Move sine windows to a separate file
[libav.git] / libavcodec / twinvq.c
1 /*
2 * TwinVQ decoder
3 * Copyright (c) 2009 Vitor Sessak
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include "avcodec.h"
23 #include "get_bits.h"
24 #include "dsputil.h"
25 #include "fft.h"
26 #include "lsp.h"
27 #include "sinewin.h"
28
29 #include <math.h>
30 #include <stdint.h>
31
32 #include "twinvq_data.h"
33
34 enum FrameType {
35 FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
36 FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
37 FT_LONG, ///< Long frame (single sub-block + PPC)
38 FT_PPC, ///< Periodic Peak Component (part of the long frame)
39 };
40
41 /**
42 * Parameters and tables that are different for each frame type
43 */
44 struct FrameMode {
45 uint8_t sub; ///< Number subblocks in each frame
46 const uint16_t *bark_tab;
47
48 /** number of distinct bark scale envelope values */
49 uint8_t bark_env_size;
50
51 const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
52 uint8_t bark_n_coef;///< number of BSE CB coefficients to read
53 uint8_t bark_n_bit; ///< number of bits of the BSE coefs
54
55 //@{
56 /** main codebooks for spectrum data */
57 const int16_t *cb0;
58 const int16_t *cb1;
59 //@}
60
61 uint8_t cb_len_read; ///< number of spectrum coefficients to read
62 };
63
64 /**
65 * Parameters and tables that are different for every combination of
66 * bitrate/sample rate
67 */
68 typedef struct {
69 struct FrameMode fmode[3]; ///< frame type-dependant parameters
70
71 uint16_t size; ///< frame size in samples
72 uint8_t n_lsp; ///< number of lsp coefficients
73 const float *lspcodebook;
74
75 /* number of bits of the different LSP CB coefficients */
76 uint8_t lsp_bit0;
77 uint8_t lsp_bit1;
78 uint8_t lsp_bit2;
79
80 uint8_t lsp_split; ///< number of CB entries for the LSP decoding
81 const int16_t *ppc_shape_cb; ///< PPC shape CB
82
83 /** number of the bits for the PPC period value */
84 uint8_t ppc_period_bit;
85
86 uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
87 uint8_t ppc_shape_len; ///< size of PPC shape CB
88 uint8_t pgain_bit; ///< bits for PPC gain
89
90 /** constant for peak period to peak width conversion */
91 uint16_t peak_per2wid;
92 } ModeTab;
93
94 static const ModeTab mode_08_08 = {
95 {
96 { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
97 { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
98 { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
99 },
100 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
101 };
102
103 static const ModeTab mode_11_08 = {
104 {
105 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
106 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
107 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
108 },
109 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
110 };
111
112 static const ModeTab mode_11_10 = {
113 {
114 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
115 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
116 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
117 },
118 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
119 };
120
121 static const ModeTab mode_16_16 = {
122 {
123 { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
124 { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
125 { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
126 },
127 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
128 };
129
130 static const ModeTab mode_22_20 = {
131 {
132 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
133 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
134 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
135 },
136 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
137 };
138
139 static const ModeTab mode_22_24 = {
140 {
141 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
142 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
143 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
144 },
145 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
146 };
147
148 static const ModeTab mode_22_32 = {
149 {
150 { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
151 { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
152 { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
153 },
154 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
155 };
156
157 static const ModeTab mode_44_40 = {
158 {
159 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
160 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
161 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
162 },
163 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
164 };
165
166 static const ModeTab mode_44_48 = {
167 {
168 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
169 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
170 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
171 },
172 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
173 };
174
175 typedef struct TwinContext {
176 AVCodecContext *avctx;
177 DSPContext dsp;
178 FFTContext mdct_ctx[3];
179
180 const ModeTab *mtab;
181
182 // history
183 float lsp_hist[2][20]; ///< LSP coefficients of the last frame
184 float bark_hist[3][2][40]; ///< BSE coefficients of last frame
185
186 // bitstream parameters
187 int16_t permut[4][4096];
188 uint8_t length[4][2]; ///< main codebook stride
189 uint8_t length_change[4];
190 uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
191 int bits_main_spec_change[4];
192 int n_div[4];
193
194 float *spectrum;
195 float *curr_frame; ///< non-interleaved output
196 float *prev_frame; ///< non-interleaved previous frame
197 int last_block_pos[2];
198
199 float *cos_tabs[3];
200
201 // scratch buffers
202 float *tmp_buf;
203 } TwinContext;
204
205 #define PPC_SHAPE_CB_SIZE 64
206 #define PPC_SHAPE_LEN_MAX 60
207 #define SUB_AMP_MAX 4500.0
208 #define MULAW_MU 100.0
209 #define GAIN_BITS 8
210 #define AMP_MAX 13000.0
211 #define SUB_GAIN_BITS 5
212 #define WINDOW_TYPE_BITS 4
213 #define PGAIN_MU 200
214 #define LSP_COEFS_MAX 20
215 #define LSP_SPLIT_MAX 4
216 #define CHANNELS_MAX 2
217 #define SUBBLOCKS_MAX 16
218 #define BARK_N_COEF_MAX 4
219
220 /** @note not speed critical, hence not optimized */
221 static void memset_float(float *buf, float val, int size)
222 {
223 while (size--)
224 *buf++ = val;
225 }
226
227 /**
228 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
229 * spectrum pairs.
230 *
231 * @param lsp a vector of the cosinus of the LSP values
232 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
233 * @param order the order of the LSP (and the size of the *lsp buffer). Must
234 * be a multiple of four.
235 * @return the LPC value
236 *
237 * @todo reuse code from vorbis_dec.c: vorbis_floor0_decode
238 */
239 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
240 {
241 int j;
242 float p = 0.5f;
243 float q = 0.5f;
244 float two_cos_w = 2.0f*cos_val;
245
246 for (j = 0; j + 1 < order; j += 2*2) {
247 // Unroll the loop once since order is a multiple of four
248 q *= lsp[j ] - two_cos_w;
249 p *= lsp[j+1] - two_cos_w;
250
251 q *= lsp[j+2] - two_cos_w;
252 p *= lsp[j+3] - two_cos_w;
253 }
254
255 p *= p * (2.0f - two_cos_w);
256 q *= q * (2.0f + two_cos_w);
257
258 return 0.5 / (p + q);
259 }
260
261 /**
262 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
263 */
264 static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
265 {
266 int i;
267 const ModeTab *mtab = tctx->mtab;
268 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
269
270 for (i = 0; i < size_s/2; i++) {
271 float cos_i = tctx->cos_tabs[0][i];
272 lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
273 lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
274 }
275 }
276
277 static void interpolate(float *out, float v1, float v2, int size)
278 {
279 int i;
280 float step = (v1 - v2)/(size + 1);
281
282 for (i = 0; i < size; i++) {
283 v2 += step;
284 out[i] = v2;
285 }
286 }
287
288 static inline float get_cos(int idx, int part, const float *cos_tab, int size)
289 {
290 return part ? -cos_tab[size - idx - 1] :
291 cos_tab[ idx ];
292 }
293
294 /**
295 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
296 * Probably for speed reasons, the coefficients are evaluated as
297 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
298 * where s is an evaluated value, i is a value interpolated from the others
299 * and b might be either calculated or interpolated, depending on an
300 * unexplained condition.
301 *
302 * @param step the size of a block "siiiibiiii"
303 * @param in the cosinus of the LSP data
304 * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
305 (negative cossinus values)
306 * @param size the size of the whole output
307 */
308 static inline void eval_lpcenv_or_interp(TwinContext *tctx,
309 enum FrameType ftype,
310 float *out, const float *in,
311 int size, int step, int part)
312 {
313 int i;
314 const ModeTab *mtab = tctx->mtab;
315 const float *cos_tab = tctx->cos_tabs[ftype];
316
317 // Fill the 's'
318 for (i = 0; i < size; i += step)
319 out[i] =
320 eval_lpc_spectrum(in,
321 get_cos(i, part, cos_tab, size),
322 mtab->n_lsp);
323
324 // Fill the 'iiiibiiii'
325 for (i = step; i <= size - 2*step; i += step) {
326 if (out[i + step] + out[i - step] > 1.95*out[i] ||
327 out[i + step] >= out[i - step]) {
328 interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
329 } else {
330 out[i - step/2] =
331 eval_lpc_spectrum(in,
332 get_cos(i-step/2, part, cos_tab, size),
333 mtab->n_lsp);
334 interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
335 interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
336 }
337 }
338
339 interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
340 }
341
342 static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
343 const float *buf, float *lpc,
344 int size, int step)
345 {
346 eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
347 eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
348
349 interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
350
351 memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
352 }
353
354 /**
355 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
356 * bitstream, sum the corresponding vectors and write the result to *out
357 * after permutation.
358 */
359 static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
360 enum FrameType ftype,
361 const int16_t *cb0, const int16_t *cb1, int cb_len)
362 {
363 int pos = 0;
364 int i, j;
365
366 for (i = 0; i < tctx->n_div[ftype]; i++) {
367 int tmp0, tmp1;
368 int sign0 = 1;
369 int sign1 = 1;
370 const int16_t *tab0, *tab1;
371 int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
372 int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
373
374 int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
375 if (bits == 7) {
376 if (get_bits1(gb))
377 sign0 = -1;
378 bits = 6;
379 }
380 tmp0 = get_bits(gb, bits);
381
382 bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
383
384 if (bits == 7) {
385 if (get_bits1(gb))
386 sign1 = -1;
387
388 bits = 6;
389 }
390 tmp1 = get_bits(gb, bits);
391
392 tab0 = cb0 + tmp0*cb_len;
393 tab1 = cb1 + tmp1*cb_len;
394
395 for (j = 0; j < length; j++)
396 out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
397
398 pos += length;
399 }
400
401 }
402
403 static inline float mulawinv(float y, float clip, float mu)
404 {
405 y = av_clipf(y/clip, -1, 1);
406 return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
407 }
408
409 /**
410 * Evaluate a*b/400 rounded to the nearest integer. When, for example,
411 * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
412 * the following broken float-based implementation used by the binary decoder:
413 *
414 * \code
415 * static int very_broken_op(int a, int b)
416 * {
417 * static float test; // Ugh, force gcc to do the division first...
418 *
419 * test = a/400.;
420 * return b * test + 0.5;
421 * }
422 * \endcode
423 *
424 * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
425 * between the original file (before encoding with Yamaha encoder) and the
426 * decoded output increases, which leads one to believe that the encoder expects
427 * exactly this broken calculation.
428 */
429 static int very_broken_op(int a, int b)
430 {
431 int x = a*b + 200;
432 int size;
433 const uint8_t *rtab;
434
435 if (x%400 || b%5)
436 return x/400;
437
438 x /= 400;
439
440 size = tabs[b/5].size;
441 rtab = tabs[b/5].tab;
442 return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
443 }
444
445 /**
446 * Sum to data a periodic peak of a given period, width and shape.
447 *
448 * @param period the period of the peak divised by 400.0
449 */
450 static void add_peak(int period, int width, const float *shape,
451 float ppc_gain, float *speech, int len)
452 {
453 int i, j;
454
455 const float *shape_end = shape + len;
456 int center;
457
458 // First peak centered around zero
459 for (i = 0; i < width/2; i++)
460 speech[i] += ppc_gain * *shape++;
461
462 for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
463 center = very_broken_op(period, i);
464 for (j = -width/2; j < (width+1)/2; j++)
465 speech[j+center] += ppc_gain * *shape++;
466 }
467
468 // For the last block, be careful not to go beyond the end of the buffer
469 center = very_broken_op(period, i);
470 for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
471 speech[j+center] += ppc_gain * *shape++;
472 }
473
474 static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
475 float ppc_gain, float *speech)
476 {
477 const ModeTab *mtab = tctx->mtab;
478 int isampf = tctx->avctx->sample_rate/1000;
479 int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
480 int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
481 int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
482 int period_range = max_period - min_period;
483
484 // This is actually the period multiplied by 400. It is just linearly coded
485 // between its maximum and minimum value.
486 int period = min_period +
487 ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
488 int width;
489
490 if (isampf == 22 && ibps == 32) {
491 // For some unknown reason, NTT decided to code this case differently...
492 width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
493 } else
494 width = (period )* mtab->peak_per2wid/(400*mtab->size);
495
496 add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
497 }
498
499 static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
500 float *out)
501 {
502 const ModeTab *mtab = tctx->mtab;
503 int i, j;
504 int sub = mtab->fmode[ftype].sub;
505 float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
506 float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
507
508 if (ftype == FT_LONG) {
509 for (i = 0; i < tctx->avctx->channels; i++)
510 out[i] = (1./(1<<13)) *
511 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
512 AMP_MAX, MULAW_MU);
513 } else {
514 for (i = 0; i < tctx->avctx->channels; i++) {
515 float val = (1./(1<<23)) *
516 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
517 AMP_MAX, MULAW_MU);
518
519 for (j = 0; j < sub; j++) {
520 out[i*sub + j] =
521 val*mulawinv(sub_step* 0.5 +
522 sub_step* get_bits(gb, SUB_GAIN_BITS),
523 SUB_AMP_MAX, MULAW_MU);
524 }
525 }
526 }
527 }
528
529 /**
530 * Rearrange the LSP coefficients so that they have a minimum distance of
531 * min_dist. This function does it exactly as described in section of 3.2.4
532 * of the G.729 specification (but interestingly is different from what the
533 * reference decoder actually does).
534 */
535 static void rearrange_lsp(int order, float *lsp, float min_dist)
536 {
537 int i;
538 float min_dist2 = min_dist * 0.5;
539 for (i = 1; i < order; i++)
540 if (lsp[i] - lsp[i-1] < min_dist) {
541 float avg = (lsp[i] + lsp[i-1]) * 0.5;
542
543 lsp[i-1] = avg - min_dist2;
544 lsp[i ] = avg + min_dist2;
545 }
546 }
547
548 static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
549 int lpc_hist_idx, float *lsp, float *hist)
550 {
551 const ModeTab *mtab = tctx->mtab;
552 int i, j;
553
554 const float *cb = mtab->lspcodebook;
555 const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
556 const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
557
558 const int8_t funny_rounding[4] = {
559 -2,
560 mtab->lsp_split == 4 ? -2 : 1,
561 mtab->lsp_split == 4 ? -2 : 1,
562 0
563 };
564
565 j = 0;
566 for (i = 0; i < mtab->lsp_split; i++) {
567 int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
568 for (; j < chunk_end; j++)
569 lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
570 cb2[lpc_idx2[i] * mtab->n_lsp + j];
571 }
572
573 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
574
575 for (i = 0; i < mtab->n_lsp; i++) {
576 float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
577 float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
578 hist[i] = lsp[i];
579 lsp[i] = lsp[i] * tmp1 + tmp2;
580 }
581
582 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
583 rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
584 ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
585 }
586
587 static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
588 enum FrameType ftype, float *lpc)
589 {
590 int i;
591 int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
592
593 for (i = 0; i < tctx->mtab->n_lsp; i++)
594 lsp[i] = 2*cos(lsp[i]);
595
596 switch (ftype) {
597 case FT_LONG:
598 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
599 break;
600 case FT_MEDIUM:
601 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
602 break;
603 case FT_SHORT:
604 eval_lpcenv(tctx, lsp, lpc);
605 break;
606 }
607 }
608
609 static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
610 float *in, float *prev, int ch)
611 {
612 FFTContext *mdct = &tctx->mdct_ctx[ftype];
613 const ModeTab *mtab = tctx->mtab;
614 int bsize = mtab->size / mtab->fmode[ftype].sub;
615 int size = mtab->size;
616 float *buf1 = tctx->tmp_buf;
617 int j;
618 int wsize; // Window size
619 float *out = tctx->curr_frame + 2*ch*mtab->size;
620 float *out2 = out;
621 float *prev_buf;
622 int first_wsize;
623
624 static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
625 int types_sizes[] = {
626 mtab->size / mtab->fmode[FT_LONG ].sub,
627 mtab->size / mtab->fmode[FT_MEDIUM].sub,
628 mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
629 };
630
631 wsize = types_sizes[wtype_to_wsize[wtype]];
632 first_wsize = wsize;
633 prev_buf = prev + (size - bsize)/2;
634
635 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
636 int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
637
638 if (!j && wtype == 4)
639 sub_wtype = 4;
640 else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
641 sub_wtype = 7;
642
643 wsize = types_sizes[wtype_to_wsize[sub_wtype]];
644
645 mdct->imdct_half(mdct, buf1 + bsize*j, in + bsize*j);
646
647 tctx->dsp.vector_fmul_window(out2,
648 prev_buf + (bsize-wsize)/2,
649 buf1 + bsize*j,
650 ff_sine_windows[av_log2(wsize)],
651 wsize/2);
652 out2 += wsize;
653
654 memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
655
656 out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
657
658 prev_buf = buf1 + bsize*j + bsize/2;
659 }
660
661 tctx->last_block_pos[ch] = (size + first_wsize)/2;
662 }
663
664 static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
665 float *out)
666 {
667 const ModeTab *mtab = tctx->mtab;
668 float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
669 int i, j;
670
671 for (i = 0; i < tctx->avctx->channels; i++) {
672 imdct_and_window(tctx, ftype, wtype,
673 tctx->spectrum + i*mtab->size,
674 prev_buf + 2*i*mtab->size,
675 i);
676 }
677
678 if (tctx->avctx->channels == 2) {
679 for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) {
680 float f1 = prev_buf[ i];
681 float f2 = prev_buf[2*mtab->size + i];
682 out[2*i ] = f1 + f2;
683 out[2*i + 1] = f1 - f2;
684 }
685 for (j = 0; i < mtab->size; j++,i++) {
686 float f1 = tctx->curr_frame[ j];
687 float f2 = tctx->curr_frame[2*mtab->size + j];
688 out[2*i ] = f1 + f2;
689 out[2*i + 1] = f1 - f2;
690 }
691 } else {
692 memcpy(out, prev_buf,
693 (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
694
695 out += mtab->size - tctx->last_block_pos[0];
696
697 memcpy(out, tctx->curr_frame,
698 (tctx->last_block_pos[0]) * sizeof(*out));
699 }
700
701 }
702
703 static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
704 int ch, float *out, float gain, enum FrameType ftype)
705 {
706 const ModeTab *mtab = tctx->mtab;
707 int i,j;
708 float *hist = tctx->bark_hist[ftype][ch];
709 float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
710 int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
711 int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
712 int idx = 0;
713
714 for (i = 0; i < fw_cb_len; i++)
715 for (j = 0; j < bark_n_coef; j++, idx++) {
716 float tmp2 =
717 mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
718 float st = use_hist ?
719 (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
720
721 hist[idx] = tmp2;
722 if (st < -1.) st = 1.;
723
724 memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
725 out += mtab->fmode[ftype].bark_tab[idx];
726 }
727
728 }
729
730 static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
731 float *out, enum FrameType ftype)
732 {
733 const ModeTab *mtab = tctx->mtab;
734 int channels = tctx->avctx->channels;
735 int sub = mtab->fmode[ftype].sub;
736 int block_size = mtab->size / sub;
737 float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
738 float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
739 uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
740 uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
741
742 uint8_t lpc_idx1[CHANNELS_MAX];
743 uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
744 uint8_t lpc_hist_idx[CHANNELS_MAX];
745
746 int i, j, k;
747
748 dequant(tctx, gb, out, ftype,
749 mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
750 mtab->fmode[ftype].cb_len_read);
751
752 for (i = 0; i < channels; i++)
753 for (j = 0; j < sub; j++)
754 for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
755 bark1[i][j][k] =
756 get_bits(gb, mtab->fmode[ftype].bark_n_bit);
757
758 for (i = 0; i < channels; i++)
759 for (j = 0; j < sub; j++)
760 bark_use_hist[i][j] = get_bits1(gb);
761
762 dec_gain(tctx, gb, ftype, gain);
763
764 for (i = 0; i < channels; i++) {
765 lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
766 lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
767
768 for (j = 0; j < tctx->mtab->lsp_split; j++)
769 lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
770 }
771
772 if (ftype == FT_LONG) {
773 int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
774 tctx->n_div[3];
775 dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
776 mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
777 }
778
779 for (i = 0; i < channels; i++) {
780 float *chunk = out + mtab->size * i;
781 float lsp[LSP_COEFS_MAX];
782
783 for (j = 0; j < sub; j++) {
784 dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
785 tctx->tmp_buf, gain[sub*i+j], ftype);
786
787 tctx->dsp.vector_fmul(chunk + block_size*j, chunk + block_size*j, tctx->tmp_buf,
788 block_size);
789
790 }
791
792 if (ftype == FT_LONG) {
793 float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
794 int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
795 int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
796 float v = 1./8192*
797 mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
798
799 decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
800 chunk);
801 }
802
803 decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
804 tctx->lsp_hist[i]);
805
806 dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
807
808 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
809 tctx->dsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
810 chunk += block_size;
811 }
812 }
813 }
814
815 static int twin_decode_frame(AVCodecContext * avctx, void *data,
816 int *data_size, AVPacket *avpkt)
817 {
818 const uint8_t *buf = avpkt->data;
819 int buf_size = avpkt->size;
820 TwinContext *tctx = avctx->priv_data;
821 GetBitContext gb;
822 const ModeTab *mtab = tctx->mtab;
823 float *out = data;
824 enum FrameType ftype;
825 int window_type;
826 static const enum FrameType wtype_to_ftype_table[] = {
827 FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
828 FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
829 };
830
831 if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
832 av_log(avctx, AV_LOG_ERROR,
833 "Frame too small (%d bytes). Truncated file?\n", buf_size);
834 *data_size = 0;
835 return buf_size;
836 }
837
838 init_get_bits(&gb, buf, buf_size * 8);
839 skip_bits(&gb, get_bits(&gb, 8));
840 window_type = get_bits(&gb, WINDOW_TYPE_BITS);
841
842 if (window_type > 8) {
843 av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
844 return -1;
845 }
846
847 ftype = wtype_to_ftype_table[window_type];
848
849 read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
850
851 imdct_output(tctx, ftype, window_type, out);
852
853 FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
854
855 if (tctx->avctx->frame_number < 2) {
856 *data_size=0;
857 return buf_size;
858 }
859
860 *data_size = mtab->size*avctx->channels*4;
861
862 return buf_size;
863 }
864
865 /**
866 * Init IMDCT and windowing tables
867 */
868 static av_cold void init_mdct_win(TwinContext *tctx)
869 {
870 int i,j;
871 const ModeTab *mtab = tctx->mtab;
872 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
873 int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
874 int channels = tctx->avctx->channels;
875 float norm = channels == 1 ? 2. : 1.;
876
877 for (i = 0; i < 3; i++) {
878 int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
879 ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
880 -sqrt(norm/bsize) / (1<<15));
881 }
882
883 tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf));
884
885 tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float));
886 tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
887 tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float));
888
889 for (i = 0; i < 3; i++) {
890 int m = 4*mtab->size/mtab->fmode[i].sub;
891 double freq = 2*M_PI/m;
892 tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
893
894 for (j = 0; j <= m/8; j++)
895 tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
896 for (j = 1; j < m/8; j++)
897 tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
898 }
899
900
901 ff_init_ff_sine_windows(av_log2(size_m));
902 ff_init_ff_sine_windows(av_log2(size_s/2));
903 ff_init_ff_sine_windows(av_log2(mtab->size));
904 }
905
906 /**
907 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
908 * each line do a cyclic permutation, i.e.
909 * abcdefghijklm -> defghijklmabc
910 * where the amount to be shifted is evaluated depending on the column.
911 */
912 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
913 int block_size,
914 const uint8_t line_len[2], int length_div,
915 enum FrameType ftype)
916
917 {
918 int i,j;
919
920 for (i = 0; i < line_len[0]; i++) {
921 int shift;
922
923 if (num_blocks == 1 ||
924 (ftype == FT_LONG && num_vect % num_blocks) ||
925 (ftype != FT_LONG && num_vect & 1 ) ||
926 i == line_len[1]) {
927 shift = 0;
928 } else if (ftype == FT_LONG) {
929 shift = i;
930 } else
931 shift = i*i;
932
933 for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
934 tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
935 }
936 }
937
938 /**
939 * Interpret the input data as in the following table:
940 *
941 * \verbatim
942 *
943 * abcdefgh
944 * ijklmnop
945 * qrstuvw
946 * x123456
947 *
948 * \endverbatim
949 *
950 * and transpose it, giving the output
951 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
952 */
953 static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
954 const uint8_t line_len[2], int length_div)
955 {
956 int i,j;
957 int cont= 0;
958 for (i = 0; i < num_vect; i++)
959 for (j = 0; j < line_len[i >= length_div]; j++)
960 out[cont++] = in[j*num_vect + i];
961 }
962
963 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
964 {
965 int block_size = size/n_blocks;
966 int i;
967
968 for (i = 0; i < size; i++)
969 out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
970 }
971
972 static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
973 {
974 int block_size;
975 const ModeTab *mtab = tctx->mtab;
976 int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
977 int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
978
979 if (ftype == FT_PPC) {
980 size = tctx->avctx->channels;
981 block_size = mtab->ppc_shape_len;
982 } else
983 block_size = mtab->size / mtab->fmode[ftype].sub;
984
985 permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
986 block_size, tctx->length[ftype],
987 tctx->length_change[ftype], ftype);
988
989 transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
990 tctx->length[ftype], tctx->length_change[ftype]);
991
992 linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
993 size*block_size);
994 }
995
996 static av_cold void init_bitstream_params(TwinContext *tctx)
997 {
998 const ModeTab *mtab = tctx->mtab;
999 int n_ch = tctx->avctx->channels;
1000 int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
1001 tctx->avctx->sample_rate;
1002
1003 int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
1004 mtab->lsp_split*mtab->lsp_bit2);
1005
1006 int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
1007 mtab->ppc_period_bit);
1008
1009 int bsize_no_main_cb[3];
1010 int bse_bits[3];
1011 int i;
1012 enum FrameType frametype;
1013
1014 for (i = 0; i < 3; i++)
1015 // +1 for history usage switch
1016 bse_bits[i] = n_ch *
1017 (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
1018
1019 bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
1020 WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
1021
1022 for (i = 0; i < 2; i++)
1023 bsize_no_main_cb[i] =
1024 lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
1025 mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
1026
1027 // The remaining bits are all used for the main spectrum coefficients
1028 for (i = 0; i < 4; i++) {
1029 int bit_size;
1030 int vect_size;
1031 int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
1032 if (i == 3) {
1033 bit_size = n_ch * mtab->ppc_shape_bit;
1034 vect_size = n_ch * mtab->ppc_shape_len;
1035 } else {
1036 bit_size = total_fr_bits - bsize_no_main_cb[i];
1037 vect_size = n_ch * mtab->size;
1038 }
1039
1040 tctx->n_div[i] = (bit_size + 13) / 14;
1041
1042 rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1043 rounded_down = (bit_size )/tctx->n_div[i];
1044 num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
1045 num_rounded_up = tctx->n_div[i] - num_rounded_down;
1046 tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
1047 tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
1048 tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
1049 tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
1050 tctx->bits_main_spec_change[i] = num_rounded_up;
1051
1052 rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1053 rounded_down = (vect_size )/tctx->n_div[i];
1054 num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
1055 num_rounded_up = tctx->n_div[i] - num_rounded_down;
1056 tctx->length[i][0] = rounded_up;
1057 tctx->length[i][1] = rounded_down;
1058 tctx->length_change[i] = num_rounded_up;
1059 }
1060
1061 for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
1062 construct_perm_table(tctx, frametype);
1063 }
1064
1065 static av_cold int twin_decode_init(AVCodecContext *avctx)
1066 {
1067 TwinContext *tctx = avctx->priv_data;
1068 int isampf = avctx->sample_rate/1000;
1069 int ibps = avctx->bit_rate/(1000 * avctx->channels);
1070
1071 tctx->avctx = avctx;
1072 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1073
1074 if (avctx->channels > CHANNELS_MAX) {
1075 av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
1076 avctx->channels);
1077 return -1;
1078 }
1079
1080 switch ((isampf << 8) + ibps) {
1081 case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
1082 case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
1083 case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
1084 case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
1085 case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
1086 case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
1087 case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
1088 case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
1089 case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
1090 default:
1091 av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
1092 return -1;
1093 }
1094
1095 dsputil_init(&tctx->dsp, avctx);
1096 init_mdct_win(tctx);
1097 init_bitstream_params(tctx);
1098
1099 memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
1100
1101 return 0;
1102 }
1103
1104 static av_cold int twin_decode_close(AVCodecContext *avctx)
1105 {
1106 TwinContext *tctx = avctx->priv_data;
1107 int i;
1108
1109 for (i = 0; i < 3; i++) {
1110 ff_mdct_end(&tctx->mdct_ctx[i]);
1111 av_free(tctx->cos_tabs[i]);
1112 }
1113
1114
1115 av_free(tctx->curr_frame);
1116 av_free(tctx->spectrum);
1117 av_free(tctx->prev_frame);
1118 av_free(tctx->tmp_buf);
1119
1120 return 0;
1121 }
1122
1123 AVCodec ff_twinvq_decoder =
1124 {
1125 "twinvq",
1126 AVMEDIA_TYPE_AUDIO,
1127 CODEC_ID_TWINVQ,
1128 sizeof(TwinContext),
1129 twin_decode_init,
1130 NULL,
1131 twin_decode_close,
1132 twin_decode_frame,
1133 .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
1134 };