24cc01dd7465bc54e41ef30d599eb65e229af058
[libav.git] / libavcodec / vp3.c
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "avcodec.h"
37 #include "dsputil.h"
38 #include "get_bits.h"
39
40 #include "vp3data.h"
41 #include "xiph.h"
42
43 #define FRAGMENT_PIXELS 8
44
45 static av_cold int vp3_decode_end(AVCodecContext *avctx);
46
47 typedef struct Coeff {
48 struct Coeff *next;
49 DCTELEM coeff;
50 uint8_t index;
51 } Coeff;
52
53 //FIXME split things out into their own arrays
54 typedef struct Vp3Fragment {
55 Coeff *next_coeff;
56 uint8_t coding_method;
57 int8_t motion_x;
58 int8_t motion_y;
59 uint8_t qpi;
60 } Vp3Fragment;
61
62 #define SB_NOT_CODED 0
63 #define SB_PARTIALLY_CODED 1
64 #define SB_FULLY_CODED 2
65
66 // This is the maximum length of a single long bit run that can be encoded
67 // for superblock coding or block qps. Theora special-cases this to read a
68 // bit instead of flipping the current bit to allow for runs longer than 4129.
69 #define MAXIMUM_LONG_BIT_RUN 4129
70
71 #define MODE_INTER_NO_MV 0
72 #define MODE_INTRA 1
73 #define MODE_INTER_PLUS_MV 2
74 #define MODE_INTER_LAST_MV 3
75 #define MODE_INTER_PRIOR_LAST 4
76 #define MODE_USING_GOLDEN 5
77 #define MODE_GOLDEN_MV 6
78 #define MODE_INTER_FOURMV 7
79 #define CODING_MODE_COUNT 8
80
81 /* special internal mode */
82 #define MODE_COPY 8
83
84 /* There are 6 preset schemes, plus a free-form scheme */
85 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
86 {
87 /* scheme 1: Last motion vector dominates */
88 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
89 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
90 MODE_INTRA, MODE_USING_GOLDEN,
91 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
92
93 /* scheme 2 */
94 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
95 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
96 MODE_INTRA, MODE_USING_GOLDEN,
97 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
98
99 /* scheme 3 */
100 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
101 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
102 MODE_INTRA, MODE_USING_GOLDEN,
103 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
104
105 /* scheme 4 */
106 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
107 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
108 MODE_INTRA, MODE_USING_GOLDEN,
109 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
110
111 /* scheme 5: No motion vector dominates */
112 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
113 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
114 MODE_INTRA, MODE_USING_GOLDEN,
115 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
116
117 /* scheme 6 */
118 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
119 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
120 MODE_INTER_PLUS_MV, MODE_INTRA,
121 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
122
123 };
124
125 #define MIN_DEQUANT_VAL 2
126
127 typedef struct Vp3DecodeContext {
128 AVCodecContext *avctx;
129 int theora, theora_tables;
130 int version;
131 int width, height;
132 AVFrame golden_frame;
133 AVFrame last_frame;
134 AVFrame current_frame;
135 int keyframe;
136 DSPContext dsp;
137 int flipped_image;
138 int last_slice_end;
139
140 int qps[3];
141 int nqps;
142 int last_qps[3];
143
144 int superblock_count;
145 int y_superblock_width;
146 int y_superblock_height;
147 int c_superblock_width;
148 int c_superblock_height;
149 int u_superblock_start;
150 int v_superblock_start;
151 unsigned char *superblock_coding;
152
153 int macroblock_count;
154 int macroblock_width;
155 int macroblock_height;
156
157 int fragment_count;
158 int fragment_width;
159 int fragment_height;
160
161 Vp3Fragment *all_fragments;
162 uint8_t *coeff_counts;
163 Coeff *coeffs;
164 Coeff *next_coeff;
165 int fragment_start[3];
166 int data_offset[3];
167
168 ScanTable scantable;
169
170 /* tables */
171 uint16_t coded_dc_scale_factor[64];
172 uint32_t coded_ac_scale_factor[64];
173 uint8_t base_matrix[384][64];
174 uint8_t qr_count[2][3];
175 uint8_t qr_size [2][3][64];
176 uint16_t qr_base[2][3][64];
177
178 /* this is a list of indexes into the all_fragments array indicating
179 * which of the fragments are coded */
180 int *coded_fragment_list;
181 int coded_fragment_list_index;
182
183 /* track which fragments have already been decoded; called 'fast'
184 * because this data structure avoids having to iterate through every
185 * fragment in coded_fragment_list; once a fragment has been fully
186 * decoded, it is removed from this list */
187 int *fast_fragment_list;
188 int fragment_list_y_head;
189 int fragment_list_c_head;
190
191 VLC dc_vlc[16];
192 VLC ac_vlc_1[16];
193 VLC ac_vlc_2[16];
194 VLC ac_vlc_3[16];
195 VLC ac_vlc_4[16];
196
197 VLC superblock_run_length_vlc;
198 VLC fragment_run_length_vlc;
199 VLC mode_code_vlc;
200 VLC motion_vector_vlc;
201
202 /* these arrays need to be on 16-byte boundaries since SSE2 operations
203 * index into them */
204 DECLARE_ALIGNED_16(int16_t, qmat)[3][2][3][64]; //<qmat[qpi][is_inter][plane]
205
206 /* This table contains superblock_count * 16 entries. Each set of 16
207 * numbers corresponds to the fragment indexes 0..15 of the superblock.
208 * An entry will be -1 to indicate that no entry corresponds to that
209 * index. */
210 int *superblock_fragments;
211
212 /* This is an array that indicates how a particular macroblock
213 * is coded. */
214 unsigned char *macroblock_coding;
215
216 int first_coded_y_fragment;
217 int first_coded_c_fragment;
218 int last_coded_y_fragment;
219 int last_coded_c_fragment;
220
221 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
223
224 /* Huffman decode */
225 int hti;
226 unsigned int hbits;
227 int entries;
228 int huff_code_size;
229 uint16_t huffman_table[80][32][2];
230
231 uint8_t filter_limit_values[64];
232 DECLARE_ALIGNED_8(int, bounding_values_array)[256+2];
233 } Vp3DecodeContext;
234
235 /************************************************************************
236 * VP3 specific functions
237 ************************************************************************/
238
239 /*
240 * This function sets up all of the various blocks mappings:
241 * superblocks <-> fragments, macroblocks <-> fragments,
242 * superblocks <-> macroblocks
243 *
244 * Returns 0 is successful; returns 1 if *anything* went wrong.
245 */
246 static int init_block_mapping(Vp3DecodeContext *s)
247 {
248 int i, j;
249 signed int hilbert_walk_mb[4];
250
251 int current_fragment = 0;
252 int current_width = 0;
253 int current_height = 0;
254 int right_edge = 0;
255 int bottom_edge = 0;
256 int superblock_row_inc = 0;
257 int mapping_index = 0;
258
259 int current_macroblock;
260 int c_fragment;
261
262 static const signed char travel_width[16] = {
263 1, 1, 0, -1,
264 0, 0, 1, 0,
265 1, 0, 1, 0,
266 0, -1, 0, 1
267 };
268
269 static const signed char travel_height[16] = {
270 0, 0, 1, 0,
271 1, 1, 0, -1,
272 0, 1, 0, -1,
273 -1, 0, -1, 0
274 };
275
276 hilbert_walk_mb[0] = 1;
277 hilbert_walk_mb[1] = s->macroblock_width;
278 hilbert_walk_mb[2] = 1;
279 hilbert_walk_mb[3] = -s->macroblock_width;
280
281 /* iterate through each superblock (all planes) and map the fragments */
282 for (i = 0; i < s->superblock_count; i++) {
283 /* time to re-assign the limits? */
284 if (i == 0) {
285
286 /* start of Y superblocks */
287 right_edge = s->fragment_width;
288 bottom_edge = s->fragment_height;
289 current_width = -1;
290 current_height = 0;
291 superblock_row_inc = 3 * s->fragment_width -
292 (s->y_superblock_width * 4 - s->fragment_width);
293
294 /* the first operation for this variable is to advance by 1 */
295 current_fragment = -1;
296
297 } else if (i == s->u_superblock_start) {
298
299 /* start of U superblocks */
300 right_edge = s->fragment_width / 2;
301 bottom_edge = s->fragment_height / 2;
302 current_width = -1;
303 current_height = 0;
304 superblock_row_inc = 3 * (s->fragment_width / 2) -
305 (s->c_superblock_width * 4 - s->fragment_width / 2);
306
307 /* the first operation for this variable is to advance by 1 */
308 current_fragment = s->fragment_start[1] - 1;
309
310 } else if (i == s->v_superblock_start) {
311
312 /* start of V superblocks */
313 right_edge = s->fragment_width / 2;
314 bottom_edge = s->fragment_height / 2;
315 current_width = -1;
316 current_height = 0;
317 superblock_row_inc = 3 * (s->fragment_width / 2) -
318 (s->c_superblock_width * 4 - s->fragment_width / 2);
319
320 /* the first operation for this variable is to advance by 1 */
321 current_fragment = s->fragment_start[2] - 1;
322
323 }
324
325 if (current_width >= right_edge - 1) {
326 /* reset width and move to next superblock row */
327 current_width = -1;
328 current_height += 4;
329
330 /* fragment is now at the start of a new superblock row */
331 current_fragment += superblock_row_inc;
332 }
333
334 /* iterate through all 16 fragments in a superblock */
335 for (j = 0; j < 16; j++) {
336 current_fragment += travel_width[j] + right_edge * travel_height[j];
337 current_width += travel_width[j];
338 current_height += travel_height[j];
339
340 /* check if the fragment is in bounds */
341 if ((current_width < right_edge) &&
342 (current_height < bottom_edge)) {
343 s->superblock_fragments[mapping_index] = current_fragment;
344 } else {
345 s->superblock_fragments[mapping_index] = -1;
346 }
347
348 mapping_index++;
349 }
350 }
351
352 return 0; /* successful path out */
353 }
354
355 /*
356 * This function wipes out all of the fragment data.
357 */
358 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
359 {
360 int i;
361
362 /* zero out all of the fragment information */
363 s->coded_fragment_list_index = 0;
364 for (i = 0; i < s->fragment_count; i++) {
365 s->coeff_counts[i] = 0;
366 s->all_fragments[i].motion_x = 127;
367 s->all_fragments[i].motion_y = 127;
368 s->all_fragments[i].next_coeff= NULL;
369 s->all_fragments[i].qpi = 0;
370 s->coeffs[i].index=
371 s->coeffs[i].coeff=0;
372 s->coeffs[i].next= NULL;
373 }
374 }
375
376 /*
377 * This function sets up the dequantization tables used for a particular
378 * frame.
379 */
380 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
381 {
382 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
383 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
384 int i, plane, inter, qri, bmi, bmj, qistart;
385
386 for(inter=0; inter<2; inter++){
387 for(plane=0; plane<3; plane++){
388 int sum=0;
389 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
390 sum+= s->qr_size[inter][plane][qri];
391 if(s->qps[qpi] <= sum)
392 break;
393 }
394 qistart= sum - s->qr_size[inter][plane][qri];
395 bmi= s->qr_base[inter][plane][qri ];
396 bmj= s->qr_base[inter][plane][qri+1];
397 for(i=0; i<64; i++){
398 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
399 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
400 + s->qr_size[inter][plane][qri])
401 / (2*s->qr_size[inter][plane][qri]);
402
403 int qmin= 8<<(inter + !i);
404 int qscale= i ? ac_scale_factor : dc_scale_factor;
405
406 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
407 }
408 // all DC coefficients use the same quant so as not to interfere with DC prediction
409 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
410 }
411 }
412
413 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
414 }
415
416 /*
417 * This function initializes the loop filter boundary limits if the frame's
418 * quality index is different from the previous frame's.
419 *
420 * The filter_limit_values may not be larger than 127.
421 */
422 static void init_loop_filter(Vp3DecodeContext *s)
423 {
424 int *bounding_values= s->bounding_values_array+127;
425 int filter_limit;
426 int x;
427 int value;
428
429 filter_limit = s->filter_limit_values[s->qps[0]];
430
431 /* set up the bounding values */
432 memset(s->bounding_values_array, 0, 256 * sizeof(int));
433 for (x = 0; x < filter_limit; x++) {
434 bounding_values[-x] = -x;
435 bounding_values[x] = x;
436 }
437 for (x = value = filter_limit; x < 128 && value; x++, value--) {
438 bounding_values[ x] = value;
439 bounding_values[-x] = -value;
440 }
441 if (value)
442 bounding_values[128] = value;
443 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
444 }
445
446 /*
447 * This function unpacks all of the superblock/macroblock/fragment coding
448 * information from the bitstream.
449 */
450 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
451 {
452 int bit = 0;
453 int current_superblock = 0;
454 int current_run = 0;
455 int num_partial_superblocks = 0;
456 int first_c_fragment_seen;
457
458 int i, j;
459 int current_fragment;
460
461 if (s->keyframe) {
462 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
463
464 } else {
465
466 /* unpack the list of partially-coded superblocks */
467 bit = get_bits1(gb);
468 while (current_superblock < s->superblock_count) {
469 current_run = get_vlc2(gb,
470 s->superblock_run_length_vlc.table, 6, 2) + 1;
471 if (current_run == 34)
472 current_run += get_bits(gb, 12);
473
474 if (current_superblock + current_run > s->superblock_count) {
475 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
476 return -1;
477 }
478
479 memset(s->superblock_coding + current_superblock, bit, current_run);
480
481 current_superblock += current_run;
482 if (bit)
483 num_partial_superblocks += current_run;
484
485 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
486 bit = get_bits1(gb);
487 else
488 bit ^= 1;
489 }
490
491 /* unpack the list of fully coded superblocks if any of the blocks were
492 * not marked as partially coded in the previous step */
493 if (num_partial_superblocks < s->superblock_count) {
494 int superblocks_decoded = 0;
495
496 current_superblock = 0;
497 bit = get_bits1(gb);
498 while (superblocks_decoded < s->superblock_count - num_partial_superblocks) {
499 current_run = get_vlc2(gb,
500 s->superblock_run_length_vlc.table, 6, 2) + 1;
501 if (current_run == 34)
502 current_run += get_bits(gb, 12);
503
504 for (j = 0; j < current_run; current_superblock++) {
505 if (current_superblock >= s->superblock_count) {
506 av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
507 return -1;
508 }
509
510 /* skip any superblocks already marked as partially coded */
511 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
512 s->superblock_coding[current_superblock] = 2*bit;
513 j++;
514 }
515 }
516 superblocks_decoded += current_run;
517
518 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
519 bit = get_bits1(gb);
520 else
521 bit ^= 1;
522 }
523 }
524
525 /* if there were partial blocks, initialize bitstream for
526 * unpacking fragment codings */
527 if (num_partial_superblocks) {
528
529 current_run = 0;
530 bit = get_bits1(gb);
531 /* toggle the bit because as soon as the first run length is
532 * fetched the bit will be toggled again */
533 bit ^= 1;
534 }
535 }
536
537 /* figure out which fragments are coded; iterate through each
538 * superblock (all planes) */
539 s->coded_fragment_list_index = 0;
540 s->next_coeff= s->coeffs + s->fragment_count;
541 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
542 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
543 first_c_fragment_seen = 0;
544 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
545 for (i = 0; i < s->superblock_count; i++) {
546
547 /* iterate through all 16 fragments in a superblock */
548 for (j = 0; j < 16; j++) {
549
550 /* if the fragment is in bounds, check its coding status */
551 current_fragment = s->superblock_fragments[i * 16 + j];
552 if (current_fragment >= s->fragment_count) {
553 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
554 current_fragment, s->fragment_count);
555 return 1;
556 }
557 if (current_fragment != -1) {
558 int coded = s->superblock_coding[i];
559
560 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
561
562 /* fragment may or may not be coded; this is the case
563 * that cares about the fragment coding runs */
564 if (current_run-- == 0) {
565 bit ^= 1;
566 current_run = get_vlc2(gb,
567 s->fragment_run_length_vlc.table, 5, 2);
568 }
569 coded = bit;
570 }
571
572 if (coded) {
573 /* default mode; actual mode will be decoded in
574 * the next phase */
575 s->all_fragments[current_fragment].coding_method =
576 MODE_INTER_NO_MV;
577 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
578 s->coded_fragment_list[s->coded_fragment_list_index] =
579 current_fragment;
580 if ((current_fragment >= s->fragment_start[1]) &&
581 (s->last_coded_y_fragment == -1) &&
582 (!first_c_fragment_seen)) {
583 s->first_coded_c_fragment = s->coded_fragment_list_index;
584 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
585 first_c_fragment_seen = 1;
586 }
587 s->coded_fragment_list_index++;
588 } else {
589 /* not coded; copy this fragment from the prior frame */
590 s->all_fragments[current_fragment].coding_method =
591 MODE_COPY;
592 }
593 }
594 }
595 }
596
597 if (!first_c_fragment_seen)
598 /* only Y fragments coded in this frame */
599 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
600 else
601 /* end the list of coded C fragments */
602 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
603
604 for (i = 0; i < s->fragment_count - 1; i++) {
605 s->fast_fragment_list[i] = i + 1;
606 }
607 s->fast_fragment_list[s->fragment_count - 1] = -1;
608
609 if (s->last_coded_y_fragment == -1)
610 s->fragment_list_y_head = -1;
611 else {
612 s->fragment_list_y_head = s->first_coded_y_fragment;
613 s->fast_fragment_list[s->last_coded_y_fragment] = -1;
614 }
615
616 if (s->last_coded_c_fragment == -1)
617 s->fragment_list_c_head = -1;
618 else {
619 s->fragment_list_c_head = s->first_coded_c_fragment;
620 s->fast_fragment_list[s->last_coded_c_fragment] = -1;
621 }
622
623 return 0;
624 }
625
626 /*
627 * This function unpacks all the coding mode data for individual macroblocks
628 * from the bitstream.
629 */
630 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
631 {
632 int i, j, k, sb_x, sb_y;
633 int scheme;
634 int current_macroblock;
635 int current_fragment;
636 int coding_mode;
637 int custom_mode_alphabet[CODING_MODE_COUNT];
638 const int *alphabet;
639
640 if (s->keyframe) {
641 for (i = 0; i < s->fragment_count; i++)
642 s->all_fragments[i].coding_method = MODE_INTRA;
643
644 } else {
645
646 /* fetch the mode coding scheme for this frame */
647 scheme = get_bits(gb, 3);
648
649 /* is it a custom coding scheme? */
650 if (scheme == 0) {
651 for (i = 0; i < 8; i++)
652 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
653 for (i = 0; i < 8; i++)
654 custom_mode_alphabet[get_bits(gb, 3)] = i;
655 alphabet = custom_mode_alphabet;
656 } else
657 alphabet = ModeAlphabet[scheme-1];
658
659 /* iterate through all of the macroblocks that contain 1 or more
660 * coded fragments */
661 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
662 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
663
664 for (j = 0; j < 4; j++) {
665 int mb_x = 2*sb_x + (j>>1);
666 int mb_y = 2*sb_y + (((j>>1)+j)&1);
667 int frags_coded = 0;
668 current_macroblock = mb_y * s->macroblock_width + mb_x;
669
670 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
671 continue;
672
673 #define BLOCK_X (2*mb_x + (k&1))
674 #define BLOCK_Y (2*mb_y + (k>>1))
675 /* coding modes are only stored if the macroblock has at least one
676 * luma block coded, otherwise it must be INTER_NO_MV */
677 for (k = 0; k < 4; k++) {
678 current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
679 if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
680 break;
681 }
682 if (k == 4) {
683 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
684 continue;
685 }
686
687 /* mode 7 means get 3 bits for each coding mode */
688 if (scheme == 7)
689 coding_mode = get_bits(gb, 3);
690 else
691 coding_mode = alphabet
692 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
693
694 s->macroblock_coding[current_macroblock] = coding_mode;
695 for (k = 0; k < 4; k++) {
696 current_fragment =
697 BLOCK_Y*s->fragment_width + BLOCK_X;
698 if (s->all_fragments[current_fragment].coding_method !=
699 MODE_COPY)
700 s->all_fragments[current_fragment].coding_method =
701 coding_mode;
702 }
703 for (k = 0; k < 2; k++) {
704 current_fragment = s->fragment_start[k+1] +
705 mb_y*(s->fragment_width>>1) + mb_x;
706 if (s->all_fragments[current_fragment].coding_method !=
707 MODE_COPY)
708 s->all_fragments[current_fragment].coding_method =
709 coding_mode;
710 }
711 }
712 }
713 }
714 }
715
716 return 0;
717 }
718
719 /*
720 * This function unpacks all the motion vectors for the individual
721 * macroblocks from the bitstream.
722 */
723 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
724 {
725 int j, k, sb_x, sb_y;
726 int coding_mode;
727 int motion_x[6];
728 int motion_y[6];
729 int last_motion_x = 0;
730 int last_motion_y = 0;
731 int prior_last_motion_x = 0;
732 int prior_last_motion_y = 0;
733 int current_macroblock;
734 int current_fragment;
735
736 if (s->keyframe)
737 return 0;
738
739 memset(motion_x, 0, 6 * sizeof(int));
740 memset(motion_y, 0, 6 * sizeof(int));
741
742 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
743 coding_mode = get_bits1(gb);
744
745 /* iterate through all of the macroblocks that contain 1 or more
746 * coded fragments */
747 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
748 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
749
750 for (j = 0; j < 4; j++) {
751 int mb_x = 2*sb_x + (j>>1);
752 int mb_y = 2*sb_y + (((j>>1)+j)&1);
753 current_macroblock = mb_y * s->macroblock_width + mb_x;
754
755 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
756 (s->macroblock_coding[current_macroblock] == MODE_COPY))
757 continue;
758
759 switch (s->macroblock_coding[current_macroblock]) {
760
761 case MODE_INTER_PLUS_MV:
762 case MODE_GOLDEN_MV:
763 /* all 6 fragments use the same motion vector */
764 if (coding_mode == 0) {
765 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
766 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
767 } else {
768 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
769 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
770 }
771
772 /* vector maintenance, only on MODE_INTER_PLUS_MV */
773 if (s->macroblock_coding[current_macroblock] ==
774 MODE_INTER_PLUS_MV) {
775 prior_last_motion_x = last_motion_x;
776 prior_last_motion_y = last_motion_y;
777 last_motion_x = motion_x[0];
778 last_motion_y = motion_y[0];
779 }
780 break;
781
782 case MODE_INTER_FOURMV:
783 /* vector maintenance */
784 prior_last_motion_x = last_motion_x;
785 prior_last_motion_y = last_motion_y;
786
787 /* fetch 4 vectors from the bitstream, one for each
788 * Y fragment, then average for the C fragment vectors */
789 motion_x[4] = motion_y[4] = 0;
790 for (k = 0; k < 4; k++) {
791 current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
792 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
793 if (coding_mode == 0) {
794 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
795 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
796 } else {
797 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
798 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
799 }
800 last_motion_x = motion_x[k];
801 last_motion_y = motion_y[k];
802 } else {
803 motion_x[k] = 0;
804 motion_y[k] = 0;
805 }
806 motion_x[4] += motion_x[k];
807 motion_y[4] += motion_y[k];
808 }
809
810 motion_x[5]=
811 motion_x[4]= RSHIFT(motion_x[4], 2);
812 motion_y[5]=
813 motion_y[4]= RSHIFT(motion_y[4], 2);
814 break;
815
816 case MODE_INTER_LAST_MV:
817 /* all 6 fragments use the last motion vector */
818 motion_x[0] = last_motion_x;
819 motion_y[0] = last_motion_y;
820
821 /* no vector maintenance (last vector remains the
822 * last vector) */
823 break;
824
825 case MODE_INTER_PRIOR_LAST:
826 /* all 6 fragments use the motion vector prior to the
827 * last motion vector */
828 motion_x[0] = prior_last_motion_x;
829 motion_y[0] = prior_last_motion_y;
830
831 /* vector maintenance */
832 prior_last_motion_x = last_motion_x;
833 prior_last_motion_y = last_motion_y;
834 last_motion_x = motion_x[0];
835 last_motion_y = motion_y[0];
836 break;
837
838 default:
839 /* covers intra, inter without MV, golden without MV */
840 motion_x[0] = 0;
841 motion_y[0] = 0;
842
843 /* no vector maintenance */
844 break;
845 }
846
847 /* assign the motion vectors to the correct fragments */
848 for (k = 0; k < 4; k++) {
849 current_fragment =
850 BLOCK_Y*s->fragment_width + BLOCK_X;
851 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
852 s->all_fragments[current_fragment].motion_x = motion_x[k];
853 s->all_fragments[current_fragment].motion_y = motion_y[k];
854 } else {
855 s->all_fragments[current_fragment].motion_x = motion_x[0];
856 s->all_fragments[current_fragment].motion_y = motion_y[0];
857 }
858 }
859 for (k = 0; k < 2; k++) {
860 current_fragment = s->fragment_start[k+1] +
861 mb_y*(s->fragment_width>>1) + mb_x;
862 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
863 s->all_fragments[current_fragment].motion_x = motion_x[k+4];
864 s->all_fragments[current_fragment].motion_y = motion_y[k+4];
865 } else {
866 s->all_fragments[current_fragment].motion_x = motion_x[0];
867 s->all_fragments[current_fragment].motion_y = motion_y[0];
868 }
869 }
870 }
871 }
872 }
873
874 return 0;
875 }
876
877 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
878 {
879 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
880 int num_blocks = s->coded_fragment_list_index;
881
882 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
883 i = blocks_decoded = num_blocks_at_qpi = 0;
884
885 bit = get_bits1(gb);
886
887 do {
888 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
889 if (run_length == 34)
890 run_length += get_bits(gb, 12);
891 blocks_decoded += run_length;
892
893 if (!bit)
894 num_blocks_at_qpi += run_length;
895
896 for (j = 0; j < run_length; i++) {
897 if (i >= s->coded_fragment_list_index)
898 return -1;
899
900 if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
901 s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
902 j++;
903 }
904 }
905
906 if (run_length == MAXIMUM_LONG_BIT_RUN)
907 bit = get_bits1(gb);
908 else
909 bit ^= 1;
910 } while (blocks_decoded < num_blocks);
911
912 num_blocks -= num_blocks_at_qpi;
913 }
914
915 return 0;
916 }
917
918 /*
919 * This function is called by unpack_dct_coeffs() to extract the VLCs from
920 * the bitstream. The VLCs encode tokens which are used to unpack DCT
921 * data. This function unpacks all the VLCs for either the Y plane or both
922 * C planes, and is called for DC coefficients or different AC coefficient
923 * levels (since different coefficient types require different VLC tables.
924 *
925 * This function returns a residual eob run. E.g, if a particular token gave
926 * instructions to EOB the next 5 fragments and there were only 2 fragments
927 * left in the current fragment range, 3 would be returned so that it could
928 * be passed into the next call to this same function.
929 */
930 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
931 VLC *table, int coeff_index,
932 int y_plane,
933 int eob_run)
934 {
935 int i;
936 int token;
937 int zero_run = 0;
938 DCTELEM coeff = 0;
939 Vp3Fragment *fragment;
940 int bits_to_get;
941 int next_fragment;
942 int previous_fragment;
943 int fragment_num;
944 int *list_head;
945
946 /* local references to structure members to avoid repeated deferences */
947 uint8_t *perm= s->scantable.permutated;
948 int *coded_fragment_list = s->coded_fragment_list;
949 Vp3Fragment *all_fragments = s->all_fragments;
950 uint8_t *coeff_counts = s->coeff_counts;
951 VLC_TYPE (*vlc_table)[2] = table->table;
952 int *fast_fragment_list = s->fast_fragment_list;
953
954 if (y_plane) {
955 next_fragment = s->fragment_list_y_head;
956 list_head = &s->fragment_list_y_head;
957 } else {
958 next_fragment = s->fragment_list_c_head;
959 list_head = &s->fragment_list_c_head;
960 }
961
962 i = next_fragment;
963 previous_fragment = -1; /* this indicates that the previous fragment is actually the list head */
964 while (i != -1) {
965 fragment_num = coded_fragment_list[i];
966
967 if (coeff_counts[fragment_num] > coeff_index) {
968 previous_fragment = i;
969 i = fast_fragment_list[i];
970 continue;
971 }
972 fragment = &all_fragments[fragment_num];
973
974 if (!eob_run) {
975 /* decode a VLC into a token */
976 token = get_vlc2(gb, vlc_table, 5, 3);
977 /* use the token to get a zero run, a coefficient, and an eob run */
978 if (token <= 6) {
979 eob_run = eob_run_base[token];
980 if (eob_run_get_bits[token])
981 eob_run += get_bits(gb, eob_run_get_bits[token]);
982 coeff = zero_run = 0;
983 } else {
984 bits_to_get = coeff_get_bits[token];
985 if (bits_to_get)
986 bits_to_get = get_bits(gb, bits_to_get);
987 coeff = coeff_tables[token][bits_to_get];
988
989 zero_run = zero_run_base[token];
990 if (zero_run_get_bits[token])
991 zero_run += get_bits(gb, zero_run_get_bits[token]);
992 }
993 }
994
995 if (!eob_run) {
996 coeff_counts[fragment_num] += zero_run;
997 if (coeff_counts[fragment_num] < 64){
998 fragment->next_coeff->coeff= coeff;
999 fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already?
1000 fragment->next_coeff->next= s->next_coeff;
1001 s->next_coeff->next=NULL;
1002 fragment->next_coeff= s->next_coeff++;
1003 }
1004 /* previous fragment is now this fragment */
1005 previous_fragment = i;
1006 } else {
1007 coeff_counts[fragment_num] |= 128;
1008 eob_run--;
1009 /* remove this fragment from the list */
1010 if (previous_fragment != -1)
1011 fast_fragment_list[previous_fragment] = fast_fragment_list[i];
1012 else
1013 *list_head = fast_fragment_list[i];
1014 /* previous fragment remains unchanged */
1015 }
1016
1017 i = fast_fragment_list[i];
1018 }
1019
1020 return eob_run;
1021 }
1022
1023 static void reverse_dc_prediction(Vp3DecodeContext *s,
1024 int first_fragment,
1025 int fragment_width,
1026 int fragment_height);
1027 /*
1028 * This function unpacks all of the DCT coefficient data from the
1029 * bitstream.
1030 */
1031 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1032 {
1033 int i;
1034 int dc_y_table;
1035 int dc_c_table;
1036 int ac_y_table;
1037 int ac_c_table;
1038 int residual_eob_run = 0;
1039 VLC *y_tables[64];
1040 VLC *c_tables[64];
1041
1042 /* fetch the DC table indexes */
1043 dc_y_table = get_bits(gb, 4);
1044 dc_c_table = get_bits(gb, 4);
1045
1046 /* unpack the Y plane DC coefficients */
1047 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1048 1, residual_eob_run);
1049
1050 /* reverse prediction of the Y-plane DC coefficients */
1051 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1052
1053 /* unpack the C plane DC coefficients */
1054 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1055 0, residual_eob_run);
1056
1057 /* reverse prediction of the C-plane DC coefficients */
1058 if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1059 {
1060 reverse_dc_prediction(s, s->fragment_start[1],
1061 s->fragment_width / 2, s->fragment_height / 2);
1062 reverse_dc_prediction(s, s->fragment_start[2],
1063 s->fragment_width / 2, s->fragment_height / 2);
1064 }
1065
1066 /* fetch the AC table indexes */
1067 ac_y_table = get_bits(gb, 4);
1068 ac_c_table = get_bits(gb, 4);
1069
1070 /* build tables of AC VLC tables */
1071 for (i = 1; i <= 5; i++) {
1072 y_tables[i] = &s->ac_vlc_1[ac_y_table];
1073 c_tables[i] = &s->ac_vlc_1[ac_c_table];
1074 }
1075 for (i = 6; i <= 14; i++) {
1076 y_tables[i] = &s->ac_vlc_2[ac_y_table];
1077 c_tables[i] = &s->ac_vlc_2[ac_c_table];
1078 }
1079 for (i = 15; i <= 27; i++) {
1080 y_tables[i] = &s->ac_vlc_3[ac_y_table];
1081 c_tables[i] = &s->ac_vlc_3[ac_c_table];
1082 }
1083 for (i = 28; i <= 63; i++) {
1084 y_tables[i] = &s->ac_vlc_4[ac_y_table];
1085 c_tables[i] = &s->ac_vlc_4[ac_c_table];
1086 }
1087
1088 /* decode all AC coefficents */
1089 for (i = 1; i <= 63; i++) {
1090 if (s->fragment_list_y_head != -1)
1091 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1092 1, residual_eob_run);
1093
1094 if (s->fragment_list_c_head != -1)
1095 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1096 0, residual_eob_run);
1097 }
1098
1099 return 0;
1100 }
1101
1102 /*
1103 * This function reverses the DC prediction for each coded fragment in
1104 * the frame. Much of this function is adapted directly from the original
1105 * VP3 source code.
1106 */
1107 #define COMPATIBLE_FRAME(x) \
1108 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1109 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1110
1111 static void reverse_dc_prediction(Vp3DecodeContext *s,
1112 int first_fragment,
1113 int fragment_width,
1114 int fragment_height)
1115 {
1116
1117 #define PUL 8
1118 #define PU 4
1119 #define PUR 2
1120 #define PL 1
1121
1122 int x, y;
1123 int i = first_fragment;
1124
1125 int predicted_dc;
1126
1127 /* DC values for the left, up-left, up, and up-right fragments */
1128 int vl, vul, vu, vur;
1129
1130 /* indexes for the left, up-left, up, and up-right fragments */
1131 int l, ul, u, ur;
1132
1133 /*
1134 * The 6 fields mean:
1135 * 0: up-left multiplier
1136 * 1: up multiplier
1137 * 2: up-right multiplier
1138 * 3: left multiplier
1139 */
1140 static const int predictor_transform[16][4] = {
1141 { 0, 0, 0, 0},
1142 { 0, 0, 0,128}, // PL
1143 { 0, 0,128, 0}, // PUR
1144 { 0, 0, 53, 75}, // PUR|PL
1145 { 0,128, 0, 0}, // PU
1146 { 0, 64, 0, 64}, // PU|PL
1147 { 0,128, 0, 0}, // PU|PUR
1148 { 0, 0, 53, 75}, // PU|PUR|PL
1149 {128, 0, 0, 0}, // PUL
1150 { 0, 0, 0,128}, // PUL|PL
1151 { 64, 0, 64, 0}, // PUL|PUR
1152 { 0, 0, 53, 75}, // PUL|PUR|PL
1153 { 0,128, 0, 0}, // PUL|PU
1154 {-104,116, 0,116}, // PUL|PU|PL
1155 { 24, 80, 24, 0}, // PUL|PU|PUR
1156 {-104,116, 0,116} // PUL|PU|PUR|PL
1157 };
1158
1159 /* This table shows which types of blocks can use other blocks for
1160 * prediction. For example, INTRA is the only mode in this table to
1161 * have a frame number of 0. That means INTRA blocks can only predict
1162 * from other INTRA blocks. There are 2 golden frame coding types;
1163 * blocks encoding in these modes can only predict from other blocks
1164 * that were encoded with these 1 of these 2 modes. */
1165 static const unsigned char compatible_frame[9] = {
1166 1, /* MODE_INTER_NO_MV */
1167 0, /* MODE_INTRA */
1168 1, /* MODE_INTER_PLUS_MV */
1169 1, /* MODE_INTER_LAST_MV */
1170 1, /* MODE_INTER_PRIOR_MV */
1171 2, /* MODE_USING_GOLDEN */
1172 2, /* MODE_GOLDEN_MV */
1173 1, /* MODE_INTER_FOUR_MV */
1174 3 /* MODE_COPY */
1175 };
1176 int current_frame_type;
1177
1178 /* there is a last DC predictor for each of the 3 frame types */
1179 short last_dc[3];
1180
1181 int transform = 0;
1182
1183 vul = vu = vur = vl = 0;
1184 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1185
1186 /* for each fragment row... */
1187 for (y = 0; y < fragment_height; y++) {
1188
1189 /* for each fragment in a row... */
1190 for (x = 0; x < fragment_width; x++, i++) {
1191
1192 /* reverse prediction if this block was coded */
1193 if (s->all_fragments[i].coding_method != MODE_COPY) {
1194
1195 current_frame_type =
1196 compatible_frame[s->all_fragments[i].coding_method];
1197
1198 transform= 0;
1199 if(x){
1200 l= i-1;
1201 vl = DC_COEFF(l);
1202 if(COMPATIBLE_FRAME(l))
1203 transform |= PL;
1204 }
1205 if(y){
1206 u= i-fragment_width;
1207 vu = DC_COEFF(u);
1208 if(COMPATIBLE_FRAME(u))
1209 transform |= PU;
1210 if(x){
1211 ul= i-fragment_width-1;
1212 vul = DC_COEFF(ul);
1213 if(COMPATIBLE_FRAME(ul))
1214 transform |= PUL;
1215 }
1216 if(x + 1 < fragment_width){
1217 ur= i-fragment_width+1;
1218 vur = DC_COEFF(ur);
1219 if(COMPATIBLE_FRAME(ur))
1220 transform |= PUR;
1221 }
1222 }
1223
1224 if (transform == 0) {
1225
1226 /* if there were no fragments to predict from, use last
1227 * DC saved */
1228 predicted_dc = last_dc[current_frame_type];
1229 } else {
1230
1231 /* apply the appropriate predictor transform */
1232 predicted_dc =
1233 (predictor_transform[transform][0] * vul) +
1234 (predictor_transform[transform][1] * vu) +
1235 (predictor_transform[transform][2] * vur) +
1236 (predictor_transform[transform][3] * vl);
1237
1238 predicted_dc /= 128;
1239
1240 /* check for outranging on the [ul u l] and
1241 * [ul u ur l] predictors */
1242 if ((transform == 15) || (transform == 13)) {
1243 if (FFABS(predicted_dc - vu) > 128)
1244 predicted_dc = vu;
1245 else if (FFABS(predicted_dc - vl) > 128)
1246 predicted_dc = vl;
1247 else if (FFABS(predicted_dc - vul) > 128)
1248 predicted_dc = vul;
1249 }
1250 }
1251
1252 /* at long last, apply the predictor */
1253 if(s->coeffs[i].index){
1254 *s->next_coeff= s->coeffs[i];
1255 s->coeffs[i].index=0;
1256 s->coeffs[i].coeff=0;
1257 s->coeffs[i].next= s->next_coeff++;
1258 }
1259 s->coeffs[i].coeff += predicted_dc;
1260 /* save the DC */
1261 last_dc[current_frame_type] = DC_COEFF(i);
1262 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1263 s->coeff_counts[i]= 129;
1264 // s->all_fragments[i].next_coeff= s->next_coeff;
1265 s->coeffs[i].next= s->next_coeff;
1266 (s->next_coeff++)->next=NULL;
1267 }
1268 }
1269 }
1270 }
1271 }
1272
1273 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1274 {
1275 int x, y;
1276 int *bounding_values= s->bounding_values_array+127;
1277
1278 int width = s->fragment_width >> !!plane;
1279 int height = s->fragment_height >> !!plane;
1280 int fragment = s->fragment_start [plane] + ystart * width;
1281 int stride = s->current_frame.linesize[plane];
1282 uint8_t *plane_data = s->current_frame.data [plane];
1283 if (!s->flipped_image) stride = -stride;
1284 plane_data += s->data_offset[plane] + 8*ystart*stride;
1285
1286 for (y = ystart; y < yend; y++) {
1287
1288 for (x = 0; x < width; x++) {
1289 /* This code basically just deblocks on the edges of coded blocks.
1290 * However, it has to be much more complicated because of the
1291 * braindamaged deblock ordering used in VP3/Theora. Order matters
1292 * because some pixels get filtered twice. */
1293 if( s->all_fragments[fragment].coding_method != MODE_COPY )
1294 {
1295 /* do not perform left edge filter for left columns frags */
1296 if (x > 0) {
1297 s->dsp.vp3_h_loop_filter(
1298 plane_data + 8*x,
1299 stride, bounding_values);
1300 }
1301
1302 /* do not perform top edge filter for top row fragments */
1303 if (y > 0) {
1304 s->dsp.vp3_v_loop_filter(
1305 plane_data + 8*x,
1306 stride, bounding_values);
1307 }
1308
1309 /* do not perform right edge filter for right column
1310 * fragments or if right fragment neighbor is also coded
1311 * in this frame (it will be filtered in next iteration) */
1312 if ((x < width - 1) &&
1313 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1314 s->dsp.vp3_h_loop_filter(
1315 plane_data + 8*x + 8,
1316 stride, bounding_values);
1317 }
1318
1319 /* do not perform bottom edge filter for bottom row
1320 * fragments or if bottom fragment neighbor is also coded
1321 * in this frame (it will be filtered in the next row) */
1322 if ((y < height - 1) &&
1323 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1324 s->dsp.vp3_v_loop_filter(
1325 plane_data + 8*x + 8*stride,
1326 stride, bounding_values);
1327 }
1328 }
1329
1330 fragment++;
1331 }
1332 plane_data += 8*stride;
1333 }
1334 }
1335
1336 /**
1337 * called when all pixels up to row y are complete
1338 */
1339 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1340 {
1341 int h, cy;
1342 int offset[4];
1343
1344 if(s->avctx->draw_horiz_band==NULL)
1345 return;
1346
1347 h= y - s->last_slice_end;
1348 y -= h;
1349
1350 if (!s->flipped_image) {
1351 if (y == 0)
1352 h -= s->height - s->avctx->height; // account for non-mod16
1353 y = s->height - y - h;
1354 }
1355
1356 cy = y >> 1;
1357 offset[0] = s->current_frame.linesize[0]*y;
1358 offset[1] = s->current_frame.linesize[1]*cy;
1359 offset[2] = s->current_frame.linesize[2]*cy;
1360 offset[3] = 0;
1361
1362 emms_c();
1363 s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1364 s->last_slice_end= y + h;
1365 }
1366
1367 /*
1368 * Perform the final rendering for a particular slice of data.
1369 * The slice number ranges from 0..(macroblock_height - 1).
1370 */
1371 static void render_slice(Vp3DecodeContext *s, int slice)
1372 {
1373 int x;
1374 int16_t *dequantizer;
1375 LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1376 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1377 int motion_halfpel_index;
1378 uint8_t *motion_source;
1379 int plane;
1380
1381 if (slice >= s->macroblock_height)
1382 return;
1383
1384 for (plane = 0; plane < 3; plane++) {
1385 uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane];
1386 uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane];
1387 uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane];
1388 int stride = s->current_frame.linesize[plane];
1389 int plane_width = s->width >> !!plane;
1390 int plane_height = s->height >> !!plane;
1391 int y = slice * FRAGMENT_PIXELS << !plane ;
1392 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1393 int i = s->fragment_start[plane] + (y>>3)*(s->fragment_width>>!!plane);
1394
1395 if (!s->flipped_image) stride = -stride;
1396 if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1397 continue;
1398
1399
1400 if(FFABS(stride) > 2048)
1401 return; //various tables are fixed size
1402
1403 /* for each fragment row in the slice (both of them)... */
1404 for (; y < slice_height; y += 8) {
1405
1406 /* for each fragment in a row... */
1407 for (x = 0; x < plane_width; x += 8, i++) {
1408 int first_pixel = y*stride + x;
1409
1410 if ((i < 0) || (i >= s->fragment_count)) {
1411 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1412 return;
1413 }
1414
1415 /* transform if this block was coded */
1416 if (s->all_fragments[i].coding_method != MODE_COPY) {
1417
1418 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1419 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1420 motion_source= golden_plane;
1421 else
1422 motion_source= last_plane;
1423
1424 motion_source += first_pixel;
1425 motion_halfpel_index = 0;
1426
1427 /* sort out the motion vector if this fragment is coded
1428 * using a motion vector method */
1429 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1430 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1431 int src_x, src_y;
1432 motion_x = s->all_fragments[i].motion_x;
1433 motion_y = s->all_fragments[i].motion_y;
1434 if(plane){
1435 motion_x= (motion_x>>1) | (motion_x&1);
1436 motion_y= (motion_y>>1) | (motion_y&1);
1437 }
1438
1439 src_x= (motion_x>>1) + x;
1440 src_y= (motion_y>>1) + y;
1441 if ((motion_x == 127) || (motion_y == 127))
1442 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1443
1444 motion_halfpel_index = motion_x & 0x01;
1445 motion_source += (motion_x >> 1);
1446
1447 motion_halfpel_index |= (motion_y & 0x01) << 1;
1448 motion_source += ((motion_y >> 1) * stride);
1449
1450 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1451 uint8_t *temp= s->edge_emu_buffer;
1452 if(stride<0) temp -= 9*stride;
1453 else temp += 9*stride;
1454
1455 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1456 motion_source= temp;
1457 }
1458 }
1459
1460
1461 /* first, take care of copying a block from either the
1462 * previous or the golden frame */
1463 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1464 /* Note, it is possible to implement all MC cases with
1465 put_no_rnd_pixels_l2 which would look more like the
1466 VP3 source but this would be slower as
1467 put_no_rnd_pixels_tab is better optimzed */
1468 if(motion_halfpel_index != 3){
1469 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1470 output_plane + first_pixel,
1471 motion_source, stride, 8);
1472 }else{
1473 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1474 s->dsp.put_no_rnd_pixels_l2[1](
1475 output_plane + first_pixel,
1476 motion_source - d,
1477 motion_source + stride + 1 + d,
1478 stride, 8);
1479 }
1480 dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1481 }else{
1482 dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1483 }
1484
1485 /* dequantize the DCT coefficients */
1486 if(s->avctx->idct_algo==FF_IDCT_VP3){
1487 Coeff *coeff= s->coeffs + i;
1488 s->dsp.clear_block(block);
1489 while(coeff->next){
1490 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1491 coeff= coeff->next;
1492 }
1493 }else{
1494 Coeff *coeff= s->coeffs + i;
1495 s->dsp.clear_block(block);
1496 while(coeff->next){
1497 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1498 coeff= coeff->next;
1499 }
1500 }
1501
1502 /* invert DCT and place (or add) in final output */
1503
1504 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1505 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1506 block[0] += 128<<3;
1507 s->dsp.idct_put(
1508 output_plane + first_pixel,
1509 stride,
1510 block);
1511 } else {
1512 s->dsp.idct_add(
1513 output_plane + first_pixel,
1514 stride,
1515 block);
1516 }
1517 } else {
1518
1519 /* copy directly from the previous frame */
1520 s->dsp.put_pixels_tab[1][0](
1521 output_plane + first_pixel,
1522 last_plane + first_pixel,
1523 stride, 8);
1524
1525 }
1526 }
1527 // Filter the previous block row. We can't filter the current row yet
1528 // since it needs pixels from the next row
1529 if (y > 0)
1530 apply_loop_filter(s, plane, (y>>3)-1, (y>>3));
1531 }
1532 }
1533
1534 /* this looks like a good place for slice dispatch... */
1535 /* algorithm:
1536 * if (slice == s->macroblock_height - 1)
1537 * dispatch (both last slice & 2nd-to-last slice);
1538 * else if (slice > 0)
1539 * dispatch (slice - 1);
1540 */
1541
1542 // now that we've filtered the last rows, they're safe to display
1543 if (slice)
1544 vp3_draw_horiz_band(s, 16*slice);
1545 }
1546
1547 /*
1548 * This is the ffmpeg/libavcodec API init function.
1549 */
1550 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1551 {
1552 Vp3DecodeContext *s = avctx->priv_data;
1553 int i, inter, plane;
1554 int c_width;
1555 int c_height;
1556 int y_superblock_count;
1557 int c_superblock_count;
1558
1559 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1560 s->version = 0;
1561 else
1562 s->version = 1;
1563
1564 s->avctx = avctx;
1565 s->width = FFALIGN(avctx->width, 16);
1566 s->height = FFALIGN(avctx->height, 16);
1567 avctx->pix_fmt = PIX_FMT_YUV420P;
1568 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1569 if(avctx->idct_algo==FF_IDCT_AUTO)
1570 avctx->idct_algo=FF_IDCT_VP3;
1571 dsputil_init(&s->dsp, avctx);
1572
1573 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1574
1575 /* initialize to an impossible value which will force a recalculation
1576 * in the first frame decode */
1577 for (i = 0; i < 3; i++)
1578 s->qps[i] = -1;
1579
1580 s->y_superblock_width = (s->width + 31) / 32;
1581 s->y_superblock_height = (s->height + 31) / 32;
1582 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1583
1584 /* work out the dimensions for the C planes */
1585 c_width = s->width / 2;
1586 c_height = s->height / 2;
1587 s->c_superblock_width = (c_width + 31) / 32;
1588 s->c_superblock_height = (c_height + 31) / 32;
1589 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1590
1591 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1592 s->u_superblock_start = y_superblock_count;
1593 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1594 s->superblock_coding = av_malloc(s->superblock_count);
1595
1596 s->macroblock_width = (s->width + 15) / 16;
1597 s->macroblock_height = (s->height + 15) / 16;
1598 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1599
1600 s->fragment_width = s->width / FRAGMENT_PIXELS;
1601 s->fragment_height = s->height / FRAGMENT_PIXELS;
1602
1603 /* fragment count covers all 8x8 blocks for all 3 planes */
1604 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1605 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1606 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1607
1608 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1609 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1610 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1611 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1612 s->fast_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1613 if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts ||
1614 !s->coeffs || !s->coded_fragment_list || !s->fast_fragment_list) {
1615 vp3_decode_end(avctx);
1616 return -1;
1617 }
1618
1619 if (!s->theora_tables)
1620 {
1621 for (i = 0; i < 64; i++) {
1622 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1623 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1624 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1625 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1626 s->base_matrix[2][i] = vp31_inter_dequant[i];
1627 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1628 }
1629
1630 for(inter=0; inter<2; inter++){
1631 for(plane=0; plane<3; plane++){
1632 s->qr_count[inter][plane]= 1;
1633 s->qr_size [inter][plane][0]= 63;
1634 s->qr_base [inter][plane][0]=
1635 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1636 }
1637 }
1638
1639 /* init VLC tables */
1640 for (i = 0; i < 16; i++) {
1641
1642 /* DC histograms */
1643 init_vlc(&s->dc_vlc[i], 5, 32,
1644 &dc_bias[i][0][1], 4, 2,
1645 &dc_bias[i][0][0], 4, 2, 0);
1646
1647 /* group 1 AC histograms */
1648 init_vlc(&s->ac_vlc_1[i], 5, 32,
1649 &ac_bias_0[i][0][1], 4, 2,
1650 &ac_bias_0[i][0][0], 4, 2, 0);
1651
1652 /* group 2 AC histograms */
1653 init_vlc(&s->ac_vlc_2[i], 5, 32,
1654 &ac_bias_1[i][0][1], 4, 2,
1655 &ac_bias_1[i][0][0], 4, 2, 0);
1656
1657 /* group 3 AC histograms */
1658 init_vlc(&s->ac_vlc_3[i], 5, 32,
1659 &ac_bias_2[i][0][1], 4, 2,
1660 &ac_bias_2[i][0][0], 4, 2, 0);
1661
1662 /* group 4 AC histograms */
1663 init_vlc(&s->ac_vlc_4[i], 5, 32,
1664 &ac_bias_3[i][0][1], 4, 2,
1665 &ac_bias_3[i][0][0], 4, 2, 0);
1666 }
1667 } else {
1668 for (i = 0; i < 16; i++) {
1669
1670 /* DC histograms */
1671 if (init_vlc(&s->dc_vlc[i], 5, 32,
1672 &s->huffman_table[i][0][1], 4, 2,
1673 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1674 goto vlc_fail;
1675
1676 /* group 1 AC histograms */
1677 if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1678 &s->huffman_table[i+16][0][1], 4, 2,
1679 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1680 goto vlc_fail;
1681
1682 /* group 2 AC histograms */
1683 if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1684 &s->huffman_table[i+16*2][0][1], 4, 2,
1685 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1686 goto vlc_fail;
1687
1688 /* group 3 AC histograms */
1689 if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1690 &s->huffman_table[i+16*3][0][1], 4, 2,
1691 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1692 goto vlc_fail;
1693
1694 /* group 4 AC histograms */
1695 if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1696 &s->huffman_table[i+16*4][0][1], 4, 2,
1697 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1698 goto vlc_fail;
1699 }
1700 }
1701
1702 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1703 &superblock_run_length_vlc_table[0][1], 4, 2,
1704 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1705
1706 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1707 &fragment_run_length_vlc_table[0][1], 4, 2,
1708 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1709
1710 init_vlc(&s->mode_code_vlc, 3, 8,
1711 &mode_code_vlc_table[0][1], 2, 1,
1712 &mode_code_vlc_table[0][0], 2, 1, 0);
1713
1714 init_vlc(&s->motion_vector_vlc, 6, 63,
1715 &motion_vector_vlc_table[0][1], 2, 1,
1716 &motion_vector_vlc_table[0][0], 2, 1, 0);
1717
1718 /* work out the block mapping tables */
1719 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1720 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1721 if (!s->superblock_fragments || !s->macroblock_coding) {
1722 vp3_decode_end(avctx);
1723 return -1;
1724 }
1725 init_block_mapping(s);
1726
1727 for (i = 0; i < 3; i++) {
1728 s->current_frame.data[i] = NULL;
1729 s->last_frame.data[i] = NULL;
1730 s->golden_frame.data[i] = NULL;
1731 }
1732
1733 return 0;
1734
1735 vlc_fail:
1736 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1737 return -1;
1738 }
1739
1740 /*
1741 * This is the ffmpeg/libavcodec API frame decode function.
1742 */
1743 static int vp3_decode_frame(AVCodecContext *avctx,
1744 void *data, int *data_size,
1745 AVPacket *avpkt)
1746 {
1747 const uint8_t *buf = avpkt->data;
1748 int buf_size = avpkt->size;
1749 Vp3DecodeContext *s = avctx->priv_data;
1750 GetBitContext gb;
1751 static int counter = 0;
1752 int i;
1753
1754 init_get_bits(&gb, buf, buf_size * 8);
1755
1756 if (s->theora && get_bits1(&gb))
1757 {
1758 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1759 return -1;
1760 }
1761
1762 s->keyframe = !get_bits1(&gb);
1763 if (!s->theora)
1764 skip_bits(&gb, 1);
1765 for (i = 0; i < 3; i++)
1766 s->last_qps[i] = s->qps[i];
1767
1768 s->nqps=0;
1769 do{
1770 s->qps[s->nqps++]= get_bits(&gb, 6);
1771 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1772 for (i = s->nqps; i < 3; i++)
1773 s->qps[i] = -1;
1774
1775 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1776 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1777 s->keyframe?"key":"", counter, s->qps[0]);
1778 counter++;
1779
1780 if (s->qps[0] != s->last_qps[0])
1781 init_loop_filter(s);
1782
1783 for (i = 0; i < s->nqps; i++)
1784 // reinit all dequantizers if the first one changed, because
1785 // the DC of the first quantizer must be used for all matrices
1786 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1787 init_dequantizer(s, i);
1788
1789 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1790 return buf_size;
1791
1792 if (s->keyframe) {
1793 if (!s->theora)
1794 {
1795 skip_bits(&gb, 4); /* width code */
1796 skip_bits(&gb, 4); /* height code */
1797 if (s->version)
1798 {
1799 s->version = get_bits(&gb, 5);
1800 if (counter == 1)
1801 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1802 }
1803 }
1804 if (s->version || s->theora)
1805 {
1806 if (get_bits1(&gb))
1807 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1808 skip_bits(&gb, 2); /* reserved? */
1809 }
1810
1811 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1812 if (s->golden_frame.data[0])
1813 avctx->release_buffer(avctx, &s->golden_frame);
1814 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1815 } else {
1816 if (s->golden_frame.data[0])
1817 avctx->release_buffer(avctx, &s->golden_frame);
1818 if (s->last_frame.data[0])
1819 avctx->release_buffer(avctx, &s->last_frame);
1820 }
1821
1822 s->golden_frame.reference = 3;
1823 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1824 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1825 return -1;
1826 }
1827
1828 /* golden frame is also the current frame */
1829 s->current_frame= s->golden_frame;
1830 } else {
1831 /* allocate a new current frame */
1832 s->current_frame.reference = 3;
1833 if (!s->golden_frame.data[0]) {
1834 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1835 return -1;
1836 }
1837 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1838 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1839 return -1;
1840 }
1841 }
1842
1843 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1844 s->current_frame.qstride= 0;
1845
1846 init_frame(s, &gb);
1847
1848 if (unpack_superblocks(s, &gb)){
1849 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1850 return -1;
1851 }
1852 if (unpack_modes(s, &gb)){
1853 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1854 return -1;
1855 }
1856 if (unpack_vectors(s, &gb)){
1857 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1858 return -1;
1859 }
1860 if (unpack_block_qpis(s, &gb)){
1861 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1862 return -1;
1863 }
1864 if (unpack_dct_coeffs(s, &gb)){
1865 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1866 return -1;
1867 }
1868
1869 for (i = 0; i < 3; i++) {
1870 if (s->flipped_image)
1871 s->data_offset[i] = 0;
1872 else
1873 s->data_offset[i] = ((s->height>>!!i)-1) * s->current_frame.linesize[i];
1874 }
1875
1876 s->last_slice_end = 0;
1877 for (i = 0; i < s->macroblock_height; i++)
1878 render_slice(s, i);
1879
1880 // filter the last row
1881 for (i = 0; i < 3; i++) {
1882 int row = (s->height >> (3+!!i)) - 1;
1883 apply_loop_filter(s, i, row, row+1);
1884 }
1885 vp3_draw_horiz_band(s, s->height);
1886
1887 *data_size=sizeof(AVFrame);
1888 *(AVFrame*)data= s->current_frame;
1889
1890 /* release the last frame, if it is allocated and if it is not the
1891 * golden frame */
1892 if ((s->last_frame.data[0]) &&
1893 (s->last_frame.data[0] != s->golden_frame.data[0]))
1894 avctx->release_buffer(avctx, &s->last_frame);
1895
1896 /* shuffle frames (last = current) */
1897 s->last_frame= s->current_frame;
1898 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1899
1900 return buf_size;
1901 }
1902
1903 /*
1904 * This is the ffmpeg/libavcodec API module cleanup function.
1905 */
1906 static av_cold int vp3_decode_end(AVCodecContext *avctx)
1907 {
1908 Vp3DecodeContext *s = avctx->priv_data;
1909 int i;
1910
1911 av_free(s->superblock_coding);
1912 av_free(s->all_fragments);
1913 av_free(s->coeff_counts);
1914 av_free(s->coeffs);
1915 av_free(s->coded_fragment_list);
1916 av_free(s->fast_fragment_list);
1917 av_free(s->superblock_fragments);
1918 av_free(s->macroblock_coding);
1919
1920 for (i = 0; i < 16; i++) {
1921 free_vlc(&s->dc_vlc[i]);
1922 free_vlc(&s->ac_vlc_1[i]);
1923 free_vlc(&s->ac_vlc_2[i]);
1924 free_vlc(&s->ac_vlc_3[i]);
1925 free_vlc(&s->ac_vlc_4[i]);
1926 }
1927
1928 free_vlc(&s->superblock_run_length_vlc);
1929 free_vlc(&s->fragment_run_length_vlc);
1930 free_vlc(&s->mode_code_vlc);
1931 free_vlc(&s->motion_vector_vlc);
1932
1933 /* release all frames */
1934 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
1935 avctx->release_buffer(avctx, &s->golden_frame);
1936 if (s->last_frame.data[0])
1937 avctx->release_buffer(avctx, &s->last_frame);
1938 /* no need to release the current_frame since it will always be pointing
1939 * to the same frame as either the golden or last frame */
1940
1941 return 0;
1942 }
1943
1944 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1945 {
1946 Vp3DecodeContext *s = avctx->priv_data;
1947
1948 if (get_bits1(gb)) {
1949 int token;
1950 if (s->entries >= 32) { /* overflow */
1951 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1952 return -1;
1953 }
1954 token = get_bits(gb, 5);
1955 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1956 s->huffman_table[s->hti][token][0] = s->hbits;
1957 s->huffman_table[s->hti][token][1] = s->huff_code_size;
1958 s->entries++;
1959 }
1960 else {
1961 if (s->huff_code_size >= 32) {/* overflow */
1962 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1963 return -1;
1964 }
1965 s->huff_code_size++;
1966 s->hbits <<= 1;
1967 if (read_huffman_tree(avctx, gb))
1968 return -1;
1969 s->hbits |= 1;
1970 if (read_huffman_tree(avctx, gb))
1971 return -1;
1972 s->hbits >>= 1;
1973 s->huff_code_size--;
1974 }
1975 return 0;
1976 }
1977
1978 #if CONFIG_THEORA_DECODER
1979 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1980 {
1981 Vp3DecodeContext *s = avctx->priv_data;
1982 int visible_width, visible_height, colorspace;
1983
1984 s->theora = get_bits_long(gb, 24);
1985 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
1986
1987 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
1988 /* but previous versions have the image flipped relative to vp3 */
1989 if (s->theora < 0x030200)
1990 {
1991 s->flipped_image = 1;
1992 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
1993 }
1994
1995 visible_width = s->width = get_bits(gb, 16) << 4;
1996 visible_height = s->height = get_bits(gb, 16) << 4;
1997
1998 if(avcodec_check_dimensions(avctx, s->width, s->height)){
1999 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2000 s->width= s->height= 0;
2001 return -1;
2002 }
2003
2004 if (s->theora >= 0x030200) {
2005 visible_width = get_bits_long(gb, 24);
2006 visible_height = get_bits_long(gb, 24);
2007
2008 skip_bits(gb, 8); /* offset x */
2009 skip_bits(gb, 8); /* offset y */
2010 }
2011
2012 skip_bits(gb, 32); /* fps numerator */
2013 skip_bits(gb, 32); /* fps denumerator */
2014 skip_bits(gb, 24); /* aspect numerator */
2015 skip_bits(gb, 24); /* aspect denumerator */
2016
2017 if (s->theora < 0x030200)
2018 skip_bits(gb, 5); /* keyframe frequency force */
2019 colorspace = get_bits(gb, 8);
2020 skip_bits(gb, 24); /* bitrate */
2021
2022 skip_bits(gb, 6); /* quality hint */
2023
2024 if (s->theora >= 0x030200)
2025 {
2026 skip_bits(gb, 5); /* keyframe frequency force */
2027 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2028 skip_bits(gb, 3); /* reserved */
2029 }
2030
2031 // align_get_bits(gb);
2032
2033 if ( visible_width <= s->width && visible_width > s->width-16
2034 && visible_height <= s->height && visible_height > s->height-16)
2035 avcodec_set_dimensions(avctx, visible_width, visible_height);
2036 else
2037 avcodec_set_dimensions(avctx, s->width, s->height);
2038
2039 if (colorspace == 1) {
2040 avctx->color_primaries = AVCOL_PRI_BT470M;
2041 } else if (colorspace == 2) {
2042 avctx->color_primaries = AVCOL_PRI_BT470BG;
2043 }
2044 if (colorspace == 1 || colorspace == 2) {
2045 avctx->colorspace = AVCOL_SPC_BT470BG;
2046 avctx->color_trc = AVCOL_TRC_BT709;
2047 }
2048
2049 return 0;
2050 }
2051
2052 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2053 {
2054 Vp3DecodeContext *s = avctx->priv_data;
2055 int i, n, matrices, inter, plane;
2056
2057 if (s->theora >= 0x030200) {
2058 n = get_bits(gb, 3);
2059 /* loop filter limit values table */
2060 for (i = 0; i < 64; i++) {
2061 s->filter_limit_values[i] = get_bits(gb, n);
2062 if (s->filter_limit_values[i] > 127) {
2063 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2064 s->filter_limit_values[i] = 127;
2065 }
2066 }
2067 }
2068
2069 if (s->theora >= 0x030200)
2070 n = get_bits(gb, 4) + 1;
2071 else
2072 n = 16;
2073 /* quality threshold table */
2074 for (i = 0; i < 64; i++)
2075 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2076
2077 if (s->theora >= 0x030200)
2078 n = get_bits(gb, 4) + 1;
2079 else
2080 n = 16;
2081 /* dc scale factor table */
2082 for (i = 0; i < 64; i++)
2083 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2084
2085 if (s->theora >= 0x030200)
2086 matrices = get_bits(gb, 9) + 1;
2087 else
2088 matrices = 3;
2089
2090 if(matrices > 384){
2091 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2092 return -1;
2093 }
2094
2095 for(n=0; n<matrices; n++){
2096 for (i = 0; i < 64; i++)
2097 s->base_matrix[n][i]= get_bits(gb, 8);
2098 }
2099
2100 for (inter = 0; inter <= 1; inter++) {
2101 for (plane = 0; plane <= 2; plane++) {
2102 int newqr= 1;
2103 if (inter || plane > 0)
2104 newqr = get_bits1(gb);
2105 if (!newqr) {
2106 int qtj, plj;
2107 if(inter && get_bits1(gb)){
2108 qtj = 0;
2109 plj = plane;
2110 }else{
2111 qtj= (3*inter + plane - 1) / 3;
2112 plj= (plane + 2) % 3;
2113 }
2114 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2115 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2116 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2117 } else {
2118 int qri= 0;
2119 int qi = 0;
2120
2121 for(;;){
2122 i= get_bits(gb, av_log2(matrices-1)+1);
2123 if(i>= matrices){
2124 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2125 return -1;
2126 }
2127 s->qr_base[inter][plane][qri]= i;
2128 if(qi >= 63)
2129 break;
2130 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2131 s->qr_size[inter][plane][qri++]= i;
2132 qi += i;
2133 }
2134
2135 if (qi > 63) {
2136 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2137 return -1;
2138 }
2139 s->qr_count[inter][plane]= qri;
2140 }
2141 }
2142 }
2143
2144 /* Huffman tables */
2145 for (s->hti = 0; s->hti < 80; s->hti++) {
2146 s->entries = 0;
2147 s->huff_code_size = 1;
2148 if (!get_bits1(gb)) {
2149 s->hbits = 0;
2150 if(read_huffman_tree(avctx, gb))
2151 return -1;
2152 s->hbits = 1;
2153 if(read_huffman_tree(avctx, gb))
2154 return -1;
2155 }
2156 }
2157
2158 s->theora_tables = 1;
2159
2160 return 0;
2161 }
2162
2163 static av_cold int theora_decode_init(AVCodecContext *avctx)
2164 {
2165 Vp3DecodeContext *s = avctx->priv_data;
2166 GetBitContext gb;
2167 int ptype;
2168 uint8_t *header_start[3];
2169 int header_len[3];
2170 int i;
2171
2172 s->theora = 1;
2173
2174 if (!avctx->extradata_size)
2175 {
2176 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2177 return -1;
2178 }
2179
2180 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2181 42, header_start, header_len) < 0) {
2182 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2183 return -1;
2184 }
2185
2186 for(i=0;i<3;i++) {
2187 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2188
2189 ptype = get_bits(&gb, 8);
2190
2191 if (!(ptype & 0x80))
2192 {
2193 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2194 // return -1;
2195 }
2196
2197 // FIXME: Check for this as well.
2198 skip_bits_long(&gb, 6*8); /* "theora" */
2199
2200 switch(ptype)
2201 {
2202 case 0x80:
2203 theora_decode_header(avctx, &gb);
2204 break;
2205 case 0x81:
2206 // FIXME: is this needed? it breaks sometimes
2207 // theora_decode_comments(avctx, gb);
2208 break;
2209 case 0x82:
2210 if (theora_decode_tables(avctx, &gb))
2211 return -1;
2212 break;
2213 default:
2214 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2215 break;
2216 }
2217 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2218 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2219 if (s->theora < 0x030200)
2220 break;
2221 }
2222
2223 return vp3_decode_init(avctx);
2224 }
2225
2226 AVCodec theora_decoder = {
2227 "theora",
2228 CODEC_TYPE_VIDEO,
2229 CODEC_ID_THEORA,
2230 sizeof(Vp3DecodeContext),
2231 theora_decode_init,
2232 NULL,
2233 vp3_decode_end,
2234 vp3_decode_frame,
2235 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2236 NULL,
2237 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2238 };
2239 #endif
2240
2241 AVCodec vp3_decoder = {
2242 "vp3",
2243 CODEC_TYPE_VIDEO,
2244 CODEC_ID_VP3,
2245 sizeof(Vp3DecodeContext),
2246 vp3_decode_init,
2247 NULL,
2248 vp3_decode_end,
2249 vp3_decode_frame,
2250 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2251 NULL,
2252 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2253 };