_decoder = {
566 .name = "rv40",
567 .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
568 .type = AVMEDIA_TYPE_VIDEO,
569 .id = AV_CODEC_ID_RV40,
570 .priv_data_size = sizeof(RV34DecContext),
571 .init = rv40_decode_init,
572 .close = ff_rv34_decode_end,
573 .decode = ff_rv34_decode_frame,
574 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
575 CODEC_CAP_FRAME_THREADS,
576 .flush = ff_mpeg_flush,
577 .pix_fmts = (const enum AVPixelFormat[]) {
578 AV_PIX_FMT_YUV420P,
579 AV_PIX_FMT_NONE
580 },
581 .init_thread_copy = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy),
582 .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
583 };