vp3: Make fragment_width _height by plane
[libav.git] / libavcodec / vp3.c
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "avcodec.h"
37 #include "dsputil.h"
38 #include "get_bits.h"
39
40 #include "vp3data.h"
41 #include "xiph.h"
42
43 #define FRAGMENT_PIXELS 8
44
45 static av_cold int vp3_decode_end(AVCodecContext *avctx);
46
47 //FIXME split things out into their own arrays
48 typedef struct Vp3Fragment {
49 int16_t dc;
50 uint8_t coding_method;
51 int8_t motion_x;
52 int8_t motion_y;
53 uint8_t qpi;
54 } Vp3Fragment;
55
56 #define SB_NOT_CODED 0
57 #define SB_PARTIALLY_CODED 1
58 #define SB_FULLY_CODED 2
59
60 // This is the maximum length of a single long bit run that can be encoded
61 // for superblock coding or block qps. Theora special-cases this to read a
62 // bit instead of flipping the current bit to allow for runs longer than 4129.
63 #define MAXIMUM_LONG_BIT_RUN 4129
64
65 #define MODE_INTER_NO_MV 0
66 #define MODE_INTRA 1
67 #define MODE_INTER_PLUS_MV 2
68 #define MODE_INTER_LAST_MV 3
69 #define MODE_INTER_PRIOR_LAST 4
70 #define MODE_USING_GOLDEN 5
71 #define MODE_GOLDEN_MV 6
72 #define MODE_INTER_FOURMV 7
73 #define CODING_MODE_COUNT 8
74
75 /* special internal mode */
76 #define MODE_COPY 8
77
78 /* There are 6 preset schemes, plus a free-form scheme */
79 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
80 {
81 /* scheme 1: Last motion vector dominates */
82 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
83 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
84 MODE_INTRA, MODE_USING_GOLDEN,
85 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
86
87 /* scheme 2 */
88 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
89 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
90 MODE_INTRA, MODE_USING_GOLDEN,
91 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
92
93 /* scheme 3 */
94 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
95 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
96 MODE_INTRA, MODE_USING_GOLDEN,
97 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
98
99 /* scheme 4 */
100 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
101 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
102 MODE_INTRA, MODE_USING_GOLDEN,
103 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
104
105 /* scheme 5: No motion vector dominates */
106 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
107 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
108 MODE_INTRA, MODE_USING_GOLDEN,
109 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
110
111 /* scheme 6 */
112 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
113 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
114 MODE_INTER_PLUS_MV, MODE_INTRA,
115 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
116
117 };
118
119 static const uint8_t hilbert_offset[16][2] = {
120 {0,0}, {1,0}, {1,1}, {0,1},
121 {0,2}, {0,3}, {1,3}, {1,2},
122 {2,2}, {2,3}, {3,3}, {3,2},
123 {3,1}, {2,1}, {2,0}, {3,0}
124 };
125
126 #define MIN_DEQUANT_VAL 2
127
128 typedef struct Vp3DecodeContext {
129 AVCodecContext *avctx;
130 int theora, theora_tables;
131 int version;
132 int width, height;
133 AVFrame golden_frame;
134 AVFrame last_frame;
135 AVFrame current_frame;
136 int keyframe;
137 DSPContext dsp;
138 int flipped_image;
139 int last_slice_end;
140
141 int qps[3];
142 int nqps;
143 int last_qps[3];
144
145 int superblock_count;
146 int y_superblock_width;
147 int y_superblock_height;
148 int y_superblock_count;
149 int c_superblock_width;
150 int c_superblock_height;
151 int c_superblock_count;
152 int u_superblock_start;
153 int v_superblock_start;
154 unsigned char *superblock_coding;
155
156 int macroblock_count;
157 int macroblock_width;
158 int macroblock_height;
159
160 int fragment_count;
161 int fragment_width[2];
162 int fragment_height[2];
163
164 Vp3Fragment *all_fragments;
165 int fragment_start[3];
166 int data_offset[3];
167
168 ScanTable scantable;
169
170 /* tables */
171 uint16_t coded_dc_scale_factor[64];
172 uint32_t coded_ac_scale_factor[64];
173 uint8_t base_matrix[384][64];
174 uint8_t qr_count[2][3];
175 uint8_t qr_size [2][3][64];
176 uint16_t qr_base[2][3][64];
177
178 /**
179 * This is a list of all tokens in bitstream order. Reordering takes place
180 * by pulling from each level during IDCT. As a consequence, IDCT must be
181 * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
182 * otherwise. The 32 different tokens with up to 12 bits of extradata are
183 * collapsed into 3 types, packed as follows:
184 * (from the low to high bits)
185 *
186 * 2 bits: type (0,1,2)
187 * 0: EOB run, 14 bits for run length (12 needed)
188 * 1: zero run, 7 bits for run length
189 * 7 bits for the next coefficient (3 needed)
190 * 2: coefficient, 14 bits (11 needed)
191 *
192 * Coefficients are signed, so are packed in the highest bits for automatic
193 * sign extension.
194 */
195 int16_t *dct_tokens[3][64];
196 int16_t *dct_tokens_base;
197 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
198 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
199 #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
200
201 /**
202 * number of blocks that contain DCT coefficients at the given level or higher
203 */
204 int num_coded_frags[3][64];
205 int total_num_coded_frags;
206
207 /* this is a list of indexes into the all_fragments array indicating
208 * which of the fragments are coded */
209 int *coded_fragment_list[3];
210
211 VLC dc_vlc[16];
212 VLC ac_vlc_1[16];
213 VLC ac_vlc_2[16];
214 VLC ac_vlc_3[16];
215 VLC ac_vlc_4[16];
216
217 VLC superblock_run_length_vlc;
218 VLC fragment_run_length_vlc;
219 VLC mode_code_vlc;
220 VLC motion_vector_vlc;
221
222 /* these arrays need to be on 16-byte boundaries since SSE2 operations
223 * index into them */
224 DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; //<qmat[qpi][is_inter][plane]
225
226 /* This table contains superblock_count * 16 entries. Each set of 16
227 * numbers corresponds to the fragment indexes 0..15 of the superblock.
228 * An entry will be -1 to indicate that no entry corresponds to that
229 * index. */
230 int *superblock_fragments;
231
232 /* This is an array that indicates how a particular macroblock
233 * is coded. */
234 unsigned char *macroblock_coding;
235
236 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
237 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
238
239 /* Huffman decode */
240 int hti;
241 unsigned int hbits;
242 int entries;
243 int huff_code_size;
244 uint16_t huffman_table[80][32][2];
245
246 uint8_t filter_limit_values[64];
247 DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
248 } Vp3DecodeContext;
249
250 /************************************************************************
251 * VP3 specific functions
252 ************************************************************************/
253
254 /*
255 * This function sets up all of the various blocks mappings:
256 * superblocks <-> fragments, macroblocks <-> fragments,
257 * superblocks <-> macroblocks
258 *
259 * Returns 0 is successful; returns 1 if *anything* went wrong.
260 */
261 static int init_block_mapping(Vp3DecodeContext *s)
262 {
263 int sb_x, sb_y, plane;
264 int x, y, i, j = 0;
265
266 for (plane = 0; plane < 3; plane++) {
267 int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
268 int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
269 int frag_width = s->fragment_width[!!plane];
270 int frag_height = s->fragment_height[!!plane];
271
272 for (sb_y = 0; sb_y < sb_height; sb_y++)
273 for (sb_x = 0; sb_x < sb_width; sb_x++)
274 for (i = 0; i < 16; i++) {
275 x = 4*sb_x + hilbert_offset[i][0];
276 y = 4*sb_y + hilbert_offset[i][1];
277
278 if (x < frag_width && y < frag_height)
279 s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
280 else
281 s->superblock_fragments[j++] = -1;
282 }
283 }
284
285 return 0; /* successful path out */
286 }
287
288 /*
289 * This function sets up the dequantization tables used for a particular
290 * frame.
291 */
292 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
293 {
294 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
295 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
296 int i, plane, inter, qri, bmi, bmj, qistart;
297
298 for(inter=0; inter<2; inter++){
299 for(plane=0; plane<3; plane++){
300 int sum=0;
301 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
302 sum+= s->qr_size[inter][plane][qri];
303 if(s->qps[qpi] <= sum)
304 break;
305 }
306 qistart= sum - s->qr_size[inter][plane][qri];
307 bmi= s->qr_base[inter][plane][qri ];
308 bmj= s->qr_base[inter][plane][qri+1];
309 for(i=0; i<64; i++){
310 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
311 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
312 + s->qr_size[inter][plane][qri])
313 / (2*s->qr_size[inter][plane][qri]);
314
315 int qmin= 8<<(inter + !i);
316 int qscale= i ? ac_scale_factor : dc_scale_factor;
317
318 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
319 }
320 // all DC coefficients use the same quant so as not to interfere with DC prediction
321 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
322 }
323 }
324
325 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
326 }
327
328 /*
329 * This function initializes the loop filter boundary limits if the frame's
330 * quality index is different from the previous frame's.
331 *
332 * The filter_limit_values may not be larger than 127.
333 */
334 static void init_loop_filter(Vp3DecodeContext *s)
335 {
336 int *bounding_values= s->bounding_values_array+127;
337 int filter_limit;
338 int x;
339 int value;
340
341 filter_limit = s->filter_limit_values[s->qps[0]];
342
343 /* set up the bounding values */
344 memset(s->bounding_values_array, 0, 256 * sizeof(int));
345 for (x = 0; x < filter_limit; x++) {
346 bounding_values[-x] = -x;
347 bounding_values[x] = x;
348 }
349 for (x = value = filter_limit; x < 128 && value; x++, value--) {
350 bounding_values[ x] = value;
351 bounding_values[-x] = -value;
352 }
353 if (value)
354 bounding_values[128] = value;
355 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
356 }
357
358 /*
359 * This function unpacks all of the superblock/macroblock/fragment coding
360 * information from the bitstream.
361 */
362 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
363 {
364 int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
365 int bit = 0;
366 int current_superblock = 0;
367 int current_run = 0;
368 int num_partial_superblocks = 0;
369
370 int i, j;
371 int current_fragment;
372 int plane;
373
374 if (s->keyframe) {
375 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
376
377 } else {
378
379 /* unpack the list of partially-coded superblocks */
380 bit = get_bits1(gb);
381 while (current_superblock < s->superblock_count) {
382 current_run = get_vlc2(gb,
383 s->superblock_run_length_vlc.table, 6, 2) + 1;
384 if (current_run == 34)
385 current_run += get_bits(gb, 12);
386
387 if (current_superblock + current_run > s->superblock_count) {
388 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
389 return -1;
390 }
391
392 memset(s->superblock_coding + current_superblock, bit, current_run);
393
394 current_superblock += current_run;
395 if (bit)
396 num_partial_superblocks += current_run;
397
398 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
399 bit = get_bits1(gb);
400 else
401 bit ^= 1;
402 }
403
404 /* unpack the list of fully coded superblocks if any of the blocks were
405 * not marked as partially coded in the previous step */
406 if (num_partial_superblocks < s->superblock_count) {
407 int superblocks_decoded = 0;
408
409 current_superblock = 0;
410 bit = get_bits1(gb);
411 while (superblocks_decoded < s->superblock_count - num_partial_superblocks) {
412 current_run = get_vlc2(gb,
413 s->superblock_run_length_vlc.table, 6, 2) + 1;
414 if (current_run == 34)
415 current_run += get_bits(gb, 12);
416
417 for (j = 0; j < current_run; current_superblock++) {
418 if (current_superblock >= s->superblock_count) {
419 av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
420 return -1;
421 }
422
423 /* skip any superblocks already marked as partially coded */
424 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
425 s->superblock_coding[current_superblock] = 2*bit;
426 j++;
427 }
428 }
429 superblocks_decoded += current_run;
430
431 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
432 bit = get_bits1(gb);
433 else
434 bit ^= 1;
435 }
436 }
437
438 /* if there were partial blocks, initialize bitstream for
439 * unpacking fragment codings */
440 if (num_partial_superblocks) {
441
442 current_run = 0;
443 bit = get_bits1(gb);
444 /* toggle the bit because as soon as the first run length is
445 * fetched the bit will be toggled again */
446 bit ^= 1;
447 }
448 }
449
450 /* figure out which fragments are coded; iterate through each
451 * superblock (all planes) */
452 s->total_num_coded_frags = 0;
453 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
454
455 for (plane = 0; plane < 3; plane++) {
456 int sb_start = superblock_starts[plane];
457 int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
458 int num_coded_frags = 0;
459
460 for (i = sb_start; i < sb_end; i++) {
461
462 /* iterate through all 16 fragments in a superblock */
463 for (j = 0; j < 16; j++) {
464
465 /* if the fragment is in bounds, check its coding status */
466 current_fragment = s->superblock_fragments[i * 16 + j];
467 if (current_fragment >= s->fragment_count) {
468 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
469 current_fragment, s->fragment_count);
470 return 1;
471 }
472 if (current_fragment != -1) {
473 int coded = s->superblock_coding[i];
474
475 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
476
477 /* fragment may or may not be coded; this is the case
478 * that cares about the fragment coding runs */
479 if (current_run-- == 0) {
480 bit ^= 1;
481 current_run = get_vlc2(gb,
482 s->fragment_run_length_vlc.table, 5, 2);
483 }
484 coded = bit;
485 }
486
487 if (coded) {
488 /* default mode; actual mode will be decoded in
489 * the next phase */
490 s->all_fragments[current_fragment].coding_method =
491 MODE_INTER_NO_MV;
492 s->coded_fragment_list[plane][num_coded_frags++] =
493 current_fragment;
494 } else {
495 /* not coded; copy this fragment from the prior frame */
496 s->all_fragments[current_fragment].coding_method =
497 MODE_COPY;
498 }
499 }
500 }
501 }
502 s->total_num_coded_frags += num_coded_frags;
503 for (i = 0; i < 64; i++)
504 s->num_coded_frags[plane][i] = num_coded_frags;
505 if (plane < 2)
506 s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
507 }
508 return 0;
509 }
510
511 /*
512 * This function unpacks all the coding mode data for individual macroblocks
513 * from the bitstream.
514 */
515 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
516 {
517 int i, j, k, sb_x, sb_y;
518 int scheme;
519 int current_macroblock;
520 int current_fragment;
521 int coding_mode;
522 int custom_mode_alphabet[CODING_MODE_COUNT];
523 const int *alphabet;
524
525 if (s->keyframe) {
526 for (i = 0; i < s->fragment_count; i++)
527 s->all_fragments[i].coding_method = MODE_INTRA;
528
529 } else {
530
531 /* fetch the mode coding scheme for this frame */
532 scheme = get_bits(gb, 3);
533
534 /* is it a custom coding scheme? */
535 if (scheme == 0) {
536 for (i = 0; i < 8; i++)
537 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
538 for (i = 0; i < 8; i++)
539 custom_mode_alphabet[get_bits(gb, 3)] = i;
540 alphabet = custom_mode_alphabet;
541 } else
542 alphabet = ModeAlphabet[scheme-1];
543
544 /* iterate through all of the macroblocks that contain 1 or more
545 * coded fragments */
546 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
547 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
548
549 for (j = 0; j < 4; j++) {
550 int mb_x = 2*sb_x + (j>>1);
551 int mb_y = 2*sb_y + (((j>>1)+j)&1);
552 current_macroblock = mb_y * s->macroblock_width + mb_x;
553
554 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
555 continue;
556
557 #define BLOCK_X (2*mb_x + (k&1))
558 #define BLOCK_Y (2*mb_y + (k>>1))
559 /* coding modes are only stored if the macroblock has at least one
560 * luma block coded, otherwise it must be INTER_NO_MV */
561 for (k = 0; k < 4; k++) {
562 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
563 if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
564 break;
565 }
566 if (k == 4) {
567 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
568 continue;
569 }
570
571 /* mode 7 means get 3 bits for each coding mode */
572 if (scheme == 7)
573 coding_mode = get_bits(gb, 3);
574 else
575 coding_mode = alphabet
576 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
577
578 s->macroblock_coding[current_macroblock] = coding_mode;
579 for (k = 0; k < 4; k++) {
580 current_fragment =
581 BLOCK_Y*s->fragment_width[0] + BLOCK_X;
582 if (s->all_fragments[current_fragment].coding_method !=
583 MODE_COPY)
584 s->all_fragments[current_fragment].coding_method =
585 coding_mode;
586 }
587 for (k = 0; k < 2; k++) {
588 current_fragment = s->fragment_start[k+1] +
589 mb_y*s->fragment_width[1] + mb_x;
590 if (s->all_fragments[current_fragment].coding_method !=
591 MODE_COPY)
592 s->all_fragments[current_fragment].coding_method =
593 coding_mode;
594 }
595 }
596 }
597 }
598 }
599
600 return 0;
601 }
602
603 /*
604 * This function unpacks all the motion vectors for the individual
605 * macroblocks from the bitstream.
606 */
607 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
608 {
609 int j, k, sb_x, sb_y;
610 int coding_mode;
611 int motion_x[4];
612 int motion_y[4];
613 int last_motion_x = 0;
614 int last_motion_y = 0;
615 int prior_last_motion_x = 0;
616 int prior_last_motion_y = 0;
617 int current_macroblock;
618 int current_fragment;
619
620 if (s->keyframe)
621 return 0;
622
623 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
624 coding_mode = get_bits1(gb);
625
626 /* iterate through all of the macroblocks that contain 1 or more
627 * coded fragments */
628 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
629 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
630
631 for (j = 0; j < 4; j++) {
632 int mb_x = 2*sb_x + (j>>1);
633 int mb_y = 2*sb_y + (((j>>1)+j)&1);
634 current_macroblock = mb_y * s->macroblock_width + mb_x;
635
636 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
637 (s->macroblock_coding[current_macroblock] == MODE_COPY))
638 continue;
639
640 switch (s->macroblock_coding[current_macroblock]) {
641
642 case MODE_INTER_PLUS_MV:
643 case MODE_GOLDEN_MV:
644 /* all 6 fragments use the same motion vector */
645 if (coding_mode == 0) {
646 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
647 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
648 } else {
649 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
650 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
651 }
652
653 /* vector maintenance, only on MODE_INTER_PLUS_MV */
654 if (s->macroblock_coding[current_macroblock] ==
655 MODE_INTER_PLUS_MV) {
656 prior_last_motion_x = last_motion_x;
657 prior_last_motion_y = last_motion_y;
658 last_motion_x = motion_x[0];
659 last_motion_y = motion_y[0];
660 }
661 break;
662
663 case MODE_INTER_FOURMV:
664 /* vector maintenance */
665 prior_last_motion_x = last_motion_x;
666 prior_last_motion_y = last_motion_y;
667
668 /* fetch 4 vectors from the bitstream, one for each
669 * Y fragment, then average for the C fragment vectors */
670 for (k = 0; k < 4; k++) {
671 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
672 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
673 if (coding_mode == 0) {
674 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
675 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
676 } else {
677 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
678 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
679 }
680 last_motion_x = motion_x[k];
681 last_motion_y = motion_y[k];
682 } else {
683 motion_x[k] = 0;
684 motion_y[k] = 0;
685 }
686 }
687 break;
688
689 case MODE_INTER_LAST_MV:
690 /* all 6 fragments use the last motion vector */
691 motion_x[0] = last_motion_x;
692 motion_y[0] = last_motion_y;
693
694 /* no vector maintenance (last vector remains the
695 * last vector) */
696 break;
697
698 case MODE_INTER_PRIOR_LAST:
699 /* all 6 fragments use the motion vector prior to the
700 * last motion vector */
701 motion_x[0] = prior_last_motion_x;
702 motion_y[0] = prior_last_motion_y;
703
704 /* vector maintenance */
705 prior_last_motion_x = last_motion_x;
706 prior_last_motion_y = last_motion_y;
707 last_motion_x = motion_x[0];
708 last_motion_y = motion_y[0];
709 break;
710
711 default:
712 /* covers intra, inter without MV, golden without MV */
713 motion_x[0] = 0;
714 motion_y[0] = 0;
715
716 /* no vector maintenance */
717 break;
718 }
719
720 /* assign the motion vectors to the correct fragments */
721 for (k = 0; k < 4; k++) {
722 current_fragment =
723 BLOCK_Y*s->fragment_width[0] + BLOCK_X;
724 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
725 s->all_fragments[current_fragment].motion_x = motion_x[k];
726 s->all_fragments[current_fragment].motion_y = motion_y[k];
727 } else {
728 s->all_fragments[current_fragment].motion_x = motion_x[0];
729 s->all_fragments[current_fragment].motion_y = motion_y[0];
730 }
731 }
732 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
733 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
734 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
735 }
736 for (k = 0; k < 2; k++) {
737 current_fragment = s->fragment_start[k+1] +
738 mb_y*s->fragment_width[1] + mb_x;
739 s->all_fragments[current_fragment].motion_x = motion_x[0];
740 s->all_fragments[current_fragment].motion_y = motion_y[0];
741 }
742 }
743 }
744 }
745
746 return 0;
747 }
748
749 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
750 {
751 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
752 int num_blocks = s->total_num_coded_frags;
753
754 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
755 i = blocks_decoded = num_blocks_at_qpi = 0;
756
757 bit = get_bits1(gb);
758
759 do {
760 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
761 if (run_length == 34)
762 run_length += get_bits(gb, 12);
763 blocks_decoded += run_length;
764
765 if (!bit)
766 num_blocks_at_qpi += run_length;
767
768 for (j = 0; j < run_length; i++) {
769 if (i >= s->total_num_coded_frags)
770 return -1;
771
772 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
773 s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
774 j++;
775 }
776 }
777
778 if (run_length == MAXIMUM_LONG_BIT_RUN)
779 bit = get_bits1(gb);
780 else
781 bit ^= 1;
782 } while (blocks_decoded < num_blocks);
783
784 num_blocks -= num_blocks_at_qpi;
785 }
786
787 return 0;
788 }
789
790 /*
791 * This function is called by unpack_dct_coeffs() to extract the VLCs from
792 * the bitstream. The VLCs encode tokens which are used to unpack DCT
793 * data. This function unpacks all the VLCs for either the Y plane or both
794 * C planes, and is called for DC coefficients or different AC coefficient
795 * levels (since different coefficient types require different VLC tables.
796 *
797 * This function returns a residual eob run. E.g, if a particular token gave
798 * instructions to EOB the next 5 fragments and there were only 2 fragments
799 * left in the current fragment range, 3 would be returned so that it could
800 * be passed into the next call to this same function.
801 */
802 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
803 VLC *table, int coeff_index,
804 int plane,
805 int eob_run)
806 {
807 int i, j = 0;
808 int token;
809 int zero_run = 0;
810 DCTELEM coeff = 0;
811 int bits_to_get;
812 int blocks_ended;
813 int coeff_i = 0;
814 int num_coeffs = s->num_coded_frags[plane][coeff_index];
815 int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
816
817 /* local references to structure members to avoid repeated deferences */
818 int *coded_fragment_list = s->coded_fragment_list[plane];
819 Vp3Fragment *all_fragments = s->all_fragments;
820 VLC_TYPE (*vlc_table)[2] = table->table;
821
822 if (num_coeffs < 0)
823 av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
824
825 if (eob_run > num_coeffs) {
826 coeff_i = blocks_ended = num_coeffs;
827 eob_run -= num_coeffs;
828 } else {
829 coeff_i = blocks_ended = eob_run;
830 eob_run = 0;
831 }
832
833 // insert fake EOB token to cover the split between planes or zzi
834 if (blocks_ended)
835 dct_tokens[j++] = blocks_ended << 2;
836
837 while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
838 /* decode a VLC into a token */
839 token = get_vlc2(gb, vlc_table, 5, 3);
840 /* use the token to get a zero run, a coefficient, and an eob run */
841 if (token <= 6) {
842 eob_run = eob_run_base[token];
843 if (eob_run_get_bits[token])
844 eob_run += get_bits(gb, eob_run_get_bits[token]);
845
846 // record only the number of blocks ended in this plane,
847 // any spill will be recorded in the next plane.
848 if (eob_run > num_coeffs - coeff_i) {
849 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
850 blocks_ended += num_coeffs - coeff_i;
851 eob_run -= num_coeffs - coeff_i;
852 coeff_i = num_coeffs;
853 } else {
854 dct_tokens[j++] = TOKEN_EOB(eob_run);
855 blocks_ended += eob_run;
856 coeff_i += eob_run;
857 eob_run = 0;
858 }
859 } else {
860 bits_to_get = coeff_get_bits[token];
861 if (bits_to_get)
862 bits_to_get = get_bits(gb, bits_to_get);
863 coeff = coeff_tables[token][bits_to_get];
864
865 zero_run = zero_run_base[token];
866 if (zero_run_get_bits[token])
867 zero_run += get_bits(gb, zero_run_get_bits[token]);
868
869 if (zero_run) {
870 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
871 } else {
872 // Save DC into the fragment structure. DC prediction is
873 // done in raster order, so the actual DC can't be in with
874 // other tokens. We still need the token in dct_tokens[]
875 // however, or else the structure collapses on itself.
876 if (!coeff_index)
877 all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
878
879 dct_tokens[j++] = TOKEN_COEFF(coeff);
880 }
881
882 if (coeff_index + zero_run > 64) {
883 av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
884 " %d coeffs left\n", zero_run, 64-coeff_index);
885 zero_run = 64 - coeff_index;
886 }
887
888 // zero runs code multiple coefficients,
889 // so don't try to decode coeffs for those higher levels
890 for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
891 s->num_coded_frags[plane][i]--;
892 coeff_i++;
893 }
894 }
895
896 if (blocks_ended > s->num_coded_frags[plane][coeff_index])
897 av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
898
899 // decrement the number of blocks that have higher coeffecients for each
900 // EOB run at this level
901 if (blocks_ended)
902 for (i = coeff_index+1; i < 64; i++)
903 s->num_coded_frags[plane][i] -= blocks_ended;
904
905 // setup the next buffer
906 if (plane < 2)
907 s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
908 else if (coeff_index < 63)
909 s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
910
911 return eob_run;
912 }
913
914 static void reverse_dc_prediction(Vp3DecodeContext *s,
915 int first_fragment,
916 int fragment_width,
917 int fragment_height);
918 /*
919 * This function unpacks all of the DCT coefficient data from the
920 * bitstream.
921 */
922 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
923 {
924 int i;
925 int dc_y_table;
926 int dc_c_table;
927 int ac_y_table;
928 int ac_c_table;
929 int residual_eob_run = 0;
930 VLC *y_tables[64];
931 VLC *c_tables[64];
932
933 s->dct_tokens[0][0] = s->dct_tokens_base;
934
935 /* fetch the DC table indexes */
936 dc_y_table = get_bits(gb, 4);
937 dc_c_table = get_bits(gb, 4);
938
939 /* unpack the Y plane DC coefficients */
940 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
941 0, residual_eob_run);
942
943 /* reverse prediction of the Y-plane DC coefficients */
944 reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
945
946 /* unpack the C plane DC coefficients */
947 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
948 1, residual_eob_run);
949 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
950 2, residual_eob_run);
951
952 /* reverse prediction of the C-plane DC coefficients */
953 if (!(s->avctx->flags & CODEC_FLAG_GRAY))
954 {
955 reverse_dc_prediction(s, s->fragment_start[1],
956 s->fragment_width[1], s->fragment_height[1]);
957 reverse_dc_prediction(s, s->fragment_start[2],
958 s->fragment_width[1], s->fragment_height[1]);
959 }
960
961 /* fetch the AC table indexes */
962 ac_y_table = get_bits(gb, 4);
963 ac_c_table = get_bits(gb, 4);
964
965 /* build tables of AC VLC tables */
966 for (i = 1; i <= 5; i++) {
967 y_tables[i] = &s->ac_vlc_1[ac_y_table];
968 c_tables[i] = &s->ac_vlc_1[ac_c_table];
969 }
970 for (i = 6; i <= 14; i++) {
971 y_tables[i] = &s->ac_vlc_2[ac_y_table];
972 c_tables[i] = &s->ac_vlc_2[ac_c_table];
973 }
974 for (i = 15; i <= 27; i++) {
975 y_tables[i] = &s->ac_vlc_3[ac_y_table];
976 c_tables[i] = &s->ac_vlc_3[ac_c_table];
977 }
978 for (i = 28; i <= 63; i++) {
979 y_tables[i] = &s->ac_vlc_4[ac_y_table];
980 c_tables[i] = &s->ac_vlc_4[ac_c_table];
981 }
982
983 /* decode all AC coefficents */
984 for (i = 1; i <= 63; i++) {
985 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
986 0, residual_eob_run);
987
988 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
989 1, residual_eob_run);
990 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
991 2, residual_eob_run);
992 }
993
994 return 0;
995 }
996
997 /*
998 * This function reverses the DC prediction for each coded fragment in
999 * the frame. Much of this function is adapted directly from the original
1000 * VP3 source code.
1001 */
1002 #define COMPATIBLE_FRAME(x) \
1003 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1004 #define DC_COEFF(u) s->all_fragments[u].dc
1005
1006 static void reverse_dc_prediction(Vp3DecodeContext *s,
1007 int first_fragment,
1008 int fragment_width,
1009 int fragment_height)
1010 {
1011
1012 #define PUL 8
1013 #define PU 4
1014 #define PUR 2
1015 #define PL 1
1016
1017 int x, y;
1018 int i = first_fragment;
1019
1020 int predicted_dc;
1021
1022 /* DC values for the left, up-left, up, and up-right fragments */
1023 int vl, vul, vu, vur;
1024
1025 /* indexes for the left, up-left, up, and up-right fragments */
1026 int l, ul, u, ur;
1027
1028 /*
1029 * The 6 fields mean:
1030 * 0: up-left multiplier
1031 * 1: up multiplier
1032 * 2: up-right multiplier
1033 * 3: left multiplier
1034 */
1035 static const int predictor_transform[16][4] = {
1036 { 0, 0, 0, 0},
1037 { 0, 0, 0,128}, // PL
1038 { 0, 0,128, 0}, // PUR
1039 { 0, 0, 53, 75}, // PUR|PL
1040 { 0,128, 0, 0}, // PU
1041 { 0, 64, 0, 64}, // PU|PL
1042 { 0,128, 0, 0}, // PU|PUR
1043 { 0, 0, 53, 75}, // PU|PUR|PL
1044 {128, 0, 0, 0}, // PUL
1045 { 0, 0, 0,128}, // PUL|PL
1046 { 64, 0, 64, 0}, // PUL|PUR
1047 { 0, 0, 53, 75}, // PUL|PUR|PL
1048 { 0,128, 0, 0}, // PUL|PU
1049 {-104,116, 0,116}, // PUL|PU|PL
1050 { 24, 80, 24, 0}, // PUL|PU|PUR
1051 {-104,116, 0,116} // PUL|PU|PUR|PL
1052 };
1053
1054 /* This table shows which types of blocks can use other blocks for
1055 * prediction. For example, INTRA is the only mode in this table to
1056 * have a frame number of 0. That means INTRA blocks can only predict
1057 * from other INTRA blocks. There are 2 golden frame coding types;
1058 * blocks encoding in these modes can only predict from other blocks
1059 * that were encoded with these 1 of these 2 modes. */
1060 static const unsigned char compatible_frame[9] = {
1061 1, /* MODE_INTER_NO_MV */
1062 0, /* MODE_INTRA */
1063 1, /* MODE_INTER_PLUS_MV */
1064 1, /* MODE_INTER_LAST_MV */
1065 1, /* MODE_INTER_PRIOR_MV */
1066 2, /* MODE_USING_GOLDEN */
1067 2, /* MODE_GOLDEN_MV */
1068 1, /* MODE_INTER_FOUR_MV */
1069 3 /* MODE_COPY */
1070 };
1071 int current_frame_type;
1072
1073 /* there is a last DC predictor for each of the 3 frame types */
1074 short last_dc[3];
1075
1076 int transform = 0;
1077
1078 vul = vu = vur = vl = 0;
1079 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1080
1081 /* for each fragment row... */
1082 for (y = 0; y < fragment_height; y++) {
1083
1084 /* for each fragment in a row... */
1085 for (x = 0; x < fragment_width; x++, i++) {
1086
1087 /* reverse prediction if this block was coded */
1088 if (s->all_fragments[i].coding_method != MODE_COPY) {
1089
1090 current_frame_type =
1091 compatible_frame[s->all_fragments[i].coding_method];
1092
1093 transform= 0;
1094 if(x){
1095 l= i-1;
1096 vl = DC_COEFF(l);
1097 if(COMPATIBLE_FRAME(l))
1098 transform |= PL;
1099 }
1100 if(y){
1101 u= i-fragment_width;
1102 vu = DC_COEFF(u);
1103 if(COMPATIBLE_FRAME(u))
1104 transform |= PU;
1105 if(x){
1106 ul= i-fragment_width-1;
1107 vul = DC_COEFF(ul);
1108 if(COMPATIBLE_FRAME(ul))
1109 transform |= PUL;
1110 }
1111 if(x + 1 < fragment_width){
1112 ur= i-fragment_width+1;
1113 vur = DC_COEFF(ur);
1114 if(COMPATIBLE_FRAME(ur))
1115 transform |= PUR;
1116 }
1117 }
1118
1119 if (transform == 0) {
1120
1121 /* if there were no fragments to predict from, use last
1122 * DC saved */
1123 predicted_dc = last_dc[current_frame_type];
1124 } else {
1125
1126 /* apply the appropriate predictor transform */
1127 predicted_dc =
1128 (predictor_transform[transform][0] * vul) +
1129 (predictor_transform[transform][1] * vu) +
1130 (predictor_transform[transform][2] * vur) +
1131 (predictor_transform[transform][3] * vl);
1132
1133 predicted_dc /= 128;
1134
1135 /* check for outranging on the [ul u l] and
1136 * [ul u ur l] predictors */
1137 if ((transform == 15) || (transform == 13)) {
1138 if (FFABS(predicted_dc - vu) > 128)
1139 predicted_dc = vu;
1140 else if (FFABS(predicted_dc - vl) > 128)
1141 predicted_dc = vl;
1142 else if (FFABS(predicted_dc - vul) > 128)
1143 predicted_dc = vul;
1144 }
1145 }
1146
1147 /* at long last, apply the predictor */
1148 DC_COEFF(i) += predicted_dc;
1149 /* save the DC */
1150 last_dc[current_frame_type] = DC_COEFF(i);
1151 }
1152 }
1153 }
1154 }
1155
1156 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1157 {
1158 int x, y;
1159 int *bounding_values= s->bounding_values_array+127;
1160
1161 int width = s->fragment_width[!!plane];
1162 int height = s->fragment_height[!!plane];
1163 int fragment = s->fragment_start [plane] + ystart * width;
1164 int stride = s->current_frame.linesize[plane];
1165 uint8_t *plane_data = s->current_frame.data [plane];
1166 if (!s->flipped_image) stride = -stride;
1167 plane_data += s->data_offset[plane] + 8*ystart*stride;
1168
1169 for (y = ystart; y < yend; y++) {
1170
1171 for (x = 0; x < width; x++) {
1172 /* This code basically just deblocks on the edges of coded blocks.
1173 * However, it has to be much more complicated because of the
1174 * braindamaged deblock ordering used in VP3/Theora. Order matters
1175 * because some pixels get filtered twice. */
1176 if( s->all_fragments[fragment].coding_method != MODE_COPY )
1177 {
1178 /* do not perform left edge filter for left columns frags */
1179 if (x > 0) {
1180 s->dsp.vp3_h_loop_filter(
1181 plane_data + 8*x,
1182 stride, bounding_values);
1183 }
1184
1185 /* do not perform top edge filter for top row fragments */
1186 if (y > 0) {
1187 s->dsp.vp3_v_loop_filter(
1188 plane_data + 8*x,
1189 stride, bounding_values);
1190 }
1191
1192 /* do not perform right edge filter for right column
1193 * fragments or if right fragment neighbor is also coded
1194 * in this frame (it will be filtered in next iteration) */
1195 if ((x < width - 1) &&
1196 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1197 s->dsp.vp3_h_loop_filter(
1198 plane_data + 8*x + 8,
1199 stride, bounding_values);
1200 }
1201
1202 /* do not perform bottom edge filter for bottom row
1203 * fragments or if bottom fragment neighbor is also coded
1204 * in this frame (it will be filtered in the next row) */
1205 if ((y < height - 1) &&
1206 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1207 s->dsp.vp3_v_loop_filter(
1208 plane_data + 8*x + 8*stride,
1209 stride, bounding_values);
1210 }
1211 }
1212
1213 fragment++;
1214 }
1215 plane_data += 8*stride;
1216 }
1217 }
1218
1219 /**
1220 * Pulls DCT tokens from the 64 levels to decode and dequant the coefficients
1221 * for the next block in coding order
1222 */
1223 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1224 int plane, int inter, DCTELEM block[64])
1225 {
1226 int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1227 uint8_t *perm = s->scantable.permutated;
1228 int i = 0;
1229
1230 do {
1231 int token = *s->dct_tokens[plane][i];
1232 switch (token & 3) {
1233 case 0: // EOB
1234 if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1235 s->dct_tokens[plane][i]++;
1236 else
1237 *s->dct_tokens[plane][i] = token & ~3;
1238 goto end;
1239 case 1: // zero run
1240 s->dct_tokens[plane][i]++;
1241 i += (token >> 2) & 0x7f;
1242 block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1243 i++;
1244 break;
1245 case 2: // coeff
1246 block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1247 s->dct_tokens[plane][i++]++;
1248 break;
1249 default:
1250 av_log(s->avctx, AV_LOG_ERROR, "internal: invalid token type\n");
1251 return i;
1252 }
1253 } while (i < 64);
1254 end:
1255 // the actual DC+prediction is in the fragment structure
1256 block[0] = frag->dc * s->qmat[0][inter][plane][0];
1257 return i;
1258 }
1259
1260 /**
1261 * called when all pixels up to row y are complete
1262 */
1263 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1264 {
1265 int h, cy;
1266 int offset[4];
1267
1268 if(s->avctx->draw_horiz_band==NULL)
1269 return;
1270
1271 h= y - s->last_slice_end;
1272 y -= h;
1273
1274 if (!s->flipped_image) {
1275 if (y == 0)
1276 h -= s->height - s->avctx->height; // account for non-mod16
1277 y = s->height - y - h;
1278 }
1279
1280 cy = y >> 1;
1281 offset[0] = s->current_frame.linesize[0]*y;
1282 offset[1] = s->current_frame.linesize[1]*cy;
1283 offset[2] = s->current_frame.linesize[2]*cy;
1284 offset[3] = 0;
1285
1286 emms_c();
1287 s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1288 s->last_slice_end= y + h;
1289 }
1290
1291 /*
1292 * Perform the final rendering for a particular slice of data.
1293 * The slice number ranges from 0..(c_superblock_height - 1).
1294 */
1295 static void render_slice(Vp3DecodeContext *s, int slice)
1296 {
1297 int x, y, i, j;
1298 LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1299 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1300 int motion_halfpel_index;
1301 uint8_t *motion_source;
1302 int plane, first_pixel;
1303
1304 if (slice >= s->c_superblock_height)
1305 return;
1306
1307 for (plane = 0; plane < 3; plane++) {
1308 uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane];
1309 uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane];
1310 uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane];
1311 int stride = s->current_frame.linesize[plane];
1312 int plane_width = s->width >> !!plane;
1313 int plane_height = s->height >> !!plane;
1314
1315 int sb_x, sb_y = slice << !plane;
1316 int slice_height = sb_y + (plane ? 1 : 2);
1317 int slice_width = plane ? s->c_superblock_width : s->y_superblock_width;
1318
1319 int fragment_width = s->fragment_width[!!plane];
1320 int fragment_height = s->fragment_height[!!plane];
1321 int fragment_start = s->fragment_start[plane];
1322
1323 if (!s->flipped_image) stride = -stride;
1324 if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1325 continue;
1326
1327
1328 if(FFABS(stride) > 2048)
1329 return; //various tables are fixed size
1330
1331 /* for each superblock row in the slice (both of them)... */
1332 for (; sb_y < slice_height; sb_y++) {
1333
1334 /* for each superblock in a row... */
1335 for (sb_x = 0; sb_x < slice_width; sb_x++) {
1336
1337 /* for each block in a superblock... */
1338 for (j = 0; j < 16; j++) {
1339 x = 4*sb_x + hilbert_offset[j][0];
1340 y = 4*sb_y + hilbert_offset[j][1];
1341
1342 i = fragment_start + y*fragment_width + x;
1343
1344 // bounds check
1345 if (x >= fragment_width || y >= fragment_height)
1346 continue;
1347
1348 first_pixel = 8*y*stride + 8*x;
1349
1350 /* transform if this block was coded */
1351 if (s->all_fragments[i].coding_method != MODE_COPY) {
1352 int intra = s->all_fragments[i].coding_method == MODE_INTRA;
1353
1354 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1355 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1356 motion_source= golden_plane;
1357 else
1358 motion_source= last_plane;
1359
1360 motion_source += first_pixel;
1361 motion_halfpel_index = 0;
1362
1363 /* sort out the motion vector if this fragment is coded
1364 * using a motion vector method */
1365 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1366 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1367 int src_x, src_y;
1368 motion_x = s->all_fragments[i].motion_x;
1369 motion_y = s->all_fragments[i].motion_y;
1370 if(plane){
1371 motion_x= (motion_x>>1) | (motion_x&1);
1372 motion_y= (motion_y>>1) | (motion_y&1);
1373 }
1374
1375 src_x= (motion_x>>1) + 8*x;
1376 src_y= (motion_y>>1) + 8*y;
1377
1378 motion_halfpel_index = motion_x & 0x01;
1379 motion_source += (motion_x >> 1);
1380
1381 motion_halfpel_index |= (motion_y & 0x01) << 1;
1382 motion_source += ((motion_y >> 1) * stride);
1383
1384 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1385 uint8_t *temp= s->edge_emu_buffer;
1386 if(stride<0) temp -= 9*stride;
1387 else temp += 9*stride;
1388
1389 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1390 motion_source= temp;
1391 }
1392 }
1393
1394
1395 /* first, take care of copying a block from either the
1396 * previous or the golden frame */
1397 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1398 /* Note, it is possible to implement all MC cases with
1399 put_no_rnd_pixels_l2 which would look more like the
1400 VP3 source but this would be slower as
1401 put_no_rnd_pixels_tab is better optimzed */
1402 if(motion_halfpel_index != 3){
1403 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1404 output_plane + first_pixel,
1405 motion_source, stride, 8);
1406 }else{
1407 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1408 s->dsp.put_no_rnd_pixels_l2[1](
1409 output_plane + first_pixel,
1410 motion_source - d,
1411 motion_source + stride + 1 + d,
1412 stride, 8);
1413 }
1414 }
1415
1416 s->dsp.clear_block(block);
1417 vp3_dequant(s, s->all_fragments + i, plane, !intra, block);
1418
1419 /* invert DCT and place (or add) in final output */
1420
1421 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1422 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1423 block[0] += 128<<3;
1424 s->dsp.idct_put(
1425 output_plane + first_pixel,
1426 stride,
1427 block);
1428 } else {
1429 s->dsp.idct_add(
1430 output_plane + first_pixel,
1431 stride,
1432 block);
1433 }
1434 } else {
1435
1436 /* copy directly from the previous frame */
1437 s->dsp.put_pixels_tab[1][0](
1438 output_plane + first_pixel,
1439 last_plane + first_pixel,
1440 stride, 8);
1441
1442 }
1443 }
1444 }
1445
1446 // Filter up to the last row in the superblock row
1447 apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1448 }
1449 }
1450
1451 /* this looks like a good place for slice dispatch... */
1452 /* algorithm:
1453 * if (slice == s->macroblock_height - 1)
1454 * dispatch (both last slice & 2nd-to-last slice);
1455 * else if (slice > 0)
1456 * dispatch (slice - 1);
1457 */
1458
1459 vp3_draw_horiz_band(s, FFMIN(64*slice + 64-16, s->height-16));
1460 }
1461
1462 /*
1463 * This is the ffmpeg/libavcodec API init function.
1464 */
1465 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1466 {
1467 Vp3DecodeContext *s = avctx->priv_data;
1468 int i, inter, plane;
1469 int c_width;
1470 int c_height;
1471
1472 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1473 s->version = 0;
1474 else
1475 s->version = 1;
1476
1477 s->avctx = avctx;
1478 s->width = FFALIGN(avctx->width, 16);
1479 s->height = FFALIGN(avctx->height, 16);
1480 avctx->pix_fmt = PIX_FMT_YUV420P;
1481 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1482 if(avctx->idct_algo==FF_IDCT_AUTO)
1483 avctx->idct_algo=FF_IDCT_VP3;
1484 dsputil_init(&s->dsp, avctx);
1485
1486 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1487
1488 /* initialize to an impossible value which will force a recalculation
1489 * in the first frame decode */
1490 for (i = 0; i < 3; i++)
1491 s->qps[i] = -1;
1492
1493 s->y_superblock_width = (s->width + 31) / 32;
1494 s->y_superblock_height = (s->height + 31) / 32;
1495 s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1496
1497 /* work out the dimensions for the C planes */
1498 c_width = s->width / 2;
1499 c_height = s->height / 2;
1500 s->c_superblock_width = (c_width + 31) / 32;
1501 s->c_superblock_height = (c_height + 31) / 32;
1502 s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1503
1504 s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1505 s->u_superblock_start = s->y_superblock_count;
1506 s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1507 s->superblock_coding = av_malloc(s->superblock_count);
1508
1509 s->macroblock_width = (s->width + 15) / 16;
1510 s->macroblock_height = (s->height + 15) / 16;
1511 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1512
1513 s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1514 s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1515 s->fragment_width[1] = s->fragment_width[0] >> 1;
1516 s->fragment_height[1] = s->fragment_height[0] >> 1;
1517
1518 /* fragment count covers all 8x8 blocks for all 3 planes */
1519 s->fragment_count = s->fragment_width[0] * s->fragment_height[0] * 3 / 2;
1520 s->fragment_start[1] = s->fragment_width[0] * s->fragment_height[0];
1521 s->fragment_start[2] = s->fragment_width[0] * s->fragment_height[0] * 5 / 4;
1522
1523 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1524 s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1525 s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1526 if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1527 !s->coded_fragment_list[0]) {
1528 vp3_decode_end(avctx);
1529 return -1;
1530 }
1531
1532 if (!s->theora_tables)
1533 {
1534 for (i = 0; i < 64; i++) {
1535 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1536 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1537 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1538 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1539 s->base_matrix[2][i] = vp31_inter_dequant[i];
1540 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1541 }
1542
1543 for(inter=0; inter<2; inter++){
1544 for(plane=0; plane<3; plane++){
1545 s->qr_count[inter][plane]= 1;
1546 s->qr_size [inter][plane][0]= 63;
1547 s->qr_base [inter][plane][0]=
1548 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1549 }
1550 }
1551
1552 /* init VLC tables */
1553 for (i = 0; i < 16; i++) {
1554
1555 /* DC histograms */
1556 init_vlc(&s->dc_vlc[i], 5, 32,
1557 &dc_bias[i][0][1], 4, 2,
1558 &dc_bias[i][0][0], 4, 2, 0);
1559
1560 /* group 1 AC histograms */
1561 init_vlc(&s->ac_vlc_1[i], 5, 32,
1562 &ac_bias_0[i][0][1], 4, 2,
1563 &ac_bias_0[i][0][0], 4, 2, 0);
1564
1565 /* group 2 AC histograms */
1566 init_vlc(&s->ac_vlc_2[i], 5, 32,
1567 &ac_bias_1[i][0][1], 4, 2,
1568 &ac_bias_1[i][0][0], 4, 2, 0);
1569
1570 /* group 3 AC histograms */
1571 init_vlc(&s->ac_vlc_3[i], 5, 32,
1572 &ac_bias_2[i][0][1], 4, 2,
1573 &ac_bias_2[i][0][0], 4, 2, 0);
1574
1575 /* group 4 AC histograms */
1576 init_vlc(&s->ac_vlc_4[i], 5, 32,
1577 &ac_bias_3[i][0][1], 4, 2,
1578 &ac_bias_3[i][0][0], 4, 2, 0);
1579 }
1580 } else {
1581 for (i = 0; i < 16; i++) {
1582
1583 /* DC histograms */
1584 if (init_vlc(&s->dc_vlc[i], 5, 32,
1585 &s->huffman_table[i][0][1], 4, 2,
1586 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1587 goto vlc_fail;
1588
1589 /* group 1 AC histograms */
1590 if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1591 &s->huffman_table[i+16][0][1], 4, 2,
1592 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1593 goto vlc_fail;
1594
1595 /* group 2 AC histograms */
1596 if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1597 &s->huffman_table[i+16*2][0][1], 4, 2,
1598 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1599 goto vlc_fail;
1600
1601 /* group 3 AC histograms */
1602 if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1603 &s->huffman_table[i+16*3][0][1], 4, 2,
1604 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1605 goto vlc_fail;
1606
1607 /* group 4 AC histograms */
1608 if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1609 &s->huffman_table[i+16*4][0][1], 4, 2,
1610 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1611 goto vlc_fail;
1612 }
1613 }
1614
1615 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1616 &superblock_run_length_vlc_table[0][1], 4, 2,
1617 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1618
1619 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1620 &fragment_run_length_vlc_table[0][1], 4, 2,
1621 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1622
1623 init_vlc(&s->mode_code_vlc, 3, 8,
1624 &mode_code_vlc_table[0][1], 2, 1,
1625 &mode_code_vlc_table[0][0], 2, 1, 0);
1626
1627 init_vlc(&s->motion_vector_vlc, 6, 63,
1628 &motion_vector_vlc_table[0][1], 2, 1,
1629 &motion_vector_vlc_table[0][0], 2, 1, 0);
1630
1631 /* work out the block mapping tables */
1632 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1633 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1634 if (!s->superblock_fragments || !s->macroblock_coding) {
1635 vp3_decode_end(avctx);
1636 return -1;
1637 }
1638 init_block_mapping(s);
1639
1640 for (i = 0; i < 3; i++) {
1641 s->current_frame.data[i] = NULL;
1642 s->last_frame.data[i] = NULL;
1643 s->golden_frame.data[i] = NULL;
1644 }
1645
1646 return 0;
1647
1648 vlc_fail:
1649 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1650 return -1;
1651 }
1652
1653 /*
1654 * This is the ffmpeg/libavcodec API frame decode function.
1655 */
1656 static int vp3_decode_frame(AVCodecContext *avctx,
1657 void *data, int *data_size,
1658 AVPacket *avpkt)
1659 {
1660 const uint8_t *buf = avpkt->data;
1661 int buf_size = avpkt->size;
1662 Vp3DecodeContext *s = avctx->priv_data;
1663 GetBitContext gb;
1664 static int counter = 0;
1665 int i;
1666
1667 init_get_bits(&gb, buf, buf_size * 8);
1668
1669 if (s->theora && get_bits1(&gb))
1670 {
1671 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1672 return -1;
1673 }
1674
1675 s->keyframe = !get_bits1(&gb);
1676 if (!s->theora)
1677 skip_bits(&gb, 1);
1678 for (i = 0; i < 3; i++)
1679 s->last_qps[i] = s->qps[i];
1680
1681 s->nqps=0;
1682 do{
1683 s->qps[s->nqps++]= get_bits(&gb, 6);
1684 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1685 for (i = s->nqps; i < 3; i++)
1686 s->qps[i] = -1;
1687
1688 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1689 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1690 s->keyframe?"key":"", counter, s->qps[0]);
1691 counter++;
1692
1693 if (s->qps[0] != s->last_qps[0])
1694 init_loop_filter(s);
1695
1696 for (i = 0; i < s->nqps; i++)
1697 // reinit all dequantizers if the first one changed, because
1698 // the DC of the first quantizer must be used for all matrices
1699 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1700 init_dequantizer(s, i);
1701
1702 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1703 return buf_size;
1704
1705 s->current_frame.reference = 3;
1706 s->current_frame.pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
1707 if (avctx->get_buffer(avctx, &s->current_frame) < 0) {
1708 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1709 goto error;
1710 }
1711
1712 if (s->keyframe) {
1713 if (!s->theora)
1714 {
1715 skip_bits(&gb, 4); /* width code */
1716 skip_bits(&gb, 4); /* height code */
1717 if (s->version)
1718 {
1719 s->version = get_bits(&gb, 5);
1720 if (counter == 1)
1721 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1722 }
1723 }
1724 if (s->version || s->theora)
1725 {
1726 if (get_bits1(&gb))
1727 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1728 skip_bits(&gb, 2); /* reserved? */
1729 }
1730 } else {
1731 if (!s->golden_frame.data[0]) {
1732 av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
1733
1734 s->golden_frame.reference = 3;
1735 s->golden_frame.pict_type = FF_I_TYPE;
1736 if (avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1737 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1738 goto error;
1739 }
1740 s->last_frame = s->golden_frame;
1741 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1742 }
1743 }
1744
1745 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1746 s->current_frame.qstride= 0;
1747
1748 memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
1749
1750 if (unpack_superblocks(s, &gb)){
1751 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1752 goto error;
1753 }
1754 if (unpack_modes(s, &gb)){
1755 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1756 goto error;
1757 }
1758 if (unpack_vectors(s, &gb)){
1759 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1760 goto error;
1761 }
1762 if (unpack_block_qpis(s, &gb)){
1763 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1764 goto error;
1765 }
1766 if (unpack_dct_coeffs(s, &gb)){
1767 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1768 goto error;
1769 }
1770
1771 for (i = 0; i < 3; i++) {
1772 if (s->flipped_image)
1773 s->data_offset[i] = 0;
1774 else
1775 s->data_offset[i] = ((s->height>>!!i)-1) * s->current_frame.linesize[i];
1776 }
1777
1778 s->last_slice_end = 0;
1779 for (i = 0; i < s->c_superblock_height; i++)
1780 render_slice(s, i);
1781
1782 // filter the last row
1783 for (i = 0; i < 3; i++) {
1784 int row = (s->height >> (3+!!i)) - 1;
1785 apply_loop_filter(s, i, row, row+1);
1786 }
1787 vp3_draw_horiz_band(s, s->height);
1788
1789 *data_size=sizeof(AVFrame);
1790 *(AVFrame*)data= s->current_frame;
1791
1792 /* release the last frame, if it is allocated and if it is not the
1793 * golden frame */
1794 if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1795 avctx->release_buffer(avctx, &s->last_frame);
1796
1797 /* shuffle frames (last = current) */
1798 s->last_frame= s->current_frame;
1799
1800 if (s->keyframe) {
1801 if (s->golden_frame.data[0])
1802 avctx->release_buffer(avctx, &s->golden_frame);
1803 s->golden_frame = s->current_frame;
1804 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1805 }
1806
1807 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1808
1809 return buf_size;
1810
1811 error:
1812 if (s->current_frame.data[0])
1813 avctx->release_buffer(avctx, &s->current_frame);
1814 return -1;
1815 }
1816
1817 /*
1818 * This is the ffmpeg/libavcodec API module cleanup function.
1819 */
1820 static av_cold int vp3_decode_end(AVCodecContext *avctx)
1821 {
1822 Vp3DecodeContext *s = avctx->priv_data;
1823 int i;
1824
1825 av_free(s->superblock_coding);
1826 av_free(s->all_fragments);
1827 av_free(s->coded_fragment_list[0]);
1828 av_free(s->dct_tokens_base);
1829 av_free(s->superblock_fragments);
1830 av_free(s->macroblock_coding);
1831
1832 for (i = 0; i < 16; i++) {
1833 free_vlc(&s->dc_vlc[i]);
1834 free_vlc(&s->ac_vlc_1[i]);
1835 free_vlc(&s->ac_vlc_2[i]);
1836 free_vlc(&s->ac_vlc_3[i]);
1837 free_vlc(&s->ac_vlc_4[i]);
1838 }
1839
1840 free_vlc(&s->superblock_run_length_vlc);
1841 free_vlc(&s->fragment_run_length_vlc);
1842 free_vlc(&s->mode_code_vlc);
1843 free_vlc(&s->motion_vector_vlc);
1844
1845 /* release all frames */
1846 if (s->golden_frame.data[0])
1847 avctx->release_buffer(avctx, &s->golden_frame);
1848 if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1849 avctx->release_buffer(avctx, &s->last_frame);
1850 /* no need to release the current_frame since it will always be pointing
1851 * to the same frame as either the golden or last frame */
1852
1853 return 0;
1854 }
1855
1856 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1857 {
1858 Vp3DecodeContext *s = avctx->priv_data;
1859
1860 if (get_bits1(gb)) {
1861 int token;
1862 if (s->entries >= 32) { /* overflow */
1863 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1864 return -1;
1865 }
1866 token = get_bits(gb, 5);
1867 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1868 s->huffman_table[s->hti][token][0] = s->hbits;
1869 s->huffman_table[s->hti][token][1] = s->huff_code_size;
1870 s->entries++;
1871 }
1872 else {
1873 if (s->huff_code_size >= 32) {/* overflow */
1874 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1875 return -1;
1876 }
1877 s->huff_code_size++;
1878 s->hbits <<= 1;
1879 if (read_huffman_tree(avctx, gb))
1880 return -1;
1881 s->hbits |= 1;
1882 if (read_huffman_tree(avctx, gb))
1883 return -1;
1884 s->hbits >>= 1;
1885 s->huff_code_size--;
1886 }
1887 return 0;
1888 }
1889
1890 #if CONFIG_THEORA_DECODER
1891 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1892 {
1893 Vp3DecodeContext *s = avctx->priv_data;
1894 int visible_width, visible_height, colorspace;
1895
1896 s->theora = get_bits_long(gb, 24);
1897 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
1898
1899 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
1900 /* but previous versions have the image flipped relative to vp3 */
1901 if (s->theora < 0x030200)
1902 {
1903 s->flipped_image = 1;
1904 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
1905 }
1906
1907 visible_width = s->width = get_bits(gb, 16) << 4;
1908 visible_height = s->height = get_bits(gb, 16) << 4;
1909
1910 if(avcodec_check_dimensions(avctx, s->width, s->height)){
1911 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
1912 s->width= s->height= 0;
1913 return -1;
1914 }
1915
1916 if (s->theora >= 0x030200) {
1917 visible_width = get_bits_long(gb, 24);
1918 visible_height = get_bits_long(gb, 24);
1919
1920 skip_bits(gb, 8); /* offset x */
1921 skip_bits(gb, 8); /* offset y */
1922 }
1923
1924 skip_bits(gb, 32); /* fps numerator */
1925 skip_bits(gb, 32); /* fps denumerator */
1926 skip_bits(gb, 24); /* aspect numerator */
1927 skip_bits(gb, 24); /* aspect denumerator */
1928
1929 if (s->theora < 0x030200)
1930 skip_bits(gb, 5); /* keyframe frequency force */
1931 colorspace = get_bits(gb, 8);
1932 skip_bits(gb, 24); /* bitrate */
1933
1934 skip_bits(gb, 6); /* quality hint */
1935
1936 if (s->theora >= 0x030200)
1937 {
1938 skip_bits(gb, 5); /* keyframe frequency force */
1939 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
1940 skip_bits(gb, 3); /* reserved */
1941 }
1942
1943 // align_get_bits(gb);
1944
1945 if ( visible_width <= s->width && visible_width > s->width-16
1946 && visible_height <= s->height && visible_height > s->height-16)
1947 avcodec_set_dimensions(avctx, visible_width, visible_height);
1948 else
1949 avcodec_set_dimensions(avctx, s->width, s->height);
1950
1951 if (colorspace == 1) {
1952 avctx->color_primaries = AVCOL_PRI_BT470M;
1953 } else if (colorspace == 2) {
1954 avctx->color_primaries = AVCOL_PRI_BT470BG;
1955 }
1956 if (colorspace == 1 || colorspace == 2) {
1957 avctx->colorspace = AVCOL_SPC_BT470BG;
1958 avctx->color_trc = AVCOL_TRC_BT709;
1959 }
1960
1961 return 0;
1962 }
1963
1964 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
1965 {
1966 Vp3DecodeContext *s = avctx->priv_data;
1967 int i, n, matrices, inter, plane;
1968
1969 if (s->theora >= 0x030200) {
1970 n = get_bits(gb, 3);
1971 /* loop filter limit values table */
1972 for (i = 0; i < 64; i++) {
1973 s->filter_limit_values[i] = get_bits(gb, n);
1974 if (s->filter_limit_values[i] > 127) {
1975 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
1976 s->filter_limit_values[i] = 127;
1977 }
1978 }
1979 }
1980
1981 if (s->theora >= 0x030200)
1982 n = get_bits(gb, 4) + 1;
1983 else
1984 n = 16;
1985 /* quality threshold table */
1986 for (i = 0; i < 64; i++)
1987 s->coded_ac_scale_factor[i] = get_bits(gb, n);
1988
1989 if (s->theora >= 0x030200)
1990 n = get_bits(gb, 4) + 1;
1991 else
1992 n = 16;
1993 /* dc scale factor table */
1994 for (i = 0; i < 64; i++)
1995 s->coded_dc_scale_factor[i] = get_bits(gb, n);
1996
1997 if (s->theora >= 0x030200)
1998 matrices = get_bits(gb, 9) + 1;
1999 else
2000 matrices = 3;
2001
2002 if(matrices > 384){
2003 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2004 return -1;
2005 }
2006
2007 for(n=0; n<matrices; n++){
2008 for (i = 0; i < 64; i++)
2009 s->base_matrix[n][i]= get_bits(gb, 8);
2010 }
2011
2012 for (inter = 0; inter <= 1; inter++) {
2013 for (plane = 0; plane <= 2; plane++) {
2014 int newqr= 1;
2015 if (inter || plane > 0)
2016 newqr = get_bits1(gb);
2017 if (!newqr) {
2018 int qtj, plj;
2019 if(inter && get_bits1(gb)){
2020 qtj = 0;
2021 plj = plane;
2022 }else{
2023 qtj= (3*inter + plane - 1) / 3;
2024 plj= (plane + 2) % 3;
2025 }
2026 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2027 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2028 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2029 } else {
2030 int qri= 0;
2031 int qi = 0;
2032
2033 for(;;){
2034 i= get_bits(gb, av_log2(matrices-1)+1);
2035 if(i>= matrices){
2036 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2037 return -1;
2038 }
2039 s->qr_base[inter][plane][qri]= i;
2040 if(qi >= 63)
2041 break;
2042 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2043 s->qr_size[inter][plane][qri++]= i;
2044 qi += i;
2045 }
2046
2047 if (qi > 63) {
2048 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2049 return -1;
2050 }
2051 s->qr_count[inter][plane]= qri;
2052 }
2053 }
2054 }
2055
2056 /* Huffman tables */
2057 for (s->hti = 0; s->hti < 80; s->hti++) {
2058 s->entries = 0;
2059 s->huff_code_size = 1;
2060 if (!get_bits1(gb)) {
2061 s->hbits = 0;
2062 if(read_huffman_tree(avctx, gb))
2063 return -1;
2064 s->hbits = 1;
2065 if(read_huffman_tree(avctx, gb))
2066 return -1;
2067 }
2068 }
2069
2070 s->theora_tables = 1;
2071
2072 return 0;
2073 }
2074
2075 static av_cold int theora_decode_init(AVCodecContext *avctx)
2076 {
2077 Vp3DecodeContext *s = avctx->priv_data;
2078 GetBitContext gb;
2079 int ptype;
2080 uint8_t *header_start[3];
2081 int header_len[3];
2082 int i;
2083
2084 s->theora = 1;
2085
2086 if (!avctx->extradata_size)
2087 {
2088 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2089 return -1;
2090 }
2091
2092 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2093 42, header_start, header_len) < 0) {
2094 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2095 return -1;
2096 }
2097
2098 for(i=0;i<3;i++) {
2099 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2100
2101 ptype = get_bits(&gb, 8);
2102
2103 if (!(ptype & 0x80))
2104 {
2105 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2106 // return -1;
2107 }
2108
2109 // FIXME: Check for this as well.
2110 skip_bits_long(&gb, 6*8); /* "theora" */
2111
2112 switch(ptype)
2113 {
2114 case 0x80:
2115 theora_decode_header(avctx, &gb);
2116 break;
2117 case 0x81:
2118 // FIXME: is this needed? it breaks sometimes
2119 // theora_decode_comments(avctx, gb);
2120 break;
2121 case 0x82:
2122 if (theora_decode_tables(avctx, &gb))
2123 return -1;
2124 break;
2125 default:
2126 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2127 break;
2128 }
2129 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2130 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2131 if (s->theora < 0x030200)
2132 break;
2133 }
2134
2135 return vp3_decode_init(avctx);
2136 }
2137
2138 AVCodec theora_decoder = {
2139 "theora",
2140 CODEC_TYPE_VIDEO,
2141 CODEC_ID_THEORA,
2142 sizeof(Vp3DecodeContext),
2143 theora_decode_init,
2144 NULL,
2145 vp3_decode_end,
2146 vp3_decode_frame,
2147 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2148 NULL,
2149 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2150 };
2151 #endif
2152
2153 AVCodec vp3_decoder = {
2154 "vp3",
2155 CODEC_TYPE_VIDEO,
2156 CODEC_ID_VP3,
2157 sizeof(Vp3DecodeContext),
2158 vp3_decode_init,
2159 NULL,
2160 vp3_decode_end,
2161 vp3_decode_frame,
2162 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2163 NULL,
2164 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2165 };