d2a50a3d6122999bbe33b1f0fd33387e872767dd
[libav.git] / libavcodec / vc1dec.c
1 /*
2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2006-2007 Konstantin Shishkov
4 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file libavcodec/vc1dec.c
25 * VC-1 and WMV3 decoder
26 *
27 */
28 #include "internal.h"
29 #include "dsputil.h"
30 #include "avcodec.h"
31 #include "mpegvideo.h"
32 #include "vc1.h"
33 #include "vc1data.h"
34 #include "vc1acdata.h"
35 #include "msmpeg4data.h"
36 #include "unary.h"
37 #include "simple_idct.h"
38 #include "mathops.h"
39 #include "vdpau_internal.h"
40
41 #undef NDEBUG
42 #include <assert.h>
43
44 #define MB_INTRA_VLC_BITS 9
45 #define DC_VLC_BITS 9
46 #define AC_VLC_BITS 9
47 static const uint16_t table_mb_intra[64][2];
48
49
50 static const uint16_t vlc_offs[] = {
51 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
52 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
53 9262, 10202, 10756, 11310, 12228, 15078
54 };
55
56 /**
57 * Init VC-1 specific tables and VC1Context members
58 * @param v The VC1Context to initialize
59 * @return Status
60 */
61 static int vc1_init_common(VC1Context *v)
62 {
63 static int done = 0;
64 int i = 0;
65 static VLC_TYPE vlc_table[15078][2];
66
67 v->hrd_rate = v->hrd_buffer = NULL;
68
69 /* VLC tables */
70 if(!done)
71 {
72 INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
73 ff_vc1_bfraction_bits, 1, 1,
74 ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
75 INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
76 ff_vc1_norm2_bits, 1, 1,
77 ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
78 INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
79 ff_vc1_norm6_bits, 1, 1,
80 ff_vc1_norm6_codes, 2, 2, 556);
81 INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
82 ff_vc1_imode_bits, 1, 1,
83 ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
84 for (i=0; i<3; i++)
85 {
86 ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
87 ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
88 init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
89 ff_vc1_ttmb_bits[i], 1, 1,
90 ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
91 ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
92 ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
93 init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
94 ff_vc1_ttblk_bits[i], 1, 1,
95 ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
96 ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
97 ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
98 init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
99 ff_vc1_subblkpat_bits[i], 1, 1,
100 ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
101 }
102 for(i=0; i<4; i++)
103 {
104 ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
105 ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
106 init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
107 ff_vc1_4mv_block_pattern_bits[i], 1, 1,
108 ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
109 ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
110 ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
111 init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
112 ff_vc1_cbpcy_p_bits[i], 1, 1,
113 ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
114 ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
115 ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
116 init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
117 ff_vc1_mv_diff_bits[i], 1, 1,
118 ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
119 }
120 for(i=0; i<8; i++){
121 ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
122 ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
123 init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
124 &vc1_ac_tables[i][0][1], 8, 4,
125 &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
126 }
127 done = 1;
128 }
129
130 /* Other defaults */
131 v->pq = -1;
132 v->mvrange = 0; /* 7.1.1.18, p80 */
133
134 return 0;
135 }
136
137 /***********************************************************************/
138 /**
139 * @defgroup vc1bitplane VC-1 Bitplane decoding
140 * @see 8.7, p56
141 * @{
142 */
143
144 /**
145 * Imode types
146 * @{
147 */
148 enum Imode {
149 IMODE_RAW,
150 IMODE_NORM2,
151 IMODE_DIFF2,
152 IMODE_NORM6,
153 IMODE_DIFF6,
154 IMODE_ROWSKIP,
155 IMODE_COLSKIP
156 };
157 /** @} */ //imode defines
158
159
160 /** @} */ //Bitplane group
161
162 static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
163 {
164 int i, j;
165 if(!s->first_slice_line)
166 s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
167 s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
168 for(i = !s->mb_x*8; i < 16; i += 8)
169 s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
170 for(j = 0; j < 2; j++){
171 if(!s->first_slice_line)
172 s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
173 if(s->mb_x)
174 s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
175 }
176 }
177
178 /** Put block onto picture
179 */
180 static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
181 {
182 uint8_t *Y;
183 int ys, us, vs;
184 DSPContext *dsp = &v->s.dsp;
185
186 if(v->rangeredfrm) {
187 int i, j, k;
188 for(k = 0; k < 6; k++)
189 for(j = 0; j < 8; j++)
190 for(i = 0; i < 8; i++)
191 block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
192
193 }
194 ys = v->s.current_picture.linesize[0];
195 us = v->s.current_picture.linesize[1];
196 vs = v->s.current_picture.linesize[2];
197 Y = v->s.dest[0];
198
199 dsp->put_pixels_clamped(block[0], Y, ys);
200 dsp->put_pixels_clamped(block[1], Y + 8, ys);
201 Y += ys * 8;
202 dsp->put_pixels_clamped(block[2], Y, ys);
203 dsp->put_pixels_clamped(block[3], Y + 8, ys);
204
205 if(!(v->s.flags & CODEC_FLAG_GRAY)) {
206 dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
207 dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
208 }
209 }
210
211 /** Do motion compensation over 1 macroblock
212 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
213 */
214 static void vc1_mc_1mv(VC1Context *v, int dir)
215 {
216 MpegEncContext *s = &v->s;
217 DSPContext *dsp = &v->s.dsp;
218 uint8_t *srcY, *srcU, *srcV;
219 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
220
221 if(!v->s.last_picture.data[0])return;
222
223 mx = s->mv[dir][0][0];
224 my = s->mv[dir][0][1];
225
226 // store motion vectors for further use in B frames
227 if(s->pict_type == FF_P_TYPE) {
228 s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
229 s->current_picture.motion_val[1][s->block_index[0]][1] = my;
230 }
231 uvmx = (mx + ((mx & 3) == 3)) >> 1;
232 uvmy = (my + ((my & 3) == 3)) >> 1;
233 if(v->fastuvmc) {
234 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
235 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
236 }
237 if(!dir) {
238 srcY = s->last_picture.data[0];
239 srcU = s->last_picture.data[1];
240 srcV = s->last_picture.data[2];
241 } else {
242 srcY = s->next_picture.data[0];
243 srcU = s->next_picture.data[1];
244 srcV = s->next_picture.data[2];
245 }
246
247 src_x = s->mb_x * 16 + (mx >> 2);
248 src_y = s->mb_y * 16 + (my >> 2);
249 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
250 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
251
252 if(v->profile != PROFILE_ADVANCED){
253 src_x = av_clip( src_x, -16, s->mb_width * 16);
254 src_y = av_clip( src_y, -16, s->mb_height * 16);
255 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
256 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
257 }else{
258 src_x = av_clip( src_x, -17, s->avctx->coded_width);
259 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
260 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
261 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
262 }
263
264 srcY += src_y * s->linesize + src_x;
265 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
266 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
267
268 /* for grayscale we should not try to read from unknown area */
269 if(s->flags & CODEC_FLAG_GRAY) {
270 srcU = s->edge_emu_buffer + 18 * s->linesize;
271 srcV = s->edge_emu_buffer + 18 * s->linesize;
272 }
273
274 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
275 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
276 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
277 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
278
279 srcY -= s->mspel * (1 + s->linesize);
280 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
281 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
282 srcY = s->edge_emu_buffer;
283 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
284 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
285 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
286 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
287 srcU = uvbuf;
288 srcV = uvbuf + 16;
289 /* if we deal with range reduction we need to scale source blocks */
290 if(v->rangeredfrm) {
291 int i, j;
292 uint8_t *src, *src2;
293
294 src = srcY;
295 for(j = 0; j < 17 + s->mspel*2; j++) {
296 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
297 src += s->linesize;
298 }
299 src = srcU; src2 = srcV;
300 for(j = 0; j < 9; j++) {
301 for(i = 0; i < 9; i++) {
302 src[i] = ((src[i] - 128) >> 1) + 128;
303 src2[i] = ((src2[i] - 128) >> 1) + 128;
304 }
305 src += s->uvlinesize;
306 src2 += s->uvlinesize;
307 }
308 }
309 /* if we deal with intensity compensation we need to scale source blocks */
310 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
311 int i, j;
312 uint8_t *src, *src2;
313
314 src = srcY;
315 for(j = 0; j < 17 + s->mspel*2; j++) {
316 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
317 src += s->linesize;
318 }
319 src = srcU; src2 = srcV;
320 for(j = 0; j < 9; j++) {
321 for(i = 0; i < 9; i++) {
322 src[i] = v->lutuv[src[i]];
323 src2[i] = v->lutuv[src2[i]];
324 }
325 src += s->uvlinesize;
326 src2 += s->uvlinesize;
327 }
328 }
329 srcY += s->mspel * (1 + s->linesize);
330 }
331
332 if(s->mspel) {
333 dxy = ((my & 3) << 2) | (mx & 3);
334 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
335 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
336 srcY += s->linesize * 8;
337 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
338 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
339 } else { // hpel mc - always used for luma
340 dxy = (my & 2) | ((mx & 2) >> 1);
341
342 if(!v->rnd)
343 dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
344 else
345 dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
346 }
347
348 if(s->flags & CODEC_FLAG_GRAY) return;
349 /* Chroma MC always uses qpel bilinear */
350 uvmx = (uvmx&3)<<1;
351 uvmy = (uvmy&3)<<1;
352 if(!v->rnd){
353 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
354 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
355 }else{
356 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
357 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
358 }
359 }
360
361 /** Do motion compensation for 4-MV macroblock - luminance block
362 */
363 static void vc1_mc_4mv_luma(VC1Context *v, int n)
364 {
365 MpegEncContext *s = &v->s;
366 DSPContext *dsp = &v->s.dsp;
367 uint8_t *srcY;
368 int dxy, mx, my, src_x, src_y;
369 int off;
370
371 if(!v->s.last_picture.data[0])return;
372 mx = s->mv[0][n][0];
373 my = s->mv[0][n][1];
374 srcY = s->last_picture.data[0];
375
376 off = s->linesize * 4 * (n&2) + (n&1) * 8;
377
378 src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
379 src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
380
381 if(v->profile != PROFILE_ADVANCED){
382 src_x = av_clip( src_x, -16, s->mb_width * 16);
383 src_y = av_clip( src_y, -16, s->mb_height * 16);
384 }else{
385 src_x = av_clip( src_x, -17, s->avctx->coded_width);
386 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
387 }
388
389 srcY += src_y * s->linesize + src_x;
390
391 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
392 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
393 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
394 srcY -= s->mspel * (1 + s->linesize);
395 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
396 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
397 srcY = s->edge_emu_buffer;
398 /* if we deal with range reduction we need to scale source blocks */
399 if(v->rangeredfrm) {
400 int i, j;
401 uint8_t *src;
402
403 src = srcY;
404 for(j = 0; j < 9 + s->mspel*2; j++) {
405 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
406 src += s->linesize;
407 }
408 }
409 /* if we deal with intensity compensation we need to scale source blocks */
410 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
411 int i, j;
412 uint8_t *src;
413
414 src = srcY;
415 for(j = 0; j < 9 + s->mspel*2; j++) {
416 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
417 src += s->linesize;
418 }
419 }
420 srcY += s->mspel * (1 + s->linesize);
421 }
422
423 if(s->mspel) {
424 dxy = ((my & 3) << 2) | (mx & 3);
425 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
426 } else { // hpel mc - always used for luma
427 dxy = (my & 2) | ((mx & 2) >> 1);
428 if(!v->rnd)
429 dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
430 else
431 dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
432 }
433 }
434
435 static inline int median4(int a, int b, int c, int d)
436 {
437 if(a < b) {
438 if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
439 else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
440 } else {
441 if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
442 else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
443 }
444 }
445
446
447 /** Do motion compensation for 4-MV macroblock - both chroma blocks
448 */
449 static void vc1_mc_4mv_chroma(VC1Context *v)
450 {
451 MpegEncContext *s = &v->s;
452 DSPContext *dsp = &v->s.dsp;
453 uint8_t *srcU, *srcV;
454 int uvmx, uvmy, uvsrc_x, uvsrc_y;
455 int i, idx, tx = 0, ty = 0;
456 int mvx[4], mvy[4], intra[4];
457 static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
458
459 if(!v->s.last_picture.data[0])return;
460 if(s->flags & CODEC_FLAG_GRAY) return;
461
462 for(i = 0; i < 4; i++) {
463 mvx[i] = s->mv[0][i][0];
464 mvy[i] = s->mv[0][i][1];
465 intra[i] = v->mb_type[0][s->block_index[i]];
466 }
467
468 /* calculate chroma MV vector from four luma MVs */
469 idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
470 if(!idx) { // all blocks are inter
471 tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
472 ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
473 } else if(count[idx] == 1) { // 3 inter blocks
474 switch(idx) {
475 case 0x1:
476 tx = mid_pred(mvx[1], mvx[2], mvx[3]);
477 ty = mid_pred(mvy[1], mvy[2], mvy[3]);
478 break;
479 case 0x2:
480 tx = mid_pred(mvx[0], mvx[2], mvx[3]);
481 ty = mid_pred(mvy[0], mvy[2], mvy[3]);
482 break;
483 case 0x4:
484 tx = mid_pred(mvx[0], mvx[1], mvx[3]);
485 ty = mid_pred(mvy[0], mvy[1], mvy[3]);
486 break;
487 case 0x8:
488 tx = mid_pred(mvx[0], mvx[1], mvx[2]);
489 ty = mid_pred(mvy[0], mvy[1], mvy[2]);
490 break;
491 }
492 } else if(count[idx] == 2) {
493 int t1 = 0, t2 = 0;
494 for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
495 for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
496 tx = (mvx[t1] + mvx[t2]) / 2;
497 ty = (mvy[t1] + mvy[t2]) / 2;
498 } else {
499 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
500 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
501 return; //no need to do MC for inter blocks
502 }
503
504 s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
505 s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
506 uvmx = (tx + ((tx&3) == 3)) >> 1;
507 uvmy = (ty + ((ty&3) == 3)) >> 1;
508 if(v->fastuvmc) {
509 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
510 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
511 }
512
513 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
514 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
515
516 if(v->profile != PROFILE_ADVANCED){
517 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
518 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
519 }else{
520 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
521 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
522 }
523
524 srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
525 srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
526 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
527 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
528 || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
529 ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
530 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
531 ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
532 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
533 srcU = s->edge_emu_buffer;
534 srcV = s->edge_emu_buffer + 16;
535
536 /* if we deal with range reduction we need to scale source blocks */
537 if(v->rangeredfrm) {
538 int i, j;
539 uint8_t *src, *src2;
540
541 src = srcU; src2 = srcV;
542 for(j = 0; j < 9; j++) {
543 for(i = 0; i < 9; i++) {
544 src[i] = ((src[i] - 128) >> 1) + 128;
545 src2[i] = ((src2[i] - 128) >> 1) + 128;
546 }
547 src += s->uvlinesize;
548 src2 += s->uvlinesize;
549 }
550 }
551 /* if we deal with intensity compensation we need to scale source blocks */
552 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
553 int i, j;
554 uint8_t *src, *src2;
555
556 src = srcU; src2 = srcV;
557 for(j = 0; j < 9; j++) {
558 for(i = 0; i < 9; i++) {
559 src[i] = v->lutuv[src[i]];
560 src2[i] = v->lutuv[src2[i]];
561 }
562 src += s->uvlinesize;
563 src2 += s->uvlinesize;
564 }
565 }
566 }
567
568 /* Chroma MC always uses qpel bilinear */
569 uvmx = (uvmx&3)<<1;
570 uvmy = (uvmy&3)<<1;
571 if(!v->rnd){
572 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
573 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
574 }else{
575 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
576 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
577 }
578 }
579
580 /***********************************************************************/
581 /**
582 * @defgroup vc1block VC-1 Block-level functions
583 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
584 * @{
585 */
586
587 /**
588 * @def GET_MQUANT
589 * @brief Get macroblock-level quantizer scale
590 */
591 #define GET_MQUANT() \
592 if (v->dquantfrm) \
593 { \
594 int edges = 0; \
595 if (v->dqprofile == DQPROFILE_ALL_MBS) \
596 { \
597 if (v->dqbilevel) \
598 { \
599 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
600 } \
601 else \
602 { \
603 mqdiff = get_bits(gb, 3); \
604 if (mqdiff != 7) mquant = v->pq + mqdiff; \
605 else mquant = get_bits(gb, 5); \
606 } \
607 } \
608 if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
609 edges = 1 << v->dqsbedge; \
610 else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
611 edges = (3 << v->dqsbedge) % 15; \
612 else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
613 edges = 15; \
614 if((edges&1) && !s->mb_x) \
615 mquant = v->altpq; \
616 if((edges&2) && s->first_slice_line) \
617 mquant = v->altpq; \
618 if((edges&4) && s->mb_x == (s->mb_width - 1)) \
619 mquant = v->altpq; \
620 if((edges&8) && s->mb_y == (s->mb_height - 1)) \
621 mquant = v->altpq; \
622 }
623
624 /**
625 * @def GET_MVDATA(_dmv_x, _dmv_y)
626 * @brief Get MV differentials
627 * @see MVDATA decoding from 8.3.5.2, p(1)20
628 * @param _dmv_x Horizontal differential for decoded MV
629 * @param _dmv_y Vertical differential for decoded MV
630 */
631 #define GET_MVDATA(_dmv_x, _dmv_y) \
632 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
633 VC1_MV_DIFF_VLC_BITS, 2); \
634 if (index > 36) \
635 { \
636 mb_has_coeffs = 1; \
637 index -= 37; \
638 } \
639 else mb_has_coeffs = 0; \
640 s->mb_intra = 0; \
641 if (!index) { _dmv_x = _dmv_y = 0; } \
642 else if (index == 35) \
643 { \
644 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
645 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
646 } \
647 else if (index == 36) \
648 { \
649 _dmv_x = 0; \
650 _dmv_y = 0; \
651 s->mb_intra = 1; \
652 } \
653 else \
654 { \
655 index1 = index%6; \
656 if (!s->quarter_sample && index1 == 5) val = 1; \
657 else val = 0; \
658 if(size_table[index1] - val > 0) \
659 val = get_bits(gb, size_table[index1] - val); \
660 else val = 0; \
661 sign = 0 - (val&1); \
662 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
663 \
664 index1 = index/6; \
665 if (!s->quarter_sample && index1 == 5) val = 1; \
666 else val = 0; \
667 if(size_table[index1] - val > 0) \
668 val = get_bits(gb, size_table[index1] - val); \
669 else val = 0; \
670 sign = 0 - (val&1); \
671 _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
672 }
673
674 /** Predict and set motion vector
675 */
676 static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
677 {
678 int xy, wrap, off = 0;
679 int16_t *A, *B, *C;
680 int px, py;
681 int sum;
682
683 /* scale MV difference to be quad-pel */
684 dmv_x <<= 1 - s->quarter_sample;
685 dmv_y <<= 1 - s->quarter_sample;
686
687 wrap = s->b8_stride;
688 xy = s->block_index[n];
689
690 if(s->mb_intra){
691 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
692 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
693 s->current_picture.motion_val[1][xy][0] = 0;
694 s->current_picture.motion_val[1][xy][1] = 0;
695 if(mv1) { /* duplicate motion data for 1-MV block */
696 s->current_picture.motion_val[0][xy + 1][0] = 0;
697 s->current_picture.motion_val[0][xy + 1][1] = 0;
698 s->current_picture.motion_val[0][xy + wrap][0] = 0;
699 s->current_picture.motion_val[0][xy + wrap][1] = 0;
700 s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
701 s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
702 s->current_picture.motion_val[1][xy + 1][0] = 0;
703 s->current_picture.motion_val[1][xy + 1][1] = 0;
704 s->current_picture.motion_val[1][xy + wrap][0] = 0;
705 s->current_picture.motion_val[1][xy + wrap][1] = 0;
706 s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
707 s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
708 }
709 return;
710 }
711
712 C = s->current_picture.motion_val[0][xy - 1];
713 A = s->current_picture.motion_val[0][xy - wrap];
714 if(mv1)
715 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
716 else {
717 //in 4-MV mode different blocks have different B predictor position
718 switch(n){
719 case 0:
720 off = (s->mb_x > 0) ? -1 : 1;
721 break;
722 case 1:
723 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
724 break;
725 case 2:
726 off = 1;
727 break;
728 case 3:
729 off = -1;
730 }
731 }
732 B = s->current_picture.motion_val[0][xy - wrap + off];
733
734 if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
735 if(s->mb_width == 1) {
736 px = A[0];
737 py = A[1];
738 } else {
739 px = mid_pred(A[0], B[0], C[0]);
740 py = mid_pred(A[1], B[1], C[1]);
741 }
742 } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
743 px = C[0];
744 py = C[1];
745 } else {
746 px = py = 0;
747 }
748 /* Pullback MV as specified in 8.3.5.3.4 */
749 {
750 int qx, qy, X, Y;
751 qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
752 qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
753 X = (s->mb_width << 6) - 4;
754 Y = (s->mb_height << 6) - 4;
755 if(mv1) {
756 if(qx + px < -60) px = -60 - qx;
757 if(qy + py < -60) py = -60 - qy;
758 } else {
759 if(qx + px < -28) px = -28 - qx;
760 if(qy + py < -28) py = -28 - qy;
761 }
762 if(qx + px > X) px = X - qx;
763 if(qy + py > Y) py = Y - qy;
764 }
765 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
766 if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
767 if(is_intra[xy - wrap])
768 sum = FFABS(px) + FFABS(py);
769 else
770 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
771 if(sum > 32) {
772 if(get_bits1(&s->gb)) {
773 px = A[0];
774 py = A[1];
775 } else {
776 px = C[0];
777 py = C[1];
778 }
779 } else {
780 if(is_intra[xy - 1])
781 sum = FFABS(px) + FFABS(py);
782 else
783 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
784 if(sum > 32) {
785 if(get_bits1(&s->gb)) {
786 px = A[0];
787 py = A[1];
788 } else {
789 px = C[0];
790 py = C[1];
791 }
792 }
793 }
794 }
795 /* store MV using signed modulus of MV range defined in 4.11 */
796 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
797 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
798 if(mv1) { /* duplicate motion data for 1-MV block */
799 s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
800 s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
801 s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
802 s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
803 s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
804 s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
805 }
806 }
807
808 /** Motion compensation for direct or interpolated blocks in B-frames
809 */
810 static void vc1_interp_mc(VC1Context *v)
811 {
812 MpegEncContext *s = &v->s;
813 DSPContext *dsp = &v->s.dsp;
814 uint8_t *srcY, *srcU, *srcV;
815 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
816
817 if(!v->s.next_picture.data[0])return;
818
819 mx = s->mv[1][0][0];
820 my = s->mv[1][0][1];
821 uvmx = (mx + ((mx & 3) == 3)) >> 1;
822 uvmy = (my + ((my & 3) == 3)) >> 1;
823 if(v->fastuvmc) {
824 uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
825 uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
826 }
827 srcY = s->next_picture.data[0];
828 srcU = s->next_picture.data[1];
829 srcV = s->next_picture.data[2];
830
831 src_x = s->mb_x * 16 + (mx >> 2);
832 src_y = s->mb_y * 16 + (my >> 2);
833 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
834 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
835
836 if(v->profile != PROFILE_ADVANCED){
837 src_x = av_clip( src_x, -16, s->mb_width * 16);
838 src_y = av_clip( src_y, -16, s->mb_height * 16);
839 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
840 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
841 }else{
842 src_x = av_clip( src_x, -17, s->avctx->coded_width);
843 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
844 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
845 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
846 }
847
848 srcY += src_y * s->linesize + src_x;
849 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
850 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
851
852 /* for grayscale we should not try to read from unknown area */
853 if(s->flags & CODEC_FLAG_GRAY) {
854 srcU = s->edge_emu_buffer + 18 * s->linesize;
855 srcV = s->edge_emu_buffer + 18 * s->linesize;
856 }
857
858 if(v->rangeredfrm
859 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
860 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
861 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
862
863 srcY -= s->mspel * (1 + s->linesize);
864 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
865 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
866 srcY = s->edge_emu_buffer;
867 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
868 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
869 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
870 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
871 srcU = uvbuf;
872 srcV = uvbuf + 16;
873 /* if we deal with range reduction we need to scale source blocks */
874 if(v->rangeredfrm) {
875 int i, j;
876 uint8_t *src, *src2;
877
878 src = srcY;
879 for(j = 0; j < 17 + s->mspel*2; j++) {
880 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
881 src += s->linesize;
882 }
883 src = srcU; src2 = srcV;
884 for(j = 0; j < 9; j++) {
885 for(i = 0; i < 9; i++) {
886 src[i] = ((src[i] - 128) >> 1) + 128;
887 src2[i] = ((src2[i] - 128) >> 1) + 128;
888 }
889 src += s->uvlinesize;
890 src2 += s->uvlinesize;
891 }
892 }
893 srcY += s->mspel * (1 + s->linesize);
894 }
895
896 if(s->mspel) {
897 dxy = ((my & 3) << 2) | (mx & 3);
898 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
899 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
900 srcY += s->linesize * 8;
901 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
902 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
903 } else { // hpel mc
904 dxy = (my & 2) | ((mx & 2) >> 1);
905
906 if(!v->rnd)
907 dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
908 else
909 dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
910 }
911
912 if(s->flags & CODEC_FLAG_GRAY) return;
913 /* Chroma MC always uses qpel blilinear */
914 uvmx = (uvmx&3)<<1;
915 uvmy = (uvmy&3)<<1;
916 if(!v->rnd){
917 dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
918 dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
919 }else{
920 dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
921 dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
922 }
923 }
924
925 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
926 {
927 int n = bfrac;
928
929 #if B_FRACTION_DEN==256
930 if(inv)
931 n -= 256;
932 if(!qs)
933 return 2 * ((value * n + 255) >> 9);
934 return (value * n + 128) >> 8;
935 #else
936 if(inv)
937 n -= B_FRACTION_DEN;
938 if(!qs)
939 return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
940 return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
941 #endif
942 }
943
944 /** Reconstruct motion vector for B-frame and do motion compensation
945 */
946 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
947 {
948 if(v->use_ic) {
949 v->mv_mode2 = v->mv_mode;
950 v->mv_mode = MV_PMODE_INTENSITY_COMP;
951 }
952 if(direct) {
953 vc1_mc_1mv(v, 0);
954 vc1_interp_mc(v);
955 if(v->use_ic) v->mv_mode = v->mv_mode2;
956 return;
957 }
958 if(mode == BMV_TYPE_INTERPOLATED) {
959 vc1_mc_1mv(v, 0);
960 vc1_interp_mc(v);
961 if(v->use_ic) v->mv_mode = v->mv_mode2;
962 return;
963 }
964
965 if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
966 vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
967 if(v->use_ic) v->mv_mode = v->mv_mode2;
968 }
969
970 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
971 {
972 MpegEncContext *s = &v->s;
973 int xy, wrap, off = 0;
974 int16_t *A, *B, *C;
975 int px, py;
976 int sum;
977 int r_x, r_y;
978 const uint8_t *is_intra = v->mb_type[0];
979
980 r_x = v->range_x;
981 r_y = v->range_y;
982 /* scale MV difference to be quad-pel */
983 dmv_x[0] <<= 1 - s->quarter_sample;
984 dmv_y[0] <<= 1 - s->quarter_sample;
985 dmv_x[1] <<= 1 - s->quarter_sample;
986 dmv_y[1] <<= 1 - s->quarter_sample;
987
988 wrap = s->b8_stride;
989 xy = s->block_index[0];
990
991 if(s->mb_intra) {
992 s->current_picture.motion_val[0][xy][0] =
993 s->current_picture.motion_val[0][xy][1] =
994 s->current_picture.motion_val[1][xy][0] =
995 s->current_picture.motion_val[1][xy][1] = 0;
996 return;
997 }
998 s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
999 s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1000 s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1001 s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
1002
1003 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1004 s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
1005 s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1006 s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
1007 s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1008 if(direct) {
1009 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1010 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1011 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1012 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1013 return;
1014 }
1015
1016 if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1017 C = s->current_picture.motion_val[0][xy - 2];
1018 A = s->current_picture.motion_val[0][xy - wrap*2];
1019 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1020 B = s->current_picture.motion_val[0][xy - wrap*2 + off];
1021
1022 if(!s->mb_x) C[0] = C[1] = 0;
1023 if(!s->first_slice_line) { // predictor A is not out of bounds
1024 if(s->mb_width == 1) {
1025 px = A[0];
1026 py = A[1];
1027 } else {
1028 px = mid_pred(A[0], B[0], C[0]);
1029 py = mid_pred(A[1], B[1], C[1]);
1030 }
1031 } else if(s->mb_x) { // predictor C is not out of bounds
1032 px = C[0];
1033 py = C[1];
1034 } else {
1035 px = py = 0;
1036 }
1037 /* Pullback MV as specified in 8.3.5.3.4 */
1038 {
1039 int qx, qy, X, Y;
1040 if(v->profile < PROFILE_ADVANCED) {
1041 qx = (s->mb_x << 5);
1042 qy = (s->mb_y << 5);
1043 X = (s->mb_width << 5) - 4;
1044 Y = (s->mb_height << 5) - 4;
1045 if(qx + px < -28) px = -28 - qx;
1046 if(qy + py < -28) py = -28 - qy;
1047 if(qx + px > X) px = X - qx;
1048 if(qy + py > Y) py = Y - qy;
1049 } else {
1050 qx = (s->mb_x << 6);
1051 qy = (s->mb_y << 6);
1052 X = (s->mb_width << 6) - 4;
1053 Y = (s->mb_height << 6) - 4;
1054 if(qx + px < -60) px = -60 - qx;
1055 if(qy + py < -60) py = -60 - qy;
1056 if(qx + px > X) px = X - qx;
1057 if(qy + py > Y) py = Y - qy;
1058 }
1059 }
1060 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1061 if(0 && !s->first_slice_line && s->mb_x) {
1062 if(is_intra[xy - wrap])
1063 sum = FFABS(px) + FFABS(py);
1064 else
1065 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1066 if(sum > 32) {
1067 if(get_bits1(&s->gb)) {
1068 px = A[0];
1069 py = A[1];
1070 } else {
1071 px = C[0];
1072 py = C[1];
1073 }
1074 } else {
1075 if(is_intra[xy - 2])
1076 sum = FFABS(px) + FFABS(py);
1077 else
1078 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1079 if(sum > 32) {
1080 if(get_bits1(&s->gb)) {
1081 px = A[0];
1082 py = A[1];
1083 } else {
1084 px = C[0];
1085 py = C[1];
1086 }
1087 }
1088 }
1089 }
1090 /* store MV using signed modulus of MV range defined in 4.11 */
1091 s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
1092 s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
1093 }
1094 if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1095 C = s->current_picture.motion_val[1][xy - 2];
1096 A = s->current_picture.motion_val[1][xy - wrap*2];
1097 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1098 B = s->current_picture.motion_val[1][xy - wrap*2 + off];
1099
1100 if(!s->mb_x) C[0] = C[1] = 0;
1101 if(!s->first_slice_line) { // predictor A is not out of bounds
1102 if(s->mb_width == 1) {
1103 px = A[0];
1104 py = A[1];
1105 } else {
1106 px = mid_pred(A[0], B[0], C[0]);
1107 py = mid_pred(A[1], B[1], C[1]);
1108 }
1109 } else if(s->mb_x) { // predictor C is not out of bounds
1110 px = C[0];
1111 py = C[1];
1112 } else {
1113 px = py = 0;
1114 }
1115 /* Pullback MV as specified in 8.3.5.3.4 */
1116 {
1117 int qx, qy, X, Y;
1118 if(v->profile < PROFILE_ADVANCED) {
1119 qx = (s->mb_x << 5);
1120 qy = (s->mb_y << 5);
1121 X = (s->mb_width << 5) - 4;
1122 Y = (s->mb_height << 5) - 4;
1123 if(qx + px < -28) px = -28 - qx;
1124 if(qy + py < -28) py = -28 - qy;
1125 if(qx + px > X) px = X - qx;
1126 if(qy + py > Y) py = Y - qy;
1127 } else {
1128 qx = (s->mb_x << 6);
1129 qy = (s->mb_y << 6);
1130 X = (s->mb_width << 6) - 4;
1131 Y = (s->mb_height << 6) - 4;
1132 if(qx + px < -60) px = -60 - qx;
1133 if(qy + py < -60) py = -60 - qy;
1134 if(qx + px > X) px = X - qx;
1135 if(qy + py > Y) py = Y - qy;
1136 }
1137 }
1138 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1139 if(0 && !s->first_slice_line && s->mb_x) {
1140 if(is_intra[xy - wrap])
1141 sum = FFABS(px) + FFABS(py);
1142 else
1143 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1144 if(sum > 32) {
1145 if(get_bits1(&s->gb)) {
1146 px = A[0];
1147 py = A[1];
1148 } else {
1149 px = C[0];
1150 py = C[1];
1151 }
1152 } else {
1153 if(is_intra[xy - 2])
1154 sum = FFABS(px) + FFABS(py);
1155 else
1156 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1157 if(sum > 32) {
1158 if(get_bits1(&s->gb)) {
1159 px = A[0];
1160 py = A[1];
1161 } else {
1162 px = C[0];
1163 py = C[1];
1164 }
1165 }
1166 }
1167 }
1168 /* store MV using signed modulus of MV range defined in 4.11 */
1169
1170 s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
1171 s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
1172 }
1173 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1174 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1175 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1176 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1177 }
1178
1179 /** Get predicted DC value for I-frames only
1180 * prediction dir: left=0, top=1
1181 * @param s MpegEncContext
1182 * @param overlap flag indicating that overlap filtering is used
1183 * @param pq integer part of picture quantizer
1184 * @param[in] n block index in the current MB
1185 * @param dc_val_ptr Pointer to DC predictor
1186 * @param dir_ptr Prediction direction for use in AC prediction
1187 */
1188 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
1189 int16_t **dc_val_ptr, int *dir_ptr)
1190 {
1191 int a, b, c, wrap, pred, scale;
1192 int16_t *dc_val;
1193 static const uint16_t dcpred[32] = {
1194 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
1195 114, 102, 93, 85, 79, 73, 68, 64,
1196 60, 57, 54, 51, 49, 47, 45, 43,
1197 41, 39, 38, 37, 35, 34, 33
1198 };
1199
1200 /* find prediction - wmv3_dc_scale always used here in fact */
1201 if (n < 4) scale = s->y_dc_scale;
1202 else scale = s->c_dc_scale;
1203
1204 wrap = s->block_wrap[n];
1205 dc_val= s->dc_val[0] + s->block_index[n];
1206
1207 /* B A
1208 * C X
1209 */
1210 c = dc_val[ - 1];
1211 b = dc_val[ - 1 - wrap];
1212 a = dc_val[ - wrap];
1213
1214 if (pq < 9 || !overlap)
1215 {
1216 /* Set outer values */
1217 if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
1218 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
1219 }
1220 else
1221 {
1222 /* Set outer values */
1223 if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
1224 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
1225 }
1226
1227 if (abs(a - b) <= abs(b - c)) {
1228 pred = c;
1229 *dir_ptr = 1;//left
1230 } else {
1231 pred = a;
1232 *dir_ptr = 0;//top
1233 }
1234
1235 /* update predictor */
1236 *dc_val_ptr = &dc_val[0];
1237 return pred;
1238 }
1239
1240
1241 /** Get predicted DC value
1242 * prediction dir: left=0, top=1
1243 * @param s MpegEncContext
1244 * @param overlap flag indicating that overlap filtering is used
1245 * @param pq integer part of picture quantizer
1246 * @param[in] n block index in the current MB
1247 * @param a_avail flag indicating top block availability
1248 * @param c_avail flag indicating left block availability
1249 * @param dc_val_ptr Pointer to DC predictor
1250 * @param dir_ptr Prediction direction for use in AC prediction
1251 */
1252 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
1253 int a_avail, int c_avail,
1254 int16_t **dc_val_ptr, int *dir_ptr)
1255 {
1256 int a, b, c, wrap, pred;
1257 int16_t *dc_val;
1258 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1259 int q1, q2 = 0;
1260
1261 wrap = s->block_wrap[n];
1262 dc_val= s->dc_val[0] + s->block_index[n];
1263
1264 /* B A
1265 * C X
1266 */
1267 c = dc_val[ - 1];
1268 b = dc_val[ - 1 - wrap];
1269 a = dc_val[ - wrap];
1270 /* scale predictors if needed */
1271 q1 = s->current_picture.qscale_table[mb_pos];
1272 if(c_avail && (n!= 1 && n!=3)) {
1273 q2 = s->current_picture.qscale_table[mb_pos - 1];
1274 if(q2 && q2 != q1)
1275 c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
1276 }
1277 if(a_avail && (n!= 2 && n!=3)) {
1278 q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
1279 if(q2 && q2 != q1)
1280 a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
1281 }
1282 if(a_avail && c_avail && (n!=3)) {
1283 int off = mb_pos;
1284 if(n != 1) off--;
1285 if(n != 2) off -= s->mb_stride;
1286 q2 = s->current_picture.qscale_table[off];
1287 if(q2 && q2 != q1)
1288 b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
1289 }
1290
1291 if(a_avail && c_avail) {
1292 if(abs(a - b) <= abs(b - c)) {
1293 pred = c;
1294 *dir_ptr = 1;//left
1295 } else {
1296 pred = a;
1297 *dir_ptr = 0;//top
1298 }
1299 } else if(a_avail) {
1300 pred = a;
1301 *dir_ptr = 0;//top
1302 } else if(c_avail) {
1303 pred = c;
1304 *dir_ptr = 1;//left
1305 } else {
1306 pred = 0;
1307 *dir_ptr = 1;//left
1308 }
1309
1310 /* update predictor */
1311 *dc_val_ptr = &dc_val[0];
1312 return pred;
1313 }
1314
1315 /** @} */ // Block group
1316
1317 /**
1318 * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
1319 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1320 * @{
1321 */
1322
1323 static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
1324 {
1325 int xy, wrap, pred, a, b, c;
1326
1327 xy = s->block_index[n];
1328 wrap = s->b8_stride;
1329
1330 /* B C
1331 * A X
1332 */
1333 a = s->coded_block[xy - 1 ];
1334 b = s->coded_block[xy - 1 - wrap];
1335 c = s->coded_block[xy - wrap];
1336
1337 if (b == c) {
1338 pred = a;
1339 } else {
1340 pred = c;
1341 }
1342
1343 /* store value */
1344 *coded_block_ptr = &s->coded_block[xy];
1345
1346 return pred;
1347 }
1348
1349 /**
1350 * Decode one AC coefficient
1351 * @param v The VC1 context
1352 * @param last Last coefficient
1353 * @param skip How much zero coefficients to skip
1354 * @param value Decoded AC coefficient value
1355 * @param codingset set of VLC to decode data
1356 * @see 8.1.3.4
1357 */
1358 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
1359 {
1360 GetBitContext *gb = &v->s.gb;
1361 int index, escape, run = 0, level = 0, lst = 0;
1362
1363 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
1364 if (index != vc1_ac_sizes[codingset] - 1) {
1365 run = vc1_index_decode_table[codingset][index][0];
1366 level = vc1_index_decode_table[codingset][index][1];
1367 lst = index >= vc1_last_decode_table[codingset];
1368 if(get_bits1(gb))
1369 level = -level;
1370 } else {
1371 escape = decode210(gb);
1372 if (escape != 2) {
1373 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
1374 run = vc1_index_decode_table[codingset][index][0];
1375 level = vc1_index_decode_table[codingset][index][1];
1376 lst = index >= vc1_last_decode_table[codingset];
1377 if(escape == 0) {
1378 if(lst)
1379 level += vc1_last_delta_level_table[codingset][run];
1380 else
1381 level += vc1_delta_level_table[codingset][run];
1382 } else {
1383 if(lst)
1384 run += vc1_last_delta_run_table[codingset][level] + 1;
1385 else
1386 run += vc1_delta_run_table[codingset][level] + 1;
1387 }
1388 if(get_bits1(gb))
1389 level = -level;
1390 } else {
1391 int sign;
1392 lst = get_bits1(gb);
1393 if(v->s.esc3_level_length == 0) {
1394 if(v->pq < 8 || v->dquantfrm) { // table 59
1395 v->s.esc3_level_length = get_bits(gb, 3);
1396 if(!v->s.esc3_level_length)
1397 v->s.esc3_level_length = get_bits(gb, 2) + 8;
1398 } else { //table 60
1399 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
1400 }
1401 v->s.esc3_run_length = 3 + get_bits(gb, 2);
1402 }
1403 run = get_bits(gb, v->s.esc3_run_length);
1404 sign = get_bits1(gb);
1405 level = get_bits(gb, v->s.esc3_level_length);
1406 if(sign)
1407 level = -level;
1408 }
1409 }
1410
1411 *last = lst;
1412 *skip = run;
1413 *value = level;
1414 }
1415
1416 /** Decode intra block in intra frames - should be faster than decode_intra_block
1417 * @param v VC1Context
1418 * @param block block to decode
1419 * @param[in] n subblock index
1420 * @param coded are AC coeffs present or not
1421 * @param codingset set of VLC to decode data
1422 */
1423 static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
1424 {
1425 GetBitContext *gb = &v->s.gb;
1426 MpegEncContext *s = &v->s;
1427 int dc_pred_dir = 0; /* Direction of the DC prediction used */
1428 int i;
1429 int16_t *dc_val;
1430 int16_t *ac_val, *ac_val2;
1431 int dcdiff;
1432
1433 /* Get DC differential */
1434 if (n < 4) {
1435 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1436 } else {
1437 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1438 }
1439 if (dcdiff < 0){
1440 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
1441 return -1;
1442 }
1443 if (dcdiff)
1444 {
1445 if (dcdiff == 119 /* ESC index value */)
1446 {
1447 /* TODO: Optimize */
1448 if (v->pq == 1) dcdiff = get_bits(gb, 10);
1449 else if (v->pq == 2) dcdiff = get_bits(gb, 9);
1450 else dcdiff = get_bits(gb, 8);
1451 }
1452 else
1453 {
1454 if (v->pq == 1)
1455 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
1456 else if (v->pq == 2)
1457 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
1458 }
1459 if (get_bits1(gb))
1460 dcdiff = -dcdiff;
1461 }
1462
1463 /* Prediction */
1464 dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
1465 *dc_val = dcdiff;
1466
1467 /* Store the quantized DC coeff, used for prediction */
1468 if (n < 4) {
1469 block[0] = dcdiff * s->y_dc_scale;
1470 } else {
1471 block[0] = dcdiff * s->c_dc_scale;
1472 }
1473 /* Skip ? */
1474 if (!coded) {
1475 goto not_coded;
1476 }
1477
1478 //AC Decoding
1479 i = 1;
1480
1481 {
1482 int last = 0, skip, value;
1483 const int8_t *zz_table;
1484 int scale;
1485 int k;
1486
1487 scale = v->pq * 2 + v->halfpq;
1488
1489 if(v->s.ac_pred) {
1490 if(!dc_pred_dir)
1491 zz_table = wmv1_scantable[2];
1492 else
1493 zz_table = wmv1_scantable[3];
1494 } else
1495 zz_table = wmv1_scantable[1];
1496
1497 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1498 ac_val2 = ac_val;
1499 if(dc_pred_dir) //left
1500 ac_val -= 16;
1501 else //top
1502 ac_val -= 16 * s->block_wrap[n];
1503
1504 while (!last) {
1505 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
1506 i += skip;
1507 if(i > 63)
1508 break;
1509 block[zz_table[i++]] = value;
1510 }
1511
1512 /* apply AC prediction if needed */
1513 if(s->ac_pred) {
1514 if(dc_pred_dir) { //left
1515 for(k = 1; k < 8; k++)
1516 block[k << 3] += ac_val[k];
1517 } else { //top
1518 for(k = 1; k < 8; k++)
1519 block[k] += ac_val[k + 8];
1520 }
1521 }
1522 /* save AC coeffs for further prediction */
1523 for(k = 1; k < 8; k++) {
1524 ac_val2[k] = block[k << 3];
1525 ac_val2[k + 8] = block[k];
1526 }
1527
1528 /* scale AC coeffs */
1529 for(k = 1; k < 64; k++)
1530 if(block[k]) {
1531 block[k] *= scale;
1532 if(!v->pquantizer)
1533 block[k] += (block[k] < 0) ? -v->pq : v->pq;
1534 }
1535
1536 if(s->ac_pred) i = 63;
1537 }
1538
1539 not_coded:
1540 if(!coded) {
1541 int k, scale;
1542 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1543 ac_val2 = ac_val;
1544
1545 i = 0;
1546 scale = v->pq * 2 + v->halfpq;
1547 memset(ac_val2, 0, 16 * 2);
1548 if(dc_pred_dir) {//left
1549 ac_val -= 16;
1550 if(s->ac_pred)
1551 memcpy(ac_val2, ac_val, 8 * 2);
1552 } else {//top
1553 ac_val -= 16 * s->block_wrap[n];
1554 if(s->ac_pred)
1555 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
1556 }
1557
1558 /* apply AC prediction if needed */
1559 if(s->ac_pred) {
1560 if(dc_pred_dir) { //left
1561 for(k = 1; k < 8; k++) {
1562 block[k << 3] = ac_val[k] * scale;
1563 if(!v->pquantizer && block[k << 3])
1564 block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
1565 }
1566 } else { //top
1567 for(k = 1; k < 8; k++) {
1568 block[k] = ac_val[k + 8] * scale;
1569 if(!v->pquantizer && block[k])
1570 block[k] += (block[k] < 0) ? -v->pq : v->pq;
1571 }
1572 }
1573 i = 63;
1574 }
1575 }
1576 s->block_last_index[n] = i;
1577
1578 return 0;
1579 }
1580
1581 /** Decode intra block in intra frames - should be faster than decode_intra_block
1582 * @param v VC1Context
1583 * @param block block to decode
1584 * @param[in] n subblock number
1585 * @param coded are AC coeffs present or not
1586 * @param codingset set of VLC to decode data
1587 * @param mquant quantizer value for this macroblock
1588 */
1589 static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
1590 {
1591 GetBitContext *gb = &v->s.gb;
1592 MpegEncContext *s = &v->s;
1593 int dc_pred_dir = 0; /* Direction of the DC prediction used */
1594 int i;
1595 int16_t *dc_val;
1596 int16_t *ac_val, *ac_val2;
1597 int dcdiff;
1598 int a_avail = v->a_avail, c_avail = v->c_avail;
1599 int use_pred = s->ac_pred;
1600 int scale;
1601 int q1, q2 = 0;
1602 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1603
1604 /* Get DC differential */
1605 if (n < 4) {
1606 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1607 } else {
1608 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1609 }
1610 if (dcdiff < 0){
1611 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
1612 return -1;
1613 }
1614 if (dcdiff)
1615 {
1616 if (dcdiff == 119 /* ESC index value */)
1617 {
1618 /* TODO: Optimize */
1619 if (mquant == 1) dcdiff = get_bits(gb, 10);
1620 else if (mquant == 2) dcdiff = get_bits(gb, 9);
1621 else dcdiff = get_bits(gb, 8);
1622 }
1623 else
1624 {
1625 if (mquant == 1)
1626 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
1627 else if (mquant == 2)
1628 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
1629 }
1630 if (get_bits1(gb))
1631 dcdiff = -dcdiff;
1632 }
1633
1634 /* Prediction */
1635 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
1636 *dc_val = dcdiff;
1637
1638 /* Store the quantized DC coeff, used for prediction */
1639 if (n < 4) {
1640 block[0] = dcdiff * s->y_dc_scale;
1641 } else {
1642 block[0] = dcdiff * s->c_dc_scale;
1643 }
1644
1645 //AC Decoding
1646 i = 1;
1647
1648 /* check if AC is needed at all */
1649 if(!a_avail && !c_avail) use_pred = 0;
1650 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1651 ac_val2 = ac_val;
1652
1653 scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
1654
1655 if(dc_pred_dir) //left
1656 ac_val -= 16;
1657 else //top
1658 ac_val -= 16 * s->block_wrap[n];
1659
1660 q1 = s->current_picture.qscale_table[mb_pos];
1661 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
1662 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
1663 if(dc_pred_dir && n==1) q2 = q1;
1664 if(!dc_pred_dir && n==2) q2 = q1;
1665 if(n==3) q2 = q1;
1666
1667 if(coded) {
1668 int last = 0, skip, value;
1669 const int8_t *zz_table;
1670 int k;
1671
1672 if(v->s.ac_pred) {
1673 if(!dc_pred_dir)
1674 zz_table = wmv1_scantable[2];
1675 else
1676 zz_table = wmv1_scantable[3];
1677 } else
1678 zz_table = wmv1_scantable[1];
1679
1680 while (!last) {
1681 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
1682 i += skip;
1683 if(i > 63)
1684 break;
1685 block[zz_table[i++]] = value;
1686 }
1687
1688 /* apply AC prediction if needed */
1689 if(use_pred) {
1690 /* scale predictors if needed*/
1691 if(q2 && q1!=q2) {
1692 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1693 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1694
1695 if(dc_pred_dir) { //left
1696 for(k = 1; k < 8; k++)
1697 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1698 } else { //top
1699 for(k = 1; k < 8; k++)
1700 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1701 }
1702 } else {
1703 if(dc_pred_dir) { //left
1704 for(k = 1; k < 8; k++)
1705 block[k << 3] += ac_val[k];
1706 } else { //top
1707 for(k = 1; k < 8; k++)
1708 block[k] += ac_val[k + 8];
1709 }
1710 }
1711 }
1712 /* save AC coeffs for further prediction */
1713 for(k = 1; k < 8; k++) {
1714 ac_val2[k] = block[k << 3];
1715 ac_val2[k + 8] = block[k];
1716 }
1717
1718 /* scale AC coeffs */
1719 for(k = 1; k < 64; k++)
1720 if(block[k]) {
1721 block[k] *= scale;
1722 if(!v->pquantizer)
1723 block[k] += (block[k] < 0) ? -mquant : mquant;
1724 }
1725
1726 if(use_pred) i = 63;
1727 } else { // no AC coeffs
1728 int k;
1729
1730 memset(ac_val2, 0, 16 * 2);
1731 if(dc_pred_dir) {//left
1732 if(use_pred) {
1733 memcpy(ac_val2, ac_val, 8 * 2);
1734 if(q2 && q1!=q2) {
1735 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1736 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1737 for(k = 1; k < 8; k++)
1738 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1739 }
1740 }
1741 } else {//top
1742 if(use_pred) {
1743 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
1744 if(q2 && q1!=q2) {
1745 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1746 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1747 for(k = 1; k < 8; k++)
1748 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1749 }
1750 }
1751 }
1752
1753 /* apply AC prediction if needed */
1754 if(use_pred) {
1755 if(dc_pred_dir) { //left
1756 for(k = 1; k < 8; k++) {
1757 block[k << 3] = ac_val2[k] * scale;
1758 if(!v->pquantizer && block[k << 3])
1759 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
1760 }
1761 } else { //top
1762 for(k = 1; k < 8; k++) {
1763 block[k] = ac_val2[k + 8] * scale;
1764 if(!v->pquantizer && block[k])
1765 block[k] += (block[k] < 0) ? -mquant : mquant;
1766 }
1767 }
1768 i = 63;
1769 }
1770 }
1771 s->block_last_index[n] = i;
1772
1773 return 0;
1774 }
1775
1776 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
1777 * @param v VC1Context
1778 * @param block block to decode
1779 * @param[in] n subblock index
1780 * @param coded are AC coeffs present or not
1781 * @param mquant block quantizer
1782 * @param codingset set of VLC to decode data
1783 */
1784 static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
1785 {
1786 GetBitContext *gb = &v->s.gb;
1787 MpegEncContext *s = &v->s;
1788 int dc_pred_dir = 0; /* Direction of the DC prediction used */
1789 int i;
1790 int16_t *dc_val;
1791 int16_t *ac_val, *ac_val2;
1792 int dcdiff;
1793 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1794 int a_avail = v->a_avail, c_avail = v->c_avail;
1795 int use_pred = s->ac_pred;
1796 int scale;
1797 int q1, q2 = 0;
1798
1799 s->dsp.clear_block(block);
1800
1801 /* XXX: Guard against dumb values of mquant */
1802 mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
1803
1804 /* Set DC scale - y and c use the same */
1805 s->y_dc_scale = s->y_dc_scale_table[mquant];
1806 s->c_dc_scale = s->c_dc_scale_table[mquant];
1807
1808 /* Get DC differential */
1809 if (n < 4) {
1810 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1811 } else {
1812 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1813 }
1814 if (dcdiff < 0){
1815 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
1816 return -1;
1817 }
1818 if (dcdiff)
1819 {
1820 if (dcdiff == 119 /* ESC index value */)
1821 {
1822 /* TODO: Optimize */
1823 if (mquant == 1) dcdiff = get_bits(gb, 10);
1824 else if (mquant == 2) dcdiff = get_bits(gb, 9);
1825 else dcdiff = get_bits(gb, 8);
1826 }
1827 else
1828 {
1829 if (mquant == 1)
1830 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
1831 else if (mquant == 2)
1832 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
1833 }
1834 if (get_bits1(gb))
1835 dcdiff = -dcdiff;
1836 }
1837
1838 /* Prediction */
1839 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
1840 *dc_val = dcdiff;
1841
1842 /* Store the quantized DC coeff, used for prediction */
1843
1844 if (n < 4) {
1845 block[0] = dcdiff * s->y_dc_scale;
1846 } else {
1847 block[0] = dcdiff * s->c_dc_scale;
1848 }
1849
1850 //AC Decoding
1851 i = 1;
1852
1853 /* check if AC is needed at all and adjust direction if needed */
1854 if(!a_avail) dc_pred_dir = 1;
1855 if(!c_avail) dc_pred_dir = 0;
1856 if(!a_avail && !c_avail) use_pred = 0;
1857 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1858 ac_val2 = ac_val;
1859
1860 scale = mquant * 2 + v->halfpq;
1861
1862 if(dc_pred_dir) //left
1863 ac_val -= 16;
1864 else //top
1865 ac_val -= 16 * s->block_wrap[n];
1866
1867 q1 = s->current_picture.qscale_table[mb_pos];
1868 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
1869 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
1870 if(dc_pred_dir && n==1) q2 = q1;
1871 if(!dc_pred_dir && n==2) q2 = q1;
1872 if(n==3) q2 = q1;
1873
1874 if(coded) {
1875 int last = 0, skip, value;
1876 const int8_t *zz_table;
1877 int k;
1878
1879 zz_table = wmv1_scantable[0];
1880
1881 while (!last) {
1882 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
1883 i += skip;
1884 if(i > 63)
1885 break;
1886 block[zz_table[i++]] = value;
1887 }
1888
1889 /* apply AC prediction if needed */
1890 if(use_pred) {
1891 /* scale predictors if needed*/
1892 if(q2 && q1!=q2) {
1893 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1894 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1895
1896 if(dc_pred_dir) { //left
1897 for(k = 1; k < 8; k++)
1898 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1899 } else { //top
1900 for(k = 1; k < 8; k++)
1901 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1902 }
1903 } else {
1904 if(dc_pred_dir) { //left
1905 for(k = 1; k < 8; k++)
1906 block[k << 3] += ac_val[k];
1907 } else { //top
1908 for(k = 1; k < 8; k++)
1909 block[k] += ac_val[k + 8];
1910 }
1911 }
1912 }
1913 /* save AC coeffs for further prediction */
1914 for(k = 1; k < 8; k++) {
1915 ac_val2[k] = block[k << 3];
1916 ac_val2[k + 8] = block[k];
1917 }
1918
1919 /* scale AC coeffs */
1920 for(k = 1; k < 64; k++)
1921 if(block[k]) {
1922 block[k] *= scale;
1923 if(!v->pquantizer)
1924 block[k] += (block[k] < 0) ? -mquant : mquant;
1925 }
1926
1927 if(use_pred) i = 63;
1928 } else { // no AC coeffs
1929 int k;
1930
1931 memset(ac_val2, 0, 16 * 2);
1932 if(dc_pred_dir) {//left
1933 if(use_pred) {
1934 memcpy(ac_val2, ac_val, 8 * 2);
1935 if(q2 && q1!=q2) {
1936 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1937 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1938 for(k = 1; k < 8; k++)
1939 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1940 }
1941 }
1942 } else {//top
1943 if(use_pred) {
1944 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
1945 if(q2 && q1!=q2) {
1946 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1947 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1948 for(k = 1; k < 8; k++)
1949 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1950 }
1951 }
1952 }
1953
1954 /* apply AC prediction if needed */
1955 if(use_pred) {
1956 if(dc_pred_dir) { //left
1957 for(k = 1; k < 8; k++) {
1958 block[k << 3] = ac_val2[k] * scale;
1959 if(!v->pquantizer && block[k << 3])
1960 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
1961 }
1962 } else { //top
1963 for(k = 1; k < 8; k++) {
1964 block[k] = ac_val2[k + 8] * scale;
1965 if(!v->pquantizer && block[k])
1966 block[k] += (block[k] < 0) ? -mquant : mquant;
1967 }
1968 }
1969 i = 63;
1970 }
1971 }
1972 s->block_last_index[n] = i;
1973
1974 return 0;
1975 }
1976
1977 /** Decode P block
1978 */
1979 static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
1980 uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
1981 {
1982 MpegEncContext *s = &v->s;
1983 GetBitContext *gb = &s->gb;
1984 int i, j;
1985 int subblkpat = 0;
1986 int scale, off, idx, last, skip, value;
1987 int ttblk = ttmb & 7;
1988 int pat = 0;
1989
1990 s->dsp.clear_block(block);
1991
1992 if(ttmb == -1) {
1993 ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
1994 }
1995 if(ttblk == TT_4X4) {
1996 subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
1997 }
1998 if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
1999 subblkpat = decode012(gb);
2000 if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
2001 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
2002 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
2003 }
2004 scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
2005
2006 // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2007 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
2008 subblkpat = 2 - (ttblk == TT_8X4_TOP);
2009 ttblk = TT_8X4;
2010 }
2011 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
2012 subblkpat = 2 - (ttblk == TT_4X8_LEFT);
2013 ttblk = TT_4X8;
2014 }
2015 switch(ttblk) {
2016 case TT_8X8:
2017 pat = 0xF;
2018 i = 0;
2019 last = 0;
2020 while (!last) {
2021 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2022 i += skip;
2023 if(i > 63)
2024 break;
2025 idx = wmv1_scantable[0][i++];
2026 block[idx] = value * scale;
2027 if(!v->pquantizer)
2028 block[idx] += (block[idx] < 0) ? -mquant : mquant;
2029 }
2030 if(!skip_block){
2031 if(i==1)
2032 s->dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
2033 else{
2034 s->dsp.vc1_inv_trans_8x8(block);
2035 s->dsp.add_pixels_clamped(block, dst, linesize);
2036 }
2037 if(apply_filter && cbp_top & 0xC)
2038 s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
2039 if(apply_filter && cbp_left & 0xA)
2040 s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
2041 }
2042 break;
2043 case TT_4X4:
2044 pat = ~subblkpat & 0xF;
2045 for(j = 0; j < 4; j++) {
2046 last = subblkpat & (1 << (3 - j));
2047 i = 0;
2048 off = (j & 1) * 4 + (j & 2) * 16;
2049 while (!last) {
2050 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2051 i += skip;
2052 if(i > 15)
2053 break;
2054 idx = ff_vc1_simple_progressive_4x4_zz[i++];
2055 block[idx + off] = value * scale;
2056 if(!v->pquantizer)
2057 block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
2058 }
2059 if(!(subblkpat & (1 << (3 - j))) && !skip_block){
2060 if(i==1)
2061 s->dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
2062 else
2063 s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
2064 if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
2065 s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
2066 if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
2067 s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
2068 }
2069 }
2070 break;
2071 case TT_8X4:
2072 pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
2073 for(j = 0; j < 2; j++) {
2074 last = subblkpat & (1 << (1 - j));
2075 i = 0;
2076 off = j * 32;
2077 while (!last) {
2078 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2079 i += skip;
2080 if(i > 31)
2081 break;
2082 idx = v->zz_8x4[i++]+off;
2083 block[idx] = value * scale;
2084 if(!v->pquantizer)
2085 block[idx] += (block[idx] < 0) ? -mquant : mquant;
2086 }
2087 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
2088 if(i==1)
2089 s->dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
2090 else
2091 s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
2092 if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
2093 s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
2094 if(apply_filter && cbp_left & (2 << j))
2095 s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
2096 }
2097 }
2098 break;
2099 case TT_4X8:
2100 pat = ~(subblkpat*5) & 0xF;
2101 for(j = 0; j < 2; j++) {
2102 last = subblkpat & (1 << (1 - j));
2103 i = 0;
2104 off = j * 4;
2105 while (!last) {
2106 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2107 i += skip;
2108 if(i > 31)
2109 break;
2110 idx = v->zz_4x8[i++]+off;
2111 block[idx] = value * scale;
2112 if(!v->pquantizer)
2113 block[idx] += (block[idx] < 0) ? -mquant : mquant;
2114 }
2115 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
2116 if(i==1)
2117 s->dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
2118 else
2119 s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
2120 if(apply_filter && cbp_top & (2 << j))
2121 s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
2122 if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
2123 s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
2124 }
2125 }
2126 break;
2127 }
2128 return pat;
2129 }
2130
2131 /** @} */ // Macroblock group
2132
2133 static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
2134 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
2135
2136 /** Decode one P-frame MB (in Simple/Main profile)
2137 */
2138 static int vc1_decode_p_mb(VC1Context *v)
2139 {
2140 MpegEncContext *s = &v->s;
2141 GetBitContext *gb = &s->gb;
2142 int i, j;
2143 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2144 int cbp; /* cbp decoding stuff */
2145 int mqdiff, mquant; /* MB quantization */
2146 int ttmb = v->ttfrm; /* MB Transform type */
2147
2148 int mb_has_coeffs = 1; /* last_flag */
2149 int dmv_x, dmv_y; /* Differential MV components */
2150 int index, index1; /* LUT indexes */
2151 int val, sign; /* temp values */
2152 int first_block = 1;
2153 int dst_idx, off;
2154 int skipped, fourmv;
2155 int block_cbp = 0, pat;
2156 int apply_loop_filter;
2157
2158 mquant = v->pq; /* Loosy initialization */
2159
2160 if (v->mv_type_is_raw)
2161 fourmv = get_bits1(gb);
2162 else
2163 fourmv = v->mv_type_mb_plane[mb_pos];
2164 if (v->skip_is_raw)
2165 skipped = get_bits1(gb);
2166 else
2167 skipped = v->s.mbskip_table[mb_pos];
2168
2169 apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
2170 if (!fourmv) /* 1MV mode */
2171 {
2172 if (!skipped)
2173 {
2174 GET_MVDATA(dmv_x, dmv_y);
2175
2176 if (s->mb_intra) {
2177 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
2178 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
2179 }
2180 s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
2181 vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
2182
2183 /* FIXME Set DC val for inter block ? */
2184 if (s->mb_intra && !mb_has_coeffs)
2185 {
2186 GET_MQUANT();
2187 s->ac_pred = get_bits1(gb);
2188 cbp = 0;
2189 }
2190 else if (mb_has_coeffs)
2191 {
2192 if (s->mb_intra) s->ac_pred = get_bits1(gb);
2193 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2194 GET_MQUANT();
2195 }
2196 else
2197 {
2198 mquant = v->pq;
2199 cbp = 0;
2200 }
2201 s->current_picture.qscale_table[mb_pos] = mquant;
2202
2203 if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
2204 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
2205 VC1_TTMB_VLC_BITS, 2);
2206 if(!s->mb_intra) vc1_mc_1mv(v, 0);
2207 dst_idx = 0;
2208 for (i=0; i<6; i++)
2209 {
2210 s->dc_val[0][s->block_index[i]] = 0;
2211 dst_idx += i >> 2;
2212 val = ((cbp >> (5 - i)) & 1);
2213 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2214 v->mb_type[0][s->block_index[i]] = s->mb_intra;
2215 if(s->mb_intra) {
2216 /* check if prediction blocks A and C are available */
2217 v->a_avail = v->c_avail = 0;
2218 if(i == 2 || i == 3 || !s->first_slice_line)
2219 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2220 if(i == 1 || i == 3 || s->mb_x)
2221 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2222
2223 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
2224 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
2225 s->dsp.vc1_inv_trans_8x8(s->block[i]);
2226 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
2227 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2228 if(v->pq >= 9 && v->overlap) {
2229 if(v->c_avail)
2230 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2231 if(v->a_avail)
2232 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2233 }
2234 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2235 int left_cbp, top_cbp;
2236 if(i & 4){
2237 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
2238 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2239 }else{
2240 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
2241 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2242 }
2243 if(left_cbp & 0xC)
2244 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2245 if(top_cbp & 0xA)
2246 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2247 }
2248 block_cbp |= 0xF << (i << 2);
2249 } else if(val) {
2250 int left_cbp = 0, top_cbp = 0, filter = 0;
2251 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2252 filter = 1;
2253 if(i & 4){
2254 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
2255 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2256 }else{
2257 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
2258 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2259 }
2260 if(left_cbp & 0xC)
2261 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2262 if(top_cbp & 0xA)
2263 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2264 }
2265 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
2266 block_cbp |= pat << (i << 2);
2267 if(!v->ttmbf && ttmb < 8) ttmb = -1;
2268 first_block = 0;
2269 }
2270 }
2271 }
2272 else //Skipped
2273 {
2274 s->mb_intra = 0;
2275 for(i = 0; i < 6; i++) {
2276 v->mb_type[0][s->block_index[i]] = 0;
2277 s->dc_val[0][s->block_index[i]] = 0;
2278 }
2279 s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
2280 s->current_picture.qscale_table[mb_pos] = 0;
2281 vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
2282 vc1_mc_1mv(v, 0);
2283 return 0;
2284 }
2285 } //1MV mode
2286 else //4MV mode
2287 {
2288 if (!skipped /* unskipped MB */)
2289 {
2290 int intra_count = 0, coded_inter = 0;
2291 int is_intra[6], is_coded[6];
2292 /* Get CBPCY */
2293 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2294 for (i=0; i<6; i++)
2295 {
2296 val = ((cbp >> (5 - i)) & 1);
2297 s->dc_val[0][s->block_index[i]] = 0;
2298 s->mb_intra = 0;
2299 if(i < 4) {
2300 dmv_x = dmv_y = 0;
2301 s->mb_intra = 0;
2302 mb_has_coeffs = 0;
2303 if(val) {
2304 GET_MVDATA(dmv_x, dmv_y);
2305 }
2306 vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
2307 if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
2308 intra_count += s->mb_intra;
2309 is_intra[i] = s->mb_intra;
2310 is_coded[i] = mb_has_coeffs;
2311 }
2312 if(i&4){
2313 is_intra[i] = (intra_count >= 3);
2314 is_coded[i] = val;
2315 }
2316 if(i == 4) vc1_mc_4mv_chroma(v);
2317 v->mb_type[0][s->block_index[i]] = is_intra[i];
2318 if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
2319 }
2320 // if there are no coded blocks then don't do anything more
2321 if(!intra_count && !coded_inter) return 0;
2322 dst_idx = 0;
2323 GET_MQUANT();
2324 s->current_picture.qscale_table[mb_pos] = mquant;
2325 /* test if block is intra and has pred */
2326 {
2327 int intrapred = 0;
2328 for(i=0; i<6; i++)
2329 if(is_intra[i]) {
2330 if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
2331 || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
2332 intrapred = 1;
2333 break;
2334 }
2335 }
2336 if(intrapred)s->ac_pred = get_bits1(gb);
2337 else s->ac_pred = 0;
2338 }
2339 if (!v->ttmbf && coded_inter)
2340 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
2341 for (i=0; i<6; i++)
2342 {
2343 dst_idx += i >> 2;
2344 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2345 s->mb_intra = is_intra[i];
2346 if (is_intra[i]) {
2347 /* check if prediction blocks A and C are available */
2348 v->a_avail = v->c_avail = 0;
2349 if(i == 2 || i == 3 || !s->first_slice_line)
2350 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2351 if(i == 1 || i == 3 || s->mb_x)
2352 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2353
2354 vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
2355 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
2356 s->dsp.vc1_inv_trans_8x8(s->block[i]);
2357 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
2358 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
2359 if(v->pq >= 9 && v->overlap) {
2360 if(v->c_avail)
2361 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2362 if(v->a_avail)
2363 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2364 }
2365 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2366 int left_cbp, top_cbp;
2367 if(i & 4){
2368 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
2369 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2370 }else{
2371 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
2372 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2373 }
2374 if(left_cbp & 0xC)
2375 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2376 if(top_cbp & 0xA)
2377 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2378 }
2379 block_cbp |= 0xF << (i << 2);
2380 } else if(is_coded[i]) {
2381 int left_cbp = 0, top_cbp = 0, filter = 0;
2382 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2383 filter = 1;
2384 if(i & 4){
2385 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
2386 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2387 }else{
2388 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
2389 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2390 }
2391 if(left_cbp & 0xC)
2392 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2393 if(top_cbp & 0xA)
2394 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2395 }
2396 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
2397 block_cbp |= pat << (i << 2);
2398 if(!v->ttmbf && ttmb < 8) ttmb = -1;
2399 first_block = 0;
2400 }
2401 }
2402 return 0;
2403 }
2404 else //Skipped MB
2405 {
2406 s->mb_intra = 0;
2407 s->current_picture.qscale_table[mb_pos] = 0;
2408 for (i=0; i<6; i++) {
2409 v->mb_type[0][s->block_index[i]] = 0;
2410 s->dc_val[0][s->block_index[i]] = 0;
2411 }
2412 for (i=0; i<4; i++)
2413 {
2414 vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
2415 vc1_mc_4mv_luma(v, i);
2416 }
2417 vc1_mc_4mv_chroma(v);
2418 s->current_picture.qscale_table[mb_pos] = 0;
2419 return 0;
2420 }
2421 }
2422 v->cbp[s->mb_x] = block_cbp;
2423
2424 /* Should never happen */
2425 return -1;
2426 }
2427
2428 /** Decode one B-frame MB (in Main profile)
2429 */
2430 static void vc1_decode_b_mb(VC1Context *v)
2431 {
2432 MpegEncContext *s = &v->s;
2433 GetBitContext *gb = &s->gb;
2434 int i, j;
2435 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2436 int cbp = 0; /* cbp decoding stuff */
2437 int mqdiff, mquant; /* MB quantization */
2438 int ttmb = v->ttfrm; /* MB Transform type */
2439 int mb_has_coeffs = 0; /* last_flag */
2440 int index, index1; /* LUT indexes */
2441 int val, sign; /* temp values */
2442 int first_block = 1;
2443 int dst_idx, off;
2444 int skipped, direct;
2445 int dmv_x[2], dmv_y[2];
2446 int bmvtype = BMV_TYPE_BACKWARD;
2447
2448 mquant = v->pq; /* Loosy initialization */
2449 s->mb_intra = 0;
2450
2451 if (v->dmb_is_raw)
2452 direct = get_bits1(gb);
2453 else
2454 direct = v->direct_mb_plane[mb_pos];
2455 if (v->skip_is_raw)
2456 skipped = get_bits1(gb);
2457 else
2458 skipped = v->s.mbskip_table[mb_pos];
2459
2460 dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
2461 for(i = 0; i < 6; i++) {
2462 v->mb_type[0][s->block_index[i]] = 0;
2463 s->dc_val[0][s->block_index[i]] = 0;
2464 }
2465 s->current_picture.qscale_table[mb_pos] = 0;
2466
2467 if (!direct) {
2468 if (!skipped) {
2469 GET_MVDATA(dmv_x[0], dmv_y[0]);
2470 dmv_x[1] = dmv_x[0];
2471 dmv_y[1] = dmv_y[0];
2472 }
2473 if(skipped || !s->mb_intra) {
2474 bmvtype = decode012(gb);
2475 switch(bmvtype) {
2476 case 0:
2477 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
2478 break;
2479 case 1:
2480 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
2481 break;
2482 case 2:
2483 bmvtype = BMV_TYPE_INTERPOLATED;
2484 dmv_x[0] = dmv_y[0] = 0;
2485 }
2486 }
2487 }
2488 for(i = 0; i < 6; i++)
2489 v->mb_type[0][s->block_index[i]] = s->mb_intra;
2490
2491 if (skipped) {
2492 if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
2493 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2494 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2495 return;
2496 }
2497 if (direct) {
2498 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2499 GET_MQUANT();
2500 s->mb_intra = 0;
2501 s->current_picture.qscale_table[mb_pos] = mquant;
2502 if(!v->ttmbf)
2503 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
2504 dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
2505 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2506 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2507 } else {
2508 if(!mb_has_coeffs && !s->mb_intra) {
2509 /* no coded blocks - effectively skipped */
2510 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2511 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2512 return;
2513 }
2514 if(s->mb_intra && !mb_has_coeffs) {
2515 GET_MQUANT();
2516 s->current_picture.qscale_table[mb_pos] = mquant;
2517 s->ac_pred = get_bits1(gb);
2518 cbp = 0;
2519 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2520 } else {
2521 if(bmvtype == BMV_TYPE_INTERPOLATED) {
2522 GET_MVDATA(dmv_x[0], dmv_y[0]);
2523 if(!mb_has_coeffs) {
2524 /* interpolated skipped block */
2525 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2526 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2527 return;
2528 }
2529 }
2530 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2531 if(!s->mb_intra) {
2532 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2533 }
2534 if(s->mb_intra)
2535 s->ac_pred = get_bits1(gb);
2536 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2537 GET_MQUANT();
2538 s->current_picture.qscale_table[mb_pos] = mquant;
2539 if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
2540 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
2541 }
2542 }
2543 dst_idx = 0;
2544 for (i=0; i<6; i++)
2545 {
2546 s->dc_val[0][s->block_index[i]] = 0;
2547 dst_idx += i >> 2;
2548 val = ((cbp >> (5 - i)) & 1);
2549 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2550 v->mb_type[0][s->block_index[i]] = s->mb_intra;
2551 if(s->mb_intra) {
2552 /* check if prediction blocks A and C are available */
2553 v->a_avail = v->c_avail = 0;
2554 if(i == 2 || i == 3 || !s->first_slice_line)
2555 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2556 if(i == 1 || i == 3 || s->mb_x)
2557 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2558
2559 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
2560 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
2561 s->dsp.vc1_inv_trans_8x8(s->block[i]);
2562 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
2563 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2564 } else if(val) {
2565 vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
2566 if(!v->ttmbf && ttmb < 8) ttmb = -1;
2567 first_block = 0;
2568 }
2569 }
2570 }
2571
2572 /** Decode blocks of I-frame
2573 */
2574 static void vc1_decode_i_blocks(VC1Context *v)
2575 {
2576 int k, j;
2577 MpegEncContext *s = &v->s;
2578 int cbp, val;
2579 uint8_t *coded_val;
2580 int mb_pos;
2581
2582 /* select codingmode used for VLC tables selection */
2583 switch(v->y_ac_table_index){
2584 case 0:
2585 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
2586 break;
2587 case 1:
2588 v->codingset = CS_HIGH_MOT_INTRA;
2589 break;
2590 case 2:
2591 v->codingset = CS_MID_RATE_INTRA;
2592 break;
2593 }
2594
2595 switch(v->c_ac_table_index){
2596 case 0:
2597 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
2598 break;
2599 case 1:
2600 v->codingset2 = CS_HIGH_MOT_INTER;
2601 break;
2602 case 2:
2603 v->codingset2 = CS_MID_RATE_INTER;
2604 break;
2605 }
2606
2607 /* Set DC scale - y and c use the same */
2608 s->y_dc_scale = s->y_dc_scale_table[v->pq];
2609 s->c_dc_scale = s->c_dc_scale_table[v->pq];
2610
2611 //do frame decode
2612 s->mb_x = s->mb_y = 0;
2613 s->mb_intra = 1;
2614 s->first_slice_line = 1;
2615 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
2616 s->mb_x = 0;
2617 ff_init_block_index(s);
2618 for(; s->mb_x < s->mb_width; s->mb_x++) {
2619 ff_update_block_index(s);
2620 s->dsp.clear_blocks(s->block[0]);
2621 mb_pos = s->mb_x + s->mb_y * s->mb_width;
2622 s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
2623 s->current_picture.qscale_table[mb_pos] = v->pq;
2624 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
2625 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
2626
2627 // do actual MB decoding and displaying
2628 cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
2629 v->s.ac_pred = get_bits1(&v->s.gb);
2630
2631 for(k = 0; k < 6; k++) {
2632 val = ((cbp >> (5 - k)) & 1);
2633
2634 if (k < 4) {
2635 int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
2636 val = val ^ pred;
2637 *coded_val = val;
2638 }
2639 cbp |= val << (5 - k);
2640
2641 vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
2642
2643 s->dsp.vc1_inv_trans_8x8(s->block[k]);
2644 if(v->pq >= 9 && v->overlap) {
2645 for(j = 0; j < 64; j++) s->block[k][j] += 128;
2646 }
2647 }
2648
2649 vc1_put_block(v, s->block);
2650 if(v->pq >= 9 && v->overlap) {
2651 if(s->mb_x) {
2652 s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
2653 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
2654 if(!(s->flags & CODEC_FLAG_GRAY)) {
2655 s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
2656 s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
2657 }
2658 }
2659 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
2660 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
2661 if(!s->first_slice_line) {
2662 s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
2663 s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
2664 if(!(s->flags & CODEC_FLAG_GRAY)) {
2665 s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
2666 s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
2667 }
2668 }
2669 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
2670 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
2671 }
2672 if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
2673
2674 if(get_bits_count(&s->gb) > v->bits) {
2675 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
2676 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
2677 return;
2678 }
2679 }
2680 ff_draw_horiz_band(s, s->mb_y * 16, 16);
2681 s->first_slice_line = 0;
2682 }
2683 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
2684 }
2685
2686 /** Decode blocks of I-frame for advanced profile
2687 */
2688 static void vc1_decode_i_blocks_adv(VC1Context *v)
2689 {
2690 int k, j;
2691 MpegEncContext *s = &v->s;
2692 int cbp, val;
2693 uint8_t *coded_val;
2694 int mb_pos;
2695 int mquant = v->pq;
2696 int mqdiff;
2697 int overlap;
2698 GetBitContext *gb = &s->gb;