f732820bd398bebc3382be32945ea54ad58d9241
[libav.git] / libavcodec / snowenc.c
1 /*
2 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of Libav.
5 *
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "dsputil.h"
26 #include "dwt.h"
27 #include "snow.h"
28
29 #include "rangecoder.h"
30 #include "mathops.h"
31
32 #include "mpegvideo.h"
33 #include "h263.h"
34
35 #undef NDEBUG
36 #include <assert.h>
37
38 #define QUANTIZE2 0
39
40 #if QUANTIZE2==1
41 #define Q2_STEP 8
42
43 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
44 SubBand *b= &p->band[level][orientation];
45 int x, y;
46 int xo=0;
47 int yo=0;
48 int step= 1 << (s->spatial_decomposition_count - level);
49
50 if(orientation&1)
51 xo= step>>1;
52 if(orientation&2)
53 yo= step>>1;
54
55 //FIXME bias for nonzero ?
56 //FIXME optimize
57 memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
58 for(y=0; y<p->height; y++){
59 for(x=0; x<p->width; x++){
60 int sx= (x-xo + step/2) / step / Q2_STEP;
61 int sy= (y-yo + step/2) / step / Q2_STEP;
62 int v= r0[x + y*p->width] - r1[x + y*p->width];
63 assert(sx>=0 && sy>=0 && sx < score_stride);
64 v= ((v+8)>>4)<<4;
65 score[sx + sy*score_stride] += v*v;
66 assert(score[sx + sy*score_stride] >= 0);
67 }
68 }
69 }
70
71 static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
72 int level, orientation;
73
74 for(level=0; level<s->spatial_decomposition_count; level++){
75 for(orientation=level ? 1 : 0; orientation<4; orientation++){
76 SubBand *b= &p->band[level][orientation];
77 IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
78
79 dequantize(s, b, dst, b->stride);
80 }
81 }
82 }
83
84 static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
85 int level, orientation, ys, xs, x, y, pass;
86 IDWTELEM best_dequant[height * stride];
87 IDWTELEM idwt2_buffer[height * stride];
88 const int score_stride= (width + 10)/Q2_STEP;
89 int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
90 int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
91 int threshold= (s->m.lambda * s->m.lambda) >> 6;
92
93 //FIXME pass the copy cleanly ?
94
95 // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM));
96 ff_spatial_dwt(buffer, s->temp_dwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
97
98 for(level=0; level<s->spatial_decomposition_count; level++){
99 for(orientation=level ? 1 : 0; orientation<4; orientation++){
100 SubBand *b= &p->band[level][orientation];
101 IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
102 DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
103 assert(src == b->buf); // code does not depend on this but it is true currently
104
105 quantize(s, b, dst, src, b->stride, s->qbias);
106 }
107 }
108 for(pass=0; pass<1; pass++){
109 if(s->qbias == 0) //keyframe
110 continue;
111 for(level=0; level<s->spatial_decomposition_count; level++){
112 for(orientation=level ? 1 : 0; orientation<4; orientation++){
113 SubBand *b= &p->band[level][orientation];
114 IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
115 IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
116
117 for(ys= 0; ys<Q2_STEP; ys++){
118 for(xs= 0; xs<Q2_STEP; xs++){
119 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
120 dequantize_all(s, p, idwt2_buffer, width, height);
121 ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
122 find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
123 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
124 for(y=ys; y<b->height; y+= Q2_STEP){
125 for(x=xs; x<b->width; x+= Q2_STEP){
126 if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
127 if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
128 //FIXME try more than just --
129 }
130 }
131 dequantize_all(s, p, idwt2_buffer, width, height);
132 ff_spatial_idwt(idwt2_buffer, s->temp_idwt_buffer, width, height, stride, type, s->spatial_decomposition_count);
133 find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
134 for(y=ys; y<b->height; y+= Q2_STEP){
135 for(x=xs; x<b->width; x+= Q2_STEP){
136 int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
137 if(score[score_idx] <= best_score[score_idx] + threshold){
138 best_score[score_idx]= score[score_idx];
139 if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
140 if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
141 //FIXME copy instead
142 }
143 }
144 }
145 }
146 }
147 }
148 }
149 }
150 memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end
151 }
152
153 #endif /* QUANTIZE2==1 */
154
155 static av_cold int encode_init(AVCodecContext *avctx)
156 {
157 SnowContext *s = avctx->priv_data;
158 int plane_index, ret;
159
160 if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){
161 av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
162 "Use vstrict=-2 / -strict -2 to use it anyway.\n");
163 return -1;
164 }
165
166 if(avctx->prediction_method == DWT_97
167 && (avctx->flags & CODEC_FLAG_QSCALE)
168 && avctx->global_quality == 0){
169 av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
170 return -1;
171 }
172
173 s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
174
175 s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
176 s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
177
178 for(plane_index=0; plane_index<3; plane_index++){
179 s->plane[plane_index].diag_mc= 1;
180 s->plane[plane_index].htaps= 6;
181 s->plane[plane_index].hcoeff[0]= 40;
182 s->plane[plane_index].hcoeff[1]= -10;
183 s->plane[plane_index].hcoeff[2]= 2;
184 s->plane[plane_index].fast_mc= 1;
185 }
186
187 if ((ret = ff_snow_common_init(avctx)) < 0) {
188 ff_snow_common_end(avctx->priv_data);
189 return ret;
190 }
191 ff_snow_alloc_blocks(s);
192
193 s->version=0;
194
195 s->m.avctx = avctx;
196 s->m.flags = avctx->flags;
197 s->m.bit_rate= avctx->bit_rate;
198
199 s->m.me.temp =
200 s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
201 s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
202 s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
203 s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
204 ff_h263_encode_init(&s->m); //mv_penalty
205
206 s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
207
208 if(avctx->flags&CODEC_FLAG_PASS1){
209 if(!avctx->stats_out)
210 avctx->stats_out = av_mallocz(256);
211 }
212 if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
213 if(ff_rate_control_init(&s->m) < 0)
214 return -1;
215 }
216 s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
217
218 avctx->coded_frame= &s->current_picture;
219 switch(avctx->pix_fmt){
220 // case PIX_FMT_YUV444P:
221 // case PIX_FMT_YUV422P:
222 case PIX_FMT_YUV420P:
223 case PIX_FMT_GRAY8:
224 // case PIX_FMT_YUV411P:
225 // case PIX_FMT_YUV410P:
226 s->colorspace_type= 0;
227 break;
228 /* case PIX_FMT_RGB32:
229 s->colorspace= 1;
230 break;*/
231 default:
232 av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
233 return -1;
234 }
235 // avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
236 s->chroma_h_shift= 1;
237 s->chroma_v_shift= 1;
238
239 ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
240 ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
241
242 s->avctx->get_buffer(s->avctx, &s->input_picture);
243
244 if(s->avctx->me_method == ME_ITER){
245 int i;
246 int size= s->b_width * s->b_height << 2*s->block_max_depth;
247 for(i=0; i<s->max_ref_frames; i++){
248 s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
249 s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
250 }
251 }
252
253 return 0;
254 }
255
256 //near copy & paste from dsputil, FIXME
257 static int pix_sum(uint8_t * pix, int line_size, int w)
258 {
259 int s, i, j;
260
261 s = 0;
262 for (i = 0; i < w; i++) {
263 for (j = 0; j < w; j++) {
264 s += pix[0];
265 pix ++;
266 }
267 pix += line_size - w;
268 }
269 return s;
270 }
271
272 //near copy & paste from dsputil, FIXME
273 static int pix_norm1(uint8_t * pix, int line_size, int w)
274 {
275 int s, i, j;
276 uint32_t *sq = ff_squareTbl + 256;
277
278 s = 0;
279 for (i = 0; i < w; i++) {
280 for (j = 0; j < w; j ++) {
281 s += sq[pix[0]];
282 pix ++;
283 }
284 pix += line_size - w;
285 }
286 return s;
287 }
288
289 //FIXME copy&paste
290 #define P_LEFT P[1]
291 #define P_TOP P[2]
292 #define P_TOPRIGHT P[3]
293 #define P_MEDIAN P[4]
294 #define P_MV1 P[9]
295 #define FLAG_QPEL 1 //must be 1
296
297 static int encode_q_branch(SnowContext *s, int level, int x, int y){
298 uint8_t p_buffer[1024];
299 uint8_t i_buffer[1024];
300 uint8_t p_state[sizeof(s->block_state)];
301 uint8_t i_state[sizeof(s->block_state)];
302 RangeCoder pc, ic;
303 uint8_t *pbbak= s->c.bytestream;
304 uint8_t *pbbak_start= s->c.bytestream_start;
305 int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
306 const int w= s->b_width << s->block_max_depth;
307 const int h= s->b_height << s->block_max_depth;
308 const int rem_depth= s->block_max_depth - level;
309 const int index= (x + y*w) << rem_depth;
310 const int block_w= 1<<(LOG2_MB_SIZE - level);
311 int trx= (x+1)<<rem_depth;
312 int try= (y+1)<<rem_depth;
313 const BlockNode *left = x ? &s->block[index-1] : &null_block;
314 const BlockNode *top = y ? &s->block[index-w] : &null_block;
315 const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
316 const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
317 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
318 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
319 int pl = left->color[0];
320 int pcb= left->color[1];
321 int pcr= left->color[2];
322 int pmx, pmy;
323 int mx=0, my=0;
324 int l,cr,cb;
325 const int stride= s->current_picture.linesize[0];
326 const int uvstride= s->current_picture.linesize[1];
327 uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
328 s->input_picture.data[1] + (x + y*uvstride)*block_w/2,
329 s->input_picture.data[2] + (x + y*uvstride)*block_w/2};
330 int P[10][2];
331 int16_t last_mv[3][2];
332 int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
333 const int shift= 1+qpel;
334 MotionEstContext *c= &s->m.me;
335 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
336 int mx_context= av_log2(2*FFABS(left->mx - top->mx));
337 int my_context= av_log2(2*FFABS(left->my - top->my));
338 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
339 int ref, best_ref, ref_score, ref_mx, ref_my;
340
341 assert(sizeof(s->block_state) >= 256);
342 if(s->keyframe){
343 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
344 return 0;
345 }
346
347 // clip predictors / edge ?
348
349 P_LEFT[0]= left->mx;
350 P_LEFT[1]= left->my;
351 P_TOP [0]= top->mx;
352 P_TOP [1]= top->my;
353 P_TOPRIGHT[0]= tr->mx;
354 P_TOPRIGHT[1]= tr->my;
355
356 last_mv[0][0]= s->block[index].mx;
357 last_mv[0][1]= s->block[index].my;
358 last_mv[1][0]= right->mx;
359 last_mv[1][1]= right->my;
360 last_mv[2][0]= bottom->mx;
361 last_mv[2][1]= bottom->my;
362
363 s->m.mb_stride=2;
364 s->m.mb_x=
365 s->m.mb_y= 0;
366 c->skip= 0;
367
368 assert(c-> stride == stride);
369 assert(c->uvstride == uvstride);
370
371 c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
372 c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
373 c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
374 c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
375
376 c->xmin = - x*block_w - 16+3;
377 c->ymin = - y*block_w - 16+3;
378 c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
379 c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
380
381 if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
382 if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
383 if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
384 if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
385 if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
386 if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
387 if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
388
389 P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
390 P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
391
392 if (!y) {
393 c->pred_x= P_LEFT[0];
394 c->pred_y= P_LEFT[1];
395 } else {
396 c->pred_x = P_MEDIAN[0];
397 c->pred_y = P_MEDIAN[1];
398 }
399
400 score= INT_MAX;
401 best_ref= 0;
402 for(ref=0; ref<s->ref_frames; ref++){
403 init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
404
405 ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
406 (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
407
408 assert(ref_mx >= c->xmin);
409 assert(ref_mx <= c->xmax);
410 assert(ref_my >= c->ymin);
411 assert(ref_my <= c->ymax);
412
413 ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
414 ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
415 ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
416 if(s->ref_mvs[ref]){
417 s->ref_mvs[ref][index][0]= ref_mx;
418 s->ref_mvs[ref][index][1]= ref_my;
419 s->ref_scores[ref][index]= ref_score;
420 }
421 if(score > ref_score){
422 score= ref_score;
423 best_ref= ref;
424 mx= ref_mx;
425 my= ref_my;
426 }
427 }
428 //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
429
430 // subpel search
431 base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
432 pc= s->c;
433 pc.bytestream_start=
434 pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
435 memcpy(p_state, s->block_state, sizeof(s->block_state));
436
437 if(level!=s->block_max_depth)
438 put_rac(&pc, &p_state[4 + s_context], 1);
439 put_rac(&pc, &p_state[1 + left->type + top->type], 0);
440 if(s->ref_frames > 1)
441 put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
442 pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
443 put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
444 put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
445 p_len= pc.bytestream - pc.bytestream_start;
446 score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
447
448 block_s= block_w*block_w;
449 sum = pix_sum(current_data[0], stride, block_w);
450 l= (sum + block_s/2)/block_s;
451 iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
452
453 block_s= block_w*block_w>>2;
454 sum = pix_sum(current_data[1], uvstride, block_w>>1);
455 cb= (sum + block_s/2)/block_s;
456 // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
457 sum = pix_sum(current_data[2], uvstride, block_w>>1);
458 cr= (sum + block_s/2)/block_s;
459 // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
460
461 ic= s->c;
462 ic.bytestream_start=
463 ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
464 memcpy(i_state, s->block_state, sizeof(s->block_state));
465 if(level!=s->block_max_depth)
466 put_rac(&ic, &i_state[4 + s_context], 1);
467 put_rac(&ic, &i_state[1 + left->type + top->type], 1);
468 put_symbol(&ic, &i_state[32], l-pl , 1);
469 put_symbol(&ic, &i_state[64], cb-pcb, 1);
470 put_symbol(&ic, &i_state[96], cr-pcr, 1);
471 i_len= ic.bytestream - ic.bytestream_start;
472 iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
473
474 // assert(score==256*256*256*64-1);
475 assert(iscore < 255*255*256 + s->lambda2*10);
476 assert(iscore >= 0);
477 assert(l>=0 && l<=255);
478 assert(pl>=0 && pl<=255);
479
480 if(level==0){
481 int varc= iscore >> 8;
482 int vard= score >> 8;
483 if (vard <= 64 || vard < varc)
484 c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
485 else
486 c->scene_change_score+= s->m.qscale;
487 }
488
489 if(level!=s->block_max_depth){
490 put_rac(&s->c, &s->block_state[4 + s_context], 0);
491 score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
492 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
493 score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
494 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
495 score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
496
497 if(score2 < score && score2 < iscore)
498 return score2;
499 }
500
501 if(iscore < score){
502 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
503 memcpy(pbbak, i_buffer, i_len);
504 s->c= ic;
505 s->c.bytestream_start= pbbak_start;
506 s->c.bytestream= pbbak + i_len;
507 set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
508 memcpy(s->block_state, i_state, sizeof(s->block_state));
509 return iscore;
510 }else{
511 memcpy(pbbak, p_buffer, p_len);
512 s->c= pc;
513 s->c.bytestream_start= pbbak_start;
514 s->c.bytestream= pbbak + p_len;
515 set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
516 memcpy(s->block_state, p_state, sizeof(s->block_state));
517 return score;
518 }
519 }
520
521 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
522 const int w= s->b_width << s->block_max_depth;
523 const int rem_depth= s->block_max_depth - level;
524 const int index= (x + y*w) << rem_depth;
525 int trx= (x+1)<<rem_depth;
526 BlockNode *b= &s->block[index];
527 const BlockNode *left = x ? &s->block[index-1] : &null_block;
528 const BlockNode *top = y ? &s->block[index-w] : &null_block;
529 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
530 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
531 int pl = left->color[0];
532 int pcb= left->color[1];
533 int pcr= left->color[2];
534 int pmx, pmy;
535 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
536 int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
537 int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
538 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
539
540 if(s->keyframe){
541 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
542 return;
543 }
544
545 if(level!=s->block_max_depth){
546 if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
547 put_rac(&s->c, &s->block_state[4 + s_context], 1);
548 }else{
549 put_rac(&s->c, &s->block_state[4 + s_context], 0);
550 encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
551 encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
552 encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
553 encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
554 return;
555 }
556 }
557 if(b->type & BLOCK_INTRA){
558 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
559 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
560 put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
561 put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
562 put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
563 set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
564 }else{
565 pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
566 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
567 if(s->ref_frames > 1)
568 put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
569 put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
570 put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
571 set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
572 }
573 }
574
575 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
576 int i, x2, y2;
577 Plane *p= &s->plane[plane_index];
578 const int block_size = MB_SIZE >> s->block_max_depth;
579 const int block_w = plane_index ? block_size/2 : block_size;
580 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth];
581 const int obmc_stride= plane_index ? block_size : 2*block_size;
582 const int ref_stride= s->current_picture.linesize[plane_index];
583 uint8_t *src= s-> input_picture.data[plane_index];
584 IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
585 const int b_stride = s->b_width << s->block_max_depth;
586 const int w= p->width;
587 const int h= p->height;
588 int index= mb_x + mb_y*b_stride;
589 BlockNode *b= &s->block[index];
590 BlockNode backup= *b;
591 int ab=0;
592 int aa=0;
593
594 b->type|= BLOCK_INTRA;
595 b->color[plane_index]= 0;
596 memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
597
598 for(i=0; i<4; i++){
599 int mb_x2= mb_x + (i &1) - 1;
600 int mb_y2= mb_y + (i>>1) - 1;
601 int x= block_w*mb_x2 + block_w/2;
602 int y= block_w*mb_y2 + block_w/2;
603
604 add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc,
605 x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
606
607 for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){
608 for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
609 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride;
610 int obmc_v= obmc[index];
611 int d;
612 if(y<0) obmc_v += obmc[index + block_w*obmc_stride];
613 if(x<0) obmc_v += obmc[index + block_w];
614 if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride];
615 if(x+block_w>w) obmc_v += obmc[index - block_w];
616 //FIXME precalculate this or simplify it somehow else
617
618 d = -dst[index] + (1<<(FRAC_BITS-1));
619 dst[index] = d;
620 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
621 aa += obmc_v * obmc_v; //FIXME precalculate this
622 }
623 }
624 }
625 *b= backup;
626
627 return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping
628 }
629
630 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
631 const int b_stride = s->b_width << s->block_max_depth;
632 const int b_height = s->b_height<< s->block_max_depth;
633 int index= x + y*b_stride;
634 const BlockNode *b = &s->block[index];
635 const BlockNode *left = x ? &s->block[index-1] : &null_block;
636 const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
637 const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
638 const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
639 int dmx, dmy;
640 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
641 // int my_context= av_log2(2*FFABS(left->my - top->my));
642
643 if(x<0 || x>=b_stride || y>=b_height)
644 return 0;
645 /*
646 1 0 0
647 01X 1-2 1
648 001XX 3-6 2-3
649 0001XXX 7-14 4-7
650 00001XXXX 15-30 8-15
651 */
652 //FIXME try accurate rate
653 //FIXME intra and inter predictors if surrounding blocks are not the same type
654 if(b->type & BLOCK_INTRA){
655 return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
656 + av_log2(2*FFABS(left->color[1] - b->color[1]))
657 + av_log2(2*FFABS(left->color[2] - b->color[2])));
658 }else{
659 pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
660 dmx-= b->mx;
661 dmy-= b->my;
662 return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
663 + av_log2(2*FFABS(dmy))
664 + av_log2(2*b->ref));
665 }
666 }
667
668 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
669 Plane *p= &s->plane[plane_index];
670 const int block_size = MB_SIZE >> s->block_max_depth;
671 const int block_w = plane_index ? block_size/2 : block_size;
672 const int obmc_stride= plane_index ? block_size : 2*block_size;
673 const int ref_stride= s->current_picture.linesize[plane_index];
674 uint8_t *dst= s->current_picture.data[plane_index];
675 uint8_t *src= s-> input_picture.data[plane_index];
676 IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
677 uint8_t *cur = s->scratchbuf;
678 uint8_t *tmp = s->emu_edge_buffer;
679 const int b_stride = s->b_width << s->block_max_depth;
680 const int b_height = s->b_height<< s->block_max_depth;
681 const int w= p->width;
682 const int h= p->height;
683 int distortion;
684 int rate= 0;
685 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
686 int sx= block_w*mb_x - block_w/2;
687 int sy= block_w*mb_y - block_w/2;
688 int x0= FFMAX(0,-sx);
689 int y0= FFMAX(0,-sy);
690 int x1= FFMIN(block_w*2, w-sx);
691 int y1= FFMIN(block_w*2, h-sy);
692 int i,x,y;
693
694 ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
695
696 for(y=y0; y<y1; y++){
697 const uint8_t *obmc1= obmc_edged[y];
698 const IDWTELEM *pred1 = pred + y*obmc_stride;
699 uint8_t *cur1 = cur + y*ref_stride;
700 uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
701 for(x=x0; x<x1; x++){
702 #if FRAC_BITS >= LOG2_OBMC_MAX
703 int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
704 #else
705 int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
706 #endif
707 v = (v + pred1[x]) >> FRAC_BITS;
708 if(v&(~255)) v= ~(v>>31);
709 dst1[x] = v;
710 }
711 }
712
713 /* copy the regions where obmc[] = (uint8_t)256 */
714 if(LOG2_OBMC_MAX == 8
715 && (mb_x == 0 || mb_x == b_stride-1)
716 && (mb_y == 0 || mb_y == b_height-1)){
717 if(mb_x == 0)
718 x1 = block_w;
719 else
720 x0 = block_w;
721 if(mb_y == 0)
722 y1 = block_w;
723 else
724 y0 = block_w;
725 for(y=y0; y<y1; y++)
726 memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
727 }
728
729 if(block_w==16){
730 /* FIXME rearrange dsputil to fit 32x32 cmp functions */
731 /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
732 /* FIXME cmps overlap but do not cover the wavelet's whole support.
733 * So improving the score of one block is not strictly guaranteed
734 * to improve the score of the whole frame, thus iterative motion
735 * estimation does not always converge. */
736 if(s->avctx->me_cmp == FF_CMP_W97)
737 distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
738 else if(s->avctx->me_cmp == FF_CMP_W53)
739 distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
740 else{
741 distortion = 0;
742 for(i=0; i<4; i++){
743 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
744 distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
745 }
746 }
747 }else{
748 assert(block_w==8);
749 distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
750 }
751
752 if(plane_index==0){
753 for(i=0; i<4; i++){
754 /* ..RRr
755 * .RXx.
756 * rxx..
757 */
758 rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
759 }
760 if(mb_x == b_stride-2)
761 rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
762 }
763 return distortion + rate*penalty_factor;
764 }
765
766 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
767 int i, y2;
768 Plane *p= &s->plane[plane_index];
769 const int block_size = MB_SIZE >> s->block_max_depth;
770 const int block_w = plane_index ? block_size/2 : block_size;
771 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth];
772 const int obmc_stride= plane_index ? block_size : 2*block_size;
773 const int ref_stride= s->current_picture.linesize[plane_index];
774 uint8_t *dst= s->current_picture.data[plane_index];
775 uint8_t *src= s-> input_picture.data[plane_index];
776 //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
777 // const has only been removed from zero_dst to suppress a warning
778 static IDWTELEM zero_dst[4096]; //FIXME
779 const int b_stride = s->b_width << s->block_max_depth;
780 const int w= p->width;
781 const int h= p->height;
782 int distortion= 0;
783 int rate= 0;
784 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
785
786 for(i=0; i<9; i++){
787 int mb_x2= mb_x + (i%3) - 1;
788 int mb_y2= mb_y + (i/3) - 1;
789 int x= block_w*mb_x2 + block_w/2;
790 int y= block_w*mb_y2 + block_w/2;
791
792 add_yblock(s, 0, NULL, zero_dst, dst, obmc,
793 x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
794
795 //FIXME find a cleaner/simpler way to skip the outside stuff
796 for(y2= y; y2<0; y2++)
797 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
798 for(y2= h; y2<y+block_w; y2++)
799 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
800 if(x<0){
801 for(y2= y; y2<y+block_w; y2++)
802 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
803 }
804 if(x+block_w > w){
805 for(y2= y; y2<y+block_w; y2++)
806 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
807 }
808
809 assert(block_w== 8 || block_w==16);
810 distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w);
811 }
812
813 if(plane_index==0){
814 BlockNode *b= &s->block[mb_x+mb_y*b_stride];
815 int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
816
817 /* ..RRRr
818 * .RXXx.
819 * .RXXx.
820 * rxxx.
821 */
822 if(merged)
823 rate = get_block_bits(s, mb_x, mb_y, 2);
824 for(i=merged?4:0; i<9; i++){
825 static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
826 rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
827 }
828 }
829 return distortion + rate*penalty_factor;
830 }
831
832 static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
833 const int w= b->width;
834 const int h= b->height;
835 int x, y;
836
837 if(1){
838 int run=0;
839 int *runs = s->run_buffer;
840 int run_index=0;
841 int max_index;
842
843 for(y=0; y<h; y++){
844 for(x=0; x<w; x++){
845 int v, p=0;
846 int /*ll=0, */l=0, lt=0, t=0, rt=0;
847 v= src[x + y*stride];
848
849 if(y){
850 t= src[x + (y-1)*stride];
851 if(x){
852 lt= src[x - 1 + (y-1)*stride];
853 }
854 if(x + 1 < w){
855 rt= src[x + 1 + (y-1)*stride];
856 }
857 }
858 if(x){
859 l= src[x - 1 + y*stride];
860 /*if(x > 1){
861 if(orientation==1) ll= src[y + (x-2)*stride];
862 else ll= src[x - 2 + y*stride];
863 }*/
864 }
865 if(parent){
866 int px= x>>1;
867 int py= y>>1;
868 if(px<b->parent->width && py<b->parent->height)
869 p= parent[px + py*2*stride];
870 }
871 if(!(/*ll|*/l|lt|t|rt|p)){
872 if(v){
873 runs[run_index++]= run;
874 run=0;
875 }else{
876 run++;
877 }
878 }
879 }
880 }
881 max_index= run_index;
882 runs[run_index++]= run;
883 run_index=0;
884 run= runs[run_index++];
885
886 put_symbol2(&s->c, b->state[30], max_index, 0);
887 if(run_index <= max_index)
888 put_symbol2(&s->c, b->state[1], run, 3);
889
890 for(y=0; y<h; y++){
891 if(s->c.bytestream_end - s->c.bytestream < w*40){
892 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
893 return -1;
894 }
895 for(x=0; x<w; x++){
896 int v, p=0;
897 int /*ll=0, */l=0, lt=0, t=0, rt=0;
898 v= src[x + y*stride];
899
900 if(y){
901 t= src[x + (y-1)*stride];
902 if(x){
903 lt= src[x - 1 + (y-1)*stride];
904 }
905 if(x + 1 < w){
906 rt= src[x + 1 + (y-1)*stride];
907 }
908 }
909 if(x){
910 l= src[x - 1 + y*stride];
911 /*if(x > 1){
912 if(orientation==1) ll= src[y + (x-2)*stride];
913 else ll= src[x - 2 + y*stride];
914 }*/
915 }
916 if(parent){
917 int px= x>>1;
918 int py= y>>1;
919 if(px<b->parent->width && py<b->parent->height)
920 p= parent[px + py*2*stride];
921 }
922 if(/*ll|*/l|lt|t|rt|p){
923 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
924
925 put_rac(&s->c, &b->state[0][context], !!v);
926 }else{
927 if(!run){
928 run= runs[run_index++];
929
930 if(run_index <= max_index)
931 put_symbol2(&s->c, b->state[1], run, 3);
932 assert(v);
933 }else{
934 run--;
935 assert(!v);
936 }
937 }
938 if(v){
939 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
940 int l2= 2*FFABS(l) + (l<0);
941 int t2= 2*FFABS(t) + (t<0);
942
943 put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
944 put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
945 }
946 }
947 }
948 }
949 return 0;
950 }
951
952 static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
953 // encode_subband_qtree(s, b, src, parent, stride, orientation);
954 // encode_subband_z0run(s, b, src, parent, stride, orientation);
955 return encode_subband_c0run(s, b, src, parent, stride, orientation);
956 // encode_subband_dzr(s, b, src, parent, stride, orientation);
957 }
958
959 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
960 const int b_stride= s->b_width << s->block_max_depth;
961 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
962 BlockNode backup= *block;
963 unsigned value;
964 int rd, index;
965
966 assert(mb_x>=0 && mb_y>=0);
967 assert(mb_x<b_stride);
968
969 if(intra){
970 block->color[0] = p[0];
971 block->color[1] = p[1];
972 block->color[2] = p[2];
973 block->type |= BLOCK_INTRA;
974 }else{
975 index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
976 value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
977 if(s->me_cache[index] == value)
978 return 0;
979 s->me_cache[index]= value;
980
981 block->mx= p[0];
982 block->my= p[1];
983 block->type &= ~BLOCK_INTRA;
984 }
985
986 rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
987
988 //FIXME chroma
989 if(rd < *best_rd){
990 *best_rd= rd;
991 return 1;
992 }else{
993 *block= backup;
994 return 0;
995 }
996 }
997
998 /* special case for int[2] args we discard afterwards,
999 * fixes compilation problem with gcc 2.95 */
1000 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
1001 int p[2] = {p0, p1};
1002 return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
1003 }
1004
1005 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
1006 const int b_stride= s->b_width << s->block_max_depth;
1007 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
1008 BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]};
1009 unsigned value;
1010 int rd, index;
1011
1012 assert(mb_x>=0 && mb_y>=0);
1013 assert(mb_x<b_stride);
1014 assert(((mb_x|mb_y)&1) == 0);
1015
1016 index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
1017 value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
1018 if(s->me_cache[index] == value)
1019 return 0;
1020 s->me_cache[index]= value;
1021
1022 block->mx= p0;
1023 block->my= p1;
1024 block->ref= ref;
1025 block->type &= ~BLOCK_INTRA;
1026 block[1]= block[b_stride]= block[b_stride+1]= *block;
1027
1028 rd= get_4block_rd(s, mb_x, mb_y, 0);
1029
1030 //FIXME chroma
1031 if(rd < *best_rd){
1032 *best_rd= rd;
1033 return 1;
1034 }else{
1035 block[0]= backup[0];
1036 block[1]= backup[1];
1037 block[b_stride]= backup[2];
1038 block[b_stride+1]= backup[3];
1039 return 0;
1040 }
1041 }
1042
1043 static void iterative_me(SnowContext *s){
1044 int pass, mb_x, mb_y;
1045 const int b_width = s->b_width << s->block_max_depth;
1046 const int b_height= s->b_height << s->block_max_depth;
1047 const int b_stride= b_width;
1048 int color[3];
1049
1050 {
1051 RangeCoder r = s->c;
1052 uint8_t state[sizeof(s->block_state)];
1053 memcpy(state, s->block_state, sizeof(s->block_state));
1054 for(mb_y= 0; mb_y<s->b_height; mb_y++)
1055 for(mb_x= 0; mb_x<s->b_width; mb_x++)
1056 encode_q_branch(s, 0, mb_x, mb_y);
1057 s->c = r;
1058 memcpy(s->block_state, state, sizeof(s->block_state));
1059 }
1060
1061 for(pass=0; pass<25; pass++){
1062 int change= 0;
1063
1064 for(mb_y= 0; mb_y<b_height; mb_y++){
1065 for(mb_x= 0; mb_x<b_width; mb_x++){
1066 int dia_change, i, j, ref;
1067 int best_rd= INT_MAX, ref_rd;
1068 BlockNode backup, ref_b;
1069 const int index= mb_x + mb_y * b_stride;
1070 BlockNode *block= &s->block[index];
1071 BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1072 BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1073 BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1074 BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1075 BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1076 BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1077 BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1078 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1079 const int b_w= (MB_SIZE >> s->block_max_depth);
1080 uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1081
1082 if(pass && (block->type & BLOCK_OPT))
1083 continue;
1084 block->type |= BLOCK_OPT;
1085
1086 backup= *block;
1087
1088 if(!s->me_cache_generation)
1089 memset(s->me_cache, 0, sizeof(s->me_cache));
1090 s->me_cache_generation += 1<<22;
1091
1092 //FIXME precalculate
1093 {
1094 int x, y;
1095 for (y = 0; y < b_w * 2; y++)
1096 memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1097 if(mb_x==0)
1098 for(y=0; y<b_w*2; y++)
1099 memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1100 if(mb_x==b_stride-1)
1101 for(y=0; y<b_w*2; y++)
1102 memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1103 if(mb_y==0){
1104 for(x=0; x<b_w*2; x++)
1105 obmc_edged[0][x] += obmc_edged[b_w-1][x];
1106 for(y=1; y<b_w; y++)
1107 memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1108 }
1109 if(mb_y==b_height-1){
1110 for(x=0; x<b_w*2; x++)
1111 obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1112 for(y=b_w; y<b_w*2-1; y++)
1113 memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1114 }
1115 }
1116
1117 //skip stuff outside the picture
1118 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1119 uint8_t *src= s-> input_picture.data[0];
1120 uint8_t *dst= s->current_picture.data[0];
1121 const int stride= s->current_picture.linesize[0];
1122 const int block_w= MB_SIZE >> s->block_max_depth;
1123 const int sx= block_w*mb_x - block_w/2;
1124 const int sy= block_w*mb_y - block_w/2;
1125 const int w= s->plane[0].width;
1126 const int h= s->plane[0].height;
1127 int y;
1128
1129 for(y=sy; y<0; y++)
1130 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1131 for(y=h; y<sy+block_w*2; y++)
1132 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1133 if(sx<0){
1134 for(y=sy; y<sy+block_w*2; y++)
1135 memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1136 }
1137 if(sx+block_w*2 > w){
1138 for(y=sy; y<sy+block_w*2; y++)
1139 memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1140 }
1141 }
1142
1143 // intra(black) = neighbors' contribution to the current block
1144 for(i=0; i<3; i++)
1145 color[i]= get_dc(s, mb_x, mb_y, i);
1146
1147 // get previous score (cannot be cached due to OBMC)
1148 if(pass > 0 && (block->type&BLOCK_INTRA)){
1149 int color0[3]= {block->color[0], block->color[1], block->color[2]};
1150 check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1151 }else
1152 check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1153
1154 ref_b= *block;
1155 ref_rd= best_rd;
1156 for(ref=0; ref < s->ref_frames; ref++){
1157 int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1158 if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1159 continue;
1160 block->ref= ref;
1161 best_rd= INT_MAX;
1162
1163 check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1164 check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1165 if(tb)
1166 check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1167 if(lb)
1168 check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1169 if(rb)
1170 check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1171 if(bb)
1172 check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1173
1174 /* fullpel ME */
1175 //FIXME avoid subpel interpolation / round to nearest integer
1176 do{
1177 dia_change=0;
1178 for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1179 for(j=0; j<i; j++){
1180 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1181 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1182 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), obmc_edged, &best_rd);
1183 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), obmc_edged, &best_rd);
1184 }
1185 }
1186 }while(dia_change);
1187 /* subpel ME */
1188 do{
1189 static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1190 dia_change=0;
1191 for(i=0; i<8; i++)
1192 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1193 }while(dia_change);
1194 //FIXME or try the standard 2 pass qpel or similar
1195
1196 mvr[0][0]= block->mx;
1197 mvr[0][1]= block->my;
1198 if(ref_rd > best_rd){
1199 ref_rd= best_rd;
1200 ref_b= *block;
1201 }
1202 }
1203 best_rd= ref_rd;
1204 *block= ref_b;
1205 check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1206 //FIXME RD style color selection
1207 if(!same_block(block, &backup)){
1208 if(tb ) tb ->type &= ~BLOCK_OPT;
1209 if(lb ) lb ->type &= ~BLOCK_OPT;
1210 if(rb ) rb ->type &= ~BLOCK_OPT;
1211 if(bb ) bb ->type &= ~BLOCK_OPT;
1212 if(tlb) tlb->type &= ~BLOCK_OPT;
1213 if(trb) trb->type &= ~BLOCK_OPT;
1214 if(blb) blb->type &= ~BLOCK_OPT;
1215 if(brb) brb->type &= ~BLOCK_OPT;
1216 change ++;
1217 }
1218 }
1219 }
1220 av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1221 if(!change)
1222 break;
1223 }
1224
1225 if(s->block_max_depth == 1){
1226 int change= 0;
1227 for(mb_y= 0; mb_y<b_height; mb_y+=2){
1228 for(mb_x= 0; mb_x<b_width; mb_x+=2){
1229 int i;
1230 int best_rd, init_rd;
1231 const int index= mb_x + mb_y * b_stride;
1232 BlockNode *b[4];
1233
1234 b[0]= &s->block[index];
1235 b[1]= b[0]+1;
1236 b[2]= b[0]+b_stride;
1237 b[3]= b[2]+1;
1238 if(same_block(b[0], b[1]) &&
1239 same_block(b[0], b[2]) &&
1240 same_block(b[0], b[3]))
1241 continue;
1242
1243 if(!s->me_cache_generation)
1244 memset(s->me_cache, 0, sizeof(s->me_cache));
1245 s->me_cache_generation += 1<<22;
1246
1247 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1248
1249 //FIXME more multiref search?
1250 check_4block_inter(s, mb_x, mb_y,
1251 (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1252 (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1253
1254 for(i=0; i<4; i++)
1255 if(!(b[i]->type&BLOCK_INTRA))
1256 check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1257
1258 if(init_rd != best_rd)
1259 change++;
1260 }
1261 }
1262 av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1263 }
1264 }
1265
1266 static void encode_blocks(SnowContext *s, int search){
1267 int x, y;
1268 int w= s->b_width;
1269 int h= s->b_height;
1270
1271 if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1272 iterative_me(s);
1273
1274 for(y=0; y<h; y++){
1275 if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1276 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1277 return;
1278 }
1279 for(x=0; x<w; x++){
1280 if(s->avctx->me_method == ME_ITER || !search)
1281 encode_q_branch2(s, 0, x, y);
1282 else
1283 encode_q_branch (s, 0, x, y);
1284 }
1285 }
1286 }
1287
1288 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1289 const int w= b->width;
1290 const int h= b->height;
1291 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1292 const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1293 int x,y, thres1, thres2;
1294
1295 if(s->qlog == LOSSLESS_QLOG){
1296 for(y=0; y<h; y++)
1297 for(x=0; x<w; x++)
1298 dst[x + y*stride]= src[x + y*stride];
1299 return;
1300 }
1301
1302 bias= bias ? 0 : (3*qmul)>>3;
1303 thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1304 thres2= 2*thres1;
1305
1306 if(!bias){
1307 for(y=0; y<h; y++){
1308 for(x=0; x<w; x++){
1309 int i= src[x + y*stride];
1310
1311 if((unsigned)(i+thres1) > thres2){
1312 if(i>=0){
1313 i<<= QEXPSHIFT;
1314 i/= qmul; //FIXME optimize
1315 dst[x + y*stride]= i;
1316 }else{
1317 i= -i;
1318 i<<= QEXPSHIFT;
1319 i/= qmul; //FIXME optimize
1320 dst[x + y*stride]= -i;
1321 }
1322 }else
1323 dst[x + y*stride]= 0;
1324 }
1325 }
1326 }else{
1327 for(y=0; y<h; y++){
1328 for(x=0; x<w; x++){
1329 int i= src[x + y*stride];
1330
1331 if((unsigned)(i+thres1) > thres2){
1332 if(i>=0){
1333 i<<= QEXPSHIFT;
1334 i= (i + bias) / qmul; //FIXME optimize
1335 dst[x + y*stride]= i;
1336 }else{
1337 i= -i;
1338 i<<= QEXPSHIFT;
1339 i= (i + bias) / qmul; //FIXME optimize
1340 dst[x + y*stride]= -i;
1341 }
1342 }else
1343 dst[x + y*stride]= 0;
1344 }
1345 }
1346 }
1347 }
1348
1349 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1350 const int w= b->width;
1351 const int h= b->height;
1352 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1353 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1354 const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1355 int x,y;
1356
1357 if(s->qlog == LOSSLESS_QLOG) return;
1358
1359 for(y=0; y<h; y++){
1360 for(x=0; x<w; x++){
1361 int i= src[x + y*stride];
1362 if(i<0){
1363 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1364 }else if(i>0){
1365 src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1366 }
1367 }
1368 }
1369 }
1370
1371 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1372 const int w= b->width;
1373 const int h= b->height;
1374 int x,y;
1375
1376 for(y=h-1; y>=0; y--){
1377 for(x=w-1; x>=0; x--){
1378 int i= x + y*stride;
1379
1380 if(x){
1381 if(use_median){
1382 if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1383 else src[i] -= src[i - 1];
1384 }else{
1385 if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1386 else src[i] -= src[i - 1];
1387 }
1388 }else{
1389 if(y) src[i] -= src[i - stride];
1390 }
1391 }
1392 }
1393 }
1394
1395 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1396 const int w= b->width;
1397 const int h= b->height;
1398 int x,y;
1399
1400 for(y=0; y<h; y++){
1401 for(x=0; x<w; x++){
1402 int i= x + y*stride;
1403
1404 if(x){
1405 if(use_median){
1406 if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1407 else src[i] += src[i - 1];
1408 }else{
1409 if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1410 else src[i] += src[i - 1];
1411 }
1412 }else{
1413 if(y) src[i] += src[i - stride];
1414 }
1415 }
1416 }
1417 }
1418
1419 static void encode_qlogs(SnowContext *s){
1420 int plane_index, level, orientation;
1421
1422 for(plane_index=0; plane_index<2; plane_index++){
1423 for(level=0; level<s->spatial_decomposition_count; level++){
1424 for(orientation=level ? 1:0; orientation<4; orientation++){
1425 if(orientation==2) continue;
1426 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1427 }
1428 }
1429 }
1430 }
1431
1432 static void encode_header(SnowContext *s){
1433 int plane_index, i;
1434 uint8_t kstate[32];
1435
1436 memset(kstate, MID_STATE, sizeof(kstate));
1437
1438 put_rac(&s->c, kstate, s->keyframe);
1439 if(s->keyframe || s->always_reset){
1440 ff_snow_reset_contexts(s);
1441 s->last_spatial_decomposition_type=
1442 s->last_qlog=
1443 s->last_qbias=
1444 s->last_mv_scale=
1445 s->last_block_max_depth= 0;
1446 for(plane_index=0; plane_index<2; plane_index++){
1447 Plane *p= &s->plane[plane_index];
1448 p->last_htaps=0;
1449 p->last_diag_mc=0;
1450 memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1451 }
1452 }
1453 if(s->keyframe){
1454 put_symbol(&s->c, s->header_state, s->version, 0);
1455 put_rac(&s->c, s->header_state, s->always_reset);
1456 put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1457 put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1458 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1459 put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1460 put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1461 put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1462 put_rac(&s->c, s->header_state, s->spatial_scalability);
1463 // put_rac(&s->c, s->header_state, s->rate_scalability);
1464 put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1465
1466 encode_qlogs(s);
1467 }
1468
1469 if(!s->keyframe){
1470 int update_mc=0;
1471 for(plane_index=0; plane_index<2; plane_index++){
1472 Plane *p= &s->plane[plane_index];
1473 update_mc |= p->last_htaps != p->htaps;
1474 update_mc |= p->last_diag_mc != p->diag_mc;
1475 update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1476 }
1477 put_rac(&s->c, s->header_state, update_mc);
1478 if(update_mc){
1479 for(plane_index=0; plane_index<2; plane_index++){
1480 Plane *p= &s->plane[plane_index];
1481 put_rac(&s->c, s->header_state, p->diag_mc);
1482 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1483 for(i= p->htaps/2; i; i--)
1484 put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1485 }
1486 }
1487 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1488 put_rac(&s->c, s->header_state, 1);
1489 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1490 encode_qlogs(s);
1491 }else
1492 put_rac(&s->c, s->header_state, 0);
1493 }
1494
1495 put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1496 put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1497 put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1498 put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1499 put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1500
1501 }
1502
1503 static void update_last_header_values(SnowContext *s){
1504 int plane_index;
1505
1506 if(!s->keyframe){
1507 for(plane_index=0; plane_index<2; plane_index++){
1508 Plane *p= &s->plane[plane_index];
1509 p->last_diag_mc= p->diag_mc;
1510 p->last_htaps = p->htaps;
1511 memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1512 }
1513 }
1514
1515 s->last_spatial_decomposition_type = s->spatial_decomposition_type;
1516 s->last_qlog = s->qlog;
1517 s->last_qbias = s->qbias;
1518 s->last_mv_scale = s->mv_scale;
1519 s->last_block_max_depth = s->block_max_depth;
1520 s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1521 }
1522
1523 static int qscale2qlog(int qscale){
1524 return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2))
1525 + 61*QROOT/8; ///< 64 > 60
1526 }
1527
1528 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1529 {
1530 /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1531 * FIXME we know exact mv bits at this point,
1532 * but ratecontrol isn't set up to include them. */
1533 uint32_t coef_sum= 0;
1534 int level, orientation, delta_qlog;
1535
1536 for(level=0; level<s->spatial_decomposition_count; level++){
1537 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1538 SubBand *b= &s->plane[0].band[level][orientation];
1539 IDWTELEM *buf= b->ibuf;
1540 const int w= b->width;
1541 const int h= b->height;
1542 const int stride= b->stride;
1543 const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1544 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1545 const int qdiv= (1<<16)/qmul;
1546 int x, y;
1547 //FIXME this is ugly
1548 for(y=0; y<h; y++)
1549 for(x=0; x<w; x++)
1550 buf[x+y*stride]= b->buf[x+y*stride];
1551 if(orientation==0)
1552 decorrelate(s, b, buf, stride, 1, 0);
1553 for(y=0; y<h; y++)
1554 for(x=0; x<w; x++)
1555 coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1556 }
1557 }
1558
1559 /* ugly, ratecontrol just takes a sqrt again */
1560 coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1561 assert(coef_sum < INT_MAX);
1562
1563 if(pict->pict_type == AV_PICTURE_TYPE_I){
1564 s->m.current_picture.mb_var_sum= coef_sum;
1565 s->m.current_picture.mc_mb_var_sum= 0;
1566 }else{
1567 s->m.current_picture.mc_mb_var_sum= coef_sum;
1568 s->m.current_picture.mb_var_sum= 0;
1569 }
1570
1571 pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1572 if (pict->quality < 0)
1573 return INT_MIN;
1574 s->lambda= pict->quality * 3/2;
1575 delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1576 s->qlog+= delta_qlog;
1577 return delta_qlog;
1578 }
1579
1580 static void calculate_visual_weight(SnowContext *s, Plane *p){
1581 int width = p->width;
1582 int height= p->height;
1583 int level, orientation, x, y;
1584
1585 for(level=0; level<s->spatial_decomposition_count; level++){
1586 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1587 SubBand *b= &p->band[level][orientation];
1588 IDWTELEM *ibuf= b->ibuf;
1589 int64_t error=0;
1590
1591 memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1592 ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1593 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1594 for(y=0; y<height; y++){
1595 for(x=0; x<width; x++){
1596 int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1597 error += d*d;
1598 }
1599 }
1600
1601 b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1602 }
1603 }
1604 }
1605
1606 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1607 const AVFrame *pict, int *got_packet)
1608 {
1609 SnowContext *s = avctx->priv_data;
1610 RangeCoder * const c= &s->c;
1611 AVFrame *pic = &s->new_picture;
1612 const int width= s->avctx->width;
1613 const int height= s->avctx->height;
1614 int level, orientation, plane_index, i, y, ret;
1615 uint8_t rc_header_bak[sizeof(s->header_state)];
1616 uint8_t rc_block_bak[sizeof(s->block_state)];
1617
1618 if (!pkt->data &&
1619 (ret = av_new_packet(pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0) {
1620 av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
1621 return ret;
1622 }
1623
1624 ff_init_range_encoder(c, pkt->data, pkt->size);
1625 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1626
1627 for(i=0; i<3; i++){
1628 int shift= !!i;
1629 for(y=0; y<(height>>shift); y++)
1630 memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
1631 &pict->data[i][y * pict->linesize[i]],
1632 width>>shift);
1633 }
1634 s->new_picture = *pict;
1635
1636 s->m.picture_number= avctx->frame_number;
1637 if(avctx->flags&CODEC_FLAG_PASS2){
1638 s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1639 s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1640 if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1641 pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1642 if (pic->quality < 0)
1643 return -1;
1644 }
1645 }else{
1646 s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1647 s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1648 }
1649
1650 if(s->pass1_rc && avctx->frame_number == 0)
1651 pic->quality = 2*FF_QP2LAMBDA;
1652 if (pic->quality) {
1653 s->qlog = qscale2qlog(pic->quality);
1654 s->lambda = pic->quality * 3/2;
1655 }
1656 if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1657 s->qlog= LOSSLESS_QLOG;
1658 s->lambda = 0;
1659 }//else keep previous frame's qlog until after motion estimation
1660
1661 ff_snow_frame_start(s);
1662
1663 s->m.current_picture_ptr= &s->m.current_picture;
1664 s->m.last_picture.f.pts = s->m.current_picture.f.pts;
1665 s->m.current_picture.f.pts = pict->pts;
1666 if(pic->pict_type == AV_PICTURE_TYPE_P){
1667 int block_width = (width +15)>>4;
1668 int block_height= (height+15)>>4;
1669 int stride= s->current_picture.linesize[0];
1670
1671 assert(s->current_picture.data[0]);
1672 assert(s->last_picture[0].data[0]);
1673
1674 s->m.avctx= s->avctx;
1675 s->m.current_picture.f.data[0] = s->current_picture.data[0];
1676 s->m. last_picture.f.data[0] = s->last_picture[0].data[0];
1677 s->m. new_picture.f.data[0] = s-> input_picture.data[0];
1678 s->m. last_picture_ptr= &s->m. last_picture;
1679 s->m.linesize=
1680 s->m. last_picture.f.linesize[0] =
1681 s->m. new_picture.f.linesize[0] =
1682 s->m.current_picture.f.linesize[0] = stride;
1683 s->m.uvlinesize= s->current_picture.linesize[1];
1684 s->m.width = width;
1685 s->m.height= height;
1686 s->m.mb_width = block_width;
1687 s->m.mb_height= block_height;
1688 s->m.mb_stride= s->m.mb_width+1;
1689 s->m.b8_stride= 2*s->m.mb_width+1;
1690 s->m.f_code=1;
1691 s->m.pict_type = pic->pict_type;
1692 s->m.me_method= s->avctx->me_method;
1693 s->m.me.scene_change_score=0;
1694 s->m.flags= s->avctx->flags;
1695 s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1696 s->m.out_format= FMT_H263;
1697 s->m.unrestricted_mv= 1;
1698
1699 s->m.lambda = s->lambda;
1700 s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1701 s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1702
1703 s->m.dsp= s->dsp; //move
1704 ff_init_me(&s->m);
1705 s->dsp= s->m.dsp;
1706 }
1707
1708 if(s->pass1_rc){
1709 memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1710 memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1711 }
1712
1713 redo_frame:
1714
1715 if (pic->pict_type == AV_PICTURE_TYPE_I)
1716 s->spatial_decomposition_count= 5;
1717 else
1718 s->spatial_decomposition_count= 5;
1719
1720 s->m.pict_type = pic->pict_type;
1721 s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1722
1723 ff_snow_common_init_after_header(avctx);
1724
1725 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1726 for(plane_index=0; plane_index<3; plane_index++){
1727 calculate_visual_weight(s, &s->plane[plane_index]);
1728 }
1729 }
1730
1731 encode_header(s);
1732 s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1733 encode_blocks(s, 1);
1734 s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1735
1736 for(plane_index=0; plane_index<3; plane_index++){
1737 Plane *p= &s->plane[plane_index];
1738 int w= p->width;
1739 int h= p->height;
1740 int x, y;
1741 // int bits= put_bits_count(&s->c.pb);
1742
1743 if (!s->memc_only) {
1744 //FIXME optimize
1745 if(pict->data[plane_index]) //FIXME gray hack
1746 for(y=0; y<h; y++){
1747 for(x=0; x<w; x++){
1748 s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1749 }
1750 }
1751 predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1752
1753 if( plane_index==0
1754 && pic->pict_type == AV_PICTURE_TYPE_P
1755 && !(avctx->flags&CODEC_FLAG_PASS2)
1756 && s->m.me.scene_change_score > s->avctx->scenechange_threshold){
1757 ff_init_range_encoder(c, pkt->data, pkt->size);
1758 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1759 pic->pict_type= AV_PICTURE_TYPE_I;
1760 s->keyframe=1;
1761 s->current_picture.key_frame=1;
1762 goto redo_frame;
1763 }
1764
1765 if(s->qlog == LOSSLESS_QLOG){
1766 for(y=0; y<h; y++){
1767 for(x=0; x<w; x++){
1768 s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1769 }
1770 }
1771 }else{
1772 for(y=0; y<h; y++){
1773 for(x=0; x<w; x++){
1774 s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
1775 }
1776 }
1777 }
1778
1779 /* if(QUANTIZE2)
1780 dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type);
1781 else*/
1782 ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1783
1784 if(s->pass1_rc && plane_index==0){
1785 int delta_qlog = ratecontrol_1pass(s, pic);
1786 if (delta_qlog <= INT_MIN)
1787 return -1;
1788 if(delta_qlog){
1789 //reordering qlog in the bitstream would eliminate this reset
1790 ff_init_range_encoder(c, pkt->data, pkt->size);
1791 memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1792 memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1793 encode_header(s);
1794 encode_blocks(s, 0);
1795 }
1796 }
1797
1798 for(level=0; level<s->spatial_decomposition_count; level++){
1799 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1800 SubBand *b= &p->band[level][orientation];
1801
1802 if(!QUANTIZE2)
1803 quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1804 if(orientation==0)
1805 decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1806 encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1807 assert(b->parent==NULL || b->parent->stride == b->stride*2);
1808 if(orientation==0)
1809 correlate(s, b, b->ibuf, b->stride, 1, 0);
1810 }
1811 }
1812
1813 for(level=0; level<s->spatial_decomposition_count; level++){
1814 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1815 SubBand *b= &p->band[level][orientation];
1816
1817 dequantize(s, b, b->ibuf, b->stride);
1818 }
1819 }
1820
1821 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1822 if(s->qlog == LOSSLESS_QLOG){
1823 for(y=0; y<h; y++){
1824 for(x=0; x<w; x++){
1825 s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1826 }
1827 }
1828 }
1829 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1830 }else{
1831 //ME/MC only
1832 if(pic->pict_type == AV_PICTURE_TYPE_I){
1833 for(y=0; y<h; y++){
1834 for(x=0; x<w; x++){
1835 s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
1836 pict->data[plane_index][y*pict->linesize[plane_index] + x];
1837 }
1838 }
1839 }else{
1840 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1841 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1842 }
1843 }
1844 if(s->avctx->flags&CODEC_FLAG_PSNR){
1845 int64_t error= 0;
1846
1847 if(pict->data[plane_index]) //FIXME gray hack
1848 for(y=0; y<h; y++){
1849 for(x=0; x<w; x++){
1850 int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1851 error += d*d;
1852 }
1853 }
1854 s->avctx->error[plane_index] += error;
1855 s->current_picture.error[plane_index] = error;
1856 }
1857
1858 }
1859
1860 update_last_header_values(s);
1861
1862 ff_snow_release_buffer(avctx);
1863
1864 s->current_picture.coded_picture_number = avctx->frame_number;
1865 s->current_picture.pict_type = pict->pict_type;
1866 s->current_picture.quality = pict->quality;
1867 s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1868 s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1869 s->m.current_picture.f.display_picture_number =
1870 s->m.current_picture.f.coded_picture_number = avctx->frame_number;
1871 s->m.current_picture.f.quality = pic->quality;
1872 s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1873 if(s->pass1_rc)
1874 if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1875 return -1;
1876 if(avctx->flags&CODEC_FLAG_PASS1)
1877 ff_write_pass1_stats(&s->m);
1878 s->m.last_pict_type = s->m.pict_type;
1879 avctx->frame_bits = s->m.frame_bits;
1880 avctx->mv_bits = s->m.mv_bits;
1881 avctx->misc_bits = s->m.misc_bits;
1882 avctx->p_tex_bits = s->m.p_tex_bits;
1883
1884 emms_c();
1885
1886 pkt->size = ff_rac_terminate(c);
1887 if (avctx->coded_frame->key_frame)
1888 pkt->flags |= AV_PKT_FLAG_KEY;
1889 *got_packet = 1;
1890
1891 return 0;
1892 }
1893
1894 static av_cold int encode_end(AVCodecContext *avctx)
1895 {
1896 SnowContext *s = avctx->priv_data;
1897
1898 ff_snow_common_end(s);
1899 if (s->input_picture.data[0])
1900 avctx->release_buffer(avctx, &s->input_picture);
1901 av_free(avctx->stats_out);
1902
1903 return 0;
1904 }
1905
1906 #define OFFSET(x) offsetof(SnowContext, x)
1907 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1908 static const AVOption options[] = {
1909 { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE },
1910 { NULL },
1911 };
1912
1913 static const AVClass snowenc_class = {
1914 .class_name = "snow encoder",
1915 .item_name = av_default_item_name,
1916 .option = options,
1917 .version = LIBAVUTIL_VERSION_INT,
1918 };
1919
1920 AVCodec ff_snow_encoder = {
1921 .name = "snow",
1922 .type = AVMEDIA_TYPE_VIDEO,
1923 .id = CODEC_ID_SNOW,
1924 .priv_data_size = sizeof(SnowContext),
1925 .init = encode_init,
1926 .encode2 = encode_frame,
1927 .close = encode_end,
1928 .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1929 .priv_class = &snowenc_class,
1930 };