2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2006-2007 Konstantin Shishkov
4 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * VC-1 and WMV3 decoder
31 #include "mpegvideo.h"
35 #include "vc1acdata.h"
36 #include "msmpeg4data.h"
38 #include "simple_idct.h"
40 #include "vdpau_internal.h"
45 #define MB_INTRA_VLC_BITS 9
48 static const uint16_t table_mb_intra
[64][2];
51 static const uint16_t vlc_offs
[] = {
52 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
53 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
54 9262, 10202, 10756, 11310, 12228, 15078
58 * Init VC-1 specific tables and VC1Context members
59 * @param v The VC1Context to initialize
62 static int vc1_init_common(VC1Context
*v
)
66 static VLC_TYPE vlc_table
[15078][2];
68 v
->hrd_rate
= v
->hrd_buffer
= NULL
;
73 INIT_VLC_STATIC(&ff_vc1_bfraction_vlc
, VC1_BFRACTION_VLC_BITS
, 23,
74 ff_vc1_bfraction_bits
, 1, 1,
75 ff_vc1_bfraction_codes
, 1, 1, 1 << VC1_BFRACTION_VLC_BITS
);
76 INIT_VLC_STATIC(&ff_vc1_norm2_vlc
, VC1_NORM2_VLC_BITS
, 4,
77 ff_vc1_norm2_bits
, 1, 1,
78 ff_vc1_norm2_codes
, 1, 1, 1 << VC1_NORM2_VLC_BITS
);
79 INIT_VLC_STATIC(&ff_vc1_norm6_vlc
, VC1_NORM6_VLC_BITS
, 64,
80 ff_vc1_norm6_bits
, 1, 1,
81 ff_vc1_norm6_codes
, 2, 2, 556);
82 INIT_VLC_STATIC(&ff_vc1_imode_vlc
, VC1_IMODE_VLC_BITS
, 7,
83 ff_vc1_imode_bits
, 1, 1,
84 ff_vc1_imode_codes
, 1, 1, 1 << VC1_IMODE_VLC_BITS
);
87 ff_vc1_ttmb_vlc
[i
].table
= &vlc_table
[vlc_offs
[i
*3+0]];
88 ff_vc1_ttmb_vlc
[i
].table_allocated
= vlc_offs
[i
*3+1] - vlc_offs
[i
*3+0];
89 init_vlc(&ff_vc1_ttmb_vlc
[i
], VC1_TTMB_VLC_BITS
, 16,
90 ff_vc1_ttmb_bits
[i
], 1, 1,
91 ff_vc1_ttmb_codes
[i
], 2, 2, INIT_VLC_USE_NEW_STATIC
);
92 ff_vc1_ttblk_vlc
[i
].table
= &vlc_table
[vlc_offs
[i
*3+1]];
93 ff_vc1_ttblk_vlc
[i
].table_allocated
= vlc_offs
[i
*3+2] - vlc_offs
[i
*3+1];
94 init_vlc(&ff_vc1_ttblk_vlc
[i
], VC1_TTBLK_VLC_BITS
, 8,
95 ff_vc1_ttblk_bits
[i
], 1, 1,
96 ff_vc1_ttblk_codes
[i
], 1, 1, INIT_VLC_USE_NEW_STATIC
);
97 ff_vc1_subblkpat_vlc
[i
].table
= &vlc_table
[vlc_offs
[i
*3+2]];
98 ff_vc1_subblkpat_vlc
[i
].table_allocated
= vlc_offs
[i
*3+3] - vlc_offs
[i
*3+2];
99 init_vlc(&ff_vc1_subblkpat_vlc
[i
], VC1_SUBBLKPAT_VLC_BITS
, 15,
100 ff_vc1_subblkpat_bits
[i
], 1, 1,
101 ff_vc1_subblkpat_codes
[i
], 1, 1, INIT_VLC_USE_NEW_STATIC
);
105 ff_vc1_4mv_block_pattern_vlc
[i
].table
= &vlc_table
[vlc_offs
[i
*3+9]];
106 ff_vc1_4mv_block_pattern_vlc
[i
].table_allocated
= vlc_offs
[i
*3+10] - vlc_offs
[i
*3+9];
107 init_vlc(&ff_vc1_4mv_block_pattern_vlc
[i
], VC1_4MV_BLOCK_PATTERN_VLC_BITS
, 16,
108 ff_vc1_4mv_block_pattern_bits
[i
], 1, 1,
109 ff_vc1_4mv_block_pattern_codes
[i
], 1, 1, INIT_VLC_USE_NEW_STATIC
);
110 ff_vc1_cbpcy_p_vlc
[i
].table
= &vlc_table
[vlc_offs
[i
*3+10]];
111 ff_vc1_cbpcy_p_vlc
[i
].table_allocated
= vlc_offs
[i
*3+11] - vlc_offs
[i
*3+10];
112 init_vlc(&ff_vc1_cbpcy_p_vlc
[i
], VC1_CBPCY_P_VLC_BITS
, 64,
113 ff_vc1_cbpcy_p_bits
[i
], 1, 1,
114 ff_vc1_cbpcy_p_codes
[i
], 2, 2, INIT_VLC_USE_NEW_STATIC
);
115 ff_vc1_mv_diff_vlc
[i
].table
= &vlc_table
[vlc_offs
[i
*3+11]];
116 ff_vc1_mv_diff_vlc
[i
].table_allocated
= vlc_offs
[i
*3+12] - vlc_offs
[i
*3+11];
117 init_vlc(&ff_vc1_mv_diff_vlc
[i
], VC1_MV_DIFF_VLC_BITS
, 73,
118 ff_vc1_mv_diff_bits
[i
], 1, 1,
119 ff_vc1_mv_diff_codes
[i
], 2, 2, INIT_VLC_USE_NEW_STATIC
);
122 ff_vc1_ac_coeff_table
[i
].table
= &vlc_table
[vlc_offs
[i
+21]];
123 ff_vc1_ac_coeff_table
[i
].table_allocated
= vlc_offs
[i
+22] - vlc_offs
[i
+21];
124 init_vlc(&ff_vc1_ac_coeff_table
[i
], AC_VLC_BITS
, vc1_ac_sizes
[i
],
125 &vc1_ac_tables
[i
][0][1], 8, 4,
126 &vc1_ac_tables
[i
][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC
);
133 v
->mvrange
= 0; /* 7.1.1.18, p80 */
138 /***********************************************************************/
140 * @defgroup vc1bitplane VC-1 Bitplane decoding
158 /** @} */ //imode defines
161 /** @} */ //Bitplane group
163 static void vc1_loop_filter_iblk(MpegEncContext
*s
, int pq
)
166 if (!s
->first_slice_line
) {
167 s
->dsp
.vc1_v_loop_filter16(s
->dest
[0], s
->linesize
, pq
);
169 s
->dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16*s
->linesize
, s
->linesize
, pq
);
170 s
->dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16*s
->linesize
+8, s
->linesize
, pq
);
171 for(j
= 0; j
< 2; j
++){
172 s
->dsp
.vc1_v_loop_filter8(s
->dest
[j
+1], s
->uvlinesize
, pq
);
174 s
->dsp
.vc1_h_loop_filter8(s
->dest
[j
+1]-8*s
->uvlinesize
, s
->uvlinesize
, pq
);
177 s
->dsp
.vc1_v_loop_filter16(s
->dest
[0] + 8*s
->linesize
, s
->linesize
, pq
);
179 if (s
->mb_y
== s
->mb_height
-1) {
181 s
->dsp
.vc1_h_loop_filter16(s
->dest
[0], s
->linesize
, pq
);
182 s
->dsp
.vc1_h_loop_filter8(s
->dest
[1], s
->uvlinesize
, pq
);
183 s
->dsp
.vc1_h_loop_filter8(s
->dest
[2], s
->uvlinesize
, pq
);
185 s
->dsp
.vc1_h_loop_filter16(s
->dest
[0] + 8, s
->linesize
, pq
);
189 /** Put block onto picture
191 static void vc1_put_block(VC1Context
*v
, DCTELEM block
[6][64])
195 DSPContext
*dsp
= &v
->s
.dsp
;
199 for(k
= 0; k
< 6; k
++)
200 for(j
= 0; j
< 8; j
++)
201 for(i
= 0; i
< 8; i
++)
202 block
[k
][i
+ j
*8] = ((block
[k
][i
+ j
*8] - 128) << 1) + 128;
205 ys
= v
->s
.current_picture
.linesize
[0];
206 us
= v
->s
.current_picture
.linesize
[1];
207 vs
= v
->s
.current_picture
.linesize
[2];
210 dsp
->put_pixels_clamped(block
[0], Y
, ys
);
211 dsp
->put_pixels_clamped(block
[1], Y
+ 8, ys
);
213 dsp
->put_pixels_clamped(block
[2], Y
, ys
);
214 dsp
->put_pixels_clamped(block
[3], Y
+ 8, ys
);
216 if(!(v
->s
.flags
& CODEC_FLAG_GRAY
)) {
217 dsp
->put_pixels_clamped(block
[4], v
->s
.dest
[1], us
);
218 dsp
->put_pixels_clamped(block
[5], v
->s
.dest
[2], vs
);
222 /** Do motion compensation over 1 macroblock
223 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
225 static void vc1_mc_1mv(VC1Context
*v
, int dir
)
227 MpegEncContext
*s
= &v
->s
;
228 DSPContext
*dsp
= &v
->s
.dsp
;
229 uint8_t *srcY
, *srcU
, *srcV
;
230 int dxy
, mx
, my
, uvmx
, uvmy
, src_x
, src_y
, uvsrc_x
, uvsrc_y
;
232 if(!v
->s
.last_picture
.data
[0])return;
234 mx
= s
->mv
[dir
][0][0];
235 my
= s
->mv
[dir
][0][1];
237 // store motion vectors for further use in B frames
238 if(s
->pict_type
== FF_P_TYPE
) {
239 s
->current_picture
.motion_val
[1][s
->block_index
[0]][0] = mx
;
240 s
->current_picture
.motion_val
[1][s
->block_index
[0]][1] = my
;
242 uvmx
= (mx
+ ((mx
& 3) == 3)) >> 1;
243 uvmy
= (my
+ ((my
& 3) == 3)) >> 1;
245 uvmx
= uvmx
+ ((uvmx
<0)?
(uvmx
&1):-(uvmx
&1));
246 uvmy
= uvmy
+ ((uvmy
<0)?
(uvmy
&1):-(uvmy
&1));
249 srcY
= s
->last_picture
.data
[0];
250 srcU
= s
->last_picture
.data
[1];
251 srcV
= s
->last_picture
.data
[2];
253 srcY
= s
->next_picture
.data
[0];
254 srcU
= s
->next_picture
.data
[1];
255 srcV
= s
->next_picture
.data
[2];
258 src_x
= s
->mb_x
* 16 + (mx
>> 2);
259 src_y
= s
->mb_y
* 16 + (my
>> 2);
260 uvsrc_x
= s
->mb_x
* 8 + (uvmx
>> 2);
261 uvsrc_y
= s
->mb_y
* 8 + (uvmy
>> 2);
263 if(v
->profile
!= PROFILE_ADVANCED
){
264 src_x
= av_clip( src_x
, -16, s
->mb_width
* 16);
265 src_y
= av_clip( src_y
, -16, s
->mb_height
* 16);
266 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->mb_width
* 8);
267 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->mb_height
* 8);
269 src_x
= av_clip( src_x
, -17, s
->avctx
->coded_width
);
270 src_y
= av_clip( src_y
, -18, s
->avctx
->coded_height
+ 1);
271 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->avctx
->coded_width
>> 1);
272 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->avctx
->coded_height
>> 1);
275 srcY
+= src_y
* s
->linesize
+ src_x
;
276 srcU
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
277 srcV
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
279 /* for grayscale we should not try to read from unknown area */
280 if(s
->flags
& CODEC_FLAG_GRAY
) {
281 srcU
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
282 srcV
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
285 if(v
->rangeredfrm
|| (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
)
286 || (unsigned)(src_x
- s
->mspel
) > s
->h_edge_pos
- (mx
&3) - 16 - s
->mspel
*3
287 || (unsigned)(src_y
- s
->mspel
) > s
->v_edge_pos
- (my
&3) - 16 - s
->mspel
*3){
288 uint8_t *uvbuf
= s
->edge_emu_buffer
+ 19 * s
->linesize
;
290 srcY
-= s
->mspel
* (1 + s
->linesize
);
291 ff_emulated_edge_mc(s
->edge_emu_buffer
, srcY
, s
->linesize
, 17+s
->mspel
*2, 17+s
->mspel
*2,
292 src_x
- s
->mspel
, src_y
- s
->mspel
, s
->h_edge_pos
, s
->v_edge_pos
);
293 srcY
= s
->edge_emu_buffer
;
294 ff_emulated_edge_mc(uvbuf
, srcU
, s
->uvlinesize
, 8+1, 8+1,
295 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, s
->v_edge_pos
>> 1);
296 ff_emulated_edge_mc(uvbuf
+ 16, srcV
, s
->uvlinesize
, 8+1, 8+1,
297 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, s
->v_edge_pos
>> 1);
300 /* if we deal with range reduction we need to scale source blocks */
306 for(j
= 0; j
< 17 + s
->mspel
*2; j
++) {
307 for(i
= 0; i
< 17 + s
->mspel
*2; i
++) src
[i
] = ((src
[i
] - 128) >> 1) + 128;
310 src
= srcU
; src2
= srcV
;
311 for(j
= 0; j
< 9; j
++) {
312 for(i
= 0; i
< 9; i
++) {
313 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
314 src2
[i
] = ((src2
[i
] - 128) >> 1) + 128;
316 src
+= s
->uvlinesize
;
317 src2
+= s
->uvlinesize
;
320 /* if we deal with intensity compensation we need to scale source blocks */
321 if(v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) {
326 for(j
= 0; j
< 17 + s
->mspel
*2; j
++) {
327 for(i
= 0; i
< 17 + s
->mspel
*2; i
++) src
[i
] = v
->luty
[src
[i
]];
330 src
= srcU
; src2
= srcV
;
331 for(j
= 0; j
< 9; j
++) {
332 for(i
= 0; i
< 9; i
++) {
333 src
[i
] = v
->lutuv
[src
[i
]];
334 src2
[i
] = v
->lutuv
[src2
[i
]];
336 src
+= s
->uvlinesize
;
337 src2
+= s
->uvlinesize
;
340 srcY
+= s
->mspel
* (1 + s
->linesize
);
344 dxy
= ((my
& 3) << 2) | (mx
& 3);
345 dsp
->put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] , srcY
, s
->linesize
, v
->rnd
);
346 dsp
->put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + 8, srcY
+ 8, s
->linesize
, v
->rnd
);
347 srcY
+= s
->linesize
* 8;
348 dsp
->put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + 8 * s
->linesize
, srcY
, s
->linesize
, v
->rnd
);
349 dsp
->put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + 8 * s
->linesize
+ 8, srcY
+ 8, s
->linesize
, v
->rnd
);
350 } else { // hpel mc - always used for luma
351 dxy
= (my
& 2) | ((mx
& 2) >> 1);
354 dsp
->put_pixels_tab
[0][dxy
](s
->dest
[0], srcY
, s
->linesize
, 16);
356 dsp
->put_no_rnd_pixels_tab
[0][dxy
](s
->dest
[0], srcY
, s
->linesize
, 16);
359 if(s
->flags
& CODEC_FLAG_GRAY
) return;
360 /* Chroma MC always uses qpel bilinear */
364 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[1], srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
365 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[2], srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
367 dsp
->put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[1], srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
368 dsp
->put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[2], srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
372 /** Do motion compensation for 4-MV macroblock - luminance block
374 static void vc1_mc_4mv_luma(VC1Context
*v
, int n
)
376 MpegEncContext
*s
= &v
->s
;
377 DSPContext
*dsp
= &v
->s
.dsp
;
379 int dxy
, mx
, my
, src_x
, src_y
;
382 if(!v
->s
.last_picture
.data
[0])return;
385 srcY
= s
->last_picture
.data
[0];
387 off
= s
->linesize
* 4 * (n
&2) + (n
&1) * 8;
389 src_x
= s
->mb_x
* 16 + (n
&1) * 8 + (mx
>> 2);
390 src_y
= s
->mb_y
* 16 + (n
&2) * 4 + (my
>> 2);
392 if(v
->profile
!= PROFILE_ADVANCED
){
393 src_x
= av_clip( src_x
, -16, s
->mb_width
* 16);
394 src_y
= av_clip( src_y
, -16, s
->mb_height
* 16);
396 src_x
= av_clip( src_x
, -17, s
->avctx
->coded_width
);
397 src_y
= av_clip( src_y
, -18, s
->avctx
->coded_height
+ 1);
400 srcY
+= src_y
* s
->linesize
+ src_x
;
402 if(v
->rangeredfrm
|| (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
)
403 || (unsigned)(src_x
- s
->mspel
) > s
->h_edge_pos
- (mx
&3) - 8 - s
->mspel
*2
404 || (unsigned)(src_y
- s
->mspel
) > s
->v_edge_pos
- (my
&3) - 8 - s
->mspel
*2){
405 srcY
-= s
->mspel
* (1 + s
->linesize
);
406 ff_emulated_edge_mc(s
->edge_emu_buffer
, srcY
, s
->linesize
, 9+s
->mspel
*2, 9+s
->mspel
*2,
407 src_x
- s
->mspel
, src_y
- s
->mspel
, s
->h_edge_pos
, s
->v_edge_pos
);
408 srcY
= s
->edge_emu_buffer
;
409 /* if we deal with range reduction we need to scale source blocks */
415 for(j
= 0; j
< 9 + s
->mspel
*2; j
++) {
416 for(i
= 0; i
< 9 + s
->mspel
*2; i
++) src
[i
] = ((src
[i
] - 128) >> 1) + 128;
420 /* if we deal with intensity compensation we need to scale source blocks */
421 if(v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) {
426 for(j
= 0; j
< 9 + s
->mspel
*2; j
++) {
427 for(i
= 0; i
< 9 + s
->mspel
*2; i
++) src
[i
] = v
->luty
[src
[i
]];
431 srcY
+= s
->mspel
* (1 + s
->linesize
);
435 dxy
= ((my
& 3) << 2) | (mx
& 3);
436 dsp
->put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, v
->rnd
);
437 } else { // hpel mc - always used for luma
438 dxy
= (my
& 2) | ((mx
& 2) >> 1);
440 dsp
->put_pixels_tab
[1][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 8);
442 dsp
->put_no_rnd_pixels_tab
[1][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 8);
446 static inline int median4(int a
, int b
, int c
, int d
)
449 if(c
< d
) return (FFMIN(b
, d
) + FFMAX(a
, c
)) / 2;
450 else return (FFMIN(b
, c
) + FFMAX(a
, d
)) / 2;
452 if(c
< d
) return (FFMIN(a
, d
) + FFMAX(b
, c
)) / 2;
453 else return (FFMIN(a
, c
) + FFMAX(b
, d
)) / 2;
458 /** Do motion compensation for 4-MV macroblock - both chroma blocks
460 static void vc1_mc_4mv_chroma(VC1Context
*v
)
462 MpegEncContext
*s
= &v
->s
;
463 DSPContext
*dsp
= &v
->s
.dsp
;
464 uint8_t *srcU
, *srcV
;
465 int uvmx
, uvmy
, uvsrc_x
, uvsrc_y
;
466 int i
, idx
, tx
= 0, ty
= 0;
467 int mvx
[4], mvy
[4], intra
[4];
468 static const int count
[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
470 if(!v
->s
.last_picture
.data
[0])return;
471 if(s
->flags
& CODEC_FLAG_GRAY
) return;
473 for(i
= 0; i
< 4; i
++) {
474 mvx
[i
] = s
->mv
[0][i
][0];
475 mvy
[i
] = s
->mv
[0][i
][1];
476 intra
[i
] = v
->mb_type
[0][s
->block_index
[i
]];
479 /* calculate chroma MV vector from four luma MVs */
480 idx
= (intra
[3] << 3) | (intra
[2] << 2) | (intra
[1] << 1) | intra
[0];
481 if(!idx
) { // all blocks are inter
482 tx
= median4(mvx
[0], mvx
[1], mvx
[2], mvx
[3]);
483 ty
= median4(mvy
[0], mvy
[1], mvy
[2], mvy
[3]);
484 } else if(count
[idx
] == 1) { // 3 inter blocks
487 tx
= mid_pred(mvx
[1], mvx
[2], mvx
[3]);
488 ty
= mid_pred(mvy
[1], mvy
[2], mvy
[3]);
491 tx
= mid_pred(mvx
[0], mvx
[2], mvx
[3]);
492 ty
= mid_pred(mvy
[0], mvy
[2], mvy
[3]);
495 tx
= mid_pred(mvx
[0], mvx
[1], mvx
[3]);
496 ty
= mid_pred(mvy
[0], mvy
[1], mvy
[3]);
499 tx
= mid_pred(mvx
[0], mvx
[1], mvx
[2]);
500 ty
= mid_pred(mvy
[0], mvy
[1], mvy
[2]);
503 } else if(count
[idx
] == 2) {
505 for(i
=0; i
<3;i
++) if(!intra
[i
]) {t1
= i
; break;}
506 for(i
= t1
+1; i
<4; i
++)if(!intra
[i
]) {t2
= i
; break;}
507 tx
= (mvx
[t1
] + mvx
[t2
]) / 2;
508 ty
= (mvy
[t1
] + mvy
[t2
]) / 2;
510 s
->current_picture
.motion_val
[1][s
->block_index
[0]][0] = 0;
511 s
->current_picture
.motion_val
[1][s
->block_index
[0]][1] = 0;
512 return; //no need to do MC for inter blocks
515 s
->current_picture
.motion_val
[1][s
->block_index
[0]][0] = tx
;
516 s
->current_picture
.motion_val
[1][s
->block_index
[0]][1] = ty
;
517 uvmx
= (tx
+ ((tx
&3) == 3)) >> 1;
518 uvmy
= (ty
+ ((ty
&3) == 3)) >> 1;
520 uvmx
= uvmx
+ ((uvmx
<0)?
(uvmx
&1):-(uvmx
&1));
521 uvmy
= uvmy
+ ((uvmy
<0)?
(uvmy
&1):-(uvmy
&1));
524 uvsrc_x
= s
->mb_x
* 8 + (uvmx
>> 2);
525 uvsrc_y
= s
->mb_y
* 8 + (uvmy
>> 2);
527 if(v
->profile
!= PROFILE_ADVANCED
){
528 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->mb_width
* 8);
529 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->mb_height
* 8);
531 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->avctx
->coded_width
>> 1);
532 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->avctx
->coded_height
>> 1);
535 srcU
= s
->last_picture
.data
[1] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
536 srcV
= s
->last_picture
.data
[2] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
537 if(v
->rangeredfrm
|| (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
)
538 || (unsigned)uvsrc_x
> (s
->h_edge_pos
>> 1) - 9
539 || (unsigned)uvsrc_y
> (s
->v_edge_pos
>> 1) - 9){
540 ff_emulated_edge_mc(s
->edge_emu_buffer
, srcU
, s
->uvlinesize
, 8+1, 8+1,
541 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, s
->v_edge_pos
>> 1);
542 ff_emulated_edge_mc(s
->edge_emu_buffer
+ 16, srcV
, s
->uvlinesize
, 8+1, 8+1,
543 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, s
->v_edge_pos
>> 1);
544 srcU
= s
->edge_emu_buffer
;
545 srcV
= s
->edge_emu_buffer
+ 16;
547 /* if we deal with range reduction we need to scale source blocks */
552 src
= srcU
; src2
= srcV
;
553 for(j
= 0; j
< 9; j
++) {
554 for(i
= 0; i
< 9; i
++) {
555 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
556 src2
[i
] = ((src2
[i
] - 128) >> 1) + 128;
558 src
+= s
->uvlinesize
;
559 src2
+= s
->uvlinesize
;
562 /* if we deal with intensity compensation we need to scale source blocks */
563 if(v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) {
567 src
= srcU
; src2
= srcV
;
568 for(j
= 0; j
< 9; j
++) {
569 for(i
= 0; i
< 9; i
++) {
570 src
[i
] = v
->lutuv
[src
[i
]];
571 src2
[i
] = v
->lutuv
[src2
[i
]];
573 src
+= s
->uvlinesize
;
574 src2
+= s
->uvlinesize
;
579 /* Chroma MC always uses qpel bilinear */
583 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[1], srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
584 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[2], srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
586 dsp
->put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[1], srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
587 dsp
->put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[2], srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
591 /***********************************************************************/
593 * @defgroup vc1block VC-1 Block-level functions
594 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
600 * @brief Get macroblock-level quantizer scale
602 #define GET_MQUANT() \
606 if (v->dqprofile == DQPROFILE_ALL_MBS) \
610 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
614 mqdiff = get_bits(gb, 3); \
615 if (mqdiff != 7) mquant = v->pq + mqdiff; \
616 else mquant = get_bits(gb, 5); \
619 if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
620 edges = 1 << v->dqsbedge; \
621 else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
622 edges = (3 << v->dqsbedge) % 15; \
623 else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
625 if((edges&1) && !s->mb_x) \
627 if((edges&2) && s->first_slice_line) \
629 if((edges&4) && s->mb_x == (s->mb_width - 1)) \
631 if((edges&8) && s->mb_y == (s->mb_height - 1)) \
636 * @def GET_MVDATA(_dmv_x, _dmv_y)
637 * @brief Get MV differentials
638 * @see MVDATA decoding from 8.3.5.2, p(1)20
639 * @param _dmv_x Horizontal differential for decoded MV
640 * @param _dmv_y Vertical differential for decoded MV
642 #define GET_MVDATA(_dmv_x, _dmv_y) \
643 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
644 VC1_MV_DIFF_VLC_BITS, 2); \
650 else mb_has_coeffs = 0; \
652 if (!index) { _dmv_x = _dmv_y = 0; } \
653 else if (index == 35) \
655 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
656 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
658 else if (index == 36) \
667 if (!s->quarter_sample && index1 == 5) val = 1; \
669 if(size_table[index1] - val > 0) \
670 val = get_bits(gb, size_table[index1] - val); \
672 sign = 0 - (val&1); \
673 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
676 if (!s->quarter_sample && index1 == 5) val = 1; \
678 if(size_table[index1] - val > 0) \
679 val = get_bits(gb, size_table[index1] - val); \
681 sign = 0 - (val&1); \
682 _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
685 /** Predict and set motion vector
687 static inline void vc1_pred_mv(MpegEncContext
*s
, int n
, int dmv_x
, int dmv_y
, int mv1
, int r_x
, int r_y
, uint8_t* is_intra
)
689 int xy
, wrap
, off
= 0;
694 /* scale MV difference to be quad-pel */
695 dmv_x
<<= 1 - s
->quarter_sample
;
696 dmv_y
<<= 1 - s
->quarter_sample
;
699 xy
= s
->block_index
[n
];
702 s
->mv
[0][n
][0] = s
->current_picture
.motion_val
[0][xy
][0] = 0;
703 s
->mv
[0][n
][1] = s
->current_picture
.motion_val
[0][xy
][1] = 0;
704 s
->current_picture
.motion_val
[1][xy
][0] = 0;
705 s
->current_picture
.motion_val
[1][xy
][1] = 0;
706 if(mv1
) { /* duplicate motion data for 1-MV block */
707 s
->current_picture
.motion_val
[0][xy
+ 1][0] = 0;
708 s
->current_picture
.motion_val
[0][xy
+ 1][1] = 0;
709 s
->current_picture
.motion_val
[0][xy
+ wrap
][0] = 0;
710 s
->current_picture
.motion_val
[0][xy
+ wrap
][1] = 0;
711 s
->current_picture
.motion_val
[0][xy
+ wrap
+ 1][0] = 0;
712 s
->current_picture
.motion_val
[0][xy
+ wrap
+ 1][1] = 0;
713 s
->current_picture
.motion_val
[1][xy
+ 1][0] = 0;
714 s
->current_picture
.motion_val
[1][xy
+ 1][1] = 0;
715 s
->current_picture
.motion_val
[1][xy
+ wrap
][0] = 0;
716 s
->current_picture
.motion_val
[1][xy
+ wrap
][1] = 0;
717 s
->current_picture
.motion_val
[1][xy
+ wrap
+ 1][0] = 0;
718 s
->current_picture
.motion_val
[1][xy
+ wrap
+ 1][1] = 0;
723 C
= s
->current_picture
.motion_val
[0][xy
- 1];
724 A
= s
->current_picture
.motion_val
[0][xy
- wrap
];
726 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-1 : 2;
728 //in 4-MV mode different blocks have different B predictor position
731 off
= (s
->mb_x
> 0) ?
-1 : 1;
734 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-1 : 1;
743 B
= s
->current_picture
.motion_val
[0][xy
- wrap
+ off
];
745 if(!s
->first_slice_line
|| (n
==2 || n
==3)) { // predictor A is not out of bounds
746 if(s
->mb_width
== 1) {
750 px
= mid_pred(A
[0], B
[0], C
[0]);
751 py
= mid_pred(A
[1], B
[1], C
[1]);
753 } else if(s
->mb_x
|| (n
==1 || n
==3)) { // predictor C is not out of bounds
759 /* Pullback MV as specified in 8.3.5.3.4 */
762 qx
= (s
->mb_x
<< 6) + ((n
==1 || n
==3) ?
32 : 0);
763 qy
= (s
->mb_y
<< 6) + ((n
==2 || n
==3) ?
32 : 0);
764 X
= (s
->mb_width
<< 6) - 4;
765 Y
= (s
->mb_height
<< 6) - 4;
767 if(qx
+ px
< -60) px
= -60 - qx
;
768 if(qy
+ py
< -60) py
= -60 - qy
;
770 if(qx
+ px
< -28) px
= -28 - qx
;
771 if(qy
+ py
< -28) py
= -28 - qy
;
773 if(qx
+ px
> X
) px
= X
- qx
;
774 if(qy
+ py
> Y
) py
= Y
- qy
;
776 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
777 if((!s
->first_slice_line
|| (n
==2 || n
==3)) && (s
->mb_x
|| (n
==1 || n
==3))) {
778 if(is_intra
[xy
- wrap
])
779 sum
= FFABS(px
) + FFABS(py
);
781 sum
= FFABS(px
- A
[0]) + FFABS(py
- A
[1]);
783 if(get_bits1(&s
->gb
)) {
792 sum
= FFABS(px
) + FFABS(py
);
794 sum
= FFABS(px
- C
[0]) + FFABS(py
- C
[1]);
796 if(get_bits1(&s
->gb
)) {
806 /* store MV using signed modulus of MV range defined in 4.11 */
807 s
->mv
[0][n
][0] = s
->current_picture
.motion_val
[0][xy
][0] = ((px
+ dmv_x
+ r_x
) & ((r_x
<< 1) - 1)) - r_x
;
808 s
->mv
[0][n
][1] = s
->current_picture
.motion_val
[0][xy
][1] = ((py
+ dmv_y
+ r_y
) & ((r_y
<< 1) - 1)) - r_y
;
809 if(mv1
) { /* duplicate motion data for 1-MV block */
810 s
->current_picture
.motion_val
[0][xy
+ 1][0] = s
->current_picture
.motion_val
[0][xy
][0];
811 s
->current_picture
.motion_val
[0][xy
+ 1][1] = s
->current_picture
.motion_val
[0][xy
][1];
812 s
->current_picture
.motion_val
[0][xy
+ wrap
][0] = s
->current_picture
.motion_val
[0][xy
][0];
813 s
->current_picture
.motion_val
[0][xy
+ wrap
][1] = s
->current_picture
.motion_val
[0][xy
][1];
814 s
->current_picture
.motion_val
[0][xy
+ wrap
+ 1][0] = s
->current_picture
.motion_val
[0][xy
][0];
815 s
->current_picture
.motion_val
[0][xy
+ wrap
+ 1][1] = s
->current_picture
.motion_val
[0][xy
][1];
819 /** Motion compensation for direct or interpolated blocks in B-frames
821 static void vc1_interp_mc(VC1Context
*v
)
823 MpegEncContext
*s
= &v
->s
;
824 DSPContext
*dsp
= &v
->s
.dsp
;
825 uint8_t *srcY
, *srcU
, *srcV
;
826 int dxy
, mx
, my
, uvmx
, uvmy
, src_x
, src_y
, uvsrc_x
, uvsrc_y
;
828 if(!v
->s
.next_picture
.data
[0])return;
832 uvmx
= (mx
+ ((mx
& 3) == 3)) >> 1;
833 uvmy
= (my
+ ((my
& 3) == 3)) >> 1;
835 uvmx
= uvmx
+ ((uvmx
<0)?
-(uvmx
&1):(uvmx
&1));
836 uvmy
= uvmy
+ ((uvmy
<0)?
-(uvmy
&1):(uvmy
&1));
838 srcY
= s
->next_picture
.data
[0];
839 srcU
= s
->next_picture
.data
[1];
840 srcV
= s
->next_picture
.data
[2];
842 src_x
= s
->mb_x
* 16 + (mx
>> 2);
843 src_y
= s
->mb_y
* 16 + (my
>> 2);
844 uvsrc_x
= s
->mb_x
* 8 + (uvmx
>> 2);
845 uvsrc_y
= s
->mb_y
* 8 + (uvmy
>> 2);
847 if(v
->profile
!= PROFILE_ADVANCED
){
848 src_x
= av_clip( src_x
, -16, s
->mb_width
* 16);
849 src_y
= av_clip( src_y
, -16, s
->mb_height
* 16);
850 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->mb_width
* 8);
851 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->mb_height
* 8);
853 src_x
= av_clip( src_x
, -17, s
->avctx
->coded_width
);
854 src_y
= av_clip( src_y
, -18, s
->avctx
->coded_height
+ 1);
855 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->avctx
->coded_width
>> 1);
856 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->avctx
->coded_height
>> 1);
859 srcY
+= src_y
* s
->linesize
+ src_x
;
860 srcU
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
861 srcV
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
863 /* for grayscale we should not try to read from unknown area */
864 if(s
->flags
& CODEC_FLAG_GRAY
) {
865 srcU
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
866 srcV
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
870 || (unsigned)(src_x
- s
->mspel
) > s
->h_edge_pos
- (mx
&3) - 16 - s
->mspel
*3
871 || (unsigned)(src_y
- s
->mspel
) > s
->v_edge_pos
- (my
&3) - 16 - s
->mspel
*3){
872 uint8_t *uvbuf
= s
->edge_emu_buffer
+ 19 * s
->linesize
;
874 srcY
-= s
->mspel
* (1 + s
->linesize
);
875 ff_emulated_edge_mc(s
->edge_emu_buffer
, srcY
, s
->linesize
, 17+s
->mspel
*2, 17+s
->mspel
*2,
876 src_x
- s
->mspel
, src_y
- s
->mspel
, s
->h_edge_pos
, s
->v_edge_pos
);
877 srcY
= s
->edge_emu_buffer
;
878 ff_emulated_edge_mc(uvbuf
, srcU
, s
->uvlinesize
, 8+1, 8+1,
879 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, s
->v_edge_pos
>> 1);
880 ff_emulated_edge_mc(uvbuf
+ 16, srcV
, s
->uvlinesize
, 8+1, 8+1,
881 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, s
->v_edge_pos
>> 1);
884 /* if we deal with range reduction we need to scale source blocks */
890 for(j
= 0; j
< 17 + s
->mspel
*2; j
++) {
891 for(i
= 0; i
< 17 + s
->mspel
*2; i
++) src
[i
] = ((src
[i
] - 128) >> 1) + 128;
894 src
= srcU
; src2
= srcV
;
895 for(j
= 0; j
< 9; j
++) {
896 for(i
= 0; i
< 9; i
++) {
897 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
898 src2
[i
] = ((src2
[i
] - 128) >> 1) + 128;
900 src
+= s
->uvlinesize
;
901 src2
+= s
->uvlinesize
;
904 srcY
+= s
->mspel
* (1 + s
->linesize
);
908 dxy
= ((my
& 3) << 2) | (mx
& 3);
909 dsp
->avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] , srcY
, s
->linesize
, v
->rnd
);
910 dsp
->avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + 8, srcY
+ 8, s
->linesize
, v
->rnd
);
911 srcY
+= s
->linesize
* 8;
912 dsp
->avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + 8 * s
->linesize
, srcY
, s
->linesize
, v
->rnd
);
913 dsp
->avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + 8 * s
->linesize
+ 8, srcY
+ 8, s
->linesize
, v
->rnd
);
915 dxy
= (my
& 2) | ((mx
& 2) >> 1);
918 dsp
->avg_pixels_tab
[0][dxy
](s
->dest
[0], srcY
, s
->linesize
, 16);
920 dsp
->avg_no_rnd_pixels_tab
[0][dxy
](s
->dest
[0], srcY
, s
->linesize
, 16);
923 if(s
->flags
& CODEC_FLAG_GRAY
) return;
924 /* Chroma MC always uses qpel blilinear */
928 dsp
->avg_h264_chroma_pixels_tab
[0](s
->dest
[1], srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
929 dsp
->avg_h264_chroma_pixels_tab
[0](s
->dest
[2], srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
931 dsp
->avg_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[1], srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
932 dsp
->avg_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[2], srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
936 static av_always_inline
int scale_mv(int value
, int bfrac
, int inv
, int qs
)
940 #if B_FRACTION_DEN==256
944 return 2 * ((value
* n
+ 255) >> 9);
945 return (value
* n
+ 128) >> 8;
950 return 2 * ((value
* n
+ B_FRACTION_DEN
- 1) / (2 * B_FRACTION_DEN
));
951 return (value
* n
+ B_FRACTION_DEN
/2) / B_FRACTION_DEN
;
955 /** Reconstruct motion vector for B-frame and do motion compensation
957 static inline void vc1_b_mc(VC1Context
*v
, int dmv_x
[2], int dmv_y
[2], int direct
, int mode
)
960 v
->mv_mode2
= v
->mv_mode
;
961 v
->mv_mode
= MV_PMODE_INTENSITY_COMP
;
966 if(v
->use_ic
) v
->mv_mode
= v
->mv_mode2
;
969 if(mode
== BMV_TYPE_INTERPOLATED
) {
972 if(v
->use_ic
) v
->mv_mode
= v
->mv_mode2
;
976 if(v
->use_ic
&& (mode
== BMV_TYPE_BACKWARD
)) v
->mv_mode
= v
->mv_mode2
;
977 vc1_mc_1mv(v
, (mode
== BMV_TYPE_BACKWARD
));
978 if(v
->use_ic
) v
->mv_mode
= v
->mv_mode2
;
981 static inline void vc1_pred_b_mv(VC1Context
*v
, int dmv_x
[2], int dmv_y
[2], int direct
, int mvtype
)
983 MpegEncContext
*s
= &v
->s
;
984 int xy
, wrap
, off
= 0;
989 const uint8_t *is_intra
= v
->mb_type
[0];
993 /* scale MV difference to be quad-pel */
994 dmv_x
[0] <<= 1 - s
->quarter_sample
;
995 dmv_y
[0] <<= 1 - s
->quarter_sample
;
996 dmv_x
[1] <<= 1 - s
->quarter_sample
;
997 dmv_y
[1] <<= 1 - s
->quarter_sample
;
1000 xy
= s
->block_index
[0];
1003 s
->current_picture
.motion_val
[0][xy
][0] =
1004 s
->current_picture
.motion_val
[0][xy
][1] =
1005 s
->current_picture
.motion_val
[1][xy
][0] =
1006 s
->current_picture
.motion_val
[1][xy
][1] = 0;
1009 s
->mv
[0][0][0] = scale_mv(s
->next_picture
.motion_val
[1][xy
][0], v
->bfraction
, 0, s
->quarter_sample
);
1010 s
->mv
[0][0][1] = scale_mv(s
->next_picture
.motion_val
[1][xy
][1], v
->bfraction
, 0, s
->quarter_sample
);
1011 s
->mv
[1][0][0] = scale_mv(s
->next_picture
.motion_val
[1][xy
][0], v
->bfraction
, 1, s
->quarter_sample
);
1012 s
->mv
[1][0][1] = scale_mv(s
->next_picture
.motion_val
[1][xy
][1], v
->bfraction
, 1, s
->quarter_sample
);
1014 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1015 s
->mv
[0][0][0] = av_clip(s
->mv
[0][0][0], -60 - (s
->mb_x
<< 6), (s
->mb_width
<< 6) - 4 - (s
->mb_x
<< 6));
1016 s
->mv
[0][0][1] = av_clip(s
->mv
[0][0][1], -60 - (s
->mb_y
<< 6), (s
->mb_height
<< 6) - 4 - (s
->mb_y
<< 6));
1017 s
->mv
[1][0][0] = av_clip(s
->mv
[1][0][0], -60 - (s
->mb_x
<< 6), (s
->mb_width
<< 6) - 4 - (s
->mb_x
<< 6));
1018 s
->mv
[1][0][1] = av_clip(s
->mv
[1][0][1], -60 - (s
->mb_y
<< 6), (s
->mb_height
<< 6) - 4 - (s
->mb_y
<< 6));
1020 s
->current_picture
.motion_val
[0][xy
][0] = s
->mv
[0][0][0];
1021 s
->current_picture
.motion_val
[0][xy
][1] = s
->mv
[0][0][1];
1022 s
->current_picture
.motion_val
[1][xy
][0] = s
->mv
[1][0][0];
1023 s
->current_picture
.motion_val
[1][xy
][1] = s
->mv
[1][0][1];
1027 if((mvtype
== BMV_TYPE_FORWARD
) || (mvtype
== BMV_TYPE_INTERPOLATED
)) {
1028 C
= s
->current_picture
.motion_val
[0][xy
- 2];
1029 A
= s
->current_picture
.motion_val
[0][xy
- wrap
*2];
1030 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-2 : 2;
1031 B
= s
->current_picture
.motion_val
[0][xy
- wrap
*2 + off
];
1033 if(!s
->mb_x
) C
[0] = C
[1] = 0;
1034 if(!s
->first_slice_line
) { // predictor A is not out of bounds
1035 if(s
->mb_width
== 1) {
1039 px
= mid_pred(A
[0], B
[0], C
[0]);
1040 py
= mid_pred(A
[1], B
[1], C
[1]);
1042 } else if(s
->mb_x
) { // predictor C is not out of bounds
1048 /* Pullback MV as specified in 8.3.5.3.4 */
1051 if(v
->profile
< PROFILE_ADVANCED
) {
1052 qx
= (s
->mb_x
<< 5);
1053 qy
= (s
->mb_y
<< 5);
1054 X
= (s
->mb_width
<< 5) - 4;
1055 Y
= (s
->mb_height
<< 5) - 4;
1056 if(qx
+ px
< -28) px
= -28 - qx
;
1057 if(qy
+ py
< -28) py
= -28 - qy
;
1058 if(qx
+ px
> X
) px
= X
- qx
;
1059 if(qy
+ py
> Y
) py
= Y
- qy
;
1061 qx
= (s
->mb_x
<< 6);
1062 qy
= (s
->mb_y
<< 6);
1063 X
= (s
->mb_width
<< 6) - 4;
1064 Y
= (s
->mb_height
<< 6) - 4;
1065 if(qx
+ px
< -60) px
= -60 - qx
;
1066 if(qy
+ py
< -60) py
= -60 - qy
;
1067 if(qx
+ px
> X
) px
= X
- qx
;
1068 if(qy
+ py
> Y
) py
= Y
- qy
;
1071 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1072 if(0 && !s
->first_slice_line
&& s
->mb_x
) {
1073 if(is_intra
[xy
- wrap
])
1074 sum
= FFABS(px
) + FFABS(py
);
1076 sum
= FFABS(px
- A
[0]) + FFABS(py
- A
[1]);
1078 if(get_bits1(&s
->gb
)) {
1086 if(is_intra
[xy
- 2])
1087 sum
= FFABS(px
) + FFABS(py
);
1089 sum
= FFABS(px
- C
[0]) + FFABS(py
- C
[1]);
1091 if(get_bits1(&s
->gb
)) {
1101 /* store MV using signed modulus of MV range defined in 4.11 */
1102 s
->mv
[0][0][0] = ((px
+ dmv_x
[0] + r_x
) & ((r_x
<< 1) - 1)) - r_x
;
1103 s
->mv
[0][0][1] = ((py
+ dmv_y
[0] + r_y
) & ((r_y
<< 1) - 1)) - r_y
;
1105 if((mvtype
== BMV_TYPE_BACKWARD
) || (mvtype
== BMV_TYPE_INTERPOLATED
)) {
1106 C
= s
->current_picture
.motion_val
[1][xy
- 2];
1107 A
= s
->current_picture
.motion_val
[1][xy
- wrap
*2];
1108 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-2 : 2;
1109 B
= s
->current_picture
.motion_val
[1][xy
- wrap
*2 + off
];
1111 if(!s
->mb_x
) C
[0] = C
[1] = 0;
1112 if(!s
->first_slice_line
) { // predictor A is not out of bounds
1113 if(s
->mb_width
== 1) {
1117 px
= mid_pred(A
[0], B
[0], C
[0]);
1118 py
= mid_pred(A
[1], B
[1], C
[1]);
1120 } else if(s
->mb_x
) { // predictor C is not out of bounds
1126 /* Pullback MV as specified in 8.3.5.3.4 */
1129 if(v
->profile
< PROFILE_ADVANCED
) {
1130 qx
= (s
->mb_x
<< 5);
1131 qy
= (s
->mb_y
<< 5);
1132 X
= (s
->mb_width
<< 5) - 4;
1133 Y
= (s
->mb_height
<< 5) - 4;
1134 if(qx
+ px
< -28) px
= -28 - qx
;
1135 if(qy
+ py
< -28) py
= -28 - qy
;
1136 if(qx
+ px
> X
) px
= X
- qx
;
1137 if(qy
+ py
> Y
) py
= Y
- qy
;
1139 qx
= (s
->mb_x
<< 6);
1140 qy
= (s
->mb_y
<< 6);
1141 X
= (s
->mb_width
<< 6) - 4;
1142 Y
= (s
->mb_height
<< 6) - 4;
1143 if(qx
+ px
< -60) px
= -60 - qx
;
1144 if(qy
+ py
< -60) py
= -60 - qy
;
1145 if(qx
+ px
> X
) px
= X
- qx
;
1146 if(qy
+ py
> Y
) py
= Y
- qy
;
1149 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1150 if(0 && !s
->first_slice_line
&& s
->mb_x
) {
1151 if(is_intra
[xy
- wrap
])
1152 sum
= FFABS(px
) + FFABS(py
);
1154 sum
= FFABS(px
- A
[0]) + FFABS(py
- A
[1]);
1156 if(get_bits1(&s
->gb
)) {
1164 if(is_intra
[xy
- 2])
1165 sum
= FFABS(px
) + FFABS(py
);
1167 sum
= FFABS(px
- C
[0]) + FFABS(py
- C
[1]);
1169 if(get_bits1(&s
->gb
)) {
1179 /* store MV using signed modulus of MV range defined in 4.11 */
1181 s
->mv
[1][0][0] = ((px
+ dmv_x
[1] + r_x
) & ((r_x
<< 1) - 1)) - r_x
;
1182 s
->mv
[1][0][1] = ((py
+ dmv_y
[1] + r_y
) & ((r_y
<< 1) - 1)) - r_y
;
1184 s
->current_picture
.motion_val
[0][xy
][0] = s
->mv
[0][0][0];
1185 s
->current_picture
.motion_val
[0][xy
][1] = s
->mv
[0][0][1];
1186 s
->current_picture
.motion_val
[1][xy
][0] = s
->mv
[1][0][0];
1187 s
->current_picture
.motion_val
[1][xy
][1] = s
->mv
[1][0][1];
1190 /** Get predicted DC value for I-frames only
1191 * prediction dir: left=0, top=1
1192 * @param s MpegEncContext
1193 * @param overlap flag indicating that overlap filtering is used
1194 * @param pq integer part of picture quantizer
1195 * @param[in] n block index in the current MB
1196 * @param dc_val_ptr Pointer to DC predictor
1197 * @param dir_ptr Prediction direction for use in AC prediction
1199 static inline int vc1_i_pred_dc(MpegEncContext
*s
, int overlap
, int pq
, int n
,
1200 int16_t **dc_val_ptr
, int *dir_ptr
)
1202 int a
, b
, c
, wrap
, pred
, scale
;
1204 static const uint16_t dcpred
[32] = {
1205 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
1206 114, 102, 93, 85, 79, 73, 68, 64,
1207 60, 57, 54, 51, 49, 47, 45, 43,
1208 41, 39, 38, 37, 35, 34, 33
1211 /* find prediction - wmv3_dc_scale always used here in fact */
1212 if (n
< 4) scale
= s
->y_dc_scale
;
1213 else scale
= s
->c_dc_scale
;
1215 wrap
= s
->block_wrap
[n
];
1216 dc_val
= s
->dc_val
[0] + s
->block_index
[n
];
1222 b
= dc_val
[ - 1 - wrap
];
1223 a
= dc_val
[ - wrap
];
1225 if (pq
< 9 || !overlap
)
1227 /* Set outer values */
1228 if (s
->first_slice_line
&& (n
!=2 && n
!=3)) b
=a
=dcpred
[scale
];
1229 if (s
->mb_x
== 0 && (n
!=1 && n
!=3)) b
=c
=dcpred
[scale
];
1233 /* Set outer values */
1234 if (s
->first_slice_line
&& (n
!=2 && n
!=3)) b
=a
=0;
1235 if (s
->mb_x
== 0 && (n
!=1 && n
!=3)) b
=c
=0;
1238 if (abs(a
- b
) <= abs(b
- c
)) {
1246 /* update predictor */
1247 *dc_val_ptr
= &dc_val
[0];
1252 /** Get predicted DC value
1253 * prediction dir: left=0, top=1
1254 * @param s MpegEncContext
1255 * @param overlap flag indicating that overlap filtering is used
1256 * @param pq integer part of picture quantizer
1257 * @param[in] n block index in the current MB
1258 * @param a_avail flag indicating top block availability
1259 * @param c_avail flag indicating left block availability
1260 * @param dc_val_ptr Pointer to DC predictor
1261 * @param dir_ptr Prediction direction for use in AC prediction
1263 static inline int vc1_pred_dc(MpegEncContext
*s
, int overlap
, int pq
, int n
,
1264 int a_avail
, int c_avail
,
1265 int16_t **dc_val_ptr
, int *dir_ptr
)
1267 int a
, b
, c
, wrap
, pred
;
1269 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
1272 wrap
= s
->block_wrap
[n
];
1273 dc_val
= s
->dc_val
[0] + s
->block_index
[n
];
1279 b
= dc_val
[ - 1 - wrap
];
1280 a
= dc_val
[ - wrap
];
1281 /* scale predictors if needed */
1282 q1
= s
->current_picture
.qscale_table
[mb_pos
];
1283 if(c_avail
&& (n
!= 1 && n
!=3)) {
1284 q2
= s
->current_picture
.qscale_table
[mb_pos
- 1];
1286 c
= (c
* s
->y_dc_scale_table
[q2
] * ff_vc1_dqscale
[s
->y_dc_scale_table
[q1
] - 1] + 0x20000) >> 18;
1288 if(a_avail
&& (n
!= 2 && n
!=3)) {
1289 q2
= s
->current_picture
.qscale_table
[mb_pos
- s
->mb_stride
];
1291 a
= (a
* s
->y_dc_scale_table
[q2
] * ff_vc1_dqscale
[s
->y_dc_scale_table
[q1
] - 1] + 0x20000) >> 18;
1293 if(a_avail
&& c_avail
&& (n
!=3)) {
1296 if(n
!= 2) off
-= s
->mb_stride
;
1297 q2
= s
->current_picture
.qscale_table
[off
];
1299 b
= (b
* s
->y_dc_scale_table
[q2
] * ff_vc1_dqscale
[s
->y_dc_scale_table
[q1
] - 1] + 0x20000) >> 18;
1302 if(a_avail
&& c_avail
) {
1303 if(abs(a
- b
) <= abs(b
- c
)) {
1310 } else if(a_avail
) {
1313 } else if(c_avail
) {
1321 /* update predictor */
1322 *dc_val_ptr
= &dc_val
[0];
1326 /** @} */ // Block group
1329 * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
1330 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1334 static inline int vc1_coded_block_pred(MpegEncContext
* s
, int n
, uint8_t **coded_block_ptr
)
1336 int xy
, wrap
, pred
, a
, b
, c
;
1338 xy
= s
->block_index
[n
];
1339 wrap
= s
->b8_stride
;
1344 a
= s
->coded_block
[xy
- 1 ];
1345 b
= s
->coded_block
[xy
- 1 - wrap
];
1346 c
= s
->coded_block
[xy
- wrap
];
1355 *coded_block_ptr
= &s
->coded_block
[xy
];
1361 * Decode one AC coefficient
1362 * @param v The VC1 context
1363 * @param last Last coefficient
1364 * @param skip How much zero coefficients to skip
1365 * @param value Decoded AC coefficient value
1366 * @param codingset set of VLC to decode data
1369 static void vc1_decode_ac_coeff(VC1Context
*v
, int *last
, int *skip
, int *value
, int codingset
)
1371 GetBitContext
*gb
= &v
->s
.gb
;
1372 int index
, escape
, run
= 0, level
= 0, lst
= 0;
1374 index
= get_vlc2(gb
, ff_vc1_ac_coeff_table
[codingset
].table
, AC_VLC_BITS
, 3);
1375 if (index
!= vc1_ac_sizes
[codingset
] - 1) {
1376 run
= vc1_index_decode_table
[codingset
][index
][0];
1377 level
= vc1_index_decode_table
[codingset
][index
][1];
1378 lst
= index
>= vc1_last_decode_table
[codingset
];
1382 escape
= decode210(gb
);
1384 index
= get_vlc2(gb
, ff_vc1_ac_coeff_table
[codingset
].table
, AC_VLC_BITS
, 3);
1385 run
= vc1_index_decode_table
[codingset
][index
][0];
1386 level
= vc1_index_decode_table
[codingset
][index
][1];
1387 lst
= index
>= vc1_last_decode_table
[codingset
];
1390 level
+= vc1_last_delta_level_table
[codingset
][run
];
1392 level
+= vc1_delta_level_table
[codingset
][run
];
1395 run
+= vc1_last_delta_run_table
[codingset
][level
] + 1;
1397 run
+= vc1_delta_run_table
[codingset
][level
] + 1;
1403 lst
= get_bits1(gb
);
1404 if(v
->s
.esc3_level_length
== 0) {
1405 if(v
->pq
< 8 || v
->dquantfrm
) { // table 59
1406 v
->s
.esc3_level_length
= get_bits(gb
, 3);
1407 if(!v
->s
.esc3_level_length
)
1408 v
->s
.esc3_level_length
= get_bits(gb
, 2) + 8;
1410 v
->s
.esc3_level_length
= get_unary(gb
, 1, 6) + 2;
1412 v
->s
.esc3_run_length
= 3 + get_bits(gb
, 2);
1414 run
= get_bits(gb
, v
->s
.esc3_run_length
);
1415 sign
= get_bits1(gb
);
1416 level
= get_bits(gb
, v
->s
.esc3_level_length
);
1427 /** Decode intra block in intra frames - should be faster than decode_intra_block
1428 * @param v VC1Context
1429 * @param block block to decode
1430 * @param[in] n subblock index
1431 * @param coded are AC coeffs present or not
1432 * @param codingset set of VLC to decode data
1434 static int vc1_decode_i_block(VC1Context
*v
, DCTELEM block
[64], int n
, int coded
, int codingset
)
1436 GetBitContext
*gb
= &v
->s
.gb
;
1437 MpegEncContext
*s
= &v
->s
;
1438 int dc_pred_dir
= 0; /* Direction of the DC prediction used */
1441 int16_t *ac_val
, *ac_val2
;
1444 /* Get DC differential */
1446 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_luma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
1448 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_chroma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
1451 av_log(s
->avctx
, AV_LOG_ERROR
, "Illegal DC VLC\n");
1456 if (dcdiff
== 119 /* ESC index value */)
1458 /* TODO: Optimize */
1459 if (v
->pq
== 1) dcdiff
= get_bits(gb
, 10);
1460 else if (v
->pq
== 2) dcdiff
= get_bits(gb
, 9);
1461 else dcdiff
= get_bits(gb
, 8);
1466 dcdiff
= (dcdiff
<<2) + get_bits(gb
, 2) - 3;
1467 else if (v
->pq
== 2)
1468 dcdiff
= (dcdiff
<<1) + get_bits1(gb
) - 1;
1475 dcdiff
+= vc1_i_pred_dc(&v
->s
, v
->overlap
, v
->pq
, n
, &dc_val
, &dc_pred_dir
);
1478 /* Store the quantized DC coeff, used for prediction */
1480 block
[0] = dcdiff
* s
->y_dc_scale
;
1482 block
[0] = dcdiff
* s
->c_dc_scale
;
1493 int last
= 0, skip
, value
;
1494 const uint8_t *zz_table
;
1498 scale
= v
->pq
* 2 + v
->halfpq
;
1502 zz_table
= wmv1_scantable
[2];
1504 zz_table
= wmv1_scantable
[3];
1506 zz_table
= wmv1_scantable
[1];
1508 ac_val
= s
->ac_val
[0][0] + s
->block_index
[n
] * 16;
1510 if(dc_pred_dir
) //left
1513 ac_val
-= 16 * s
->block_wrap
[n
];
1516 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, codingset
);
1520 block
[zz_table
[i
++]] = value
;
1523 /* apply AC prediction if needed */
1525 if(dc_pred_dir
) { //left
1526 for(k
= 1; k
< 8; k
++)
1527 block
[k
<< 3] += ac_val
[k
];
1529 for(k
= 1; k
< 8; k
++)
1530 block
[k
] += ac_val
[k
+ 8];
1533 /* save AC coeffs for further prediction */
1534 for(k
= 1; k
< 8; k
++) {
1535 ac_val2
[k
] = block
[k
<< 3];
1536 ac_val2
[k
+ 8] = block
[k
];
1539 /* scale AC coeffs */
1540 for(k
= 1; k
< 64; k
++)
1544 block
[k
] += (block
[k
] < 0) ?
-v
->pq
: v
->pq
;
1547 if(s
->ac_pred
) i
= 63;
1553 ac_val
= s
->ac_val
[0][0] + s
->block_index
[n
] * 16;
1557 scale
= v
->pq
* 2 + v
->halfpq
;
1558 memset(ac_val2
, 0, 16 * 2);
1559 if(dc_pred_dir
) {//left
1562 memcpy(ac_val2
, ac_val
, 8 * 2);
1564 ac_val
-= 16 * s
->block_wrap
[n
];
1566 memcpy(ac_val2
+ 8, ac_val
+ 8, 8 * 2);
1569 /* apply AC prediction if needed */
1571 if(dc_pred_dir
) { //left
1572 for(k
= 1; k
< 8; k
++) {
1573 block
[k
<< 3] = ac_val
[k
] * scale
;
1574 if(!v
->pquantizer
&& block
[k
<< 3])
1575 block
[k
<< 3] += (block
[k
<< 3] < 0) ?
-v
->pq
: v
->pq
;
1578 for(k
= 1; k
< 8; k
++) {
1579 block
[k
] = ac_val
[k
+ 8] * scale
;
1580 if(!v
->pquantizer
&& block
[k
])
1581 block
[k
] += (block
[k
] < 0) ?
-v
->pq
: v
->pq
;
1587 s
->block_last_index
[n
] = i
;
1592 /** Decode intra block in intra frames - should be faster than decode_intra_block
1593 * @param v VC1Context
1594 * @param block block to decode
1595 * @param[in] n subblock number
1596 * @param coded are AC coeffs present or not
1597 * @param codingset set of VLC to decode data
1598 * @param mquant quantizer value for this macroblock
1600 static int vc1_decode_i_block_adv(VC1Context
*v
, DCTELEM block
[64], int n
, int coded
, int codingset
, int mquant
)
1602 GetBitContext
*gb
= &v
->s
.gb
;
1603 MpegEncContext
*s
= &v
->s
;
1604 int dc_pred_dir
= 0; /* Direction of the DC prediction used */
1607 int16_t *ac_val
, *ac_val2
;
1609 int a_avail
= v
->a_avail
, c_avail
= v
->c_avail
;
1610 int use_pred
= s
->ac_pred
;
1613 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
1615 /* Get DC differential */
1617 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_luma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
1619 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_chroma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
1622 av_log(s
->avctx
, AV_LOG_ERROR
, "Illegal DC VLC\n");
1627 if (dcdiff
== 119 /* ESC index value */)
1629 /* TODO: Optimize */
1630 if (mquant
== 1) dcdiff
= get_bits(gb
, 10);
1631 else if (mquant
== 2) dcdiff
= get_bits(gb
, 9);
1632 else dcdiff
= get_bits(gb
, 8);
1637 dcdiff
= (dcdiff
<<2) + get_bits(gb
, 2) - 3;
1638 else if (mquant
== 2)
1639 dcdiff
= (dcdiff
<<1) + get_bits1(gb
) - 1;
1646 dcdiff
+= vc1_pred_dc(&v
->s
, v
->overlap
, mquant
, n
, v
->a_avail
, v
->c_avail
, &dc_val
, &dc_pred_dir
);
1649 /* Store the quantized DC coeff, used for prediction */
1651 block
[0] = dcdiff
* s
->y_dc_scale
;
1653 block
[0] = dcdiff
* s
->c_dc_scale
;
1659 /* check if AC is needed at all */
1660 if(!a_avail
&& !c_avail
) use_pred
= 0;
1661 ac_val
= s
->ac_val
[0][0] + s
->block_index
[n
] * 16;
1664 scale
= mquant
* 2 + ((mquant
== v
->pq
) ? v
->halfpq
: 0);
1666 if(dc_pred_dir
) //left
1669 ac_val
-= 16 * s
->block_wrap
[n
];
1671 q1
= s
->current_picture
.qscale_table
[mb_pos
];
1672 if(dc_pred_dir
&& c_avail
&& mb_pos
) q2
= s
->current_picture
.qscale_table
[mb_pos
- 1];
1673 if(!dc_pred_dir
&& a_avail
&& mb_pos
>= s
->mb_stride
) q2
= s
->current_picture
.qscale_table
[mb_pos
- s
->mb_stride
];
1674 if(dc_pred_dir
&& n
==1) q2
= q1
;
1675 if(!dc_pred_dir
&& n
==2) q2
= q1
;
1679 int last
= 0, skip
, value
;
1680 const uint8_t *zz_table
;
1685 zz_table
= wmv1_scantable
[2];
1687 zz_table
= wmv1_scantable
[3];
1689 zz_table
= wmv1_scantable
[1];
1692 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, codingset
);
1696 block
[zz_table
[i
++]] = value
;
1699 /* apply AC prediction if needed */
1701 /* scale predictors if needed*/
1703 q1
= q1
* 2 + ((q1
== v
->pq
) ? v
->halfpq
: 0) - 1;
1704 q2
= q2
* 2 + ((q2
== v
->pq
) ? v
->halfpq
: 0) - 1;
1706 if(dc_pred_dir
) { //left
1707 for(k
= 1; k
< 8; k
++)
1708 block
[k
<< 3] += (ac_val
[k
] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1710 for(k
= 1; k
< 8; k
++)
1711 block
[k
] += (ac_val
[k
+ 8] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1714 if(dc_pred_dir
) { //left
1715 for(k
= 1; k
< 8; k
++)
1716 block
[k
<< 3] += ac_val
[k
];
1718 for(k
= 1; k
< 8; k
++)
1719 block
[k
] += ac_val
[k
+ 8];
1723 /* save AC coeffs for further prediction */
1724 for(k
= 1; k
< 8; k
++) {
1725 ac_val2
[k
] = block
[k
<< 3];
1726 ac_val2
[k
+ 8] = block
[k
];
1729 /* scale AC coeffs */
1730 for(k
= 1; k
< 64; k
++)
1734 block
[k
] += (block
[k
] < 0) ?
-mquant
: mquant
;
1737 if(use_pred
) i
= 63;
1738 } else { // no AC coeffs
1741 memset(ac_val2
, 0, 16 * 2);
1742 if(dc_pred_dir
) {//left
1744 memcpy(ac_val2
, ac_val
, 8 * 2);
1746 q1
= q1
* 2 + ((q1
== v
->pq
) ? v
->halfpq
: 0) - 1;
1747 q2
= q2
* 2 + ((q2
== v
->pq
) ? v
->halfpq
: 0) - 1;
1748 for(k
= 1; k
< 8; k
++)
1749 ac_val2
[k
] = (ac_val2
[k
] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1754 memcpy(ac_val2
+ 8, ac_val
+ 8, 8 * 2);
1756 q1
= q1
* 2 + ((q1
== v
->pq
) ? v
->halfpq
: 0) - 1;
1757 q2
= q2
* 2 + ((q2
== v
->pq
) ? v
->halfpq
: 0) - 1;
1758 for(k
= 1; k
< 8; k
++)
1759 ac_val2
[k
+ 8] = (ac_val2
[k
+ 8] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1764 /* apply AC prediction if needed */
1766 if(dc_pred_dir
) { //left
1767 for(k
= 1; k
< 8; k
++) {
1768 block
[k
<< 3] = ac_val2
[k
] * scale
;
1769 if(!v
->pquantizer
&& block
[k
<< 3])
1770 block
[k
<< 3] += (block
[k
<< 3] < 0) ?
-mquant
: mquant
;
1773 for(k
= 1; k
< 8; k
++) {
1774 block
[k
] = ac_val2
[k
+ 8] * scale
;
1775 if(!v
->pquantizer
&& block
[k
])
1776 block
[k
] += (block
[k
] < 0) ?
-mquant
: mquant
;
1782 s
->block_last_index
[n
] = i
;
1787 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
1788 * @param v VC1Context
1789 * @param block block to decode
1790 * @param[in] n subblock index
1791 * @param coded are AC coeffs present or not
1792 * @param mquant block quantizer
1793 * @param codingset set of VLC to decode data
1795 static int vc1_decode_intra_block(VC1Context
*v
, DCTELEM block
[64], int n
, int coded
, int mquant
, int codingset
)
1797 GetBitContext
*gb
= &v
->s
.gb
;
1798 MpegEncContext
*s
= &v
->s
;
1799 int dc_pred_dir
= 0; /* Direction of the DC prediction used */
1802 int16_t *ac_val
, *ac_val2
;
1804 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
1805 int a_avail
= v
->a_avail
, c_avail
= v
->c_avail
;
1806 int use_pred
= s
->ac_pred
;
1810 s
->dsp
.clear_block(block
);
1812 /* XXX: Guard against dumb values of mquant */
1813 mquant
= (mquant
< 1) ?
0 : ( (mquant
>31) ?
31 : mquant
);
1815 /* Set DC scale - y and c use the same */
1816 s
->y_dc_scale
= s
->y_dc_scale_table
[mquant
];
1817 s
->c_dc_scale
= s
->c_dc_scale_table
[mquant
];
1819 /* Get DC differential */
1821 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_luma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
1823 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_chroma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
1826 av_log(s
->avctx
, AV_LOG_ERROR
, "Illegal DC VLC\n");
1831 if (dcdiff
== 119 /* ESC index value */)
1833 /* TODO: Optimize */
1834 if (mquant
== 1) dcdiff
= get_bits(gb
, 10);
1835 else if (mquant
== 2) dcdiff
= get_bits(gb
, 9);
1836 else dcdiff
= get_bits(gb
, 8);
1841 dcdiff
= (dcdiff
<<2) + get_bits(gb
, 2) - 3;
1842 else if (mquant
== 2)
1843 dcdiff
= (dcdiff
<<1) + get_bits1(gb
) - 1;
1850 dcdiff
+= vc1_pred_dc(&v
->s
, v
->overlap
, mquant
, n
, a_avail
, c_avail
, &dc_val
, &dc_pred_dir
);
1853 /* Store the quantized DC coeff, used for prediction */
1856 block
[0] = dcdiff
* s
->y_dc_scale
;
1858 block
[0] = dcdiff
* s
->c_dc_scale
;
1864 /* check if AC is needed at all and adjust direction if needed */
1865 if(!a_avail
) dc_pred_dir
= 1;
1866 if(!c_avail
) dc_pred_dir
= 0;
1867 if(!a_avail
&& !c_avail
) use_pred
= 0;
1868 ac_val
= s
->ac_val
[0][0] + s
->block_index
[n
] * 16;
1871 scale
= mquant
* 2 + v
->halfpq
;
1873 if(dc_pred_dir
) //left
1876 ac_val
-= 16 * s
->block_wrap
[n
];
1878 q1
= s
->current_picture
.qscale_table
[mb_pos
];
1879 if(dc_pred_dir
&& c_avail
&& mb_pos
) q2
= s
->current_picture
.qscale_table
[mb_pos
- 1];
1880 if(!dc_pred_dir
&& a_avail
&& mb_pos
>= s
->mb_stride
) q2
= s
->current_picture
.qscale_table
[mb_pos
- s
->mb_stride
];
1881 if(dc_pred_dir
&& n
==1) q2
= q1
;
1882 if(!dc_pred_dir
&& n
==2) q2
= q1
;
1886 int last
= 0, skip
, value
;
1887 const uint8_t *zz_table
;
1890 zz_table
= wmv1_scantable
[0];
1893 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, codingset
);
1897 block
[zz_table
[i
++]] = value
;
1900 /* apply AC prediction if needed */
1902 /* scale predictors if needed*/
1904 q1
= q1
* 2 + ((q1
== v
->pq
) ? v
->halfpq
: 0) - 1;
1905 q2
= q2
* 2 + ((q2
== v
->pq
) ? v
->halfpq
: 0) - 1;
1907 if(dc_pred_dir
) { //left
1908 for(k
= 1; k
< 8; k
++)
1909 block
[k
<< 3] += (ac_val
[k
] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1911 for(k
= 1; k
< 8; k
++)
1912 block
[k
] += (ac_val
[k
+ 8] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1915 if(dc_pred_dir
) { //left
1916 for(k
= 1; k
< 8; k
++)
1917 block
[k
<< 3] += ac_val
[k
];
1919 for(k
= 1; k
< 8; k
++)
1920 block
[k
] += ac_val
[k
+ 8];
1924 /* save AC coeffs for further prediction */
1925 for(k
= 1; k
< 8; k
++) {
1926 ac_val2
[k
] = block
[k
<< 3];
1927 ac_val2
[k
+ 8] = block
[k
];
1930 /* scale AC coeffs */
1931 for(k
= 1; k
< 64; k
++)
1935 block
[k
] += (block
[k
] < 0) ?
-mquant
: mquant
;
1938 if(use_pred
) i
= 63;
1939 } else { // no AC coeffs
1942 memset(ac_val2
, 0, 16 * 2);
1943 if(dc_pred_dir
) {//left
1945 memcpy(ac_val2
, ac_val
, 8 * 2);
1947 q1
= q1
* 2 + ((q1
== v
->pq
) ? v
->halfpq
: 0) - 1;
1948 q2
= q2
* 2 + ((q2
== v
->pq
) ? v
->halfpq
: 0) - 1;
1949 for(k
= 1; k
< 8; k
++)
1950 ac_val2
[k
] = (ac_val2
[k
] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1955 memcpy(ac_val2
+ 8, ac_val
+ 8, 8 * 2);
1957 q1
= q1
* 2 + ((q1
== v
->pq
) ? v
->halfpq
: 0) - 1;
1958 q2
= q2
* 2 + ((q2
== v
->pq
) ? v
->halfpq
: 0) - 1;
1959 for(k
= 1; k
< 8; k
++)
1960 ac_val2
[k
+ 8] = (ac_val2
[k
+ 8] * q2
* ff_vc1_dqscale
[q1
- 1] + 0x20000) >> 18;
1965 /* apply AC prediction if needed */
1967 if(dc_pred_dir
) { //left
1968 for(k
= 1; k
< 8; k
++) {
1969 block
[k
<< 3] = ac_val2
[k
] * scale
;
1970 if(!v
->pquantizer
&& block
[k
<< 3])
1971 block
[k
<< 3] += (block
[k
<< 3] < 0) ?
-mquant
: mquant
;
1974 for(k
= 1; k
< 8; k
++) {
1975 block
[k
] = ac_val2
[k
+ 8] * scale
;
1976 if(!v
->pquantizer
&& block
[k
])
1977 block
[k
] += (block
[k
] < 0) ?
-mquant
: mquant
;
1983 s
->block_last_index
[n
] = i
;
1990 static int vc1_decode_p_block(VC1Context
*v
, DCTELEM block
[64], int n
, int mquant
, int ttmb
, int first_block
,
1991 uint8_t *dst
, int linesize
, int skip_block
, int apply_filter
, int cbp_top
, int cbp_left
)
1993 MpegEncContext
*s
= &v
->s
;
1994 GetBitContext
*gb
= &s
->gb
;
1997 int scale
, off
, idx
, last
, skip
, value
;
1998 int ttblk
= ttmb
& 7;
2001 s
->dsp
.clear_block(block
);
2004 ttblk
= ff_vc1_ttblk_to_tt
[v
->tt_index
][get_vlc2(gb
, ff_vc1_ttblk_vlc
[v
->tt_index
].table
, VC1_TTBLK_VLC_BITS
, 1)];
2006 if(ttblk
== TT_4X4
) {
2007 subblkpat
= ~(get_vlc2(gb
, ff_vc1_subblkpat_vlc
[v
->tt_index
].table
, VC1_SUBBLKPAT_VLC_BITS
, 1) + 1);
2009 if((ttblk
!= TT_8X8
&& ttblk
!= TT_4X4
)
2010 && ((v
->ttmbf
|| (ttmb
!= -1 && (ttmb
& 8) && !first_block
))
2011 || (!v
->res_rtm_flag
&& !first_block
))) {
2012 subblkpat
= decode012(gb
);
2013 if(subblkpat
) subblkpat
^= 3; //swap decoded pattern bits
2014 if(ttblk
== TT_8X4_TOP
|| ttblk
== TT_8X4_BOTTOM
) ttblk
= TT_8X4
;
2015 if(ttblk
== TT_4X8_RIGHT
|| ttblk
== TT_4X8_LEFT
) ttblk
= TT_4X8
;
2017 scale
= 2 * mquant
+ ((v
->pq
== mquant
) ? v
->halfpq
: 0);
2019 // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2020 if(ttblk
== TT_8X4_TOP
|| ttblk
== TT_8X4_BOTTOM
) {
2021 subblkpat
= 2 - (ttblk
== TT_8X4_TOP
);
2024 if(ttblk
== TT_4X8_RIGHT
|| ttblk
== TT_4X8_LEFT
) {
2025 subblkpat
= 2 - (ttblk
== TT_4X8_LEFT
);
2034 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, v
->codingset2
);
2038 idx
= wmv1_scantable
[0][i
++];
2039 block
[idx
] = value
* scale
;
2041 block
[idx
] += (block
[idx
] < 0) ?
-mquant
: mquant
;
2045 s
->dsp
.vc1_inv_trans_8x8_dc(dst
, linesize
, block
);
2047 s
->dsp
.vc1_inv_trans_8x8(block
);
2048 s
->dsp
.add_pixels_clamped(block
, dst
, linesize
);
2050 if(apply_filter
&& cbp_top
& 0xC)
2051 s
->dsp
.vc1_v_loop_filter8(dst
, linesize
, v
->pq
);
2052 if(apply_filter
&& cbp_left
& 0xA)
2053 s
->dsp
.vc1_h_loop_filter8(dst
, linesize
, v
->pq
);
2057 pat
= ~subblkpat
& 0xF;
2058 for(j
= 0; j
< 4; j
++) {
2059 last
= subblkpat
& (1 << (3 - j
));
2061 off
= (j
& 1) * 4 + (j
& 2) * 16;
2063 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, v
->codingset2
);
2067 idx
= ff_vc1_simple_progressive_4x4_zz
[i
++];
2068 block
[idx
+ off
] = value
* scale
;
2070 block
[idx
+ off
] += (block
[idx
+ off
] < 0) ?
-mquant
: mquant
;
2072 if(!(subblkpat
& (1 << (3 - j
))) && !skip_block
){
2074 s
->dsp
.vc1_inv_trans_4x4_dc(dst
+ (j
&1)*4 + (j
&2)*2*linesize
, linesize
, block
+ off
);
2076 s
->dsp
.vc1_inv_trans_4x4(dst
+ (j
&1)*4 + (j
&2)*2*linesize
, linesize
, block
+ off
);
2077 if(apply_filter
&& (j
&2 ? pat
& (1<<(j
-2)) : (cbp_top
& (1 << (j
+ 2)))))
2078 s
->dsp
.vc1_v_loop_filter4(dst
+ (j
&1)*4 + (j
&2)*2*linesize
, linesize
, v
->pq
);
2079 if(apply_filter
&& (j
&1 ? pat
& (1<<(j
-1)) : (cbp_left
& (1 << (j
+ 1)))))
2080 s
->dsp
.vc1_h_loop_filter4(dst
+ (j
&1)*4 + (j
&2)*2*linesize
, linesize
, v
->pq
);
2085 pat
= ~((subblkpat
& 2)*6 + (subblkpat
& 1)*3) & 0xF;
2086 for(j
= 0; j
< 2; j
++) {
2087 last
= subblkpat
& (1 << (1 - j
));
2091 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, v
->codingset2
);
2095 idx
= v
->zz_8x4
[i
++]+off
;
2096 block
[idx
] = value
* scale
;
2098 block
[idx
] += (block
[idx
] < 0) ?
-mquant
: mquant
;
2100 if(!(subblkpat
& (1 << (1 - j
))) && !skip_block
){
2102 s
->dsp
.vc1_inv_trans_8x4_dc(dst
+ j
*4*linesize
, linesize
, block
+ off
);
2104 s
->dsp
.vc1_inv_trans_8x4(dst
+ j
*4*linesize
, linesize
, block
+ off
);
2105 if(apply_filter
&& j ? pat
& 0x3 : (cbp_top
& 0xC))
2106 s
->dsp
.vc1_v_loop_filter8(dst
+ j
*4*linesize
, linesize
, v
->pq
);
2107 if(apply_filter
&& cbp_left
& (2 << j
))
2108 s
->dsp
.vc1_h_loop_filter4(dst
+ j
*4*linesize
, linesize
, v
->pq
);
2113 pat
= ~(subblkpat
*5) & 0xF;
2114 for(j
= 0; j
< 2; j
++) {
2115 last
= subblkpat
& (1 << (1 - j
));
2119 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, v
->codingset2
);
2123 idx
= v
->zz_4x8
[i
++]+off
;
2124 block
[idx
] = value
* scale
;
2126 block
[idx
] += (block
[idx
] < 0) ?
-mquant
: mquant
;
2128 if(!(subblkpat
& (1 << (1 - j
))) && !skip_block
){
2130 s
->dsp
.vc1_inv_trans_4x8_dc(dst
+ j
*4, linesize
, block
+ off
);
2132 s
->dsp
.vc1_inv_trans_4x8(dst
+ j
*4, linesize
, block
+ off
);
2133 if(apply_filter
&& cbp_top
& (2 << j
))
2134 s
->dsp
.vc1_v_loop_filter4(dst
+ j
*4, linesize
, v
->pq
);
2135 if(apply_filter
&& j ? pat
& 0x5 : (cbp_left
& 0xA))
2136 s
->dsp
.vc1_h_loop_filter8(dst
+ j
*4, linesize
, v
->pq
);
2144 /** @} */ // Macroblock group
2146 static const int size_table
[6] = { 0, 2, 3, 4, 5, 8 };
2147 static const int offset_table
[6] = { 0, 1, 3, 7, 15, 31 };
2149 /** Decode one P-frame MB (in Simple/Main profile)
2151 static int vc1_decode_p_mb(VC1Context
*v
)
2153 MpegEncContext
*s
= &v
->s
;
2154 GetBitContext
*gb
= &s
->gb
;
2156 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
2157 int cbp
; /* cbp decoding stuff */
2158 int mqdiff
, mquant
; /* MB quantization */
2159 int ttmb
= v
->ttfrm
; /* MB Transform type */
2161 int mb_has_coeffs
= 1; /* last_flag */
2162 int dmv_x
, dmv_y
; /* Differential MV components */
2163 int index
, index1
; /* LUT indexes */
2164 int val
, sign
; /* temp values */
2165 int first_block
= 1;
2167 int skipped
, fourmv
;
2168 int block_cbp
= 0, pat
;
2169 int apply_loop_filter
;
2171 mquant
= v
->pq
; /* Loosy initialization */
2173 if (v
->mv_type_is_raw
)
2174 fourmv
= get_bits1(gb
);
2176 fourmv
= v
->mv_type_mb_plane
[mb_pos
];
2178 skipped
= get_bits1(gb
);
2180 skipped
= v
->s
.mbskip_table
[mb_pos
];
2182 apply_loop_filter
= s
->loop_filter
&& !(s
->avctx
->skip_loop_filter
>= AVDISCARD_NONKEY
);
2183 if (!fourmv
) /* 1MV mode */
2187 GET_MVDATA(dmv_x
, dmv_y
);
2190 s
->current_picture
.motion_val
[1][s
->block_index
[0]][0] = 0;
2191 s
->current_picture
.motion_val
[1][s
->block_index
[0]][1] = 0;
2193 s
->current_picture
.mb_type
[mb_pos
] = s
->mb_intra ? MB_TYPE_INTRA
: MB_TYPE_16x16
;
2194 vc1_pred_mv(s
, 0, dmv_x
, dmv_y
, 1, v
->range_x
, v
->range_y
, v
->mb_type
[0]);
2196 /* FIXME Set DC val for inter block ? */
2197 if (s
->mb_intra
&& !mb_has_coeffs
)
2200 s
->ac_pred
= get_bits1(gb
);
2203 else if (mb_has_coeffs
)
2205 if (s
->mb_intra
) s
->ac_pred
= get_bits1(gb
);
2206 cbp
= get_vlc2(&v
->s
.gb
, v
->cbpcy_vlc
->table
, VC1_CBPCY_P_VLC_BITS
, 2);
2214 s
->current_picture
.qscale_table
[mb_pos
] = mquant
;
2216 if (!v
->ttmbf
&& !s
->mb_intra
&& mb_has_coeffs
)
2217 ttmb
= get_vlc2(gb
, ff_vc1_ttmb_vlc
[v
->tt_index
].table
,
2218 VC1_TTMB_VLC_BITS
, 2);
2219 if(!s
->mb_intra
) vc1_mc_1mv(v
, 0);
2223 s
->dc_val
[0][s
->block_index
[i
]] = 0;
2225 val
= ((cbp
>> (5 - i
)) & 1);
2226 off
= (i
& 4) ?
0 : ((i
& 1) * 8 + (i
& 2) * 4 * s
->linesize
);
2227 v
->mb_type
[0][s
->block_index
[i
]] = s
->mb_intra
;
2229 /* check if prediction blocks A and C are available */
2230 v
->a_avail
= v
->c_avail
= 0;
2231 if(i
== 2 || i
== 3 || !s
->first_slice_line
)
2232 v
->a_avail
= v
->mb_type
[0][s
->block_index
[i
] - s
->block_wrap
[i
]];
2233 if(i
== 1 || i
== 3 || s
->mb_x
)
2234 v
->c_avail
= v
->mb_type
[0][s
->block_index
[i
] - 1];
2236 vc1_decode_intra_block(v
, s
->block
[i
], i
, val
, mquant
, (i
&4)?v
->codingset2
:v
->codingset
);
2237 if((i
>3) && (s
->flags
& CODEC_FLAG_GRAY
)) continue;
2238 s
->dsp
.vc1_inv_trans_8x8(s
->block
[i
]);
2239 if(v
->rangeredfrm
) for(j
= 0; j
< 64; j
++) s
->block
[i
][j
] <<= 1;
2240 s
->dsp
.put_signed_pixels_clamped(s
->block
[i
], s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
);
2241 if(v
->pq
>= 9 && v
->overlap
) {
2243 s
->dsp
.vc1_h_overlap(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
);
2245 s
->dsp
.vc1_v_overlap(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
);
2247 if(apply_loop_filter
&& s
->mb_x
&& s
->mb_x
!= (s
->mb_width
- 1) && s
->mb_y
&& s
->mb_y
!= (s
->mb_height
- 1)){
2248 int left_cbp
, top_cbp
;
2250 left_cbp
= v
->cbp
[s
->mb_x
- 1] >> (i
* 4);
2251 top_cbp
= v
->cbp
[s
->mb_x
- s
->mb_stride
] >> (i
* 4);
2253 left_cbp
= (i
& 1) ?
(cbp
>> ((i
-1)*4)) : (v
->cbp
[s
->mb_x
- 1] >> ((i
+1)*4));
2254 top_cbp
= (i
& 2) ?
(cbp
>> ((i
-2)*4)) : (v
->cbp
[s
->mb_x
- s
->mb_stride
] >> ((i
+2)*4));
2257 s
->dsp
.vc1_v_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2259 s
->dsp
.vc1_h_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2261 block_cbp
|= 0xF << (i
<< 2);
2263 int left_cbp
= 0, top_cbp
= 0, filter
= 0;
2264 if(apply_loop_filter
&& s
->mb_x
&& s
->mb_x
!= (s
->mb_width
- 1) && s
->mb_y
&& s
->mb_y
!= (s
->mb_height
- 1)){
2267 left_cbp
= v
->cbp
[s
->mb_x
- 1] >> (i
* 4);
2268 top_cbp
= v
->cbp
[s
->mb_x
- s
->mb_stride
] >> (i
* 4);
2270 left_cbp
= (i
& 1) ?
(cbp
>> ((i
-1)*4)) : (v
->cbp
[s
->mb_x
- 1] >> ((i
+1)*4));
2271 top_cbp
= (i
& 2) ?
(cbp
>> ((i
-2)*4)) : (v
->cbp
[s
->mb_x
- s
->mb_stride
] >> ((i
+2)*4));
2274 s
->dsp
.vc1_v_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2276 s
->dsp
.vc1_h_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2278 pat
= vc1_decode_p_block(v
, s
->block
[i
], i
, mquant
, ttmb
, first_block
, s
->dest
[dst_idx
] + off
, (i
&4)?s
->uvlinesize
:s
->linesize
, (i
&4) && (s
->flags
& CODEC_FLAG_GRAY
), filter
, left_cbp
, top_cbp
);
2279 block_cbp
|= pat
<< (i
<< 2);
2280 if(!v
->ttmbf
&& ttmb
< 8) ttmb
= -1;
2288 for(i
= 0; i
< 6; i
++) {
2289 v
->mb_type
[0][s
->block_index
[i
]] = 0;
2290 s
->dc_val
[0][s
->block_index
[i
]] = 0;
2292 s
->current_picture
.mb_type
[mb_pos
] = MB_TYPE_SKIP
;
2293 s
->current_picture
.qscale_table
[mb_pos
] = 0;
2294 vc1_pred_mv(s
, 0, 0, 0, 1, v
->range_x
, v
->range_y
, v
->mb_type
[0]);
2301 if (!skipped
/* unskipped MB */)
2303 int intra_count
= 0, coded_inter
= 0;
2304 int is_intra
[6], is_coded
[6];
2306 cbp
= get_vlc2(&v
->s
.gb
, v
->cbpcy_vlc
->table
, VC1_CBPCY_P_VLC_BITS
, 2);
2309 val
= ((cbp
>> (5 - i
)) & 1);
2310 s
->dc_val
[0][s
->block_index
[i
]] = 0;
2317 GET_MVDATA(dmv_x
, dmv_y
);
2319 vc1_pred_mv(s
, i
, dmv_x
, dmv_y
, 0, v
->range_x
, v
->range_y
, v
->mb_type
[0]);
2320 if(!s
->mb_intra
) vc1_mc_4mv_luma(v
, i
);
2321 intra_count
+= s
->mb_intra
;
2322 is_intra
[i
] = s
->mb_intra
;
2323 is_coded
[i
] = mb_has_coeffs
;
2326 is_intra
[i
] = (intra_count
>= 3);
2329 if(i
== 4) vc1_mc_4mv_chroma(v
);
2330 v
->mb_type
[0][s
->block_index
[i
]] = is_intra
[i
];
2331 if(!coded_inter
) coded_inter
= !is_intra
[i
] & is_coded
[i
];
2333 // if there are no coded blocks then don't do anything more
2334 if(!intra_count
&& !coded_inter
) return 0;
2337 s
->current_picture
.qscale_table
[mb_pos
] = mquant
;
2338 /* test if block is intra and has pred */
2343 if(((!s
->first_slice_line
|| (i
==2 || i
==3)) && v
->mb_type
[0][s
->block_index
[i
] - s
->block_wrap
[i
]])
2344 || ((s
->mb_x
|| (i
==1 || i
==3)) && v
->mb_type
[0][s
->block_index
[i
] - 1])) {
2349 if(intrapred
)s
->ac_pred
= get_bits1(gb
);
2350 else s
->ac_pred
= 0;
2352 if (!v
->ttmbf
&& coded_inter
)
2353 ttmb
= get_vlc2(gb
, ff_vc1_ttmb_vlc
[v
->tt_index
].table
, VC1_TTMB_VLC_BITS
, 2);
2357 off
= (i
& 4) ?
0 : ((i
& 1) * 8 + (i
& 2) * 4 * s
->linesize
);
2358 s
->mb_intra
= is_intra
[i
];
2360 /* check if prediction blocks A and C are available */
2361 v
->a_avail
= v
->c_avail
= 0;
2362 if(i
== 2 || i
== 3 || !s
->first_slice_line
)
2363 v
->a_avail
= v
->mb_type
[0][s
->block_index
[i
] - s
->block_wrap
[i
]];
2364 if(i
== 1 || i
== 3 || s
->mb_x
)
2365 v
->c_avail
= v
->mb_type
[0][s
->block_index
[i
] - 1];
2367 vc1_decode_intra_block(v
, s
->block
[i
], i
, is_coded
[i
], mquant
, (i
&4)?v
->codingset2
:v
->codingset
);
2368 if((i
>3) && (s
->flags
& CODEC_FLAG_GRAY
)) continue;
2369 s
->dsp
.vc1_inv_trans_8x8(s
->block
[i
]);
2370 if(v
->rangeredfrm
) for(j
= 0; j
< 64; j
++) s
->block
[i
][j
] <<= 1;
2371 s
->dsp
.put_signed_pixels_clamped(s
->block
[i
], s
->dest
[dst_idx
] + off
, (i
&4)?s
->uvlinesize
:s
->linesize
);
2372 if(v
->pq
>= 9 && v
->overlap
) {
2374 s
->dsp
.vc1_h_overlap(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
);
2376 s
->dsp
.vc1_v_overlap(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
);
2378 if(v
->s
.loop_filter
&& s
->mb_x
&& s
->mb_x
!= (s
->mb_width
- 1) && s
->mb_y
&& s
->mb_y
!= (s
->mb_height
- 1)){
2379 int left_cbp
, top_cbp
;
2381 left_cbp
= v
->cbp
[s
->mb_x
- 1] >> (i
* 4);
2382 top_cbp
= v
->cbp
[s
->mb_x
- s
->mb_stride
] >> (i
* 4);
2384 left_cbp
= (i
& 1) ?
(cbp
>> ((i
-1)*4)) : (v
->cbp
[s
->mb_x
- 1] >> ((i
+1)*4));
2385 top_cbp
= (i
& 2) ?
(cbp
>> ((i
-2)*4)) : (v
->cbp
[s
->mb_x
- s
->mb_stride
] >> ((i
+2)*4));
2388 s
->dsp
.vc1_v_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2390 s
->dsp
.vc1_h_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2392 block_cbp
|= 0xF << (i
<< 2);
2393 } else if(is_coded
[i
]) {
2394 int left_cbp
= 0, top_cbp
= 0, filter
= 0;
2395 if(v
->s
.loop_filter
&& s
->mb_x
&& s
->mb_x
!= (s
->mb_width
- 1) && s
->mb_y
&& s
->mb_y
!= (s
->mb_height
- 1)){
2398 left_cbp
= v
->cbp
[s
->mb_x
- 1] >> (i
* 4);
2399 top_cbp
= v
->cbp
[s
->mb_x
- s
->mb_stride
] >> (i
* 4);
2401 left_cbp
= (i
& 1) ?
(cbp
>> ((i
-1)*4)) : (v
->cbp
[s
->mb_x
- 1] >> ((i
+1)*4));
2402 top_cbp
= (i
& 2) ?
(cbp
>> ((i
-2)*4)) : (v
->cbp
[s
->mb_x
- s
->mb_stride
] >> ((i
+2)*4));
2405 s
->dsp
.vc1_v_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2407 s
->dsp
.vc1_h_loop_filter8(s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
, v
->pq
);
2409 pat
= vc1_decode_p_block(v
, s
->block
[i
], i
, mquant
, ttmb
, first_block
, s
->dest
[dst_idx
] + off
, (i
&4)?s
->uvlinesize
:s
->linesize
, (i
&4) && (s
->flags
& CODEC_FLAG_GRAY
), filter
, left_cbp
, top_cbp
);
2410 block_cbp
|= pat
<< (i
<< 2);
2411 if(!v
->ttmbf
&& ttmb
< 8) ttmb
= -1;
2420 s
->current_picture
.qscale_table
[mb_pos
] = 0;
2421 for (i
=0; i
<6; i
++) {
2422 v
->mb_type
[0][s
->block_index
[i
]] = 0;
2423 s
->dc_val
[0][s
->block_index
[i
]] = 0;
2427 vc1_pred_mv(s
, i
, 0, 0, 0, v
->range_x
, v
->range_y
, v
->mb_type
[0]);
2428 vc1_mc_4mv_luma(v
, i
);
2430 vc1_mc_4mv_chroma(v
);
2431 s
->current_picture
.qscale_table
[mb_pos
] = 0;
2435 v
->cbp
[s
->mb_x
] = block_cbp
;
2437 /* Should never happen */
2441 /** Decode one B-frame MB (in Main profile)
2443 static void vc1_decode_b_mb(VC1Context
*v
)
2445 MpegEncContext
*s
= &v
->s
;
2446 GetBitContext
*gb
= &s
->gb
;
2448 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
2449 int cbp
= 0; /* cbp decoding stuff */
2450 int mqdiff
, mquant
; /* MB quantization */
2451 int ttmb
= v
->ttfrm
; /* MB Transform type */
2452 int mb_has_coeffs
= 0; /* last_flag */
2453 int index
, index1
; /* LUT indexes */
2454 int val
, sign
; /* temp values */
2455 int first_block
= 1;
2457 int skipped
, direct
;
2458 int dmv_x
[2], dmv_y
[2];
2459 int bmvtype
= BMV_TYPE_BACKWARD
;
2461 mquant
= v
->pq
; /* Loosy initialization */
2465 direct
= get_bits1(gb
);
2467 direct
= v
->direct_mb_plane
[mb_pos
];
2469 skipped
= get_bits1(gb
);
2471 skipped
= v
->s
.mbskip_table
[mb_pos
];
2473 dmv_x
[0] = dmv_x
[1] = dmv_y
[0] = dmv_y
[1] = 0;
2474 for(i
= 0; i
< 6; i
++) {
2475 v
->mb_type
[0][s
->block_index
[i
]] = 0;
2476 s
->dc_val
[0][s
->block_index
[i
]] = 0;
2478 s
->current_picture
.qscale_table
[mb_pos
] = 0;
2482 GET_MVDATA(dmv_x
[0], dmv_y
[0]);
2483 dmv_x
[1] = dmv_x
[0];
2484 dmv_y
[1] = dmv_y
[0];
2486 if(skipped
|| !s
->mb_intra
) {
2487 bmvtype
= decode012(gb
);
2490 bmvtype
= (v
->bfraction
>= (B_FRACTION_DEN
/2)) ? BMV_TYPE_BACKWARD
: BMV_TYPE_FORWARD
;
2493 bmvtype
= (v
->bfraction
>= (B_FRACTION_DEN
/2)) ? BMV_TYPE_FORWARD
: BMV_TYPE_BACKWARD
;
2496 bmvtype
= BMV_TYPE_INTERPOLATED
;
2497 dmv_x
[0] = dmv_y
[0] = 0;
2501 for(i
= 0; i
< 6; i
++)
2502 v
->mb_type
[0][s
->block_index
[i
]] = s
->mb_intra
;
2505 if(direct
) bmvtype
= BMV_TYPE_INTERPOLATED
;
2506 vc1_pred_b_mv(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2507 vc1_b_mc(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2511 cbp
= get_vlc2(&v
->s
.gb
, v
->cbpcy_vlc
->table
, VC1_CBPCY_P_VLC_BITS
, 2);
2514 s
->current_picture
.qscale_table
[mb_pos
] = mquant
;
2516 ttmb
= get_vlc2(gb
, ff_vc1_ttmb_vlc
[v
->tt_index
].table
, VC1_TTMB_VLC_BITS
, 2);
2517 dmv_x
[0] = dmv_y
[0] = dmv_x
[1] = dmv_y
[1] = 0;
2518 vc1_pred_b_mv(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2519 vc1_b_mc(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2521 if(!mb_has_coeffs
&& !s
->mb_intra
) {
2522 /* no coded blocks - effectively skipped */
2523 vc1_pred_b_mv(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2524 vc1_b_mc(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2527 if(s
->mb_intra
&& !mb_has_coeffs
) {
2529 s
->current_picture
.qscale_table
[mb_pos
] = mquant
;
2530 s
->ac_pred
= get_bits1(gb
);
2532 vc1_pred_b_mv(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2534 if(bmvtype
== BMV_TYPE_INTERPOLATED
) {
2535 GET_MVDATA(dmv_x
[0], dmv_y
[0]);
2536 if(!mb_has_coeffs
) {
2537 /* interpolated skipped block */
2538 vc1_pred_b_mv(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2539 vc1_b_mc(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2543 vc1_pred_b_mv(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2545 vc1_b_mc(v
, dmv_x
, dmv_y
, direct
, bmvtype
);
2548 s
->ac_pred
= get_bits1(gb
);
2549 cbp
= get_vlc2(&v
->s
.gb
, v
->cbpcy_vlc
->table
, VC1_CBPCY_P_VLC_BITS
, 2);
2551 s
->current_picture
.qscale_table
[mb_pos
] = mquant
;
2552 if(!v
->ttmbf
&& !s
->mb_intra
&& mb_has_coeffs
)
2553 ttmb
= get_vlc2(gb
, ff_vc1_ttmb_vlc
[v
->tt_index
].table
, VC1_TTMB_VLC_BITS
, 2);
2559 s
->dc_val
[0][s
->block_index
[i
]] = 0;
2561 val
= ((cbp
>> (5 - i
)) & 1);
2562 off
= (i
& 4) ?
0 : ((i
& 1) * 8 + (i
& 2) * 4 * s
->linesize
);
2563 v
->mb_type
[0][s
->block_index
[i
]] = s
->mb_intra
;
2565 /* check if prediction blocks A and C are available */
2566 v
->a_avail
= v
->c_avail
= 0;
2567 if(i
== 2 || i
== 3 || !s
->first_slice_line
)
2568 v
->a_avail
= v
->mb_type
[0][s
->block_index
[i
] - s
->block_wrap
[i
]];
2569 if(i
== 1 || i
== 3 || s
->mb_x
)
2570 v
->c_avail
= v
->mb_type
[0][s
->block_index
[i
] - 1];
2572 vc1_decode_intra_block(v
, s
->block
[i
], i
, val
, mquant
, (i
&4)?v
->codingset2
:v
->codingset
);
2573 if((i
>3) && (s
->flags
& CODEC_FLAG_GRAY
)) continue;
2574 s
->dsp
.vc1_inv_trans_8x8(s
->block
[i
]);
2575 if(v
->rangeredfrm
) for(j
= 0; j
< 64; j
++) s
->block
[i
][j
] <<= 1;
2576 s
->dsp
.put_signed_pixels_clamped(s
->block
[i
], s
->dest
[dst_idx
] + off
, i
& 4 ? s
->uvlinesize
: s
->linesize
);
2578 vc1_decode_p_block(v
, s
->block
[i
], i
, mquant
, ttmb
, first_block
, s
->dest
[dst_idx
] + off
, (i
&4)?s
->uvlinesize
:s
->linesize
, (i
&4) && (s
->flags
& CODEC_FLAG_GRAY
), 0, 0, 0);
2579 if(!v
->ttmbf
&& ttmb
< 8) ttmb
= -1;
2585 /** Decode blocks of I-frame
2587 static void vc1_decode_i_blocks(VC1Context
*v
)
2590 MpegEncContext
*s
= &v
->s
;
2595 /* select codingmode used for VLC tables selection */
2596 switch(v
->y_ac_table_index
){
2598 v
->codingset
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTRA
: CS_LOW_MOT_INTRA
;
2601 v
->codingset
= CS_HIGH_MOT_INTRA
;
2604 v
->codingset
= CS_MID_RATE_INTRA
;
2608 switch(v
->c_ac_table_index
){
2610 v
->codingset2
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTER
: CS_LOW_MOT_INTER
;
2613 v
->codingset2
= CS_HIGH_MOT_INTER
;
2616 v
->codingset2
= CS_MID_RATE_INTER
;
2620 /* Set DC scale - y and c use the same */
2621 s
->y_dc_scale
= s
->y_dc_scale_table
[v
->pq
];
2622 s
->c_dc_scale
= s
->c_dc_scale_table
[v
->pq
];
2625 s
->mb_x
= s
->mb_y
= 0;
2627 s
->first_slice_line
= 1;
2628 for(s
->mb_y
= 0; s
->mb_y
< s
->mb_height
; s
->mb_y
++) {
2630 ff_init_block_index(s
);
2631 for(; s
->mb_x
< s
->mb_width
; s
->mb_x
++) {
2632 ff_update_block_index(s
);
2633 s
->dsp
.clear_blocks(s
->block
[0]);
2634 mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_width
;
2635 s
->current_picture
.mb_type
[mb_pos
] = MB_TYPE_INTRA
;
2636 s
->current_picture
.qscale_table
[mb_pos
] = v
->pq
;
2637 s
->current_picture
.motion_val
[1][s
->block_index
[0]][0] = 0;
2638 s
->current_picture
.motion_val
[1][s
->block_index
[0]][1] = 0;
2640 // do actual MB decoding and displaying
2641 cbp
= get_vlc2(&v
->s
.gb
, ff_msmp4_mb_i_vlc
.table
, MB_INTRA_VLC_BITS
, 2);
2642 v
->s
.ac_pred
= get_bits1(&v
->s
.gb
);
2644 for(k
= 0; k
< 6; k
++) {
2645 val
= ((cbp
>> (5 - k
)) & 1);
2648 int pred
= vc1_coded_block_pred(&v
->s
, k
, &coded_val
);
2652 cbp
|= val
<< (5 - k
);
2654 vc1_decode_i_block(v
, s
->block
[k
], k
, val
, (k
<4)? v
->codingset
: v
->codingset2
);
2656 s
->dsp
.vc1_inv_trans_8x8(s
->block
[k
]);
2657 if(v
->pq
>= 9 && v
->overlap
) {
2658 for(j
= 0; j
< 64; j
++) s
->block
[k
][j
] += 128;
2662 vc1_put_block(v
, s
->block
);
2663 if(v
->pq
>= 9 && v
->overlap
) {
2665 s
->dsp
.vc1_h_overlap(s
->dest
[0], s
->linesize
);
2666 s
->dsp
.vc1_h_overlap(s
->dest
[0] + 8 * s
->linesize
, s
->linesize
);
2667 if(!(s
->flags
& CODEC_FLAG_GRAY
)) {
2668 s
->dsp
.vc1_h_overlap(s
->dest
[1], s
->uvlinesize
);
2669 s
->dsp
.vc1_h_overlap(s
->dest
[2], s
->uvlinesize
);
2672 s
->dsp
.vc1_h_overlap(s
->dest
[0] + 8, s
->linesize
);
2673 s
->dsp
.vc1_h_overlap(s
->dest
[0] + 8 * s
->linesize
+ 8, s
->linesize
);
2674 if(!s
->first_slice_line
) {
2675 s
->dsp
.vc1_v_overlap(s
->dest
[0], s
->linesize
);
2676 s
->dsp
.vc1_v_overlap(s
->dest
[0] + 8, s
->linesize
);
2677 if(!(s
->flags
& CODEC_FLAG_GRAY
)) {
2678 s
->dsp
.vc1_v_overlap(s
->dest
[1], s
->uvlinesize
);
2679 s
->dsp
.vc1_v_overlap(s
->dest
[2], s
->uvlinesize
);
2682 s
->dsp
.vc1_v_overlap(s
->dest
[0] + 8 * s
->linesize
, s
->linesize
);
2683 s
->dsp
.vc1_v_overlap(s
->dest
[0] + 8 * s
->linesize
+ 8, s
->linesize
);
2685 if(v
->s
.loop_filter
) vc1_loop_filter_iblk(s
, v
->pq
);
2687 if(get_bits_count(&s
->gb
) > v
->bits
) {
2688 ff_er_add_slice(s
, 0, 0, s
->mb_x
, s
->mb_y
, (AC_END
|DC_END
|MV_END
));
2689 av_log(s
->avctx
, AV_LOG_ERROR
, "Bits overconsumption: %i > %i\n", get_bits_count(&s
->gb
), v
->bits
);
2693 if (!v
->s
.loop_filter
)
2694 ff_draw_horiz_band(s
, s
->mb_y
* 16, 16);
2696 ff_draw_horiz_band(s
, (s
->mb_y
-1) * 16, 16);
2698 s
->first_slice_line
= 0;
2700 if (v
->s
.loop_filter
)
2701 ff_draw_horiz_band(s
, (s
->mb_height
-1)*16, 16);
2702 ff_er_add_slice(s
, 0, 0, s
->mb_width
- 1, s
->mb_height
- 1, (AC_END
|DC_END
|MV_END
));
2705 /** Decode blocks of I-frame for advanced profile
2707 static void vc1_decode_i_blocks_adv(VC1Context
*v
)
2710 MpegEncContext
*s
= &v
->s
;
2717 GetBitContext
*gb
= &s
->gb
;
2719 /* select codingmode used for VLC tables selection */
2720 switch(v
->y_ac_table_index
){
2722 v
->codingset
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTRA
: CS_LOW_MOT_INTRA
;
2725 v
->codingset
= CS_HIGH_MOT_INTRA
;
2728 v
->codingset
= CS_MID_RATE_INTRA
;
2732 switch(v
->c_ac_table_index
){
2734 v
->codingset2
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTER
: CS_LOW_MOT_INTER
;
2737 v
->codingset2
= CS_HIGH_MOT_INTER
;
2740 v
->codingset2
= CS_MID_RATE_INTER
;
2745 s
->mb_x
= s
->mb_y
= 0;
2747 s
->first_slice_line
= 1;
2748 for(s
->mb_y
= 0; s
->mb_y
< s
->mb_height
; s
->mb_y
++) {
2750 ff_init_block_index(s
);
2751 for(;s
->mb_x
< s
->mb_width
; s
->mb_x
++) {
2752 ff_update_block_index(s
);
2753 s
->dsp
.clear_blocks(s
->block
[0]);
2754 mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
2755 s
->current_picture
.mb_type
[mb_pos
] = MB_TYPE_INTRA
;
2756 s
->current_picture
.motion_val
[1][s
->block_index
[0]][0] = 0;
2757 s
->current_picture
.motion_val
[1][s
->block_index
[0]][1] = 0;
2759 // do actual MB decoding and displaying
2760 cbp
= get_vlc2(&v
->s
.gb
, ff_msmp4_mb_i_vlc
.table
, MB_INTRA_VLC_BITS
, 2);
2761 if(v
->acpred_is_raw
)
2762 v
->s
.ac_pred
= get_bits1(&v
->s
.gb
);
2764 v
->s
.ac_pred
= v
->acpred_plane
[mb_pos
];
2766 if(v
->condover
== CONDOVER_SELECT
) {
2767 if(v
->overflg_is_raw
)
2768 overlap
= get_bits1(&v
->s
.gb
);
2770 overlap
= v
->over_flags_plane
[mb_pos
];
2772 overlap
= (v
->condover
== CONDOVER_ALL
);
2776 s
->current_picture
.qscale_table
[mb_pos
] = mquant
;
2777 /* Set DC scale - y and c use the same */
2778 s
->y_dc_scale
= s
->y_dc_scale_table
[mquant
];
2779 s
->c_dc_scale
= s
->c_dc_scale_table
[mquant
];
2781 for(k
= 0; k
< 6; k
++) {
2782 val
= ((cbp
>> (5 - k
)) & 1);
2785 int pred
= vc1_coded_block_pred(&v
->s
, k
, &coded_val
);
2789 cbp
|= val
<< (5 - k
);
2791 v
->a_avail
= !s
->first_slice_line
|| (k
==2 || k
==3);
2792 v
->c_avail
= !!s
->mb_x
|| (k
==1 || k
==3);
2794 vc1_decode_i_block_adv(v
, s
->block
[k
], k
, val
, (k
<4)? v
->codingset
: v
->codingset2
, mquant
);
2796 s
->dsp
.vc1_inv_trans_8x8(s
->block
[k
]);
2797 for(j
= 0; j
< 64; j
++) s
->block
[k
][j
] += 128;
2800 vc1_put_block(v
, s
->block
);
2803 s
->dsp
.vc1_h_overlap(s
->dest
[0], s
->linesize
);
2804 s
->dsp
.vc1_h_overlap(s
->dest
[0] + 8 * s
->linesize
, s
->linesize
);
2805 if(!(s
->flags
& CODEC_FLAG_GRAY
)) {
2806 s
->dsp
.vc1_h_overlap(s
->dest
[1], s
->uvlinesize
);
2807 s
->dsp
.vc1_h_overlap(s
->dest
[2], s
->uvlinesize
);
2810 s
->dsp
.vc1_h_overlap(s
->dest
[0] + 8, s
->linesize
);
2811 s
->dsp
.vc1_h_overlap(s
->dest
[0] + 8 * s
->linesize
+ 8, s
->linesize
);
2812 if(!s
->first_slice_line
) {
2813 s
->dsp
.vc1_v_overlap(s
->dest
[0], s
->linesize
);
2814 s
->dsp
.vc1_v_overlap(s
->dest
[0] + 8, s
->linesize
);
2815 if(!(s
->flags
& CODEC_FLAG_GRAY
)) {
2816 s
->dsp
.vc1_v_overlap(s
->dest
[1], s
->uvlinesize
);
2817 s
->dsp
.vc1_v_overlap(s
->dest
[2], s
->uvlinesize
);
2820 s
->dsp
.vc1_v_overlap(s
->dest
[0] + 8 * s
->linesize
, s
->linesize
);
2821 s
->dsp
.vc1_v_overlap(s
->dest
[0] + 8 * s
->linesize
+ 8, s
->linesize
);
2823 if(v
->s
.loop_filter
) vc1_loop_filter_iblk(s
, v
->pq
);
2825 if(get_bits_count(&s
->gb
) > v
->bits
) {
2826 ff_er_add_slice(s
, 0, 0, s
->mb_x
, s
->mb_y
, (AC_END
|DC_END
|MV_END
));
2827 av_log(s
->avctx
, AV_LOG_ERROR
, "Bits overconsumption: %i > %i\n", get_bits_count(&s
->gb
), v
->bits
);
2831 if (!v
->s
.loop_filter
)
2832 ff_draw_horiz_band(s
, s
->mb_y
* 16, 16);
2834 ff_draw_horiz_band(s
, (s
->mb_y
-1) * 16, 16);
2835 s
->first_slice_line
= 0;
2837 if (v
->s
.loop_filter
)
2838 ff_draw_horiz_band(s
, (s
->mb_height
-1)*16, 16);
2839 ff_er_add_slice(s
, 0, 0, s
->mb_width
- 1, s
->mb_height
- 1, (AC_END
|DC_END
|MV_END
));
2842 static void vc1_decode_p_blocks(VC1Context
*v
)
2844 MpegEncContext
*s
= &v
->s
;
2846 /* select codingmode used for VLC tables selection */
2847 switch(v
->c_ac_table_index
){
2849 v
->codingset
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTRA
: CS_LOW_MOT_INTRA
;
2852 v
->codingset
= CS_HIGH_MOT_INTRA
;
2855 v
->codingset
= CS_MID_RATE_INTRA
;
2859 switch(v
->c_ac_table_index
){
2861 v
->codingset2
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTER
: CS_LOW_MOT_INTER
;
2864 v
->codingset2
= CS_HIGH_MOT_INTER
;
2867 v
->codingset2
= CS_MID_RATE_INTER
;
2871 s
->first_slice_line
= 1;
2872 memset(v
->cbp_base
, 0, sizeof(v
->cbp_base
[0])*2*s
->mb_stride
);
2873 for(s
->mb_y
= 0; s
->mb_y
< s
->mb_height
; s
->mb_y
++) {
2875 ff_init_block_index(s
);
2876 for(; s
->mb_x
< s
->mb_width
; s
->mb_x
++) {
2877 ff_update_block_index(s
);
2880 if(get_bits_count(&s
->gb
) > v
->bits
|| get_bits_count(&s
->gb
) < 0) {
2881 ff_er_add_slice(s
, 0, 0, s
->mb_x
, s
->mb_y
, (AC_END
|DC_END
|MV_END
));
2882 av_log(s
->avctx
, AV_LOG_ERROR
, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s
->gb
), v
->bits
,s
->mb_x
,s
->mb_y
);
2886 memmove(v
->cbp_base
, v
->cbp
, sizeof(v
->cbp_base
[0])*s
->mb_stride
);
2887 ff_draw_horiz_band(s
, s
->mb_y
* 16, 16);
2888 s
->first_slice_line
= 0;
2890 ff_er_add_slice(s
, 0, 0, s
->mb_width
- 1, s
->mb_height
- 1, (AC_END
|DC_END
|MV_END
));
2893 static void vc1_decode_b_blocks(VC1Context
*v
)
2895 MpegEncContext
*s
= &v
->s
;
2897 /* select codingmode used for VLC tables selection */
2898 switch(v
->c_ac_table_index
){
2900 v
->codingset
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTRA
: CS_LOW_MOT_INTRA
;
2903 v
->codingset
= CS_HIGH_MOT_INTRA
;
2906 v
->codingset
= CS_MID_RATE_INTRA
;
2910 switch(v
->c_ac_table_index
){
2912 v
->codingset2
= (v
->pqindex
<= 8) ? CS_HIGH_RATE_INTER
: CS_LOW_MOT_INTER
;
2915 v
->codingset2
= CS_HIGH_MOT_INTER
;
2918 v
->codingset2
= CS_MID_RATE_INTER
;
2922 s
->first_slice_line
= 1;
2923 for(s
->mb_y
= 0; s
->mb_y
< s
->mb_height
; s
->mb_y
++) {
2925 ff_init_block_index(s
);
2926 for(; s
->mb_x
< s
->mb_width
; s
->mb_x
++) {
2927 ff_update_block_index(s
);
2930 if(get_bits_count(&s
->gb
) > v
->bits
|| get_bits_count(&s
->gb
) < 0) {
2931 ff_er_add_slice(s
, 0, 0, s
->mb_x
, s
->mb_y
, (AC_END
|DC_END
|MV_END
));
2932 av_log(s
->avctx
, AV_LOG_ERROR
, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s
->gb
), v
->bits
,s
->mb_x
,s
->mb_y
);
2935 if(v
->s
.loop_filter
) vc1_loop_filter_iblk(s
, v
->pq
);
2937 if (!v
->s
.loop_filter
)
2938 ff_draw_horiz_band(s
, s
->mb_y
* 16, 16);
2940 ff_draw_horiz_band(s
, (s
->mb_y
-1) * 16, 16);
2941 s
->first_slice_line
= 0;
2943 if (v
->s
.loop_filter
)
2944 ff_draw_horiz_band(s
, (s
->mb_height
-1)*16, 16);
2945 ff_er_add_slice(s
, 0, 0, s
->mb_width
- 1, s
->mb_height
- 1, (AC_END
|DC_END
|MV_END
));
2948 static void vc1_decode_skip_blocks(VC1Context
*v
)
2950 MpegEncContext
*s
= &v
->s
;
2952 ff_er_add_slice(s
, 0, 0, s
->mb_width
- 1, s
->mb_height
- 1, (AC_END
|DC_END
|MV_END
));
2953 s
->first_slice_line
= 1;
2954 for(s
->mb_y
= 0; s
->mb_y
< s
->mb_height
; s
->mb_y
++) {
2956 ff_init_block_index(s
);
2957 ff_update_block_index(s
);
2958 memcpy(s
->dest
[0], s
->last_picture
.data
[0] + s
->mb_y
* 16 * s
->linesize
, s
->linesize
* 16);
2959 memcpy(s
->dest
[1], s
->last_picture
.data
[1] + s
->mb_y
* 8 * s
->uvlinesize
, s
->uvlinesize
* 8);
2960 memcpy(s
->dest
[2], s
->last_picture
.data
[2] + s
->mb_y
* 8 * s
->uvlinesize
, s
->uvlinesize
* 8);
2961 ff_draw_horiz_band(s
, s
->mb_y
* 16, 16);
2962 s
->first_slice_line
= 0;
2964 s
->pict_type
= FF_P_TYPE
;
2967 static void vc1_decode_blocks(VC1Context
*v
)
2970 v
->s
.esc3_level_length
= 0;
2972 ff_intrax8_decode_picture(&v
->x8
, 2*v
->pq
+v
->halfpq
, v
->pq
*(!v
->pquantizer
) );
2975 switch(v
->s
.pict_type
) {
2977 if(v
->profile
== PROFILE_ADVANCED
)
2978 vc1_decode_i_blocks_adv(v
);
2980 vc1_decode_i_blocks(v
);
2983 if(v
->p_frame_skipped
)
2984 vc1_decode_skip_blocks(v
);
2986 vc1_decode_p_blocks(v
);
2990 if(v
->profile
== PROFILE_ADVANCED
)
2991 vc1_decode_i_blocks_adv(v
);
2993 vc1_decode_i_blocks(v
);
2995 vc1_decode_b_blocks(v
);
3001 /** Initialize a VC1/WMV3 decoder
3002 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3003 * @todo TODO: Decypher remaining bits in extra_data
3005 static av_cold
int vc1_decode_init(AVCodecContext
*avctx
)
3007 VC1Context
*v
= avctx
->priv_data
;
3008 MpegEncContext
*s
= &v
->s
;
3011 if (!avctx
->extradata_size
|| !avctx
->extradata
) return -1;
3012 if (!(avctx
->flags
& CODEC_FLAG_GRAY
))
3013 avctx
->pix_fmt
= avctx
->get_format(avctx
, avctx
->codec
->pix_fmts
);
3015 avctx
->pix_fmt
= PIX_FMT_GRAY8
;
3016 avctx
->hwaccel
= ff_find_hwaccel(avctx
->codec
->id
, avctx
->pix_fmt
);
3018 avctx
->flags
|= CODEC_FLAG_EMU_EDGE
;
3019 v
->s
.flags
|= CODEC_FLAG_EMU_EDGE
;
3021 if(avctx
->idct_algo
==FF_IDCT_AUTO
){
3022 avctx
->idct_algo
=FF_IDCT_WMV2
;
3025 if(ff_msmpeg4_decode_init(avctx
) < 0)
3027 if (vc1_init_common(v
) < 0) return -1;
3029 avctx
->coded_width
= avctx
->width
;
3030 avctx
->coded_height
= avctx
->height
;
3031 if (avctx
->codec_id
== CODEC_ID_WMV3
)
3035 // looks like WMV3 has a sequence header stored in the extradata
3036 // advanced sequence header may be before the first frame
3037 // the last byte of the extradata is a version number, 1 for the
3038 // samples we can decode
3040 init_get_bits(&gb
, avctx
->extradata
, avctx
->extradata_size
*8);
3042 if (vc1_decode_sequence_header(avctx
, v
, &gb
) < 0)
3045 count
= avctx
->extradata_size
*8 - get_bits_count(&gb
);
3048 av_log(avctx
, AV_LOG_INFO
, "Extra data: %i bits left, value: %X\n",
3049 count
, get_bits(&gb
, count
));
3053 av_log(avctx
, AV_LOG_INFO
, "Read %i bits in overflow\n", -count
);
3055 } else { // VC1/WVC1
3056 const uint8_t *start
= avctx
->extradata
;
3057 uint8_t *end
= avctx
->extradata
+ avctx
->extradata_size
;
3058 const uint8_t *next
;
3059 int size
, buf2_size
;
3060 uint8_t *buf2
= NULL
;
3061 int seq_initialized
= 0, ep_initialized
= 0;