Replace deprecated symbols SAMPLE_FMT_* with AV_SAMPLE_FMT_*, and enum
[libav.git] / libavcodec / twinvq.c
1 /*
2 * TwinVQ decoder
3 * Copyright (c) 2009 Vitor Sessak
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include "avcodec.h"
23 #include "get_bits.h"
24 #include "dsputil.h"
25 #include "fft.h"
26 #include "lsp.h"
27
28 #include <math.h>
29 #include <stdint.h>
30
31 #include "twinvq_data.h"
32
33 enum FrameType {
34 FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
35 FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
36 FT_LONG, ///< Long frame (single sub-block + PPC)
37 FT_PPC, ///< Periodic Peak Component (part of the long frame)
38 };
39
40 /**
41 * Parameters and tables that are different for each frame type
42 */
43 struct FrameMode {
44 uint8_t sub; ///< Number subblocks in each frame
45 const uint16_t *bark_tab;
46
47 /** number of distinct bark scale envelope values */
48 uint8_t bark_env_size;
49
50 const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
51 uint8_t bark_n_coef;///< number of BSE CB coefficients to read
52 uint8_t bark_n_bit; ///< number of bits of the BSE coefs
53
54 //@{
55 /** main codebooks for spectrum data */
56 const int16_t *cb0;
57 const int16_t *cb1;
58 //@}
59
60 uint8_t cb_len_read; ///< number of spectrum coefficients to read
61 };
62
63 /**
64 * Parameters and tables that are different for every combination of
65 * bitrate/sample rate
66 */
67 typedef struct {
68 struct FrameMode fmode[3]; ///< frame type-dependant parameters
69
70 uint16_t size; ///< frame size in samples
71 uint8_t n_lsp; ///< number of lsp coefficients
72 const float *lspcodebook;
73
74 /* number of bits of the different LSP CB coefficients */
75 uint8_t lsp_bit0;
76 uint8_t lsp_bit1;
77 uint8_t lsp_bit2;
78
79 uint8_t lsp_split; ///< number of CB entries for the LSP decoding
80 const int16_t *ppc_shape_cb; ///< PPC shape CB
81
82 /** number of the bits for the PPC period value */
83 uint8_t ppc_period_bit;
84
85 uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
86 uint8_t ppc_shape_len; ///< size of PPC shape CB
87 uint8_t pgain_bit; ///< bits for PPC gain
88
89 /** constant for peak period to peak width conversion */
90 uint16_t peak_per2wid;
91 } ModeTab;
92
93 static const ModeTab mode_08_08 = {
94 {
95 { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
96 { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
97 { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
98 },
99 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
100 };
101
102 static const ModeTab mode_11_08 = {
103 {
104 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
105 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
106 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
107 },
108 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
109 };
110
111 static const ModeTab mode_11_10 = {
112 {
113 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
114 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
115 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
116 },
117 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
118 };
119
120 static const ModeTab mode_16_16 = {
121 {
122 { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
123 { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
124 { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
125 },
126 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
127 };
128
129 static const ModeTab mode_22_20 = {
130 {
131 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
132 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
133 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
134 },
135 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
136 };
137
138 static const ModeTab mode_22_24 = {
139 {
140 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
141 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
142 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
143 },
144 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
145 };
146
147 static const ModeTab mode_22_32 = {
148 {
149 { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
150 { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
151 { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
152 },
153 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
154 };
155
156 static const ModeTab mode_44_40 = {
157 {
158 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
159 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
160 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
161 },
162 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
163 };
164
165 static const ModeTab mode_44_48 = {
166 {
167 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
168 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
169 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
170 },
171 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
172 };
173
174 typedef struct TwinContext {
175 AVCodecContext *avctx;
176 DSPContext dsp;
177 FFTContext mdct_ctx[3];
178
179 const ModeTab *mtab;
180
181 // history
182 float lsp_hist[2][20]; ///< LSP coefficients of the last frame
183 float bark_hist[3][2][40]; ///< BSE coefficients of last frame
184
185 // bitstream parameters
186 int16_t permut[4][4096];
187 uint8_t length[4][2]; ///< main codebook stride
188 uint8_t length_change[4];
189 uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
190 int bits_main_spec_change[4];
191 int n_div[4];
192
193 float *spectrum;
194 float *curr_frame; ///< non-interleaved output
195 float *prev_frame; ///< non-interleaved previous frame
196 int last_block_pos[2];
197
198 float *cos_tabs[3];
199
200 // scratch buffers
201 float *tmp_buf;
202 } TwinContext;
203
204 #define PPC_SHAPE_CB_SIZE 64
205 #define PPC_SHAPE_LEN_MAX 60
206 #define SUB_AMP_MAX 4500.0
207 #define MULAW_MU 100.0
208 #define GAIN_BITS 8
209 #define AMP_MAX 13000.0
210 #define SUB_GAIN_BITS 5
211 #define WINDOW_TYPE_BITS 4
212 #define PGAIN_MU 200
213 #define LSP_COEFS_MAX 20
214 #define LSP_SPLIT_MAX 4
215 #define CHANNELS_MAX 2
216 #define SUBBLOCKS_MAX 16
217 #define BARK_N_COEF_MAX 4
218
219 /** @note not speed critical, hence not optimized */
220 static void memset_float(float *buf, float val, int size)
221 {
222 while (size--)
223 *buf++ = val;
224 }
225
226 /**
227 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
228 * spectrum pairs.
229 *
230 * @param lsp a vector of the cosinus of the LSP values
231 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
232 * @param order the order of the LSP (and the size of the *lsp buffer). Must
233 * be a multiple of four.
234 * @return the LPC value
235 *
236 * @todo reuse code from vorbis_dec.c: vorbis_floor0_decode
237 */
238 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
239 {
240 int j;
241 float p = 0.5f;
242 float q = 0.5f;
243 float two_cos_w = 2.0f*cos_val;
244
245 for (j = 0; j + 1 < order; j += 2*2) {
246 // Unroll the loop once since order is a multiple of four
247 q *= lsp[j ] - two_cos_w;
248 p *= lsp[j+1] - two_cos_w;
249
250 q *= lsp[j+2] - two_cos_w;
251 p *= lsp[j+3] - two_cos_w;
252 }
253
254 p *= p * (2.0f - two_cos_w);
255 q *= q * (2.0f + two_cos_w);
256
257 return 0.5 / (p + q);
258 }
259
260 /**
261 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
262 */
263 static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
264 {
265 int i;
266 const ModeTab *mtab = tctx->mtab;
267 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
268
269 for (i = 0; i < size_s/2; i++) {
270 float cos_i = tctx->cos_tabs[0][i];
271 lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
272 lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
273 }
274 }
275
276 static void interpolate(float *out, float v1, float v2, int size)
277 {
278 int i;
279 float step = (v1 - v2)/(size + 1);
280
281 for (i = 0; i < size; i++) {
282 v2 += step;
283 out[i] = v2;
284 }
285 }
286
287 static inline float get_cos(int idx, int part, const float *cos_tab, int size)
288 {
289 return part ? -cos_tab[size - idx - 1] :
290 cos_tab[ idx ];
291 }
292
293 /**
294 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
295 * Probably for speed reasons, the coefficients are evaluated as
296 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
297 * where s is an evaluated value, i is a value interpolated from the others
298 * and b might be either calculated or interpolated, depending on an
299 * unexplained condition.
300 *
301 * @param step the size of a block "siiiibiiii"
302 * @param in the cosinus of the LSP data
303 * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
304 (negative cossinus values)
305 * @param size the size of the whole output
306 */
307 static inline void eval_lpcenv_or_interp(TwinContext *tctx,
308 enum FrameType ftype,
309 float *out, const float *in,
310 int size, int step, int part)
311 {
312 int i;
313 const ModeTab *mtab = tctx->mtab;
314 const float *cos_tab = tctx->cos_tabs[ftype];
315
316 // Fill the 's'
317 for (i = 0; i < size; i += step)
318 out[i] =
319 eval_lpc_spectrum(in,
320 get_cos(i, part, cos_tab, size),
321 mtab->n_lsp);
322
323 // Fill the 'iiiibiiii'
324 for (i = step; i <= size - 2*step; i += step) {
325 if (out[i + step] + out[i - step] > 1.95*out[i] ||
326 out[i + step] >= out[i - step]) {
327 interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
328 } else {
329 out[i - step/2] =
330 eval_lpc_spectrum(in,
331 get_cos(i-step/2, part, cos_tab, size),
332 mtab->n_lsp);
333 interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
334 interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
335 }
336 }
337
338 interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
339 }
340
341 static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
342 const float *buf, float *lpc,
343 int size, int step)
344 {
345 eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
346 eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
347
348 interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
349
350 memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
351 }
352
353 /**
354 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
355 * bitstream, sum the corresponding vectors and write the result to *out
356 * after permutation.
357 */
358 static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
359 enum FrameType ftype,
360 const int16_t *cb0, const int16_t *cb1, int cb_len)
361 {
362 int pos = 0;
363 int i, j;
364
365 for (i = 0; i < tctx->n_div[ftype]; i++) {
366 int tmp0, tmp1;
367 int sign0 = 1;
368 int sign1 = 1;
369 const int16_t *tab0, *tab1;
370 int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
371 int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
372
373 int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
374 if (bits == 7) {
375 if (get_bits1(gb))
376 sign0 = -1;
377 bits = 6;
378 }
379 tmp0 = get_bits(gb, bits);
380
381 bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
382
383 if (bits == 7) {
384 if (get_bits1(gb))
385 sign1 = -1;
386
387 bits = 6;
388 }
389 tmp1 = get_bits(gb, bits);
390
391 tab0 = cb0 + tmp0*cb_len;
392 tab1 = cb1 + tmp1*cb_len;
393
394 for (j = 0; j < length; j++)
395 out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
396
397 pos += length;
398 }
399
400 }
401
402 static inline float mulawinv(float y, float clip, float mu)
403 {
404 y = av_clipf(y/clip, -1, 1);
405 return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
406 }
407
408 /**
409 * Evaluate a*b/400 rounded to the nearest integer. When, for example,
410 * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
411 * the following broken float-based implementation used by the binary decoder:
412 *
413 * \code
414 * static int very_broken_op(int a, int b)
415 * {
416 * static float test; // Ugh, force gcc to do the division first...
417 *
418 * test = a/400.;
419 * return b * test + 0.5;
420 * }
421 * \endcode
422 *
423 * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
424 * between the original file (before encoding with Yamaha encoder) and the
425 * decoded output increases, which leads one to believe that the encoder expects
426 * exactly this broken calculation.
427 */
428 static int very_broken_op(int a, int b)
429 {
430 int x = a*b + 200;
431 int size;
432 const uint8_t *rtab;
433
434 if (x%400 || b%5)
435 return x/400;
436
437 x /= 400;
438
439 size = tabs[b/5].size;
440 rtab = tabs[b/5].tab;
441 return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
442 }
443
444 /**
445 * Sum to data a periodic peak of a given period, width and shape.
446 *
447 * @param period the period of the peak divised by 400.0
448 */
449 static void add_peak(int period, int width, const float *shape,
450 float ppc_gain, float *speech, int len)
451 {
452 int i, j;
453
454 const float *shape_end = shape + len;
455 int center;
456
457 // First peak centered around zero
458 for (i = 0; i < width/2; i++)
459 speech[i] += ppc_gain * *shape++;
460
461 for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
462 center = very_broken_op(period, i);
463 for (j = -width/2; j < (width+1)/2; j++)
464 speech[j+center] += ppc_gain * *shape++;
465 }
466
467 // For the last block, be careful not to go beyond the end of the buffer
468 center = very_broken_op(period, i);
469 for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
470 speech[j+center] += ppc_gain * *shape++;
471 }
472
473 static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
474 float ppc_gain, float *speech)
475 {
476 const ModeTab *mtab = tctx->mtab;
477 int isampf = tctx->avctx->sample_rate/1000;
478 int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
479 int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
480 int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
481 int period_range = max_period - min_period;
482
483 // This is actually the period multiplied by 400. It is just linearly coded
484 // between its maximum and minimum value.
485 int period = min_period +
486 ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
487 int width;
488
489 if (isampf == 22 && ibps == 32) {
490 // For some unknown reason, NTT decided to code this case differently...
491 width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
492 } else
493 width = (period )* mtab->peak_per2wid/(400*mtab->size);
494
495 add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
496 }
497
498 static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
499 float *out)
500 {
501 const ModeTab *mtab = tctx->mtab;
502 int i, j;
503 int sub = mtab->fmode[ftype].sub;
504 float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
505 float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
506
507 if (ftype == FT_LONG) {
508 for (i = 0; i < tctx->avctx->channels; i++)
509 out[i] = (1./(1<<13)) *
510 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
511 AMP_MAX, MULAW_MU);
512 } else {
513 for (i = 0; i < tctx->avctx->channels; i++) {
514 float val = (1./(1<<23)) *
515 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
516 AMP_MAX, MULAW_MU);
517
518 for (j = 0; j < sub; j++) {
519 out[i*sub + j] =
520 val*mulawinv(sub_step* 0.5 +
521 sub_step* get_bits(gb, SUB_GAIN_BITS),
522 SUB_AMP_MAX, MULAW_MU);
523 }
524 }
525 }
526 }
527
528 /**
529 * Rearrange the LSP coefficients so that they have a minimum distance of
530 * min_dist. This function does it exactly as described in section of 3.2.4
531 * of the G.729 specification (but interestingly is different from what the
532 * reference decoder actually does).
533 */
534 static void rearrange_lsp(int order, float *lsp, float min_dist)
535 {
536 int i;
537 float min_dist2 = min_dist * 0.5;
538 for (i = 1; i < order; i++)
539 if (lsp[i] - lsp[i-1] < min_dist) {
540 float avg = (lsp[i] + lsp[i-1]) * 0.5;
541
542 lsp[i-1] = avg - min_dist2;
543 lsp[i ] = avg + min_dist2;
544 }
545 }
546
547 static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
548 int lpc_hist_idx, float *lsp, float *hist)
549 {
550 const ModeTab *mtab = tctx->mtab;
551 int i, j;
552
553 const float *cb = mtab->lspcodebook;
554 const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
555 const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
556
557 const int8_t funny_rounding[4] = {
558 -2,
559 mtab->lsp_split == 4 ? -2 : 1,
560 mtab->lsp_split == 4 ? -2 : 1,
561 0
562 };
563
564 j = 0;
565 for (i = 0; i < mtab->lsp_split; i++) {
566 int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
567 for (; j < chunk_end; j++)
568 lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
569 cb2[lpc_idx2[i] * mtab->n_lsp + j];
570 }
571
572 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
573
574 for (i = 0; i < mtab->n_lsp; i++) {
575 float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
576 float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
577 hist[i] = lsp[i];
578 lsp[i] = lsp[i] * tmp1 + tmp2;
579 }
580
581 rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
582 rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
583 ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
584 }
585
586 static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
587 enum FrameType ftype, float *lpc)
588 {
589 int i;
590 int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
591
592 for (i = 0; i < tctx->mtab->n_lsp; i++)
593 lsp[i] = 2*cos(lsp[i]);
594
595 switch (ftype) {
596 case FT_LONG:
597 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
598 break;
599 case FT_MEDIUM:
600 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
601 break;
602 case FT_SHORT:
603 eval_lpcenv(tctx, lsp, lpc);
604 break;
605 }
606 }
607
608 static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
609 float *in, float *prev, int ch)
610 {
611 const ModeTab *mtab = tctx->mtab;
612 int bsize = mtab->size / mtab->fmode[ftype].sub;
613 int size = mtab->size;
614 float *buf1 = tctx->tmp_buf;
615 int j;
616 int wsize; // Window size
617 float *out = tctx->curr_frame + 2*ch*mtab->size;
618 float *out2 = out;
619 float *prev_buf;
620 int first_wsize;
621
622 static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
623 int types_sizes[] = {
624 mtab->size / mtab->fmode[FT_LONG ].sub,
625 mtab->size / mtab->fmode[FT_MEDIUM].sub,
626 mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
627 };
628
629 wsize = types_sizes[wtype_to_wsize[wtype]];
630 first_wsize = wsize;
631 prev_buf = prev + (size - bsize)/2;
632
633 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
634 int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
635
636 if (!j && wtype == 4)
637 sub_wtype = 4;
638 else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
639 sub_wtype = 7;
640
641 wsize = types_sizes[wtype_to_wsize[sub_wtype]];
642
643 ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j);
644
645 tctx->dsp.vector_fmul_window(out2,
646 prev_buf + (bsize-wsize)/2,
647 buf1 + bsize*j,
648 ff_sine_windows[av_log2(wsize)],
649 0.0,
650 wsize/2);
651 out2 += wsize;
652
653 memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
654
655 out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
656
657 prev_buf = buf1 + bsize*j + bsize/2;
658 }
659
660 tctx->last_block_pos[ch] = (size + first_wsize)/2;
661 }
662
663 static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
664 float *out)
665 {
666 const ModeTab *mtab = tctx->mtab;
667 float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
668 int i, j;
669
670 for (i = 0; i < tctx->avctx->channels; i++) {
671 imdct_and_window(tctx, ftype, wtype,
672 tctx->spectrum + i*mtab->size,
673 prev_buf + 2*i*mtab->size,
674 i);
675 }
676
677 if (tctx->avctx->channels == 2) {
678 for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) {
679 float f1 = prev_buf[ i];
680 float f2 = prev_buf[2*mtab->size + i];
681 out[2*i ] = f1 + f2;
682 out[2*i + 1] = f1 - f2;
683 }
684 for (j = 0; i < mtab->size; j++,i++) {
685 float f1 = tctx->curr_frame[ j];
686 float f2 = tctx->curr_frame[2*mtab->size + j];
687 out[2*i ] = f1 + f2;
688 out[2*i + 1] = f1 - f2;
689 }
690 } else {
691 memcpy(out, prev_buf,
692 (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
693
694 out += mtab->size - tctx->last_block_pos[0];
695
696 memcpy(out, tctx->curr_frame,
697 (tctx->last_block_pos[0]) * sizeof(*out));
698 }
699
700 }
701
702 static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
703 int ch, float *out, float gain, enum FrameType ftype)
704 {
705 const ModeTab *mtab = tctx->mtab;
706 int i,j;
707 float *hist = tctx->bark_hist[ftype][ch];
708 float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
709 int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
710 int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
711 int idx = 0;
712
713 for (i = 0; i < fw_cb_len; i++)
714 for (j = 0; j < bark_n_coef; j++, idx++) {
715 float tmp2 =
716 mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
717 float st = use_hist ?
718 (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
719
720 hist[idx] = tmp2;
721 if (st < -1.) st = 1.;
722
723 memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
724 out += mtab->fmode[ftype].bark_tab[idx];
725 }
726
727 }
728
729 static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
730 float *out, enum FrameType ftype)
731 {
732 const ModeTab *mtab = tctx->mtab;
733 int channels = tctx->avctx->channels;
734 int sub = mtab->fmode[ftype].sub;
735 int block_size = mtab->size / sub;
736 float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
737 float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
738 uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
739 uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
740
741 uint8_t lpc_idx1[CHANNELS_MAX];
742 uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
743 uint8_t lpc_hist_idx[CHANNELS_MAX];
744
745 int i, j, k;
746
747 dequant(tctx, gb, out, ftype,
748 mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
749 mtab->fmode[ftype].cb_len_read);
750
751 for (i = 0; i < channels; i++)
752 for (j = 0; j < sub; j++)
753 for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
754 bark1[i][j][k] =
755 get_bits(gb, mtab->fmode[ftype].bark_n_bit);
756
757 for (i = 0; i < channels; i++)
758 for (j = 0; j < sub; j++)
759 bark_use_hist[i][j] = get_bits1(gb);
760
761 dec_gain(tctx, gb, ftype, gain);
762
763 for (i = 0; i < channels; i++) {
764 lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
765 lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
766
767 for (j = 0; j < tctx->mtab->lsp_split; j++)
768 lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
769 }
770
771 if (ftype == FT_LONG) {
772 int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
773 tctx->n_div[3];
774 dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
775 mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
776 }
777
778 for (i = 0; i < channels; i++) {
779 float *chunk = out + mtab->size * i;
780 float lsp[LSP_COEFS_MAX];
781
782 for (j = 0; j < sub; j++) {
783 dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
784 tctx->tmp_buf, gain[sub*i+j], ftype);
785
786 tctx->dsp.vector_fmul(chunk + block_size*j, tctx->tmp_buf,
787 block_size);
788
789 }
790
791 if (ftype == FT_LONG) {
792 float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
793 int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
794 int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
795 float v = 1./8192*
796 mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
797
798 decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
799 chunk);
800 }
801
802 decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
803 tctx->lsp_hist[i]);
804
805 dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
806
807 for (j = 0; j < mtab->fmode[ftype].sub; j++) {
808 tctx->dsp.vector_fmul(chunk, tctx->tmp_buf, block_size);
809 chunk += block_size;
810 }
811 }
812 }
813
814 static int twin_decode_frame(AVCodecContext * avctx, void *data,
815 int *data_size, AVPacket *avpkt)
816 {
817 const uint8_t *buf = avpkt->data;
818 int buf_size = avpkt->size;
819 TwinContext *tctx = avctx->priv_data;
820 GetBitContext gb;
821 const ModeTab *mtab = tctx->mtab;
822 float *out = data;
823 enum FrameType ftype;
824 int window_type;
825 static const enum FrameType wtype_to_ftype_table[] = {
826 FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
827 FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
828 };
829
830 if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
831 av_log(avctx, AV_LOG_ERROR,
832 "Frame too small (%d bytes). Truncated file?\n", buf_size);
833 *data_size = 0;
834 return buf_size;
835 }
836
837 init_get_bits(&gb, buf, buf_size * 8);
838 skip_bits(&gb, get_bits(&gb, 8));
839 window_type = get_bits(&gb, WINDOW_TYPE_BITS);
840
841 if (window_type > 8) {
842 av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
843 return -1;
844 }
845
846 ftype = wtype_to_ftype_table[window_type];
847
848 read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
849
850 imdct_output(tctx, ftype, window_type, out);
851
852 FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
853
854 if (tctx->avctx->frame_number < 2) {
855 *data_size=0;
856 return buf_size;
857 }
858
859 *data_size = mtab->size*avctx->channels*4;
860
861 return buf_size;
862 }
863
864 /**
865 * Init IMDCT and windowing tables
866 */
867 static av_cold void init_mdct_win(TwinContext *tctx)
868 {
869 int i,j;
870 const ModeTab *mtab = tctx->mtab;
871 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
872 int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
873 int channels = tctx->avctx->channels;
874 float norm = channels == 1 ? 2. : 1.;
875
876 for (i = 0; i < 3; i++) {
877 int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
878 ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
879 -sqrt(norm/bsize) / (1<<15));
880 }
881
882 tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf));
883
884 tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float));
885 tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
886 tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float));
887
888 for (i = 0; i < 3; i++) {
889 int m = 4*mtab->size/mtab->fmode[i].sub;
890 double freq = 2*M_PI/m;
891 tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
892
893 for (j = 0; j <= m/8; j++)
894 tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
895 for (j = 1; j < m/8; j++)
896 tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
897 }
898
899
900 ff_init_ff_sine_windows(av_log2(size_m));
901 ff_init_ff_sine_windows(av_log2(size_s/2));
902 ff_init_ff_sine_windows(av_log2(mtab->size));
903 }
904
905 /**
906 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
907 * each line do a cyclic permutation, i.e.
908 * abcdefghijklm -> defghijklmabc
909 * where the amount to be shifted is evaluated depending on the column.
910 */
911 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
912 int block_size,
913 const uint8_t line_len[2], int length_div,
914 enum FrameType ftype)
915
916 {
917 int i,j;
918
919 for (i = 0; i < line_len[0]; i++) {
920 int shift;
921
922 if (num_blocks == 1 ||
923 (ftype == FT_LONG && num_vect % num_blocks) ||
924 (ftype != FT_LONG && num_vect & 1 ) ||
925 i == line_len[1]) {
926 shift = 0;
927 } else if (ftype == FT_LONG) {
928 shift = i;
929 } else
930 shift = i*i;
931
932 for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
933 tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
934 }
935 }
936
937 /**
938 * Interpret the input data as in the following table:
939 *
940 * \verbatim
941 *
942 * abcdefgh
943 * ijklmnop
944 * qrstuvw
945 * x123456
946 *
947 * \endverbatim
948 *
949 * and transpose it, giving the output
950 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
951 */
952 static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
953 const uint8_t line_len[2], int length_div)
954 {
955 int i,j;
956 int cont= 0;
957 for (i = 0; i < num_vect; i++)
958 for (j = 0; j < line_len[i >= length_div]; j++)
959 out[cont++] = in[j*num_vect + i];
960 }
961
962 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
963 {
964 int block_size = size/n_blocks;
965 int i;
966
967 for (i = 0; i < size; i++)
968 out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
969 }
970
971 static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
972 {
973 int block_size;
974 const ModeTab *mtab = tctx->mtab;
975 int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
976 int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
977
978 if (ftype == FT_PPC) {
979 size = tctx->avctx->channels;
980 block_size = mtab->ppc_shape_len;
981 } else
982 block_size = mtab->size / mtab->fmode[ftype].sub;
983
984 permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
985 block_size, tctx->length[ftype],
986 tctx->length_change[ftype], ftype);
987
988 transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
989 tctx->length[ftype], tctx->length_change[ftype]);
990
991 linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
992 size*block_size);
993 }
994
995 static av_cold void init_bitstream_params(TwinContext *tctx)
996 {
997 const ModeTab *mtab = tctx->mtab;
998 int n_ch = tctx->avctx->channels;
999 int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
1000 tctx->avctx->sample_rate;
1001
1002 int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
1003 mtab->lsp_split*mtab->lsp_bit2);
1004
1005 int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
1006 mtab->ppc_period_bit);
1007
1008 int bsize_no_main_cb[3];
1009 int bse_bits[3];
1010 int i;
1011 enum FrameType frametype;
1012
1013 for (i = 0; i < 3; i++)
1014 // +1 for history usage switch
1015 bse_bits[i] = n_ch *
1016 (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
1017
1018 bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
1019 WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
1020
1021 for (i = 0; i < 2; i++)
1022 bsize_no_main_cb[i] =
1023 lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
1024 mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
1025
1026 // The remaining bits are all used for the main spectrum coefficients
1027 for (i = 0; i < 4; i++) {
1028 int bit_size;
1029 int vect_size;
1030 int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
1031 if (i == 3) {
1032 bit_size = n_ch * mtab->ppc_shape_bit;
1033 vect_size = n_ch * mtab->ppc_shape_len;
1034 } else {
1035 bit_size = total_fr_bits - bsize_no_main_cb[i];
1036 vect_size = n_ch * mtab->size;
1037 }
1038
1039 tctx->n_div[i] = (bit_size + 13) / 14;
1040
1041 rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1042 rounded_down = (bit_size )/tctx->n_div[i];
1043 num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
1044 num_rounded_up = tctx->n_div[i] - num_rounded_down;
1045 tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
1046 tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
1047 tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
1048 tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
1049 tctx->bits_main_spec_change[i] = num_rounded_up;
1050
1051 rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1052 rounded_down = (vect_size )/tctx->n_div[i];
1053 num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
1054 num_rounded_up = tctx->n_div[i] - num_rounded_down;
1055 tctx->length[i][0] = rounded_up;
1056 tctx->length[i][1] = rounded_down;
1057 tctx->length_change[i] = num_rounded_up;
1058 }
1059
1060 for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
1061 construct_perm_table(tctx, frametype);
1062 }
1063
1064 static av_cold int twin_decode_init(AVCodecContext *avctx)
1065 {
1066 TwinContext *tctx = avctx->priv_data;
1067 int isampf = avctx->sample_rate/1000;
1068 int ibps = avctx->bit_rate/(1000 * avctx->channels);
1069
1070 tctx->avctx = avctx;
1071 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1072
1073 if (avctx->channels > CHANNELS_MAX) {
1074 av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
1075 avctx->channels);
1076 return -1;
1077 }
1078
1079 switch ((isampf << 8) + ibps) {
1080 case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
1081 case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
1082 case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
1083 case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
1084 case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
1085 case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
1086 case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
1087 case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
1088 case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
1089 default:
1090 av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
1091 return -1;
1092 }
1093
1094 dsputil_init(&tctx->dsp, avctx);
1095 init_mdct_win(tctx);
1096 init_bitstream_params(tctx);
1097
1098 memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
1099
1100 return 0;
1101 }
1102
1103 static av_cold int twin_decode_close(AVCodecContext *avctx)
1104 {
1105 TwinContext *tctx = avctx->priv_data;
1106 int i;
1107
1108 for (i = 0; i < 3; i++) {
1109 ff_mdct_end(&tctx->mdct_ctx[i]);
1110 av_free(tctx->cos_tabs[i]);
1111 }
1112
1113
1114 av_free(tctx->curr_frame);
1115 av_free(tctx->spectrum);
1116 av_free(tctx->prev_frame);
1117 av_free(tctx->tmp_buf);
1118
1119 return 0;
1120 }
1121
1122 AVCodec twinvq_decoder =
1123 {
1124 "twinvq",
1125 AVMEDIA_TYPE_AUDIO,
1126 CODEC_ID_TWINVQ,
1127 sizeof(TwinContext),
1128 twin_decode_init,
1129 NULL,
1130 twin_decode_close,
1131 twin_decode_frame,
1132 .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
1133 };