7d75c59336ad7d0e04da01ab1caad555e478cf54
[libav.git] / libavcodec / utvideodec.c
1 /*
2 * Ut Video decoder
3 * Copyright (c) 2011 Konstantin Shishkov
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * Ut Video decoder
25 */
26
27 #include <inttypes.h>
28 #include <stdlib.h>
29
30 #include "libavutil/intreadwrite.h"
31 #include "avcodec.h"
32 #include "bswapdsp.h"
33 #include "bytestream.h"
34 #include "get_bits.h"
35 #include "thread.h"
36 #include "utvideo.h"
37
38 static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
39 {
40 int i;
41 HuffEntry he[256];
42 int last;
43 uint32_t codes[256];
44 uint8_t bits[256];
45 uint8_t syms[256];
46 uint32_t code;
47
48 *fsym = -1;
49 for (i = 0; i < 256; i++) {
50 he[i].sym = i;
51 he[i].len = *src++;
52 }
53 qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
54
55 if (!he[0].len) {
56 *fsym = he[0].sym;
57 return 0;
58 }
59 if (he[0].len > 32)
60 return -1;
61
62 last = 255;
63 while (he[last].len == 255 && last)
64 last--;
65
66 code = 1;
67 for (i = last; i >= 0; i--) {
68 codes[i] = code >> (32 - he[i].len);
69 bits[i] = he[i].len;
70 syms[i] = he[i].sym;
71 code += 0x80000000u >> (he[i].len - 1);
72 }
73
74 return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 9), last + 1,
75 bits, sizeof(*bits), sizeof(*bits),
76 codes, sizeof(*codes), sizeof(*codes),
77 syms, sizeof(*syms), sizeof(*syms), 0);
78 }
79
80 static int decode_plane(UtvideoContext *c, int plane_no,
81 uint8_t *dst, int step, int stride,
82 int width, int height,
83 const uint8_t *src, int use_pred)
84 {
85 int i, j, slice, pix;
86 int sstart, send;
87 VLC vlc;
88 GetBitContext gb;
89 int prev, fsym;
90 const int cmask = ~(!plane_no && c->avctx->pix_fmt == AV_PIX_FMT_YUV420P);
91
92 if (build_huff(src, &vlc, &fsym)) {
93 av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
94 return AVERROR_INVALIDDATA;
95 }
96 if (fsym >= 0) { // build_huff reported a symbol to fill slices with
97 send = 0;
98 for (slice = 0; slice < c->slices; slice++) {
99 uint8_t *dest;
100
101 sstart = send;
102 send = (height * (slice + 1) / c->slices) & cmask;
103 dest = dst + sstart * stride;
104
105 prev = 0x80;
106 for (j = sstart; j < send; j++) {
107 for (i = 0; i < width * step; i += step) {
108 pix = fsym;
109 if (use_pred) {
110 prev += pix;
111 pix = prev;
112 }
113 dest[i] = pix;
114 }
115 dest += stride;
116 }
117 }
118 return 0;
119 }
120
121 src += 256;
122
123 send = 0;
124 for (slice = 0; slice < c->slices; slice++) {
125 uint8_t *dest;
126 int slice_data_start, slice_data_end, slice_size;
127
128 sstart = send;
129 send = (height * (slice + 1) / c->slices) & cmask;
130 dest = dst + sstart * stride;
131
132 // slice offset and size validation was done earlier
133 slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
134 slice_data_end = AV_RL32(src + slice * 4);
135 slice_size = slice_data_end - slice_data_start;
136
137 if (!slice_size) {
138 av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
139 "yet a slice has a length of zero.\n");
140 goto fail;
141 }
142
143 memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
144 slice_size);
145 memset(c->slice_bits + slice_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
146 c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
147 (uint32_t *) c->slice_bits,
148 (slice_data_end - slice_data_start + 3) >> 2);
149 init_get_bits(&gb, c->slice_bits, slice_size * 8);
150
151 prev = 0x80;
152 for (j = sstart; j < send; j++) {
153 for (i = 0; i < width * step; i += step) {
154 if (get_bits_left(&gb) <= 0) {
155 av_log(c->avctx, AV_LOG_ERROR,
156 "Slice decoding ran out of bits\n");
157 goto fail;
158 }
159 pix = get_vlc2(&gb, vlc.table, vlc.bits, 4);
160 if (pix < 0) {
161 av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
162 goto fail;
163 }
164 if (use_pred) {
165 prev += pix;
166 pix = prev;
167 }
168 dest[i] = pix;
169 }
170 dest += stride;
171 }
172 if (get_bits_left(&gb) > 32)
173 av_log(c->avctx, AV_LOG_WARNING,
174 "%d bits left after decoding slice\n", get_bits_left(&gb));
175 }
176
177 ff_free_vlc(&vlc);
178
179 return 0;
180 fail:
181 ff_free_vlc(&vlc);
182 return AVERROR_INVALIDDATA;
183 }
184
185 static void restore_rgb_planes(uint8_t *src, int step, int stride, int width,
186 int height)
187 {
188 int i, j;
189 uint8_t r, g, b;
190
191 for (j = 0; j < height; j++) {
192 for (i = 0; i < width * step; i += step) {
193 r = src[i];
194 g = src[i + 1];
195 b = src[i + 2];
196 src[i] = r + g - 0x80;
197 src[i + 2] = b + g - 0x80;
198 }
199 src += stride;
200 }
201 }
202
203 static void restore_median(uint8_t *src, int step, int stride,
204 int width, int height, int slices, int rmode)
205 {
206 int i, j, slice;
207 int A, B, C;
208 uint8_t *bsrc;
209 int slice_start, slice_height;
210 const int cmask = ~rmode;
211
212 for (slice = 0; slice < slices; slice++) {
213 slice_start = ((slice * height) / slices) & cmask;
214 slice_height = ((((slice + 1) * height) / slices) & cmask) -
215 slice_start;
216
217 bsrc = src + slice_start * stride;
218
219 // first line - left neighbour prediction
220 bsrc[0] += 0x80;
221 A = bsrc[0];
222 for (i = step; i < width * step; i += step) {
223 bsrc[i] += A;
224 A = bsrc[i];
225 }
226 bsrc += stride;
227 if (slice_height == 1)
228 continue;
229 // second line - first element has top prediction, the rest uses median
230 C = bsrc[-stride];
231 bsrc[0] += C;
232 A = bsrc[0];
233 for (i = step; i < width * step; i += step) {
234 B = bsrc[i - stride];
235 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
236 C = B;
237 A = bsrc[i];
238 }
239 bsrc += stride;
240 // the rest of lines use continuous median prediction
241 for (j = 2; j < slice_height; j++) {
242 for (i = 0; i < width * step; i += step) {
243 B = bsrc[i - stride];
244 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
245 C = B;
246 A = bsrc[i];
247 }
248 bsrc += stride;
249 }
250 }
251 }
252
253 /* UtVideo interlaced mode treats every two lines as a single one,
254 * so restoring function should take care of possible padding between
255 * two parts of the same "line".
256 */
257 static void restore_median_il(uint8_t *src, int step, int stride,
258 int width, int height, int slices, int rmode)
259 {
260 int i, j, slice;
261 int A, B, C;
262 uint8_t *bsrc;
263 int slice_start, slice_height;
264 const int cmask = ~(rmode ? 3 : 1);
265 const int stride2 = stride << 1;
266
267 for (slice = 0; slice < slices; slice++) {
268 slice_start = ((slice * height) / slices) & cmask;
269 slice_height = ((((slice + 1) * height) / slices) & cmask) -
270 slice_start;
271 slice_height >>= 1;
272
273 bsrc = src + slice_start * stride;
274
275 // first line - left neighbour prediction
276 bsrc[0] += 0x80;
277 A = bsrc[0];
278 for (i = step; i < width * step; i += step) {
279 bsrc[i] += A;
280 A = bsrc[i];
281 }
282 for (i = 0; i < width * step; i += step) {
283 bsrc[stride + i] += A;
284 A = bsrc[stride + i];
285 }
286 bsrc += stride2;
287 if (slice_height == 1)
288 continue;
289 // second line - first element has top prediction, the rest uses median
290 C = bsrc[-stride2];
291 bsrc[0] += C;
292 A = bsrc[0];
293 for (i = step; i < width * step; i += step) {
294 B = bsrc[i - stride2];
295 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
296 C = B;
297 A = bsrc[i];
298 }
299 for (i = 0; i < width * step; i += step) {
300 B = bsrc[i - stride];
301 bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
302 C = B;
303 A = bsrc[stride + i];
304 }
305 bsrc += stride2;
306 // the rest of lines use continuous median prediction
307 for (j = 2; j < slice_height; j++) {
308 for (i = 0; i < width * step; i += step) {
309 B = bsrc[i - stride2];
310 bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
311 C = B;
312 A = bsrc[i];
313 }
314 for (i = 0; i < width * step; i += step) {
315 B = bsrc[i - stride];
316 bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
317 C = B;
318 A = bsrc[i + stride];
319 }
320 bsrc += stride2;
321 }
322 }
323 }
324
325 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
326 AVPacket *avpkt)
327 {
328 const uint8_t *buf = avpkt->data;
329 int buf_size = avpkt->size;
330 UtvideoContext *c = avctx->priv_data;
331 int i, j;
332 const uint8_t *plane_start[5];
333 int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
334 int ret;
335 GetByteContext gb;
336 ThreadFrame frame = { .f = data };
337
338 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) {
339 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
340 return ret;
341 }
342
343 ff_thread_finish_setup(avctx);
344
345 /* parse plane structure to get frame flags and validate slice offsets */
346 bytestream2_init(&gb, buf, buf_size);
347 for (i = 0; i < c->planes; i++) {
348 plane_start[i] = gb.buffer;
349 if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
350 av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
351 return AVERROR_INVALIDDATA;
352 }
353 bytestream2_skipu(&gb, 256);
354 slice_start = 0;
355 slice_end = 0;
356 for (j = 0; j < c->slices; j++) {
357 slice_end = bytestream2_get_le32u(&gb);
358 slice_size = slice_end - slice_start;
359 if (slice_end < 0 || slice_size < 0 ||
360 bytestream2_get_bytes_left(&gb) < slice_end) {
361 av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
362 return AVERROR_INVALIDDATA;
363 }
364 slice_start = slice_end;
365 max_slice_size = FFMAX(max_slice_size, slice_size);
366 }
367 plane_size = slice_end;
368 bytestream2_skipu(&gb, plane_size);
369 }
370 plane_start[c->planes] = gb.buffer;
371 if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
372 av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
373 return AVERROR_INVALIDDATA;
374 }
375 c->frame_info = bytestream2_get_le32u(&gb);
376 av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
377 c->frame_info);
378
379 c->frame_pred = (c->frame_info >> 8) & 3;
380
381 if (c->frame_pred == PRED_GRADIENT) {
382 avpriv_request_sample(avctx, "Frame with gradient prediction");
383 return AVERROR_PATCHWELCOME;
384 }
385
386 av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
387 max_slice_size + FF_INPUT_BUFFER_PADDING_SIZE);
388
389 if (!c->slice_bits) {
390 av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
391 return AVERROR(ENOMEM);
392 }
393
394 switch (c->avctx->pix_fmt) {
395 case AV_PIX_FMT_RGB24:
396 case AV_PIX_FMT_RGBA:
397 for (i = 0; i < c->planes; i++) {
398 ret = decode_plane(c, i, frame.f->data[0] + ff_ut_rgb_order[i],
399 c->planes, frame.f->linesize[0], avctx->width,
400 avctx->height, plane_start[i],
401 c->frame_pred == PRED_LEFT);
402 if (ret)
403 return ret;
404 if (c->frame_pred == PRED_MEDIAN) {
405 if (!c->interlaced) {
406 restore_median(frame.f->data[0] + ff_ut_rgb_order[i],
407 c->planes, frame.f->linesize[0], avctx->width,
408 avctx->height, c->slices, 0);
409 } else {
410 restore_median_il(frame.f->data[0] + ff_ut_rgb_order[i],
411 c->planes, frame.f->linesize[0],
412 avctx->width, avctx->height, c->slices,
413 0);
414 }
415 }
416 }
417 restore_rgb_planes(frame.f->data[0], c->planes, frame.f->linesize[0],
418 avctx->width, avctx->height);
419 break;
420 case AV_PIX_FMT_YUV420P:
421 for (i = 0; i < 3; i++) {
422 ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
423 avctx->width >> !!i, avctx->height >> !!i,
424 plane_start[i], c->frame_pred == PRED_LEFT);
425 if (ret)
426 return ret;
427 if (c->frame_pred == PRED_MEDIAN) {
428 if (!c->interlaced) {
429 restore_median(frame.f->data[i], 1, frame.f->linesize[i],
430 avctx->width >> !!i, avctx->height >> !!i,
431 c->slices, !i);
432 } else {
433 restore_median_il(frame.f->data[i], 1, frame.f->linesize[i],
434 avctx->width >> !!i,
435 avctx->height >> !!i,
436 c->slices, !i);
437 }
438 }
439 }
440 break;
441 case AV_PIX_FMT_YUV422P:
442 for (i = 0; i < 3; i++) {
443 ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
444 avctx->width >> !!i, avctx->height,
445 plane_start[i], c->frame_pred == PRED_LEFT);
446 if (ret)
447 return ret;
448 if (c->frame_pred == PRED_MEDIAN) {
449 if (!c->interlaced) {
450 restore_median(frame.f->data[i], 1, frame.f->linesize[i],
451 avctx->width >> !!i, avctx->height,
452 c->slices, 0);
453 } else {
454 restore_median_il(frame.f->data[i], 1, frame.f->linesize[i],
455 avctx->width >> !!i, avctx->height,
456 c->slices, 0);
457 }
458 }
459 }
460 break;
461 }
462
463 frame.f->key_frame = 1;
464 frame.f->pict_type = AV_PICTURE_TYPE_I;
465 frame.f->interlaced_frame = !!c->interlaced;
466
467 *got_frame = 1;
468
469 /* always report that the buffer was completely consumed */
470 return buf_size;
471 }
472
473 static av_cold int decode_init(AVCodecContext *avctx)
474 {
475 UtvideoContext * const c = avctx->priv_data;
476
477 c->avctx = avctx;
478
479 ff_bswapdsp_init(&c->bdsp);
480
481 if (avctx->extradata_size < 16) {
482 av_log(avctx, AV_LOG_ERROR,
483 "Insufficient extradata size %d, should be at least 16\n",
484 avctx->extradata_size);
485 return AVERROR_INVALIDDATA;
486 }
487
488 av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
489 avctx->extradata[3], avctx->extradata[2],
490 avctx->extradata[1], avctx->extradata[0]);
491 av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
492 AV_RB32(avctx->extradata + 4));
493 c->frame_info_size = AV_RL32(avctx->extradata + 8);
494 c->flags = AV_RL32(avctx->extradata + 12);
495
496 if (c->frame_info_size != 4)
497 avpriv_request_sample(avctx, "Frame info not 4 bytes");
498 av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
499 c->slices = (c->flags >> 24) + 1;
500 c->compression = c->flags & 1;
501 c->interlaced = c->flags & 0x800;
502
503 c->slice_bits_size = 0;
504
505 switch (avctx->codec_tag) {
506 case MKTAG('U', 'L', 'R', 'G'):
507 c->planes = 3;
508 avctx->pix_fmt = AV_PIX_FMT_RGB24;
509 break;
510 case MKTAG('U', 'L', 'R', 'A'):
511 c->planes = 4;
512 avctx->pix_fmt = AV_PIX_FMT_RGBA;
513 break;
514 case MKTAG('U', 'L', 'Y', '0'):
515 c->planes = 3;
516 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
517 avctx->colorspace = AVCOL_SPC_BT470BG;
518 break;
519 case MKTAG('U', 'L', 'Y', '2'):
520 c->planes = 3;
521 avctx->pix_fmt = AV_PIX_FMT_YUV422P;
522 avctx->colorspace = AVCOL_SPC_BT470BG;
523 break;
524 case MKTAG('U', 'L', 'H', '0'):
525 c->planes = 3;
526 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
527 avctx->colorspace = AVCOL_SPC_BT709;
528 break;
529 case MKTAG('U', 'L', 'H', '2'):
530 c->planes = 3;
531 avctx->pix_fmt = AV_PIX_FMT_YUV422P;
532 avctx->colorspace = AVCOL_SPC_BT709;
533 break;
534 default:
535 av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
536 avctx->codec_tag);
537 return AVERROR_INVALIDDATA;
538 }
539
540 return 0;
541 }
542
543 static av_cold int decode_end(AVCodecContext *avctx)
544 {
545 UtvideoContext * const c = avctx->priv_data;
546
547 av_freep(&c->slice_bits);
548
549 return 0;
550 }
551
552 AVCodec ff_utvideo_decoder = {
553 .name = "utvideo",
554 .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
555 .type = AVMEDIA_TYPE_VIDEO,
556 .id = AV_CODEC_ID_UTVIDEO,
557 .priv_data_size = sizeof(UtvideoContext),
558 .init = decode_init,
559 .close = decode_end,
560 .decode = decode_frame,
561 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
562 };