2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2011 Mashiat Sarker Shakkhar
4 * Copyright (c) 2006-2007 Konstantin Shishkov
5 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
7 * This file is part of Libav.
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * VC-1 and WMV3 decoder
32 #include "mpegvideo.h"
36 #include "vc1acdata.h"
37 #include "msmpeg4data.h"
40 #include "vdpau_internal.h"
45 #define MB_INTRA_VLC_BITS 9
49 // offset tables for interlaced picture MVDATA decoding
50 static const int offset_table1
[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
51 static const int offset_table2
[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
53 /***********************************************************************/
55 * @name VC-1 Bitplane decoding
73 /** @} */ //imode defines
76 /** @} */ //Bitplane group
78 static void vc1_put_signed_blocks_clamped(VC1Context
*v
)
80 MpegEncContext
*s
= &v
->s
;
81 int topleft_mb_pos
, top_mb_pos
;
82 int stride_y
, fieldtx
;
85 /* The put pixels loop is always one MB row behind the decoding loop,
86 * because we can only put pixels when overlap filtering is done, and
87 * for filtering of the bottom edge of a MB, we need the next MB row
89 * Within the row, the put pixels loop is also one MB col behind the
90 * decoding loop. The reason for this is again, because for filtering
91 * of the right MB edge, we need the next MB present. */
92 if (!s
->first_slice_line
) {
94 topleft_mb_pos
= (s
->mb_y
- 1) * s
->mb_stride
+ s
->mb_x
- 1;
95 fieldtx
= v
->fieldtx_plane
[topleft_mb_pos
];
96 stride_y
= s
->linesize
<< fieldtx
;
97 v_dist
= (16 - fieldtx
) >> (fieldtx
== 0);
98 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->topleft_blk_idx
][0],
99 s
->dest
[0] - 16 * s
->linesize
- 16,
101 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->topleft_blk_idx
][1],
102 s
->dest
[0] - 16 * s
->linesize
- 8,
104 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->topleft_blk_idx
][2],
105 s
->dest
[0] - v_dist
* s
->linesize
- 16,
107 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->topleft_blk_idx
][3],
108 s
->dest
[0] - v_dist
* s
->linesize
- 8,
110 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->topleft_blk_idx
][4],
111 s
->dest
[1] - 8 * s
->uvlinesize
- 8,
113 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->topleft_blk_idx
][5],
114 s
->dest
[2] - 8 * s
->uvlinesize
- 8,
117 if (s
->mb_x
== s
->mb_width
- 1) {
118 top_mb_pos
= (s
->mb_y
- 1) * s
->mb_stride
+ s
->mb_x
;
119 fieldtx
= v
->fieldtx_plane
[top_mb_pos
];
120 stride_y
= s
->linesize
<< fieldtx
;
121 v_dist
= fieldtx ?
15 : 8;
122 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->top_blk_idx
][0],
123 s
->dest
[0] - 16 * s
->linesize
,
125 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->top_blk_idx
][1],
126 s
->dest
[0] - 16 * s
->linesize
+ 8,
128 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->top_blk_idx
][2],
129 s
->dest
[0] - v_dist
* s
->linesize
,
131 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->top_blk_idx
][3],
132 s
->dest
[0] - v_dist
* s
->linesize
+ 8,
134 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->top_blk_idx
][4],
135 s
->dest
[1] - 8 * s
->uvlinesize
,
137 s
->dsp
.put_signed_pixels_clamped(v
->block
[v
->top_blk_idx
][5],
138 s
->dest
[2] - 8 * s
->uvlinesize
,
143 #define inc_blk_idx(idx) do { \
145 if (idx >= v->n_allocated_blks) \
149 inc_blk_idx(v
->topleft_blk_idx
);
150 inc_blk_idx(v
->top_blk_idx
);
151 inc_blk_idx(v
->left_blk_idx
);
152 inc_blk_idx(v
->cur_blk_idx
);
155 static void vc1_loop_filter_iblk(VC1Context
*v
, int pq
)
157 MpegEncContext
*s
= &v
->s
;
159 if (!s
->first_slice_line
) {
160 v
->vc1dsp
.vc1_v_loop_filter16(s
->dest
[0], s
->linesize
, pq
);
162 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16 * s
->linesize
, s
->linesize
, pq
);
163 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16 * s
->linesize
+ 8, s
->linesize
, pq
);
164 for (j
= 0; j
< 2; j
++) {
165 v
->vc1dsp
.vc1_v_loop_filter8(s
->dest
[j
+ 1], s
->uvlinesize
, pq
);
167 v
->vc1dsp
.vc1_h_loop_filter8(s
->dest
[j
+ 1] - 8 * s
->uvlinesize
, s
->uvlinesize
, pq
);
170 v
->vc1dsp
.vc1_v_loop_filter16(s
->dest
[0] + 8 * s
->linesize
, s
->linesize
, pq
);
172 if (s
->mb_y
== s
->end_mb_y
- 1) {
174 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0], s
->linesize
, pq
);
175 v
->vc1dsp
.vc1_h_loop_filter8(s
->dest
[1], s
->uvlinesize
, pq
);
176 v
->vc1dsp
.vc1_h_loop_filter8(s
->dest
[2], s
->uvlinesize
, pq
);
178 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] + 8, s
->linesize
, pq
);
182 static void vc1_loop_filter_iblk_delayed(VC1Context
*v
, int pq
)
184 MpegEncContext
*s
= &v
->s
;
187 /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
188 * means it runs two rows/cols behind the decoding loop. */
189 if (!s
->first_slice_line
) {
191 if (s
->mb_y
>= s
->start_mb_y
+ 2) {
192 v
->vc1dsp
.vc1_v_loop_filter16(s
->dest
[0] - 16 * s
->linesize
- 16, s
->linesize
, pq
);
195 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 32 * s
->linesize
- 16, s
->linesize
, pq
);
196 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 32 * s
->linesize
- 8, s
->linesize
, pq
);
197 for (j
= 0; j
< 2; j
++) {
198 v
->vc1dsp
.vc1_v_loop_filter8(s
->dest
[j
+ 1] - 8 * s
->uvlinesize
- 8, s
->uvlinesize
, pq
);
200 v
->vc1dsp
.vc1_h_loop_filter8(s
->dest
[j
+ 1] - 16 * s
->uvlinesize
- 8, s
->uvlinesize
, pq
);
204 v
->vc1dsp
.vc1_v_loop_filter16(s
->dest
[0] - 8 * s
->linesize
- 16, s
->linesize
, pq
);
207 if (s
->mb_x
== s
->mb_width
- 1) {
208 if (s
->mb_y
>= s
->start_mb_y
+ 2) {
209 v
->vc1dsp
.vc1_v_loop_filter16(s
->dest
[0] - 16 * s
->linesize
, s
->linesize
, pq
);
212 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 32 * s
->linesize
, s
->linesize
, pq
);
213 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 32 * s
->linesize
+ 8, s
->linesize
, pq
);
214 for (j
= 0; j
< 2; j
++) {
215 v
->vc1dsp
.vc1_v_loop_filter8(s
->dest
[j
+ 1] - 8 * s
->uvlinesize
, s
->uvlinesize
, pq
);
217 v
->vc1dsp
.vc1_h_loop_filter8(s
->dest
[j
+ 1] - 16 * s
->uvlinesize
, s
->uvlinesize
, pq
);
221 v
->vc1dsp
.vc1_v_loop_filter16(s
->dest
[0] - 8 * s
->linesize
, s
->linesize
, pq
);
224 if (s
->mb_y
== s
->end_mb_y
) {
227 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16 * s
->linesize
- 16, s
->linesize
, pq
);
228 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16 * s
->linesize
- 8, s
->linesize
, pq
);
230 for (j
= 0; j
< 2; j
++) {
231 v
->vc1dsp
.vc1_h_loop_filter8(s
->dest
[j
+ 1] - 8 * s
->uvlinesize
- 8, s
->uvlinesize
, pq
);
236 if (s
->mb_x
== s
->mb_width
- 1) {
238 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16 * s
->linesize
, s
->linesize
, pq
);
239 v
->vc1dsp
.vc1_h_loop_filter16(s
->dest
[0] - 16 * s
->linesize
+ 8, s
->linesize
, pq
);
241 for (j
= 0; j
< 2; j
++) {
242 v
->vc1dsp
.vc1_h_loop_filter8(s
->dest
[j
+ 1] - 8 * s
->uvlinesize
, s
->uvlinesize
, pq
);
250 static void vc1_smooth_overlap_filter_iblk(VC1Context
*v
)
252 MpegEncContext
*s
= &v
->s
;
255 if (v
->condover
== CONDOVER_NONE
)
258 mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
260 /* Within a MB, the horizontal overlap always runs before the vertical.
261 * To accomplish that, we run the H on left and internal borders of the
262 * currently decoded MB. Then, we wait for the next overlap iteration
263 * to do H overlap on the right edge of this MB, before moving over and
264 * running the V overlap. Therefore, the V overlap makes us trail by one
265 * MB col and the H overlap filter makes us trail by one MB row. This
266 * is reflected in the time at which we run the put_pixels loop. */
267 if (v
->condover
== CONDOVER_ALL
|| v
->pq
>= 9 || v
->over_flags_plane
[mb_pos
]) {
268 if (s
->mb_x
&& (v
->condover
== CONDOVER_ALL
|| v
->pq
>= 9 ||
269 v
->over_flags_plane
[mb_pos
- 1])) {
270 v
->vc1dsp
.vc1_h_s_overlap(v
->block
[v
->left_blk_idx
][1],
271 v
->block
[v
->cur_blk_idx
][0]);
272 v
->vc1dsp
.vc1_h_s_overlap(v
->block
[v
->left_blk_idx
][3],
273 v
->block
[v
->cur_blk_idx
][2]);
274 if (!(s
->flags
& CODEC_FLAG_GRAY
)) {
275 v
->vc1dsp
.vc1_h_s_overlap(v
->block
[v
->left_blk_idx
][4],
276 v
->block
[v
->cur_blk_idx
][4]);
277 v
->vc1dsp
.vc1_h_s_overlap(v
->block
[v
->left_blk_idx
][5],
278 v
->block
[v
->cur_blk_idx
][5]);
281 v
->vc1dsp
.vc1_h_s_overlap(v
->block
[v
->cur_blk_idx
][0],
282 v
->block
[v
->cur_blk_idx
][1]);
283 v
->vc1dsp
.vc1_h_s_overlap(v
->block
[v
->cur_blk_idx
][2],
284 v
->block
[v
->cur_blk_idx
][3]);
286 if (s
->mb_x
== s
->mb_width
- 1) {
287 if (!s
->first_slice_line
&& (v
->condover
== CONDOVER_ALL
|| v
->pq
>= 9 ||
288 v
->over_flags_plane
[mb_pos
- s
->mb_stride
])) {
289 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->top_blk_idx
][2],
290 v
->block
[v
->cur_blk_idx
][0]);
291 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->top_blk_idx
][3],
292 v
->block
[v
->cur_blk_idx
][1]);
293 if (!(s
->flags
& CODEC_FLAG_GRAY
)) {
294 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->top_blk_idx
][4],
295 v
->block
[v
->cur_blk_idx
][4]);
296 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->top_blk_idx
][5],
297 v
->block
[v
->cur_blk_idx
][5]);
300 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->cur_blk_idx
][0],
301 v
->block
[v
->cur_blk_idx
][2]);
302 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->cur_blk_idx
][1],
303 v
->block
[v
->cur_blk_idx
][3]);
306 if (s
->mb_x
&& (v
->condover
== CONDOVER_ALL
|| v
->over_flags_plane
[mb_pos
- 1])) {
307 if (!s
->first_slice_line
&& (v
->condover
== CONDOVER_ALL
|| v
->pq
>= 9 ||
308 v
->over_flags_plane
[mb_pos
- s
->mb_stride
- 1])) {
309 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->topleft_blk_idx
][2],
310 v
->block
[v
->left_blk_idx
][0]);
311 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->topleft_blk_idx
][3],
312 v
->block
[v
->left_blk_idx
][1]);
313 if (!(s
->flags
& CODEC_FLAG_GRAY
)) {
314 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->topleft_blk_idx
][4],
315 v
->block
[v
->left_blk_idx
][4]);
316 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->topleft_blk_idx
][5],
317 v
->block
[v
->left_blk_idx
][5]);
320 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->left_blk_idx
][0],
321 v
->block
[v
->left_blk_idx
][2]);
322 v
->vc1dsp
.vc1_v_s_overlap(v
->block
[v
->left_blk_idx
][1],
323 v
->block
[v
->left_blk_idx
][3]);
327 /** Do motion compensation over 1 macroblock
328 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
330 static void vc1_mc_1mv(VC1Context
*v
, int dir
)
332 MpegEncContext
*s
= &v
->s
;
333 DSPContext
*dsp
= &v
->s
.dsp
;
334 uint8_t *srcY
, *srcU
, *srcV
;
335 int dxy
, mx
, my
, uvmx
, uvmy
, src_x
, src_y
, uvsrc_x
, uvsrc_y
;
337 int v_edge_pos
= s
->v_edge_pos
>> v
->field_mode
;
339 if ((!v
->field_mode
||
340 (v
->ref_field_type
[dir
] == 1 && v
->cur_field_type
== 1)) &&
341 !v
->s
.last_picture
.f
.data
[0])
344 mx
= s
->mv
[dir
][0][0];
345 my
= s
->mv
[dir
][0][1];
347 // store motion vectors for further use in B frames
348 if (s
->pict_type
== AV_PICTURE_TYPE_P
) {
349 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][0] = mx
;
350 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][1] = my
;
353 uvmx
= (mx
+ ((mx
& 3) == 3)) >> 1;
354 uvmy
= (my
+ ((my
& 3) == 3)) >> 1;
355 v
->luma_mv
[s
->mb_x
][0] = uvmx
;
356 v
->luma_mv
[s
->mb_x
][1] = uvmy
;
359 v
->cur_field_type
!= v
->ref_field_type
[dir
]) {
360 my
= my
- 2 + 4 * v
->cur_field_type
;
361 uvmy
= uvmy
- 2 + 4 * v
->cur_field_type
;
364 // fastuvmc shall be ignored for interlaced frame picture
365 if (v
->fastuvmc
&& (v
->fcm
!= ILACE_FRAME
)) {
366 uvmx
= uvmx
+ ((uvmx
< 0) ?
(uvmx
& 1) : -(uvmx
& 1));
367 uvmy
= uvmy
+ ((uvmy
< 0) ?
(uvmy
& 1) : -(uvmy
& 1));
369 if (v
->field_mode
) { // interlaced field picture
371 if ((v
->cur_field_type
!= v
->ref_field_type
[dir
]) && v
->cur_field_type
) {
372 srcY
= s
->current_picture
.f
.data
[0];
373 srcU
= s
->current_picture
.f
.data
[1];
374 srcV
= s
->current_picture
.f
.data
[2];
376 srcY
= s
->last_picture
.f
.data
[0];
377 srcU
= s
->last_picture
.f
.data
[1];
378 srcV
= s
->last_picture
.f
.data
[2];
381 srcY
= s
->next_picture
.f
.data
[0];
382 srcU
= s
->next_picture
.f
.data
[1];
383 srcV
= s
->next_picture
.f
.data
[2];
387 srcY
= s
->last_picture
.f
.data
[0];
388 srcU
= s
->last_picture
.f
.data
[1];
389 srcV
= s
->last_picture
.f
.data
[2];
391 srcY
= s
->next_picture
.f
.data
[0];
392 srcU
= s
->next_picture
.f
.data
[1];
393 srcV
= s
->next_picture
.f
.data
[2];
397 src_x
= s
->mb_x
* 16 + (mx
>> 2);
398 src_y
= s
->mb_y
* 16 + (my
>> 2);
399 uvsrc_x
= s
->mb_x
* 8 + (uvmx
>> 2);
400 uvsrc_y
= s
->mb_y
* 8 + (uvmy
>> 2);
402 if (v
->profile
!= PROFILE_ADVANCED
) {
403 src_x
= av_clip( src_x
, -16, s
->mb_width
* 16);
404 src_y
= av_clip( src_y
, -16, s
->mb_height
* 16);
405 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->mb_width
* 8);
406 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->mb_height
* 8);
408 src_x
= av_clip( src_x
, -17, s
->avctx
->coded_width
);
409 src_y
= av_clip( src_y
, -18, s
->avctx
->coded_height
+ 1);
410 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->avctx
->coded_width
>> 1);
411 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->avctx
->coded_height
>> 1);
414 srcY
+= src_y
* s
->linesize
+ src_x
;
415 srcU
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
416 srcV
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
418 if (v
->field_mode
&& v
->ref_field_type
[dir
]) {
419 srcY
+= s
->current_picture_ptr
->f
.linesize
[0];
420 srcU
+= s
->current_picture_ptr
->f
.linesize
[1];
421 srcV
+= s
->current_picture_ptr
->f
.linesize
[2];
424 /* for grayscale we should not try to read from unknown area */
425 if (s
->flags
& CODEC_FLAG_GRAY
) {
426 srcU
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
427 srcV
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
430 if (v
->rangeredfrm
|| (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
)
431 || s
->h_edge_pos
< 22 || v_edge_pos
< 22
432 || (unsigned)(src_x
- s
->mspel
) > s
->h_edge_pos
- (mx
&3) - 16 - s
->mspel
* 3
433 || (unsigned)(src_y
- 1) > v_edge_pos
- (my
&3) - 16 - 3) {
434 uint8_t *uvbuf
= s
->edge_emu_buffer
+ 19 * s
->linesize
;
436 srcY
-= s
->mspel
* (1 + s
->linesize
);
437 s
->dsp
.emulated_edge_mc(s
->edge_emu_buffer
, srcY
, s
->linesize
,
438 17 + s
->mspel
* 2, 17 + s
->mspel
* 2,
439 src_x
- s
->mspel
, src_y
- s
->mspel
,
440 s
->h_edge_pos
, v_edge_pos
);
441 srcY
= s
->edge_emu_buffer
;
442 s
->dsp
.emulated_edge_mc(uvbuf
, srcU
, s
->uvlinesize
, 8 + 1, 8 + 1,
443 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, v_edge_pos
>> 1);
444 s
->dsp
.emulated_edge_mc(uvbuf
+ 16, srcV
, s
->uvlinesize
, 8 + 1, 8 + 1,
445 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, v_edge_pos
>> 1);
448 /* if we deal with range reduction we need to scale source blocks */
449 if (v
->rangeredfrm
) {
454 for (j
= 0; j
< 17 + s
->mspel
* 2; j
++) {
455 for (i
= 0; i
< 17 + s
->mspel
* 2; i
++)
456 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
461 for (j
= 0; j
< 9; j
++) {
462 for (i
= 0; i
< 9; i
++) {
463 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
464 src2
[i
] = ((src2
[i
] - 128) >> 1) + 128;
466 src
+= s
->uvlinesize
;
467 src2
+= s
->uvlinesize
;
470 /* if we deal with intensity compensation we need to scale source blocks */
471 if (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) {
476 for (j
= 0; j
< 17 + s
->mspel
* 2; j
++) {
477 for (i
= 0; i
< 17 + s
->mspel
* 2; i
++)
478 src
[i
] = v
->luty
[src
[i
]];
483 for (j
= 0; j
< 9; j
++) {
484 for (i
= 0; i
< 9; i
++) {
485 src
[i
] = v
->lutuv
[src
[i
]];
486 src2
[i
] = v
->lutuv
[src2
[i
]];
488 src
+= s
->uvlinesize
;
489 src2
+= s
->uvlinesize
;
492 srcY
+= s
->mspel
* (1 + s
->linesize
);
495 if (v
->field_mode
&& v
->cur_field_type
) {
496 off
= s
->current_picture_ptr
->f
.linesize
[0];
497 off_uv
= s
->current_picture_ptr
->f
.linesize
[1];
503 dxy
= ((my
& 3) << 2) | (mx
& 3);
504 v
->vc1dsp
.put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, v
->rnd
);
505 v
->vc1dsp
.put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
+ 8, srcY
+ 8, s
->linesize
, v
->rnd
);
506 srcY
+= s
->linesize
* 8;
507 v
->vc1dsp
.put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
+ 8 * s
->linesize
, srcY
, s
->linesize
, v
->rnd
);
508 v
->vc1dsp
.put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
+ 8 * s
->linesize
+ 8, srcY
+ 8, s
->linesize
, v
->rnd
);
509 } else { // hpel mc - always used for luma
510 dxy
= (my
& 2) | ((mx
& 2) >> 1);
512 dsp
->put_pixels_tab
[0][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 16);
514 dsp
->put_no_rnd_pixels_tab
[0][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 16);
517 if (s
->flags
& CODEC_FLAG_GRAY
) return;
518 /* Chroma MC always uses qpel bilinear */
519 uvmx
= (uvmx
& 3) << 1;
520 uvmy
= (uvmy
& 3) << 1;
522 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[1] + off_uv
, srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
523 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[2] + off_uv
, srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
525 v
->vc1dsp
.put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[1] + off_uv
, srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
526 v
->vc1dsp
.put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[2] + off_uv
, srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
530 static inline int median4(int a
, int b
, int c
, int d
)
533 if (c
< d
) return (FFMIN(b
, d
) + FFMAX(a
, c
)) / 2;
534 else return (FFMIN(b
, c
) + FFMAX(a
, d
)) / 2;
536 if (c
< d
) return (FFMIN(a
, d
) + FFMAX(b
, c
)) / 2;
537 else return (FFMIN(a
, c
) + FFMAX(b
, d
)) / 2;
541 /** Do motion compensation for 4-MV macroblock - luminance block
543 static void vc1_mc_4mv_luma(VC1Context
*v
, int n
, int dir
)
545 MpegEncContext
*s
= &v
->s
;
546 DSPContext
*dsp
= &v
->s
.dsp
;
548 int dxy
, mx
, my
, src_x
, src_y
;
550 int fieldmv
= (v
->fcm
== ILACE_FRAME
) ? v
->blk_mv_type
[s
->block_index
[n
]] : 0;
551 int v_edge_pos
= s
->v_edge_pos
>> v
->field_mode
;
553 if ((!v
->field_mode
||
554 (v
->ref_field_type
[dir
] == 1 && v
->cur_field_type
== 1)) &&
555 !v
->s
.last_picture
.f
.data
[0])
558 mx
= s
->mv
[dir
][n
][0];
559 my
= s
->mv
[dir
][n
][1];
563 if ((v
->cur_field_type
!= v
->ref_field_type
[dir
]) && v
->cur_field_type
)
564 srcY
= s
->current_picture
.f
.data
[0];
566 srcY
= s
->last_picture
.f
.data
[0];
568 srcY
= s
->last_picture
.f
.data
[0];
570 srcY
= s
->next_picture
.f
.data
[0];
573 if (v
->cur_field_type
!= v
->ref_field_type
[dir
])
574 my
= my
- 2 + 4 * v
->cur_field_type
;
577 if (s
->pict_type
== AV_PICTURE_TYPE_P
&& n
== 3 && v
->field_mode
) {
578 int same_count
= 0, opp_count
= 0, k
;
579 int chosen_mv
[2][4][2], f
;
581 for (k
= 0; k
< 4; k
++) {
582 f
= v
->mv_f
[0][s
->block_index
[k
] + v
->blocks_off
];
583 chosen_mv
[f
][f ? opp_count
: same_count
][0] = s
->mv
[0][k
][0];
584 chosen_mv
[f
][f ? opp_count
: same_count
][1] = s
->mv
[0][k
][1];
588 f
= opp_count
> same_count
;
589 switch (f ? opp_count
: same_count
) {
591 tx
= median4(chosen_mv
[f
][0][0], chosen_mv
[f
][1][0],
592 chosen_mv
[f
][2][0], chosen_mv
[f
][3][0]);
593 ty
= median4(chosen_mv
[f
][0][1], chosen_mv
[f
][1][1],
594 chosen_mv
[f
][2][1], chosen_mv
[f
][3][1]);
597 tx
= mid_pred(chosen_mv
[f
][0][0], chosen_mv
[f
][1][0], chosen_mv
[f
][2][0]);
598 ty
= mid_pred(chosen_mv
[f
][0][1], chosen_mv
[f
][1][1], chosen_mv
[f
][2][1]);
601 tx
= (chosen_mv
[f
][0][0] + chosen_mv
[f
][1][0]) / 2;
602 ty
= (chosen_mv
[f
][0][1] + chosen_mv
[f
][1][1]) / 2;
605 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][0] = tx
;
606 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][1] = ty
;
607 for (k
= 0; k
< 4; k
++)
608 v
->mv_f
[1][s
->block_index
[k
] + v
->blocks_off
] = f
;
611 if (v
->fcm
== ILACE_FRAME
) { // not sure if needed for other types of picture
613 int width
= s
->avctx
->coded_width
;
614 int height
= s
->avctx
->coded_height
>> 1;
615 qx
= (s
->mb_x
* 16) + (mx
>> 2);
616 qy
= (s
->mb_y
* 8) + (my
>> 3);
621 mx
-= 4 * (qx
- width
);
624 else if (qy
> height
+ 1)
625 my
-= 8 * (qy
- height
- 1);
628 if ((v
->fcm
== ILACE_FRAME
) && fieldmv
)
629 off
= ((n
> 1) ? s
->linesize
: 0) + (n
& 1) * 8;
631 off
= s
->linesize
* 4 * (n
& 2) + (n
& 1) * 8;
632 if (v
->field_mode
&& v
->cur_field_type
)
633 off
+= s
->current_picture_ptr
->f
.linesize
[0];
635 src_x
= s
->mb_x
* 16 + (n
& 1) * 8 + (mx
>> 2);
637 src_y
= s
->mb_y
* 16 + (n
& 2) * 4 + (my
>> 2);
639 src_y
= s
->mb_y
* 16 + ((n
> 1) ?
1 : 0) + (my
>> 2);
641 if (v
->profile
!= PROFILE_ADVANCED
) {
642 src_x
= av_clip(src_x
, -16, s
->mb_width
* 16);
643 src_y
= av_clip(src_y
, -16, s
->mb_height
* 16);
645 src_x
= av_clip(src_x
, -17, s
->avctx
->coded_width
);
646 if (v
->fcm
== ILACE_FRAME
) {
648 src_y
= av_clip(src_y
, -17, s
->avctx
->coded_height
+ 1);
650 src_y
= av_clip(src_y
, -18, s
->avctx
->coded_height
);
652 src_y
= av_clip(src_y
, -18, s
->avctx
->coded_height
+ 1);
656 srcY
+= src_y
* s
->linesize
+ src_x
;
657 if (v
->field_mode
&& v
->ref_field_type
[dir
])
658 srcY
+= s
->current_picture_ptr
->f
.linesize
[0];
660 if (fieldmv
&& !(src_y
& 1))
662 if (fieldmv
&& (src_y
& 1) && src_y
< 4)
664 if (v
->rangeredfrm
|| (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
)
665 || s
->h_edge_pos
< 13 || v_edge_pos
< 23
666 || (unsigned)(src_x
- s
->mspel
) > s
->h_edge_pos
- (mx
& 3) - 8 - s
->mspel
* 2
667 || (unsigned)(src_y
- (s
->mspel
<< fieldmv
)) > v_edge_pos
- (my
& 3) - ((8 + s
->mspel
* 2) << fieldmv
)) {
668 srcY
-= s
->mspel
* (1 + (s
->linesize
<< fieldmv
));
669 /* check emulate edge stride and offset */
670 s
->dsp
.emulated_edge_mc(s
->edge_emu_buffer
, srcY
, s
->linesize
,
671 9 + s
->mspel
* 2, (9 + s
->mspel
* 2) << fieldmv
,
672 src_x
- s
->mspel
, src_y
- (s
->mspel
<< fieldmv
),
673 s
->h_edge_pos
, v_edge_pos
);
674 srcY
= s
->edge_emu_buffer
;
675 /* if we deal with range reduction we need to scale source blocks */
676 if (v
->rangeredfrm
) {
681 for (j
= 0; j
< 9 + s
->mspel
* 2; j
++) {
682 for (i
= 0; i
< 9 + s
->mspel
* 2; i
++)
683 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
684 src
+= s
->linesize
<< fieldmv
;
687 /* if we deal with intensity compensation we need to scale source blocks */
688 if (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) {
693 for (j
= 0; j
< 9 + s
->mspel
* 2; j
++) {
694 for (i
= 0; i
< 9 + s
->mspel
* 2; i
++)
695 src
[i
] = v
->luty
[src
[i
]];
696 src
+= s
->linesize
<< fieldmv
;
699 srcY
+= s
->mspel
* (1 + (s
->linesize
<< fieldmv
));
703 dxy
= ((my
& 3) << 2) | (mx
& 3);
704 v
->vc1dsp
.put_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
<< fieldmv
, v
->rnd
);
705 } else { // hpel mc - always used for luma
706 dxy
= (my
& 2) | ((mx
& 2) >> 1);
708 dsp
->put_pixels_tab
[1][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 8);
710 dsp
->put_no_rnd_pixels_tab
[1][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 8);
714 static av_always_inline
int get_chroma_mv(int *mvx
, int *mvy
, int *a
, int flag
, int *tx
, int *ty
)
717 static const int count
[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
719 idx
= ((a
[3] != flag
) << 3)
720 | ((a
[2] != flag
) << 2)
721 | ((a
[1] != flag
) << 1)
724 *tx
= median4(mvx
[0], mvx
[1], mvx
[2], mvx
[3]);
725 *ty
= median4(mvy
[0], mvy
[1], mvy
[2], mvy
[3]);
727 } else if (count
[idx
] == 1) {
730 *tx
= mid_pred(mvx
[1], mvx
[2], mvx
[3]);
731 *ty
= mid_pred(mvy
[1], mvy
[2], mvy
[3]);
734 *tx
= mid_pred(mvx
[0], mvx
[2], mvx
[3]);
735 *ty
= mid_pred(mvy
[0], mvy
[2], mvy
[3]);
738 *tx
= mid_pred(mvx
[0], mvx
[1], mvx
[3]);
739 *ty
= mid_pred(mvy
[0], mvy
[1], mvy
[3]);
742 *tx
= mid_pred(mvx
[0], mvx
[1], mvx
[2]);
743 *ty
= mid_pred(mvy
[0], mvy
[1], mvy
[2]);
746 } else if (count
[idx
] == 2) {
748 for (i
= 0; i
< 3; i
++)
753 for (i
= t1
+ 1; i
< 4; i
++)
758 *tx
= (mvx
[t1
] + mvx
[t2
]) / 2;
759 *ty
= (mvy
[t1
] + mvy
[t2
]) / 2;
767 /** Do motion compensation for 4-MV macroblock - both chroma blocks
769 static void vc1_mc_4mv_chroma(VC1Context
*v
, int dir
)
771 MpegEncContext
*s
= &v
->s
;
772 DSPContext
*dsp
= &v
->s
.dsp
;
773 uint8_t *srcU
, *srcV
;
774 int uvmx
, uvmy
, uvsrc_x
, uvsrc_y
;
775 int k
, tx
= 0, ty
= 0;
776 int mvx
[4], mvy
[4], intra
[4], mv_f
[4];
778 int chroma_ref_type
= v
->cur_field_type
, off
= 0;
779 int v_edge_pos
= s
->v_edge_pos
>> v
->field_mode
;
781 if (!v
->field_mode
&& !v
->s
.last_picture
.f
.data
[0])
783 if (s
->flags
& CODEC_FLAG_GRAY
)
786 for (k
= 0; k
< 4; k
++) {
787 mvx
[k
] = s
->mv
[dir
][k
][0];
788 mvy
[k
] = s
->mv
[dir
][k
][1];
789 intra
[k
] = v
->mb_type
[0][s
->block_index
[k
]];
791 mv_f
[k
] = v
->mv_f
[dir
][s
->block_index
[k
] + v
->blocks_off
];
794 /* calculate chroma MV vector from four luma MVs */
795 if (!v
->field_mode
|| (v
->field_mode
&& !v
->numref
)) {
796 valid_count
= get_chroma_mv(mvx
, mvy
, intra
, 0, &tx
, &ty
);
797 chroma_ref_type
= v
->reffield
;
799 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][0] = 0;
800 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][1] = 0;
801 v
->luma_mv
[s
->mb_x
][0] = v
->luma_mv
[s
->mb_x
][1] = 0;
802 return; //no need to do MC for intra blocks
806 if (mv_f
[0] + mv_f
[1] + mv_f
[2] + mv_f
[3] > 2)
808 valid_count
= get_chroma_mv(mvx
, mvy
, mv_f
, dominant
, &tx
, &ty
);
810 chroma_ref_type
= !v
->cur_field_type
;
812 if (v
->field_mode
&& chroma_ref_type
== 1 && v
->cur_field_type
== 1 && !v
->s
.last_picture
.f
.data
[0])
814 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][0] = tx
;
815 s
->current_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][1] = ty
;
816 uvmx
= (tx
+ ((tx
& 3) == 3)) >> 1;
817 uvmy
= (ty
+ ((ty
& 3) == 3)) >> 1;
819 v
->luma_mv
[s
->mb_x
][0] = uvmx
;
820 v
->luma_mv
[s
->mb_x
][1] = uvmy
;
823 uvmx
= uvmx
+ ((uvmx
< 0) ?
(uvmx
& 1) : -(uvmx
& 1));
824 uvmy
= uvmy
+ ((uvmy
< 0) ?
(uvmy
& 1) : -(uvmy
& 1));
826 // Field conversion bias
827 if (v
->cur_field_type
!= chroma_ref_type
)
828 uvmy
+= 2 - 4 * chroma_ref_type
;
830 uvsrc_x
= s
->mb_x
* 8 + (uvmx
>> 2);
831 uvsrc_y
= s
->mb_y
* 8 + (uvmy
>> 2);
833 if (v
->profile
!= PROFILE_ADVANCED
) {
834 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->mb_width
* 8);
835 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->mb_height
* 8);
837 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->avctx
->coded_width
>> 1);
838 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->avctx
->coded_height
>> 1);
843 if ((v
->cur_field_type
!= chroma_ref_type
) && v
->cur_field_type
) {
844 srcU
= s
->current_picture
.f
.data
[1] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
845 srcV
= s
->current_picture
.f
.data
[2] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
847 srcU
= s
->last_picture
.f
.data
[1] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
848 srcV
= s
->last_picture
.f
.data
[2] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
851 srcU
= s
->last_picture
.f
.data
[1] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
852 srcV
= s
->last_picture
.f
.data
[2] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
855 srcU
= s
->next_picture
.f
.data
[1] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
856 srcV
= s
->next_picture
.f
.data
[2] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
860 if (chroma_ref_type
) {
861 srcU
+= s
->current_picture_ptr
->f
.linesize
[1];
862 srcV
+= s
->current_picture_ptr
->f
.linesize
[2];
864 off
= v
->cur_field_type ? s
->current_picture_ptr
->f
.linesize
[1] : 0;
867 if (v
->rangeredfrm
|| (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
)
868 || s
->h_edge_pos
< 18 || v_edge_pos
< 18
869 || (unsigned)uvsrc_x
> (s
->h_edge_pos
>> 1) - 9
870 || (unsigned)uvsrc_y
> (v_edge_pos
>> 1) - 9) {
871 s
->dsp
.emulated_edge_mc(s
->edge_emu_buffer
, srcU
, s
->uvlinesize
,
872 8 + 1, 8 + 1, uvsrc_x
, uvsrc_y
,
873 s
->h_edge_pos
>> 1, v_edge_pos
>> 1);
874 s
->dsp
.emulated_edge_mc(s
->edge_emu_buffer
+ 16, srcV
, s
->uvlinesize
,
875 8 + 1, 8 + 1, uvsrc_x
, uvsrc_y
,
876 s
->h_edge_pos
>> 1, v_edge_pos
>> 1);
877 srcU
= s
->edge_emu_buffer
;
878 srcV
= s
->edge_emu_buffer
+ 16;
880 /* if we deal with range reduction we need to scale source blocks */
881 if (v
->rangeredfrm
) {
887 for (j
= 0; j
< 9; j
++) {
888 for (i
= 0; i
< 9; i
++) {
889 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
890 src2
[i
] = ((src2
[i
] - 128) >> 1) + 128;
892 src
+= s
->uvlinesize
;
893 src2
+= s
->uvlinesize
;
896 /* if we deal with intensity compensation we need to scale source blocks */
897 if (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) {
903 for (j
= 0; j
< 9; j
++) {
904 for (i
= 0; i
< 9; i
++) {
905 src
[i
] = v
->lutuv
[src
[i
]];
906 src2
[i
] = v
->lutuv
[src2
[i
]];
908 src
+= s
->uvlinesize
;
909 src2
+= s
->uvlinesize
;
914 /* Chroma MC always uses qpel bilinear */
915 uvmx
= (uvmx
& 3) << 1;
916 uvmy
= (uvmy
& 3) << 1;
918 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[1] + off
, srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
919 dsp
->put_h264_chroma_pixels_tab
[0](s
->dest
[2] + off
, srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
921 v
->vc1dsp
.put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[1] + off
, srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
922 v
->vc1dsp
.put_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[2] + off
, srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
926 /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
928 static void vc1_mc_4mv_chroma4(VC1Context
*v
)
930 MpegEncContext
*s
= &v
->s
;
931 DSPContext
*dsp
= &v
->s
.dsp
;
932 uint8_t *srcU
, *srcV
;
933 int uvsrc_x
, uvsrc_y
;
934 int uvmx_field
[4], uvmy_field
[4];
936 int fieldmv
= v
->blk_mv_type
[s
->block_index
[0]];
937 static const int s_rndtblfield
[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
938 int v_dist
= fieldmv ?
1 : 4; // vertical offset for lower sub-blocks
939 int v_edge_pos
= s
->v_edge_pos
>> 1;
941 if (!v
->s
.last_picture
.f
.data
[0])
943 if (s
->flags
& CODEC_FLAG_GRAY
)
946 for (i
= 0; i
< 4; i
++) {
948 uvmx_field
[i
] = (tx
+ ((tx
& 3) == 3)) >> 1;
951 uvmy_field
[i
] = (ty
>> 4) * 8 + s_rndtblfield
[ty
& 0xF];
953 uvmy_field
[i
] = (ty
+ ((ty
& 3) == 3)) >> 1;
956 for (i
= 0; i
< 4; i
++) {
957 off
= (i
& 1) * 4 + ((i
& 2) ? v_dist
* s
->uvlinesize
: 0);
958 uvsrc_x
= s
->mb_x
* 8 + (i
& 1) * 4 + (uvmx_field
[i
] >> 2);
959 uvsrc_y
= s
->mb_y
* 8 + ((i
& 2) ? v_dist
: 0) + (uvmy_field
[i
] >> 2);
960 // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
961 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->avctx
->coded_width
>> 1);
962 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->avctx
->coded_height
>> 1);
963 srcU
= s
->last_picture
.f
.data
[1] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
964 srcV
= s
->last_picture
.f
.data
[2] + uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
965 uvmx_field
[i
] = (uvmx_field
[i
] & 3) << 1;
966 uvmy_field
[i
] = (uvmy_field
[i
] & 3) << 1;
968 if (fieldmv
&& !(uvsrc_y
& 1))
970 if (fieldmv
&& (uvsrc_y
& 1) && uvsrc_y
< 2)
972 if ((v
->mv_mode
== MV_PMODE_INTENSITY_COMP
)
973 || s
->h_edge_pos
< 10 || v_edge_pos
< (5 << fieldmv
)
974 || (unsigned)uvsrc_x
> (s
->h_edge_pos
>> 1) - 5
975 || (unsigned)uvsrc_y
> v_edge_pos
- (5 << fieldmv
)) {
976 s
->dsp
.emulated_edge_mc(s
->edge_emu_buffer
, srcU
, s
->uvlinesize
,
977 5, (5 << fieldmv
), uvsrc_x
, uvsrc_y
,
978 s
->h_edge_pos
>> 1, v_edge_pos
);
979 s
->dsp
.emulated_edge_mc(s
->edge_emu_buffer
+ 16, srcV
, s
->uvlinesize
,
980 5, (5 << fieldmv
), uvsrc_x
, uvsrc_y
,
981 s
->h_edge_pos
>> 1, v_edge_pos
);
982 srcU
= s
->edge_emu_buffer
;
983 srcV
= s
->edge_emu_buffer
+ 16;
985 /* if we deal with intensity compensation we need to scale source blocks */
986 if (v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) {
992 for (j
= 0; j
< 5; j
++) {
993 for (i
= 0; i
< 5; i
++) {
994 src
[i
] = v
->lutuv
[src
[i
]];
995 src2
[i
] = v
->lutuv
[src2
[i
]];
997 src
+= s
->uvlinesize
<< 1;
998 src2
+= s
->uvlinesize
<< 1;
1003 dsp
->put_h264_chroma_pixels_tab
[1](s
->dest
[1] + off
, srcU
, s
->uvlinesize
<< fieldmv
, 4, uvmx_field
[i
], uvmy_field
[i
]);
1004 dsp
->put_h264_chroma_pixels_tab
[1](s
->dest
[2] + off
, srcV
, s
->uvlinesize
<< fieldmv
, 4, uvmx_field
[i
], uvmy_field
[i
]);
1006 v
->vc1dsp
.put_no_rnd_vc1_chroma_pixels_tab
[1](s
->dest
[1] + off
, srcU
, s
->uvlinesize
<< fieldmv
, 4, uvmx_field
[i
], uvmy_field
[i
]);
1007 v
->vc1dsp
.put_no_rnd_vc1_chroma_pixels_tab
[1](s
->dest
[2] + off
, srcV
, s
->uvlinesize
<< fieldmv
, 4, uvmx_field
[i
], uvmy_field
[i
]);
1012 /***********************************************************************/
1014 * @name VC-1 Block-level functions
1015 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1021 * @brief Get macroblock-level quantizer scale
1023 #define GET_MQUANT() \
1024 if (v->dquantfrm) { \
1026 if (v->dqprofile == DQPROFILE_ALL_MBS) { \
1027 if (v->dqbilevel) { \
1028 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1030 mqdiff = get_bits(gb, 3); \
1032 mquant = v->pq + mqdiff; \
1034 mquant = get_bits(gb, 5); \
1037 if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1038 edges = 1 << v->dqsbedge; \
1039 else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1040 edges = (3 << v->dqsbedge) % 15; \
1041 else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
1043 if ((edges&1) && !s->mb_x) \
1044 mquant = v->altpq; \
1045 if ((edges&2) && s->first_slice_line) \
1046 mquant = v->altpq; \
1047 if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
1048 mquant = v->altpq; \
1049 if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
1050 mquant = v->altpq; \
1051 if (!mquant || mquant > 31) { \
1052 av_log(v->s.avctx, AV_LOG_ERROR, \
1053 "Overriding invalid mquant %d\n", mquant); \
1059 * @def GET_MVDATA(_dmv_x, _dmv_y)
1060 * @brief Get MV differentials
1061 * @see MVDATA decoding from 8.3.5.2, p(1)20
1062 * @param _dmv_x Horizontal differential for decoded MV
1063 * @param _dmv_y Vertical differential for decoded MV
1065 #define GET_MVDATA(_dmv_x, _dmv_y) \
1066 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
1067 VC1_MV_DIFF_VLC_BITS, 2); \
1069 mb_has_coeffs = 1; \
1072 mb_has_coeffs = 0; \
1075 _dmv_x = _dmv_y = 0; \
1076 } else if (index == 35) { \
1077 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1078 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1079 } else if (index == 36) { \
1084 index1 = index % 6; \
1085 if (!s->quarter_sample && index1 == 5) val = 1; \
1087 if (size_table[index1] - val > 0) \
1088 val = get_bits(gb, size_table[index1] - val); \
1090 sign = 0 - (val&1); \
1091 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1093 index1 = index / 6; \
1094 if (!s->quarter_sample && index1 == 5) val = 1; \
1096 if (size_table[index1] - val > 0) \
1097 val = get_bits(gb, size_table[index1] - val); \
1099 sign = 0 - (val & 1); \
1100 _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
1103 static av_always_inline
void get_mvdata_interlaced(VC1Context
*v
, int *dmv_x
,
1104 int *dmv_y
, int *pred_flag
)
1107 int extend_x
= 0, extend_y
= 0;
1108 GetBitContext
*gb
= &v
->s
.gb
;
1111 const int* offs_tab
;
1114 bits
= VC1_2REF_MVDATA_VLC_BITS
;
1117 bits
= VC1_1REF_MVDATA_VLC_BITS
;
1120 switch (v
->dmvrange
) {
1128 extend_x
= extend_y
= 1;
1131 index
= get_vlc2(gb
, v
->imv_vlc
->table
, bits
, 3);
1133 *dmv_x
= get_bits(gb
, v
->k_x
);
1134 *dmv_y
= get_bits(gb
, v
->k_y
);
1136 *pred_flag
= *dmv_y
& 1;
1137 *dmv_y
= (*dmv_y
+ *pred_flag
) >> 1;
1142 offs_tab
= offset_table2
;
1144 offs_tab
= offset_table1
;
1145 index1
= (index
+ 1) % 9;
1147 val
= get_bits(gb
, index1
+ extend_x
);
1148 sign
= 0 -(val
& 1);
1149 *dmv_x
= (sign
^ ((val
>> 1) + offs_tab
[index1
])) - sign
;
1153 offs_tab
= offset_table2
;
1155 offs_tab
= offset_table1
;
1156 index1
= (index
+ 1) / 9;
1157 if (index1
> v
->numref
) {
1158 val
= get_bits(gb
, (index1
+ (extend_y
<< v
->numref
)) >> v
->numref
);
1159 sign
= 0 - (val
& 1);
1160 *dmv_y
= (sign
^ ((val
>> 1) + offs_tab
[index1
>> v
->numref
])) - sign
;
1164 *pred_flag
= index1
& 1;
1168 static av_always_inline
int scaleforsame_x(VC1Context
*v
, int n
/* MV */, int dir
)
1170 int scaledvalue
, refdist
;
1171 int scalesame1
, scalesame2
;
1172 int scalezone1_x
, zone1offset_x
;
1173 int table_index
= dir
^ v
->second_field
;
1175 if (v
->s
.pict_type
!= AV_PICTURE_TYPE_B
)
1176 refdist
= v
->refdist
;
1178 refdist
= dir ? v
->brfd
: v
->frfd
;
1181 scalesame1
= ff_vc1_field_mvpred_scales
[table_index
][1][refdist
];
1182 scalesame2
= ff_vc1_field_mvpred_scales
[table_index
][2][refdist
];
1183 scalezone1_x
= ff_vc1_field_mvpred_scales
[table_index
][3][refdist
];
1184 zone1offset_x
= ff_vc1_field_mvpred_scales
[table_index
][5][refdist
];
1189 if (FFABS(n
) < scalezone1_x
)
1190 scaledvalue
= (n
* scalesame1
) >> 8;
1193 scaledvalue
= ((n
* scalesame2
) >> 8) - zone1offset_x
;
1195 scaledvalue
= ((n
* scalesame2
) >> 8) + zone1offset_x
;
1198 return av_clip(scaledvalue
, -v
->range_x
, v
->range_x
- 1);
1201 static av_always_inline
int scaleforsame_y(VC1Context
*v
, int i
, int n
/* MV */, int dir
)
1203 int scaledvalue
, refdist
;
1204 int scalesame1
, scalesame2
;
1205 int scalezone1_y
, zone1offset_y
;
1206 int table_index
= dir
^ v
->second_field
;
1208 if (v
->s
.pict_type
!= AV_PICTURE_TYPE_B
)
1209 refdist
= v
->refdist
;
1211 refdist
= dir ? v
->brfd
: v
->frfd
;
1214 scalesame1
= ff_vc1_field_mvpred_scales
[table_index
][1][refdist
];
1215 scalesame2
= ff_vc1_field_mvpred_scales
[table_index
][2][refdist
];
1216 scalezone1_y
= ff_vc1_field_mvpred_scales
[table_index
][4][refdist
];
1217 zone1offset_y
= ff_vc1_field_mvpred_scales
[table_index
][6][refdist
];
1222 if (FFABS(n
) < scalezone1_y
)
1223 scaledvalue
= (n
* scalesame1
) >> 8;
1226 scaledvalue
= ((n
* scalesame2
) >> 8) - zone1offset_y
;
1228 scaledvalue
= ((n
* scalesame2
) >> 8) + zone1offset_y
;
1232 if (v
->cur_field_type
&& !v
->ref_field_type
[dir
])
1233 return av_clip(scaledvalue
, -v
->range_y
/ 2 + 1, v
->range_y
/ 2);
1235 return av_clip(scaledvalue
, -v
->range_y
/ 2, v
->range_y
/ 2 - 1);
1238 static av_always_inline
int scaleforopp_x(VC1Context
*v
, int n
/* MV */)
1240 int scalezone1_x
, zone1offset_x
;
1241 int scaleopp1
, scaleopp2
, brfd
;
1244 brfd
= FFMIN(v
->brfd
, 3);
1245 scalezone1_x
= ff_vc1_b_field_mvpred_scales
[3][brfd
];
1246 zone1offset_x
= ff_vc1_b_field_mvpred_scales
[5][brfd
];
1247 scaleopp1
= ff_vc1_b_field_mvpred_scales
[1][brfd
];
1248 scaleopp2
= ff_vc1_b_field_mvpred_scales
[2][brfd
];
1253 if (FFABS(n
) < scalezone1_x
)
1254 scaledvalue
= (n
* scaleopp1
) >> 8;
1257 scaledvalue
= ((n
* scaleopp2
) >> 8) - zone1offset_x
;
1259 scaledvalue
= ((n
* scaleopp2
) >> 8) + zone1offset_x
;
1262 return av_clip(scaledvalue
, -v
->range_x
, v
->range_x
- 1);
1265 static av_always_inline
int scaleforopp_y(VC1Context
*v
, int n
/* MV */, int dir
)
1267 int scalezone1_y
, zone1offset_y
;
1268 int scaleopp1
, scaleopp2
, brfd
;
1271 brfd
= FFMIN(v
->brfd
, 3);
1272 scalezone1_y
= ff_vc1_b_field_mvpred_scales
[4][brfd
];
1273 zone1offset_y
= ff_vc1_b_field_mvpred_scales
[6][brfd
];
1274 scaleopp1
= ff_vc1_b_field_mvpred_scales
[1][brfd
];
1275 scaleopp2
= ff_vc1_b_field_mvpred_scales
[2][brfd
];
1280 if (FFABS(n
) < scalezone1_y
)
1281 scaledvalue
= (n
* scaleopp1
) >> 8;
1284 scaledvalue
= ((n
* scaleopp2
) >> 8) - zone1offset_y
;
1286 scaledvalue
= ((n
* scaleopp2
) >> 8) + zone1offset_y
;
1289 if (v
->cur_field_type
&& !v
->ref_field_type
[dir
]) {
1290 return av_clip(scaledvalue
, -v
->range_y
/ 2 + 1, v
->range_y
/ 2);
1292 return av_clip(scaledvalue
, -v
->range_y
/ 2, v
->range_y
/ 2 - 1);
1296 static av_always_inline
int scaleforsame(VC1Context
*v
, int i
, int n
/* MV */,
1299 int brfd
, scalesame
;
1300 int hpel
= 1 - v
->s
.quarter_sample
;
1303 if (v
->s
.pict_type
!= AV_PICTURE_TYPE_B
|| v
->second_field
|| !dir
) {
1305 n
= scaleforsame_y(v
, i
, n
, dir
) << hpel
;
1307 n
= scaleforsame_x(v
, n
, dir
) << hpel
;
1310 brfd
= FFMIN(v
->brfd
, 3);
1311 scalesame
= ff_vc1_b_field_mvpred_scales
[0][brfd
];
1313 n
= (n
* scalesame
>> 8) << hpel
;
1317 static av_always_inline
int scaleforopp(VC1Context
*v
, int n
/* MV */,
1320 int refdist
, scaleopp
;
1321 int hpel
= 1 - v
->s
.quarter_sample
;
1324 if (v
->s
.pict_type
== AV_PICTURE_TYPE_B
&& !v
->second_field
&& dir
== 1) {
1326 n
= scaleforopp_y(v
, n
, dir
) << hpel
;
1328 n
= scaleforopp_x(v
, n
) << hpel
;
1331 if (v
->s
.pict_type
!= AV_PICTURE_TYPE_B
)
1332 refdist
= FFMIN(v
->refdist
, 3);
1334 refdist
= dir ? v
->brfd
: v
->frfd
;
1335 scaleopp
= ff_vc1_field_mvpred_scales
[dir
^ v
->second_field
][0][refdist
];
1337 n
= (n
* scaleopp
>> 8) << hpel
;
1341 /** Predict and set motion vector
1343 static inline void vc1_pred_mv(VC1Context
*v
, int n
, int dmv_x
, int dmv_y
,
1344 int mv1
, int r_x
, int r_y
, uint8_t* is_intra
,
1345 int pred_flag
, int dir
)
1347 MpegEncContext
*s
= &v
->s
;
1348 int xy
, wrap
, off
= 0;
1352 int mixedmv_pic
, num_samefield
= 0, num_oppfield
= 0;
1353 int opposite
, a_f
, b_f
, c_f
;
1354 int16_t field_predA
[2];
1355 int16_t field_predB
[2];
1356 int16_t field_predC
[2];
1357 int a_valid
, b_valid
, c_valid
;
1358 int hybridmv_thresh
, y_bias
= 0;
1360 if (v
->mv_mode
== MV_PMODE_MIXED_MV
||
1361 ((v
->mv_mode
== MV_PMODE_INTENSITY_COMP
) && (v
->mv_mode2
== MV_PMODE_MIXED_MV
)))
1365 /* scale MV difference to be quad-pel */
1366 dmv_x
<<= 1 - s
->quarter_sample
;
1367 dmv_y
<<= 1 - s
->quarter_sample
;
1369 wrap
= s
->b8_stride
;
1370 xy
= s
->block_index
[n
];
1373 s
->mv
[0][n
][0] = s
->current_picture
.f
.motion_val
[0][xy
+ v
->blocks_off
][0] = 0;
1374 s
->mv
[0][n
][1] = s
->current_picture
.f
.motion_val
[0][xy
+ v
->blocks_off
][1] = 0;
1375 s
->current_picture
.f
.motion_val
[1][xy
+ v
->blocks_off
][0] = 0;
1376 s
->current_picture
.f
.motion_val
[1][xy
+ v
->blocks_off
][1] = 0;
1377 if (mv1
) { /* duplicate motion data for 1-MV block */
1378 s
->current_picture
.f
.motion_val
[0][xy
+ 1 + v
->blocks_off
][0] = 0;
1379 s
->current_picture
.f
.motion_val
[0][xy
+ 1 + v
->blocks_off
][1] = 0;
1380 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ v
->blocks_off
][0] = 0;
1381 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ v
->blocks_off
][1] = 0;
1382 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ 1 + v
->blocks_off
][0] = 0;
1383 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ 1 + v
->blocks_off
][1] = 0;
1384 v
->luma_mv
[s
->mb_x
][0] = v
->luma_mv
[s
->mb_x
][1] = 0;
1385 s
->current_picture
.f
.motion_val
[1][xy
+ 1 + v
->blocks_off
][0] = 0;
1386 s
->current_picture
.f
.motion_val
[1][xy
+ 1 + v
->blocks_off
][1] = 0;
1387 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
][0] = 0;
1388 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
+ v
->blocks_off
][1] = 0;
1389 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
+ 1 + v
->blocks_off
][0] = 0;
1390 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
+ 1 + v
->blocks_off
][1] = 0;
1395 C
= s
->current_picture
.f
.motion_val
[dir
][xy
- 1 + v
->blocks_off
];
1396 A
= s
->current_picture
.f
.motion_val
[dir
][xy
- wrap
+ v
->blocks_off
];
1398 if (v
->field_mode
&& mixedmv_pic
)
1399 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-2 : 2;
1401 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-1 : 2;
1403 //in 4-MV mode different blocks have different B predictor position
1406 off
= (s
->mb_x
> 0) ?
-1 : 1;
1409 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-1 : 1;
1418 B
= s
->current_picture
.f
.motion_val
[dir
][xy
- wrap
+ off
+ v
->blocks_off
];
1420 a_valid
= !s
->first_slice_line
|| (n
== 2 || n
== 3);
1421 b_valid
= a_valid
&& (s
->mb_width
> 1);
1422 c_valid
= s
->mb_x
|| (n
== 1 || n
== 3);
1423 if (v
->field_mode
) {
1424 a_valid
= a_valid
&& !is_intra
[xy
- wrap
];
1425 b_valid
= b_valid
&& !is_intra
[xy
- wrap
+ off
];
1426 c_valid
= c_valid
&& !is_intra
[xy
- 1];
1430 a_f
= v
->mv_f
[dir
][xy
- wrap
+ v
->blocks_off
];
1431 num_oppfield
+= a_f
;
1432 num_samefield
+= 1 - a_f
;
1433 field_predA
[0] = A
[0];
1434 field_predA
[1] = A
[1];
1436 field_predA
[0] = field_predA
[1] = 0;
1440 b_f
= v
->mv_f
[dir
][xy
- wrap
+ off
+ v
->blocks_off
];
1441 num_oppfield
+= b_f
;
1442 num_samefield
+= 1 - b_f
;
1443 field_predB
[0] = B
[0];
1444 field_predB
[1] = B
[1];
1446 field_predB
[0] = field_predB
[1] = 0;
1450 c_f
= v
->mv_f
[dir
][xy
- 1 + v
->blocks_off
];
1451 num_oppfield
+= c_f
;
1452 num_samefield
+= 1 - c_f
;
1453 field_predC
[0] = C
[0];
1454 field_predC
[1] = C
[1];
1456 field_predC
[0] = field_predC
[1] = 0;
1460 if (v
->field_mode
) {
1462 // REFFIELD determines if the last field or the second-last field is
1463 // to be used as reference
1464 opposite
= 1 - v
->reffield
;
1466 if (num_samefield
<= num_oppfield
)
1467 opposite
= 1 - pred_flag
;
1469 opposite
= pred_flag
;
1474 if (a_valid
&& !a_f
) {
1475 field_predA
[0] = scaleforopp(v
, field_predA
[0], 0, dir
);
1476 field_predA
[1] = scaleforopp(v
, field_predA
[1], 1, dir
);
1478 if (b_valid
&& !b_f
) {
1479 field_predB
[0] = scaleforopp(v
, field_predB
[0], 0, dir
);
1480 field_predB
[1] = scaleforopp(v
, field_predB
[1], 1, dir
);
1482 if (c_valid
&& !c_f
) {
1483 field_predC
[0] = scaleforopp(v
, field_predC
[0], 0, dir
);
1484 field_predC
[1] = scaleforopp(v
, field_predC
[1], 1, dir
);
1486 v
->mv_f
[dir
][xy
+ v
->blocks_off
] = 1;
1487 v
->ref_field_type
[dir
] = !v
->cur_field_type
;
1489 if (a_valid
&& a_f
) {
1490 field_predA
[0] = scaleforsame(v
, n
, field_predA
[0], 0, dir
);
1491 field_predA
[1] = scaleforsame(v
, n
, field_predA
[1], 1, dir
);
1493 if (b_valid
&& b_f
) {
1494 field_predB
[0] = scaleforsame(v
, n
, field_predB
[0], 0, dir
);
1495 field_predB
[1] = scaleforsame(v
, n
, field_predB
[1], 1, dir
);
1497 if (c_valid
&& c_f
) {
1498 field_predC
[0] = scaleforsame(v
, n
, field_predC
[0], 0, dir
);
1499 field_predC
[1] = scaleforsame(v
, n
, field_predC
[1], 1, dir
);
1501 v
->mv_f
[dir
][xy
+ v
->blocks_off
] = 0;
1502 v
->ref_field_type
[dir
] = v
->cur_field_type
;
1506 px
= field_predA
[0];
1507 py
= field_predA
[1];
1508 } else if (c_valid
) {
1509 px
= field_predC
[0];
1510 py
= field_predC
[1];
1511 } else if (b_valid
) {
1512 px
= field_predB
[0];
1513 py
= field_predB
[1];
1519 if (num_samefield
+ num_oppfield
> 1) {
1520 px
= mid_pred(field_predA
[0], field_predB
[0], field_predC
[0]);
1521 py
= mid_pred(field_predA
[1], field_predB
[1], field_predC
[1]);
1524 /* Pullback MV as specified in 8.3.5.3.4 */
1525 if (!v
->field_mode
) {
1527 qx
= (s
->mb_x
<< 6) + ((n
== 1 || n
== 3) ?
32 : 0);
1528 qy
= (s
->mb_y
<< 6) + ((n
== 2 || n
== 3) ?
32 : 0);
1529 X
= (s
->mb_width
<< 6) - 4;
1530 Y
= (s
->mb_height
<< 6) - 4;
1532 if (qx
+ px
< -60) px
= -60 - qx
;
1533 if (qy
+ py
< -60) py
= -60 - qy
;
1535 if (qx
+ px
< -28) px
= -28 - qx
;
1536 if (qy
+ py
< -28) py
= -28 - qy
;
1538 if (qx
+ px
> X
) px
= X
- qx
;
1539 if (qy
+ py
> Y
) py
= Y
- qy
;
1542 if (!v
->field_mode
|| s
->pict_type
!= AV_PICTURE_TYPE_B
) {
1543 /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
1544 hybridmv_thresh
= 32;
1545 if (a_valid
&& c_valid
) {
1546 if (is_intra
[xy
- wrap
])
1547 sum
= FFABS(px
) + FFABS(py
);
1549 sum
= FFABS(px
- field_predA
[0]) + FFABS(py
- field_predA
[1]);
1550 if (sum
> hybridmv_thresh
) {
1551 if (get_bits1(&s
->gb
)) { // read HYBRIDPRED bit
1552 px
= field_predA
[0];
1553 py
= field_predA
[1];
1555 px
= field_predC
[0];
1556 py
= field_predC
[1];
1559 if (is_intra
[xy
- 1])
1560 sum
= FFABS(px
) + FFABS(py
);
1562 sum
= FFABS(px
- field_predC
[0]) + FFABS(py
- field_predC
[1]);
1563 if (sum
> hybridmv_thresh
) {
1564 if (get_bits1(&s
->gb
)) {
1565 px
= field_predA
[0];
1566 py
= field_predA
[1];
1568 px
= field_predC
[0];
1569 py
= field_predC
[1];
1576 if (v
->field_mode
&& v
->numref
)
1578 if (v
->field_mode
&& v
->cur_field_type
&& v
->ref_field_type
[dir
] == 0)
1580 /* store MV using signed modulus of MV range defined in 4.11 */
1581 s
->mv
[dir
][n
][0] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][0] = ((px
+ dmv_x
+ r_x
) & ((r_x
<< 1) - 1)) - r_x
;
1582 s
->mv
[dir
][n
][1] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][1] = ((py
+ dmv_y
+ r_y
- y_bias
) & ((r_y
<< 1) - 1)) - r_y
+ y_bias
;
1583 if (mv1
) { /* duplicate motion data for 1-MV block */
1584 s
->current_picture
.f
.motion_val
[dir
][xy
+ 1 + v
->blocks_off
][0] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][0];
1585 s
->current_picture
.f
.motion_val
[dir
][xy
+ 1 + v
->blocks_off
][1] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][1];
1586 s
->current_picture
.f
.motion_val
[dir
][xy
+ wrap
+ v
->blocks_off
][0] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][0];
1587 s
->current_picture
.f
.motion_val
[dir
][xy
+ wrap
+ v
->blocks_off
][1] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][1];
1588 s
->current_picture
.f
.motion_val
[dir
][xy
+ wrap
+ 1 + v
->blocks_off
][0] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][0];
1589 s
->current_picture
.f
.motion_val
[dir
][xy
+ wrap
+ 1 + v
->blocks_off
][1] = s
->current_picture
.f
.motion_val
[dir
][xy
+ v
->blocks_off
][1];
1590 v
->mv_f
[dir
][xy
+ 1 + v
->blocks_off
] = v
->mv_f
[dir
][xy
+ v
->blocks_off
];
1591 v
->mv_f
[dir
][xy
+ wrap
+ v
->blocks_off
] = v
->mv_f
[dir
][xy
+ wrap
+ 1 + v
->blocks_off
] = v
->mv_f
[dir
][xy
+ v
->blocks_off
];
1595 /** Predict and set motion vector for interlaced frame picture MBs
1597 static inline void vc1_pred_mv_intfr(VC1Context
*v
, int n
, int dmv_x
, int dmv_y
,
1598 int mvn
, int r_x
, int r_y
, uint8_t* is_intra
)
1600 MpegEncContext
*s
= &v
->s
;
1601 int xy
, wrap
, off
= 0;
1602 int A
[2], B
[2], C
[2];
1604 int a_valid
= 0, b_valid
= 0, c_valid
= 0;
1605 int field_a
, field_b
, field_c
; // 0: same, 1: opposit
1606 int total_valid
, num_samefield
, num_oppfield
;
1607 int pos_c
, pos_b
, n_adj
;
1609 wrap
= s
->b8_stride
;
1610 xy
= s
->block_index
[n
];
1613 s
->mv
[0][n
][0] = s
->current_picture
.f
.motion_val
[0][xy
][0] = 0;
1614 s
->mv
[0][n
][1] = s
->current_picture
.f
.motion_val
[0][xy
][1] = 0;
1615 s
->current_picture
.f
.motion_val
[1][xy
][0] = 0;
1616 s
->current_picture
.f
.motion_val
[1][xy
][1] = 0;
1617 if (mvn
== 1) { /* duplicate motion data for 1-MV block */
1618 s
->current_picture
.f
.motion_val
[0][xy
+ 1][0] = 0;
1619 s
->current_picture
.f
.motion_val
[0][xy
+ 1][1] = 0;
1620 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
][0] = 0;
1621 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
][1] = 0;
1622 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ 1][0] = 0;
1623 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ 1][1] = 0;
1624 v
->luma_mv
[s
->mb_x
][0] = v
->luma_mv
[s
->mb_x
][1] = 0;
1625 s
->current_picture
.f
.motion_val
[1][xy
+ 1][0] = 0;
1626 s
->current_picture
.f
.motion_val
[1][xy
+ 1][1] = 0;
1627 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
][0] = 0;
1628 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
][1] = 0;
1629 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
+ 1][0] = 0;
1630 s
->current_picture
.f
.motion_val
[1][xy
+ wrap
+ 1][1] = 0;
1635 off
= ((n
== 0) || (n
== 1)) ?
1 : -1;
1637 if (s
->mb_x
|| (n
== 1) || (n
== 3)) {
1638 if ((v
->blk_mv_type
[xy
]) // current block (MB) has a field MV
1639 || (!v
->blk_mv_type
[xy
] && !v
->blk_mv_type
[xy
- 1])) { // or both have frame MV
1640 A
[0] = s
->current_picture
.f
.motion_val
[0][xy
- 1][0];
1641 A
[1] = s
->current_picture
.f
.motion_val
[0][xy
- 1][1];
1643 } else { // current block has frame mv and cand. has field MV (so average)
1644 A
[0] = (s
->current_picture
.f
.motion_val
[0][xy
- 1][0]
1645 + s
->current_picture
.f
.motion_val
[0][xy
- 1 + off
* wrap
][0] + 1) >> 1;
1646 A
[1] = (s
->current_picture
.f
.motion_val
[0][xy
- 1][1]
1647 + s
->current_picture
.f
.motion_val
[0][xy
- 1 + off
* wrap
][1] + 1) >> 1;
1650 if (!(n
& 1) && v
->is_intra
[s
->mb_x
- 1]) {
1656 /* Predict B and C */
1657 B
[0] = B
[1] = C
[0] = C
[1] = 0;
1658 if (n
== 0 || n
== 1 || v
->blk_mv_type
[xy
]) {
1659 if (!s
->first_slice_line
) {
1660 if (!v
->is_intra
[s
->mb_x
- s
->mb_stride
]) {
1663 pos_b
= s
->block_index
[n_adj
] - 2 * wrap
;
1664 if (v
->blk_mv_type
[pos_b
] && v
->blk_mv_type
[xy
]) {
1665 n_adj
= (n
& 2) | (n
& 1);
1667 B
[0] = s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
] - 2 * wrap
][0];
1668 B
[1] = s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
] - 2 * wrap
][1];
1669 if (v
->blk_mv_type
[pos_b
] && !v
->blk_mv_type
[xy
]) {
1670 B
[0] = (B
[0] + s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
^ 2] - 2 * wrap
][0] + 1) >> 1;
1671 B
[1] = (B
[1] + s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
^ 2] - 2 * wrap
][1] + 1) >> 1;
1674 if (s
->mb_width
> 1) {
1675 if (!v
->is_intra
[s
->mb_x
- s
->mb_stride
+ 1]) {
1678 pos_c
= s
->block_index
[2] - 2 * wrap
+ 2;
1679 if (v
->blk_mv_type
[pos_c
] && v
->blk_mv_type
[xy
]) {
1682 C
[0] = s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
] - 2 * wrap
+ 2][0];
1683 C
[1] = s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
] - 2 * wrap
+ 2][1];
1684 if (v
->blk_mv_type
[pos_c
] && !v
->blk_mv_type
[xy
]) {
1685 C
[0] = (1 + C
[0] + (s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
^ 2] - 2 * wrap
+ 2][0])) >> 1;
1686 C
[1] = (1 + C
[1] + (s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
^ 2] - 2 * wrap
+ 2][1])) >> 1;
1688 if (s
->mb_x
== s
->mb_width
- 1) {
1689 if (!v
->is_intra
[s
->mb_x
- s
->mb_stride
- 1]) {
1692 pos_c
= s
->block_index
[3] - 2 * wrap
- 2;
1693 if (v
->blk_mv_type
[pos_c
] && v
->blk_mv_type
[xy
]) {
1696 C
[0] = s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
] - 2 * wrap
- 2][0];
1697 C
[1] = s
->current_picture
.f
.motion_val
[0][s
->block_index
[n_adj
] - 2 * wrap
- 2][1];
1698 if (v
->blk_mv_type
[pos_c
] && !v
->blk_mv_type
[xy
]) {
1699 C
[0] = (1 + C
[0] + s
->current_picture
.f
.motion_val
[0][s
->block_index
[1] - 2 * wrap
- 2][0]) >> 1;
1700 C
[1] = (1 + C
[1] + s
->current_picture
.f
.motion_val
[0][s
->block_index
[1] - 2 * wrap
- 2][1]) >> 1;
1709 pos_b
= s
->block_index
[1];
1711 B
[0] = s
->current_picture
.f
.motion_val
[0][pos_b
][0];
1712 B
[1] = s
->current_picture
.f
.motion_val
[0][pos_b
][1];
1713 pos_c
= s
->block_index
[0];
1715 C
[0] = s
->current_picture
.f
.motion_val
[0][pos_c
][0];
1716 C
[1] = s
->current_picture
.f
.motion_val
[0][pos_c
][1];
1719 total_valid
= a_valid
+ b_valid
+ c_valid
;
1720 // check if predictor A is out of bounds
1721 if (!s
->mb_x
&& !(n
== 1 || n
== 3)) {
1724 // check if predictor B is out of bounds
1725 if ((s
->first_slice_line
&& v
->blk_mv_type
[xy
]) || (s
->first_slice_line
&& !(n
& 2))) {
1726 B
[0] = B
[1] = C
[0] = C
[1] = 0;
1728 if (!v
->blk_mv_type
[xy
]) {
1729 if (s
->mb_width
== 1) {
1733 if (total_valid
>= 2) {
1734 px
= mid_pred(A
[0], B
[0], C
[0]);
1735 py
= mid_pred(A
[1], B
[1], C
[1]);
1736 } else if (total_valid
) {
1737 if (a_valid
) { px
= A
[0]; py
= A
[1]; }
1738 if (b_valid
) { px
= B
[0]; py
= B
[1]; }
1739 if (c_valid
) { px
= C
[0]; py
= C
[1]; }
1745 field_a
= (A
[1] & 4) ?
1 : 0;
1749 field_b
= (B
[1] & 4) ?
1 : 0;
1753 field_c
= (C
[1] & 4) ?
1 : 0;
1757 num_oppfield
= field_a
+ field_b
+ field_c
;
1758 num_samefield
= total_valid
- num_oppfield
;
1759 if (total_valid
== 3) {
1760 if ((num_samefield
== 3) || (num_oppfield
== 3)) {
1761 px
= mid_pred(A
[0], B
[0], C
[0]);
1762 py
= mid_pred(A
[1], B
[1], C
[1]);
1763 } else if (num_samefield
>= num_oppfield
) {
1764 /* take one MV from same field set depending on priority
1765 the check for B may not be necessary */
1766 px
= !field_a ? A
[0] : B
[0];
1767 py
= !field_a ? A
[1] : B
[1];
1769 px
= field_a ? A
[0] : B
[0];
1770 py
= field_a ? A
[1] : B
[1];
1772 } else if (total_valid
== 2) {
1773 if (num_samefield
>= num_oppfield
) {
1774 if (!field_a
&& a_valid
) {
1777 } else if (!field_b
&& b_valid
) {
1780 } else if (c_valid
) {
1785 if (field_a
&& a_valid
) {
1788 } else if (field_b
&& b_valid
) {
1791 } else if (c_valid
) {
1796 } else if (total_valid
== 1) {
1797 px
= (a_valid
) ? A
[0] : ((b_valid
) ? B
[0] : C
[0]);
1798 py
= (a_valid
) ? A
[1] : ((b_valid
) ? B
[1] : C
[1]);
1803 /* store MV using signed modulus of MV range defined in 4.11 */
1804 s
->mv
[0][n
][0] = s
->current_picture
.f
.motion_val
[0][xy
][0] = ((px
+ dmv_x
+ r_x
) & ((r_x
<< 1) - 1)) - r_x
;
1805 s
->mv
[0][n
][1] = s
->current_picture
.f
.motion_val
[0][xy
][1] = ((py
+ dmv_y
+ r_y
) & ((r_y
<< 1) - 1)) - r_y
;
1806 if (mvn
== 1) { /* duplicate motion data for 1-MV block */
1807 s
->current_picture
.f
.motion_val
[0][xy
+ 1 ][0] = s
->current_picture
.f
.motion_val
[0][xy
][0];
1808 s
->current_picture
.f
.motion_val
[0][xy
+ 1 ][1] = s
->current_picture
.f
.motion_val
[0][xy
][1];
1809 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
][0] = s
->current_picture
.f
.motion_val
[0][xy
][0];
1810 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
][1] = s
->current_picture
.f
.motion_val
[0][xy
][1];
1811 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ 1][0] = s
->current_picture
.f
.motion_val
[0][xy
][0];
1812 s
->current_picture
.f
.motion_val
[0][xy
+ wrap
+ 1][1] = s
->current_picture
.f
.motion_val
[0][xy
][1];
1813 } else if (mvn
== 2) { /* duplicate motion data for 2-Field MV block */
1814 s
->current_picture
.f
.motion_val
[0][xy
+ 1][0] = s
->current_picture
.f
.motion_val
[0][xy
][0];
1815 s
->current_picture
.f
.motion_val
[0][xy
+ 1][1] = s
->current_picture
.f
.motion_val
[0][xy
][1];
1816 s
->mv
[0][n
+ 1][0] = s
->mv
[0][n
][0];
1817 s
->mv
[0][n
+ 1][1] = s
->mv
[0][n
][1];
1821 /** Motion compensation for direct or interpolated blocks in B-frames
1823 static void vc1_interp_mc(VC1Context
*v
)
1825 MpegEncContext
*s
= &v
->s
;
1826 DSPContext
*dsp
= &v
->s
.dsp
;
1827 uint8_t *srcY
, *srcU
, *srcV
;
1828 int dxy
, mx
, my
, uvmx
, uvmy
, src_x
, src_y
, uvsrc_x
, uvsrc_y
;
1830 int v_edge_pos
= s
->v_edge_pos
>> v
->field_mode
;
1832 if (!v
->field_mode
&& !v
->s
.next_picture
.f
.data
[0])
1835 mx
= s
->mv
[1][0][0];
1836 my
= s
->mv
[1][0][1];
1837 uvmx
= (mx
+ ((mx
& 3) == 3)) >> 1;
1838 uvmy
= (my
+ ((my
& 3) == 3)) >> 1;
1839 if (v
->field_mode
) {
1840 if (v
->cur_field_type
!= v
->ref_field_type
[1])
1841 my
= my
- 2 + 4 * v
->cur_field_type
;
1842 uvmy
= uvmy
- 2 + 4 * v
->cur_field_type
;
1845 uvmx
= uvmx
+ ((uvmx
< 0) ?
-(uvmx
& 1) : (uvmx
& 1));
1846 uvmy
= uvmy
+ ((uvmy
< 0) ?
-(uvmy
& 1) : (uvmy
& 1));
1848 srcY
= s
->next_picture
.f
.data
[0];
1849 srcU
= s
->next_picture
.f
.data
[1];
1850 srcV
= s
->next_picture
.f
.data
[2];
1852 src_x
= s
->mb_x
* 16 + (mx
>> 2);
1853 src_y
= s
->mb_y
* 16 + (my
>> 2);
1854 uvsrc_x
= s
->mb_x
* 8 + (uvmx
>> 2);
1855 uvsrc_y
= s
->mb_y
* 8 + (uvmy
>> 2);
1857 if (v
->profile
!= PROFILE_ADVANCED
) {
1858 src_x
= av_clip( src_x
, -16, s
->mb_width
* 16);
1859 src_y
= av_clip( src_y
, -16, s
->mb_height
* 16);
1860 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->mb_width
* 8);
1861 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->mb_height
* 8);
1863 src_x
= av_clip( src_x
, -17, s
->avctx
->coded_width
);
1864 src_y
= av_clip( src_y
, -18, s
->avctx
->coded_height
+ 1);
1865 uvsrc_x
= av_clip(uvsrc_x
, -8, s
->avctx
->coded_width
>> 1);
1866 uvsrc_y
= av_clip(uvsrc_y
, -8, s
->avctx
->coded_height
>> 1);
1869 srcY
+= src_y
* s
->linesize
+ src_x
;
1870 srcU
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
1871 srcV
+= uvsrc_y
* s
->uvlinesize
+ uvsrc_x
;
1873 if (v
->field_mode
&& v
->ref_field_type
[1]) {
1874 srcY
+= s
->current_picture_ptr
->f
.linesize
[0];
1875 srcU
+= s
->current_picture_ptr
->f
.linesize
[1];
1876 srcV
+= s
->current_picture_ptr
->f
.linesize
[2];
1879 /* for grayscale we should not try to read from unknown area */
1880 if (s
->flags
& CODEC_FLAG_GRAY
) {
1881 srcU
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
1882 srcV
= s
->edge_emu_buffer
+ 18 * s
->linesize
;
1885 if (v
->rangeredfrm
|| s
->h_edge_pos
< 22 || v_edge_pos
< 22
1886 || (unsigned)(src_x
- 1) > s
->h_edge_pos
- (mx
& 3) - 16 - 3
1887 || (unsigned)(src_y
- 1) > v_edge_pos
- (my
& 3) - 16 - 3) {
1888 uint8_t *uvbuf
= s
->edge_emu_buffer
+ 19 * s
->linesize
;
1890 srcY
-= s
->mspel
* (1 + s
->linesize
);
1891 s
->dsp
.emulated_edge_mc(s
->edge_emu_buffer
, srcY
, s
->linesize
,
1892 17 + s
->mspel
* 2, 17 + s
->mspel
* 2,
1893 src_x
- s
->mspel
, src_y
- s
->mspel
,
1894 s
->h_edge_pos
, v_edge_pos
);
1895 srcY
= s
->edge_emu_buffer
;
1896 s
->dsp
.emulated_edge_mc(uvbuf
, srcU
, s
->uvlinesize
, 8 + 1, 8 + 1,
1897 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, v_edge_pos
>> 1);
1898 s
->dsp
.emulated_edge_mc(uvbuf
+ 16, srcV
, s
->uvlinesize
, 8 + 1, 8 + 1,
1899 uvsrc_x
, uvsrc_y
, s
->h_edge_pos
>> 1, v_edge_pos
>> 1);
1902 /* if we deal with range reduction we need to scale source blocks */
1903 if (v
->rangeredfrm
) {
1905 uint8_t *src
, *src2
;
1908 for (j
= 0; j
< 17 + s
->mspel
* 2; j
++) {
1909 for (i
= 0; i
< 17 + s
->mspel
* 2; i
++)
1910 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
1915 for (j
= 0; j
< 9; j
++) {
1916 for (i
= 0; i
< 9; i
++) {
1917 src
[i
] = ((src
[i
] - 128) >> 1) + 128;
1918 src2
[i
] = ((src2
[i
] - 128) >> 1) + 128;
1920 src
+= s
->uvlinesize
;
1921 src2
+= s
->uvlinesize
;
1924 srcY
+= s
->mspel
* (1 + s
->linesize
);
1927 if (v
->field_mode
&& v
->cur_field_type
) {
1928 off
= s
->current_picture_ptr
->f
.linesize
[0];
1929 off_uv
= s
->current_picture_ptr
->f
.linesize
[1];
1936 dxy
= ((my
& 3) << 2) | (mx
& 3);
1937 v
->vc1dsp
.avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, v
->rnd
);
1938 v
->vc1dsp
.avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
+ 8, srcY
+ 8, s
->linesize
, v
->rnd
);
1939 srcY
+= s
->linesize
* 8;
1940 v
->vc1dsp
.avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
+ 8 * s
->linesize
, srcY
, s
->linesize
, v
->rnd
);
1941 v
->vc1dsp
.avg_vc1_mspel_pixels_tab
[dxy
](s
->dest
[0] + off
+ 8 * s
->linesize
+ 8, srcY
+ 8, s
->linesize
, v
->rnd
);
1943 dxy
= (my
& 2) | ((mx
& 2) >> 1);
1946 dsp
->avg_pixels_tab
[0][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 16);
1948 dsp
->avg_no_rnd_pixels_tab
[0][dxy
](s
->dest
[0] + off
, srcY
, s
->linesize
, 16);
1951 if (s
->flags
& CODEC_FLAG_GRAY
) return;
1952 /* Chroma MC always uses qpel blilinear */
1953 uvmx
= (uvmx
& 3) << 1;
1954 uvmy
= (uvmy
& 3) << 1;
1956 dsp
->avg_h264_chroma_pixels_tab
[0](s
->dest
[1] + off_uv
, srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
1957 dsp
->avg_h264_chroma_pixels_tab
[0](s
->dest
[2] + off_uv
, srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
1959 v
->vc1dsp
.avg_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[1] + off_uv
, srcU
, s
->uvlinesize
, 8, uvmx
, uvmy
);
1960 v
->vc1dsp
.avg_no_rnd_vc1_chroma_pixels_tab
[0](s
->dest
[2] + off_uv
, srcV
, s
->uvlinesize
, 8, uvmx
, uvmy
);
1964 static av_always_inline
int scale_mv(int value
, int bfrac
, int inv
, int qs
)
1968 #if B_FRACTION_DEN==256
1972 return 2 * ((value
* n
+ 255) >> 9);
1973 return (value
* n
+ 128) >> 8;
1976 n
-= B_FRACTION_DEN
;
1978 return 2 * ((value
* n
+ B_FRACTION_DEN
- 1) / (2 * B_FRACTION_DEN
));
1979 return (value
* n
+ B_FRACTION_DEN
/2) / B_FRACTION_DEN
;
1983 /** Reconstruct motion vector for B-frame and do motion compensation
1985 static inline void vc1_b_mc(VC1Context
*v
, int dmv_x
[2], int dmv_y
[2],
1986 int direct
, int mode
)
1989 v
->mv_mode2
= v
->mv_mode
;
1990 v
->mv_mode
= MV_PMODE_INTENSITY_COMP
;
1996 v
->mv_mode
= v
->mv_mode2
;
1999 if (mode
== BMV_TYPE_INTERPOLATED
) {
2003 v
->mv_mode
= v
->mv_mode2
;
2007 if (v
->use_ic
&& (mode
== BMV_TYPE_BACKWARD
))
2008 v
->mv_mode
= v
->mv_mode2
;
2009 vc1_mc_1mv(v
, (mode
== BMV_TYPE_BACKWARD
));
2011 v
->mv_mode
= v
->mv_mode2
;
2014 static inline void vc1_pred_b_mv(VC1Context
*v
, int dmv_x
[2], int dmv_y
[2],
2015 int direct
, int mvtype
)
2017 MpegEncContext
*s
= &v
->s
;
2018 int xy
, wrap
, off
= 0;
2023 const uint8_t *is_intra
= v
->mb_type
[0];
2027 /* scale MV difference to be quad-pel */
2028 dmv_x
[0] <<= 1 - s
->quarter_sample
;
2029 dmv_y
[0] <<= 1 - s
->quarter_sample
;
2030 dmv_x
[1] <<= 1 - s
->quarter_sample
;
2031 dmv_y
[1] <<= 1 - s
->quarter_sample
;
2033 wrap
= s
->b8_stride
;
2034 xy
= s
->block_index
[0];
2037 s
->current_picture
.f
.motion_val
[0][xy
+ v
->blocks_off
][0] =
2038 s
->current_picture
.f
.motion_val
[0][xy
+ v
->blocks_off
][1] =
2039 s
->current_picture
.f
.motion_val
[1][xy
+ v
->blocks_off
][0] =
2040 s
->current_picture
.f
.motion_val
[1][xy
+ v
->blocks_off
][1] = 0;
2043 if (!v
->field_mode
) {
2044 s
->mv
[0][0][0] = scale_mv(s
->next_picture
.f
.motion_val
[1][xy
][0], v
->bfraction
, 0, s
->quarter_sample
);
2045 s
->mv
[0][0][1] = scale_mv(s
->next_picture
.f
.motion_val
[1][xy
][1], v
->bfraction
, 0, s
->quarter_sample
);
2046 s
->mv
[1][0][0] = scale_mv(s
->next_picture
.f
.motion_val
[1][xy
][0], v
->bfraction
, 1, s
->quarter_sample
);
2047 s
->mv
[1][0][1] = scale_mv(s
->next_picture
.f
.motion_val
[1][xy
][1], v
->bfraction
, 1, s
->quarter_sample
);
2049 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
2050 s
->mv
[0][0][0] = av_clip(s
->mv
[0][0][0], -60 - (s
->mb_x
<< 6), (s
->mb_width
<< 6) - 4 - (s
->mb_x
<< 6));
2051 s
->mv
[0][0][1] = av_clip(s
->mv
[0][0][1], -60 - (s
->mb_y
<< 6), (s
->mb_height
<< 6) - 4 - (s
->mb_y
<< 6));
2052 s
->mv
[1][0][0] = av_clip(s
->mv
[1][0][0], -60 - (s
->mb_x
<< 6), (s
->mb_width
<< 6) - 4 - (s
->mb_x
<< 6));
2053 s
->mv
[1][0][1] = av_clip(s
->mv
[1][0][1], -60 - (s
->mb_y
<< 6), (s
->mb_height
<< 6) - 4 - (s
->mb_y
<< 6));
2056 s
->current_picture
.f
.motion_val
[0][xy
+ v
->blocks_off
][0] = s
->mv
[0][0][0];
2057 s
->current_picture
.f
.motion_val
[0][xy
+ v
->blocks_off
][1] = s
->mv
[0][0][1];
2058 s
->current_picture
.f
.motion_val
[1][xy
+ v
->blocks_off
][0] = s
->mv
[1][0][0];
2059 s
->current_picture
.f
.motion_val
[1][xy
+ v
->blocks_off
][1] = s
->mv
[1][0][1];
2063 if ((mvtype
== BMV_TYPE_FORWARD
) || (mvtype
== BMV_TYPE_INTERPOLATED
)) {
2064 C
= s
->current_picture
.f
.motion_val
[0][xy
- 2];
2065 A
= s
->current_picture
.f
.motion_val
[0][xy
- wrap
* 2];
2066 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-2 : 2;
2067 B
= s
->current_picture
.f
.motion_val
[0][xy
- wrap
* 2 + off
];
2069 if (!s
->mb_x
) C
[0] = C
[1] = 0;
2070 if (!s
->first_slice_line
) { // predictor A is not out of bounds
2071 if (s
->mb_width
== 1) {
2075 px
= mid_pred(A
[0], B
[0], C
[0]);
2076 py
= mid_pred(A
[1], B
[1], C
[1]);
2078 } else if (s
->mb_x
) { // predictor C is not out of bounds
2084 /* Pullback MV as specified in 8.3.5.3.4 */
2087 if (v
->profile
< PROFILE_ADVANCED
) {
2088 qx
= (s
->mb_x
<< 5);
2089 qy
= (s
->mb_y
<< 5);
2090 X
= (s
->mb_width
<< 5) - 4;
2091 Y
= (s
->mb_height
<< 5) - 4;
2092 if (qx
+ px
< -28) px
= -28 - qx
;
2093 if (qy
+ py
< -28) py
= -28 - qy
;
2094 if (qx
+ px
> X
) px
= X
- qx
;
2095 if (qy
+ py
> Y
) py
= Y
- qy
;
2097 qx
= (s
->mb_x
<< 6);
2098 qy
= (s
->mb_y
<< 6);
2099 X
= (s
->mb_width
<< 6) - 4;
2100 Y
= (s
->mb_height
<< 6) - 4;
2101 if (qx
+ px
< -60) px
= -60 - qx
;
2102 if (qy
+ py
< -60) py
= -60 - qy
;
2103 if (qx
+ px
> X
) px
= X
- qx
;
2104 if (qy
+ py
> Y
) py
= Y
- qy
;
2107 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2108 if (0 && !s
->first_slice_line
&& s
->mb_x
) {
2109 if (is_intra
[xy
- wrap
])
2110 sum
= FFABS(px
) + FFABS(py
);
2112 sum
= FFABS(px
- A
[0]) + FFABS(py
- A
[1]);
2114 if (get_bits1(&s
->gb
)) {
2122 if (is_intra
[xy
- 2])
2123 sum
= FFABS(px
) + FFABS(py
);
2125 sum
= FFABS(px
- C
[0]) + FFABS(py
- C
[1]);
2127 if (get_bits1(&s
->gb
)) {
2137 /* store MV using signed modulus of MV range defined in 4.11 */
2138 s
->mv
[0][0][0] = ((px
+ dmv_x
[0] + r_x
) & ((r_x
<< 1) - 1)) - r_x
;
2139 s
->mv
[0][0][1] = ((py
+ dmv_y
[0] + r_y
) & ((r_y
<< 1) - 1)) - r_y
;
2141 if ((mvtype
== BMV_TYPE_BACKWARD
) || (mvtype
== BMV_TYPE_INTERPOLATED
)) {
2142 C
= s
->current_picture
.f
.motion_val
[1][xy
- 2];
2143 A
= s
->current_picture
.f
.motion_val
[1][xy
- wrap
* 2];
2144 off
= (s
->mb_x
== (s
->mb_width
- 1)) ?
-2 : 2;
2145 B
= s
->current_picture
.f
.motion_val
[1][xy
- wrap
* 2 + off
];
2149 if (!s
->first_slice_line
) { // predictor A is not out of bounds
2150 if (s
->mb_width
== 1) {
2154 px
= mid_pred(A
[0], B
[0], C
[0]);
2155 py
= mid_pred(A
[1], B
[1], C
[1]);
2157 } else if (s
->mb_x
) { // predictor C is not out of bounds
2163 /* Pullback MV as specified in 8.3.5.3.4 */
2166 if (v
->profile
< PROFILE_ADVANCED
) {
2167 qx
= (s
->mb_x
<< 5);
2168 qy
= (s
->mb_y
<< 5);
2169 X
= (s
->mb_width
<< 5) - 4;
2170 Y
= (s
->mb_height
<< 5) - 4;
2171 if (qx
+ px
< -28) px
= -28 - qx
;
2172 if (qy
+ py
< -28) py
= -28 - qy
;
2173 if (qx
+ px
> X
) px
= X
- qx
;
2174 if (qy
+ py
> Y
) py
= Y
- qy
;
2176 qx
= (s
->mb_x
<< 6);
2177 qy
= (s
->mb_y
<< 6);
2178 X
= (s
->mb_width
<< 6) - 4;
2179 Y
= (s
->mb_height
<< 6) - 4;
2180 if (qx
+ px
< -60) px
= -60 - qx
;
2181 if (qy
+ py
< -60) py
= -60 - qy
;
2182 if (qx
+ px
> X
) px
= X
- qx
;
2183 if (qy
+ py
> Y
) py
= Y
- qy
;
2186 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2187 if (0 && !s
->first_slice_line
&& s
->mb_x
) {
2188 if (is_intra
[xy
- wrap
])
2189 sum
= FFABS(px
) + FFABS(py
);
2191 sum
= FFABS(px
- A
[0]) + FFABS(py
- A
[1]);
2193 if (get_bits1(&s
->gb
)) {
2201 if (is_intra
[xy
- 2])
2202 sum
= FFABS(px
) + FFABS(py
);
2204 sum
= FFABS(px
- C
[0]) + FFABS(py
- C
[1]);
2206 if (get_bits1(&s
->gb
)) {
2216 /* store MV using signed modulus of MV range defined in 4.11 */
2218 s
->mv
[1][0][0] = ((px
+ dmv_x
[1] + r_x
) & ((r_x
<< 1) - 1)) - r_x
;
2219 s
->mv
[1][0][1] = ((py
+ dmv_y
[1] + r_y
) & ((r_y
<< 1) - 1)) - r_y
;
2221 s
->current_picture
.f
.motion_val
[0][xy
][0] = s
->mv
[0][0][0];
2222 s
->current_picture
.f
.motion_val
[0][xy
][1] = s
->mv
[0][0][1];
2223 s
->current_picture
.f
.motion_val
[1][xy
][0] = s
->mv
[1][0][0];
2224 s
->current_picture
.f
.motion_val
[1][xy
][1] = s
->mv
[1][0][1];
2227 static inline void vc1_pred_b_mv_intfi(VC1Context
*v
, int n
, int *dmv_x
, int *dmv_y
, int mv1
, int *pred_flag
)
2229 int dir
= (v
->bmvtype
== BMV_TYPE_BACKWARD
) ?
1 : 0;
2230 MpegEncContext
*s
= &v
->s
;
2231 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
2233 if (v
->bmvtype
== BMV_TYPE_DIRECT
) {
2234 int total_opp
, k
, f
;
2235 if (s
->next_picture
.f
.mb_type
[mb_pos
+ v
->mb_off
] != MB_TYPE_INTRA
) {
2236 s
->mv
[0][0][0] = scale_mv(s
->next_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][0],
2237 v
->bfraction
, 0, s
->quarter_sample
);
2238 s
->mv
[0][0][1] = scale_mv(s
->next_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][1],
2239 v
->bfraction
, 0, s
->quarter_sample
);
2240 s
->mv
[1][0][0] = scale_mv(s
->next_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][0],
2241 v
->bfraction
, 1, s
->quarter_sample
);
2242 s
->mv
[1][0][1] = scale_mv(s
->next_picture
.f
.motion_val
[1][s
->block_index
[0] + v
->blocks_off
][1],
2243 v
->bfraction
, 1, s
->quarter_sample
);
2245 total_opp
= v
->mv_f_next
[0][s
->block_index
[0] + v
->blocks_off
]
2246 + v
->mv_f_next
[0][s
->block_index
[1] + v
->blocks_off
]
2247 + v
->mv_f_next
[0][s
->block_index
[2] + v
->blocks_off
]
2248 + v
->mv_f_next
[0][s
->block_index
[3] + v
->blocks_off
];
2249 f
= (total_opp
> 2) ?
1 : 0;
2251 s
->mv
[0][0][0] = s
->mv
[0][0][1] = 0;
2252 s
->mv
[1][0][0] = s
->mv
[1][0][1] = 0;
2255 v
->ref_field_type
[0] = v
->ref_field_type
[1] = v
->cur_field_type
^ f
;
2256 for (k
= 0; k
< 4; k
++) {
2257 s
->current_picture
.f
.motion_val
[0][s
->block_index
[k
] + v
->blocks_off
][0] = s
->mv
[0][0][0];
2258 s
->current_picture
.f
.motion_val
[0][s
->block_index
[k
] + v
->blocks_off
][1] = s
->mv
[0][0][1];
2259 s
->current_picture
.f
.motion_val
[1][s
->block_index
[k
] + v
->blocks_off
][0] = s
->mv
[1][0][0];
2260 s
->current_picture
.f
.motion_val
[1][s
->block_index
[k
] + v
->blocks_off
][1] = s
->mv
[1][0][1];
2261 v
->mv_f
[0][s
->block_index
[k
] + v
->blocks_off
] = f
;
2262 v
->mv_f
[1][s
->block_index
[k
] + v
->blocks_off
] = f
;
2266 if (v
->bmvtype
== BMV_TYPE_INTERPOLATED
) {
2267 vc1_pred_mv(v
, 0, dmv_x
[0], dmv_y
[0], 1, v
->range_x
, v
->range_y
, v
->mb_type
[0], pred_flag
[0], 0);
2268 vc1_pred_mv(v
, 0, dmv_x
[1], dmv_y
[1], 1, v
->range_x
, v
->range_y
, v
->mb_type
[0], pred_flag
[1], 1);
2271 if (dir
) { // backward
2272 vc1_pred_mv(v
, n
, dmv_x
[1], dmv_y
[1], mv1
, v
->range_x
, v
->range_y
, v
->mb_type
[0], pred_flag
[1], 1);
2273 if (n
== 3 || mv1
) {
2274 vc1_pred_mv(v
, 0, dmv_x
[0], dmv_y
[0], 1, v
->range_x
, v
->range_y
, v
->mb_type
[0], 0, 0);
2277 vc1_pred_mv(v
, n
, dmv_x
[0], dmv_y
[0], mv1
, v
->range_x
, v
->range_y
, v
->mb_type
[0], pred_flag
[0], 0);
2278 if (n
== 3 || mv1
) {
2279 vc1_pred_mv(v
, 0, dmv_x
[1], dmv_y
[1], 1, v
->range_x
, v
->range_y
, v
->mb_type
[0], 0, 1);
2284 /** Get predicted DC value for I-frames only
2285 * prediction dir: left=0, top=1
2286 * @param s MpegEncContext
2287 * @param overlap flag indicating that overlap filtering is used
2288 * @param pq integer part of picture quantizer
2289 * @param[in] n block index in the current MB
2290 * @param dc_val_ptr Pointer to DC predictor
2291 * @param dir_ptr Prediction direction for use in AC prediction
2293 static inline int vc1_i_pred_dc(MpegEncContext
*s
, int overlap
, int pq
, int n
,
2294 int16_t **dc_val_ptr
, int *dir_ptr
)
2296 int a
, b
, c
, wrap
, pred
, scale
;
2298 static const uint16_t dcpred
[32] = {
2299 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2300 114, 102, 93, 85, 79, 73, 68, 64,
2301 60, 57, 54, 51, 49, 47, 45, 43,
2302 41, 39, 38, 37, 35, 34, 33
2305 /* find prediction - wmv3_dc_scale always used here in fact */
2306 if (n
< 4) scale
= s
->y_dc_scale
;
2307 else scale
= s
->c_dc_scale
;
2309 wrap
= s
->block_wrap
[n
];
2310 dc_val
= s
->dc_val
[0] + s
->block_index
[n
];
2316 b
= dc_val
[ - 1 - wrap
];
2317 a
= dc_val
[ - wrap
];
2319 if (pq
< 9 || !overlap
) {
2320 /* Set outer values */
2321 if (s
->first_slice_line
&& (n
!= 2 && n
!= 3))
2322 b
= a
= dcpred
[scale
];
2323 if (s
->mb_x
== 0 && (n
!= 1 && n
!= 3))
2324 b
= c
= dcpred
[scale
];
2326 /* Set outer values */
2327 if (s
->first_slice_line
&& (n
!= 2 && n
!= 3))
2329 if (s
->mb_x
== 0 && (n
!= 1 && n
!= 3))
2333 if (abs(a
- b
) <= abs(b
- c
)) {
2335 *dir_ptr
= 1; // left
2338 *dir_ptr
= 0; // top
2341 /* update predictor */
2342 *dc_val_ptr
= &dc_val
[0];
2347 /** Get predicted DC value
2348 * prediction dir: left=0, top=1
2349 * @param s MpegEncContext
2350 * @param overlap flag indicating that overlap filtering is used
2351 * @param pq integer part of picture quantizer
2352 * @param[in] n block index in the current MB
2353 * @param a_avail flag indicating top block availability
2354 * @param c_avail flag indicating left block availability
2355 * @param dc_val_ptr Pointer to DC predictor
2356 * @param dir_ptr Prediction direction for use in AC prediction
2358 static inline int vc1_pred_dc(MpegEncContext
*s
, int overlap
, int pq
, int n
,
2359 int a_avail
, int c_avail
,
2360 int16_t **dc_val_ptr
, int *dir_ptr
)
2362 int a
, b
, c
, wrap
, pred
;
2364 int mb_pos
= s
->mb_x
+ s
->mb_y
* s
->mb_stride
;
2368 wrap
= s
->block_wrap
[n
];
2369 dc_val
= s
->dc_val
[0] + s
->block_index
[n
];
2375 b
= dc_val
[ - 1 - wrap
];
2376 a
= dc_val
[ - wrap
];
2377 /* scale predictors if needed */
2378 q1
= s
->current_picture
.f
.qscale_table
[mb_pos
];
2379 dqscale_index
= s
->y_dc_scale_table
[q1
] - 1;
2380 if (dqscale_index
< 0)
2382 if (c_avail
&& (n
!= 1 && n
!= 3)) {
2383 q2
= s
->current_picture
.f
.qscale_table
[mb_pos
- 1];
2385 c
= (c
* s
->y_dc_scale_table
[q2
] * ff_vc1_dqscale
[dqscale_index
] + 0x20000) >> 18;
2387 if (a_avail
&& (n
!= 2 && n
!= 3)) {
2388 q2
= s
->current_picture
.f
.qscale_table
[mb_pos
- s
->mb_stride
];
2390 a
= (a
* s
->y_dc_scale_table
[q2
] * ff_vc1_dqscale
[dqscale_index
] + 0x20000) >> 18;
2392 if (a_avail
&& c_avail
&& (n
!= 3)) {
2397 off
-= s
->mb_stride
;
2398 q2
= s
->current_picture
.f
.qscale_table
[off
];
2400 b
= (b
* s
->y_dc_scale_table
[q2
] * ff_vc1_dqscale
[dqscale_index
] + 0x20000) >> 18;
2403 if (a_avail
&& c_avail
) {
2404 if (abs(a
- b
) <= abs(b
- c
)) {
2406 *dir_ptr
= 1; // left
2409 *dir_ptr
= 0; // top
2411 } else if (a_avail
) {
2413 *dir_ptr
= 0; // top
2414 } else if (c_avail
) {
2416 *dir_ptr
= 1; // left
2419 *dir_ptr
= 1; // left
2422 /* update predictor */
2423 *dc_val_ptr
= &dc_val
[0];
2427 /** @} */ // Block group
2430 * @name VC1 Macroblock-level functions in Simple/Main Profiles
2431 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2435 static inline int vc1_coded_block_pred(MpegEncContext
* s
, int n
,
2436 uint8_t **coded_block_ptr
)
2438 int xy
, wrap
, pred
, a
, b
, c
;
2440 xy
= s
->block_index
[n
];
2441 wrap
= s
->b8_stride
;
2446 a
= s
->coded_block
[xy
- 1 ];
2447 b
= s
->coded_block
[xy
- 1 - wrap
];
2448 c
= s
->coded_block
[xy
- wrap
];
2457 *coded_block_ptr
= &s
->coded_block
[xy
];
2463 * Decode one AC coefficient
2464 * @param v The VC1 context
2465 * @param last Last coefficient
2466 * @param skip How much zero coefficients to skip
2467 * @param value Decoded AC coefficient value
2468 * @param codingset set of VLC to decode data
2471 static void vc1_decode_ac_coeff(VC1Context
*v
, int *last
, int *skip
,
2472 int *value
, int codingset
)
2474 GetBitContext
*gb
= &v
->s
.gb
;
2475 int index
, escape
, run
= 0, level
= 0, lst
= 0;
2477 index
= get_vlc2(gb
, ff_vc1_ac_coeff_table
[codingset
].table
, AC_VLC_BITS
, 3);
2478 if (index
!= ff_vc1_ac_sizes
[codingset
] - 1) {
2479 run
= vc1_index_decode_table
[codingset
][index
][0];
2480 level
= vc1_index_decode_table
[codingset
][index
][1];
2481 lst
= index
>= vc1_last_decode_table
[codingset
] || get_bits_left(gb
) < 0;
2485 escape
= decode210(gb
);
2487 index
= get_vlc2(gb
, ff_vc1_ac_coeff_table
[codingset
].table
, AC_VLC_BITS
, 3);
2488 run
= vc1_index_decode_table
[codingset
][index
][0];
2489 level
= vc1_index_decode_table
[codingset
][index
][1];
2490 lst
= index
>= vc1_last_decode_table
[codingset
];
2493 level
+= vc1_last_delta_level_table
[codingset
][run
];
2495 level
+= vc1_delta_level_table
[codingset
][run
];
2498 run
+= vc1_last_delta_run_table
[codingset
][level
] + 1;
2500 run
+= vc1_delta_run_table
[codingset
][level
] + 1;
2506 lst
= get_bits1(gb
);
2507 if (v
->s
.esc3_level_length
== 0) {
2508 if (v
->pq
< 8 || v
->dquantfrm
) { // table 59
2509 v
->s
.esc3_level_length
= get_bits(gb
, 3);
2510 if (!v
->s
.esc3_level_length
)
2511 v
->s
.esc3_level_length
= get_bits(gb
, 2) + 8;
2512 } else { // table 60
2513 v
->s
.esc3_level_length
= get_unary(gb
, 1, 6) + 2;
2515 v
->s
.esc3_run_length
= 3 + get_bits(gb
, 2);
2517 run
= get_bits(gb
, v
->s
.esc3_run_length
);
2518 sign
= get_bits1(gb
);
2519 level
= get_bits(gb
, v
->s
.esc3_level_length
);
2530 /** Decode intra block in intra frames - should be faster than decode_intra_block
2531 * @param v VC1Context
2532 * @param block block to decode
2533 * @param[in] n subblock index
2534 * @param coded are AC coeffs present or not
2535 * @param codingset set of VLC to decode data
2537 static int vc1_decode_i_block(VC1Context
*v
, DCTELEM block
[64], int n
,
2538 int coded
, int codingset
)
2540 GetBitContext
*gb
= &v
->s
.gb
;
2541 MpegEncContext
*s
= &v
->s
;
2542 int dc_pred_dir
= 0; /* Direction of the DC prediction used */
2545 int16_t *ac_val
, *ac_val2
;
2548 /* Get DC differential */
2550 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_luma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
2552 dcdiff
= get_vlc2(&s
->gb
, ff_msmp4_dc_chroma_vlc
[s
->dc_table_index
].table
, DC_VLC_BITS
, 3);
2555 av_log(s
->avctx
, AV_LOG_ERROR
, "Illegal DC VLC\n");
2559 if (dcdiff
== 119 /* ESC index value */) {
2560 /* TODO: Optimize */
2561 if (v
->pq
== 1) dcdiff
= get_bits(gb
, 10);
2562 else if (v
->pq
== 2) dcdiff
= get_bits(gb
, 9);
2563 else dcdiff
= get_bits(gb
, 8);
2566 dcdiff
= (dcdiff
<< 2) + get_bits(gb
, 2) - 3;
2567 else if (v
->pq
== 2)
2568 dcdiff
= (dcdiff
<< 1) + get_bits1(gb
) - 1;
2575 dcdiff
+= vc1_i_pred_dc(&v
->s
, v
->overlap
, v
->pq
, n
, &dc_val
, &dc_pred_dir
);
2578 /* Store the quantized DC coeff, used for prediction */
2580 block
[0] = dcdiff
* s
->y_dc_scale
;
2582 block
[0] = dcdiff
* s
->c_dc_scale
;
2593 int last
= 0, skip
, value
;
2594 const uint8_t *zz_table
;
2598 scale
= v
->pq
* 2 + v
->halfpq
;
2602 zz_table
= v
->zz_8x8
[2];
2604 zz_table
= v
->zz_8x8
[3];
2606 zz_table
= v
->zz_8x8
[1];
2608 ac_val
= s
->ac_val
[0][0] + s
->block_index
[n
] * 16;
2610 if (dc_pred_dir
) // left
2613 ac_val
-= 16 * s
->block_wrap
[n
];
2616 vc1_decode_ac_coeff(v
, &last
, &skip
, &value
, codingset
);
2620 block
[zz_table
[i
++]] = value
;
2623 /* apply AC prediction if needed */
2625 if (dc_pred_dir
) { // left
2626 for (k
= 1; k
< 8; k
++)
2627 block
[k
<< v
->left_blk_sh
] += ac_val
[k
];
2629 for (k
= 1; k
< 8; k
++)
2630 block
[k
<< v
->top_blk_sh
] += ac_val
[k
+ 8];