2dccbcdea4ed0e64350010a3919b9226e056b7be
[libav.git] / libavcodec / vp3.c
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "avcodec.h"
37 #include "dsputil.h"
38 #include "get_bits.h"
39
40 #include "vp3data.h"
41 #include "xiph.h"
42
43 #define FRAGMENT_PIXELS 8
44
45 static av_cold int vp3_decode_end(AVCodecContext *avctx);
46
47 //FIXME split things out into their own arrays
48 typedef struct Vp3Fragment {
49 int16_t dc;
50 uint8_t coding_method;
51 uint8_t qpi;
52 } Vp3Fragment;
53
54 #define SB_NOT_CODED 0
55 #define SB_PARTIALLY_CODED 1
56 #define SB_FULLY_CODED 2
57
58 // This is the maximum length of a single long bit run that can be encoded
59 // for superblock coding or block qps. Theora special-cases this to read a
60 // bit instead of flipping the current bit to allow for runs longer than 4129.
61 #define MAXIMUM_LONG_BIT_RUN 4129
62
63 #define MODE_INTER_NO_MV 0
64 #define MODE_INTRA 1
65 #define MODE_INTER_PLUS_MV 2
66 #define MODE_INTER_LAST_MV 3
67 #define MODE_INTER_PRIOR_LAST 4
68 #define MODE_USING_GOLDEN 5
69 #define MODE_GOLDEN_MV 6
70 #define MODE_INTER_FOURMV 7
71 #define CODING_MODE_COUNT 8
72
73 /* special internal mode */
74 #define MODE_COPY 8
75
76 /* There are 6 preset schemes, plus a free-form scheme */
77 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
78 {
79 /* scheme 1: Last motion vector dominates */
80 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
81 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
82 MODE_INTRA, MODE_USING_GOLDEN,
83 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
84
85 /* scheme 2 */
86 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
87 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
88 MODE_INTRA, MODE_USING_GOLDEN,
89 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
90
91 /* scheme 3 */
92 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
93 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
94 MODE_INTRA, MODE_USING_GOLDEN,
95 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
96
97 /* scheme 4 */
98 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
99 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
100 MODE_INTRA, MODE_USING_GOLDEN,
101 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
102
103 /* scheme 5: No motion vector dominates */
104 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
105 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
106 MODE_INTRA, MODE_USING_GOLDEN,
107 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
108
109 /* scheme 6 */
110 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
111 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
112 MODE_INTER_PLUS_MV, MODE_INTRA,
113 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
114
115 };
116
117 static const uint8_t hilbert_offset[16][2] = {
118 {0,0}, {1,0}, {1,1}, {0,1},
119 {0,2}, {0,3}, {1,3}, {1,2},
120 {2,2}, {2,3}, {3,3}, {3,2},
121 {3,1}, {2,1}, {2,0}, {3,0}
122 };
123
124 #define MIN_DEQUANT_VAL 2
125
126 typedef struct Vp3DecodeContext {
127 AVCodecContext *avctx;
128 int theora, theora_tables;
129 int version;
130 int width, height;
131 int chroma_x_shift, chroma_y_shift;
132 AVFrame golden_frame;
133 AVFrame last_frame;
134 AVFrame current_frame;
135 int keyframe;
136 DSPContext dsp;
137 int flipped_image;
138 int last_slice_end;
139
140 int qps[3];
141 int nqps;
142 int last_qps[3];
143
144 int superblock_count;
145 int y_superblock_width;
146 int y_superblock_height;
147 int y_superblock_count;
148 int c_superblock_width;
149 int c_superblock_height;
150 int c_superblock_count;
151 int u_superblock_start;
152 int v_superblock_start;
153 unsigned char *superblock_coding;
154
155 int macroblock_count;
156 int macroblock_width;
157 int macroblock_height;
158
159 int fragment_count;
160 int fragment_width[2];
161 int fragment_height[2];
162
163 Vp3Fragment *all_fragments;
164 int fragment_start[3];
165 int data_offset[3];
166
167 int8_t (*motion_val[2])[2];
168
169 ScanTable scantable;
170
171 /* tables */
172 uint16_t coded_dc_scale_factor[64];
173 uint32_t coded_ac_scale_factor[64];
174 uint8_t base_matrix[384][64];
175 uint8_t qr_count[2][3];
176 uint8_t qr_size [2][3][64];
177 uint16_t qr_base[2][3][64];
178
179 /**
180 * This is a list of all tokens in bitstream order. Reordering takes place
181 * by pulling from each level during IDCT. As a consequence, IDCT must be
182 * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
183 * otherwise. The 32 different tokens with up to 12 bits of extradata are
184 * collapsed into 3 types, packed as follows:
185 * (from the low to high bits)
186 *
187 * 2 bits: type (0,1,2)
188 * 0: EOB run, 14 bits for run length (12 needed)
189 * 1: zero run, 7 bits for run length
190 * 7 bits for the next coefficient (3 needed)
191 * 2: coefficient, 14 bits (11 needed)
192 *
193 * Coefficients are signed, so are packed in the highest bits for automatic
194 * sign extension.
195 */
196 int16_t *dct_tokens[3][64];
197 int16_t *dct_tokens_base;
198 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
199 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
200 #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
201
202 /**
203 * number of blocks that contain DCT coefficients at the given level or higher
204 */
205 int num_coded_frags[3][64];
206 int total_num_coded_frags;
207
208 /* this is a list of indexes into the all_fragments array indicating
209 * which of the fragments are coded */
210 int *coded_fragment_list[3];
211
212 VLC dc_vlc[16];
213 VLC ac_vlc_1[16];
214 VLC ac_vlc_2[16];
215 VLC ac_vlc_3[16];
216 VLC ac_vlc_4[16];
217
218 VLC superblock_run_length_vlc;
219 VLC fragment_run_length_vlc;
220 VLC mode_code_vlc;
221 VLC motion_vector_vlc;
222
223 /* these arrays need to be on 16-byte boundaries since SSE2 operations
224 * index into them */
225 DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; //<qmat[qpi][is_inter][plane]
226
227 /* This table contains superblock_count * 16 entries. Each set of 16
228 * numbers corresponds to the fragment indexes 0..15 of the superblock.
229 * An entry will be -1 to indicate that no entry corresponds to that
230 * index. */
231 int *superblock_fragments;
232
233 /* This is an array that indicates how a particular macroblock
234 * is coded. */
235 unsigned char *macroblock_coding;
236
237 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
238 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
239
240 /* Huffman decode */
241 int hti;
242 unsigned int hbits;
243 int entries;
244 int huff_code_size;
245 uint16_t huffman_table[80][32][2];
246
247 uint8_t filter_limit_values[64];
248 DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
249 } Vp3DecodeContext;
250
251 /************************************************************************
252 * VP3 specific functions
253 ************************************************************************/
254
255 /*
256 * This function sets up all of the various blocks mappings:
257 * superblocks <-> fragments, macroblocks <-> fragments,
258 * superblocks <-> macroblocks
259 *
260 * Returns 0 is successful; returns 1 if *anything* went wrong.
261 */
262 static int init_block_mapping(Vp3DecodeContext *s)
263 {
264 int sb_x, sb_y, plane;
265 int x, y, i, j = 0;
266
267 for (plane = 0; plane < 3; plane++) {
268 int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
269 int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
270 int frag_width = s->fragment_width[!!plane];
271 int frag_height = s->fragment_height[!!plane];
272
273 for (sb_y = 0; sb_y < sb_height; sb_y++)
274 for (sb_x = 0; sb_x < sb_width; sb_x++)
275 for (i = 0; i < 16; i++) {
276 x = 4*sb_x + hilbert_offset[i][0];
277 y = 4*sb_y + hilbert_offset[i][1];
278
279 if (x < frag_width && y < frag_height)
280 s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
281 else
282 s->superblock_fragments[j++] = -1;
283 }
284 }
285
286 return 0; /* successful path out */
287 }
288
289 /*
290 * This function sets up the dequantization tables used for a particular
291 * frame.
292 */
293 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
294 {
295 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
296 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
297 int i, plane, inter, qri, bmi, bmj, qistart;
298
299 for(inter=0; inter<2; inter++){
300 for(plane=0; plane<3; plane++){
301 int sum=0;
302 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
303 sum+= s->qr_size[inter][plane][qri];
304 if(s->qps[qpi] <= sum)
305 break;
306 }
307 qistart= sum - s->qr_size[inter][plane][qri];
308 bmi= s->qr_base[inter][plane][qri ];
309 bmj= s->qr_base[inter][plane][qri+1];
310 for(i=0; i<64; i++){
311 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
312 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
313 + s->qr_size[inter][plane][qri])
314 / (2*s->qr_size[inter][plane][qri]);
315
316 int qmin= 8<<(inter + !i);
317 int qscale= i ? ac_scale_factor : dc_scale_factor;
318
319 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
320 }
321 // all DC coefficients use the same quant so as not to interfere with DC prediction
322 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
323 }
324 }
325
326 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
327 }
328
329 /*
330 * This function initializes the loop filter boundary limits if the frame's
331 * quality index is different from the previous frame's.
332 *
333 * The filter_limit_values may not be larger than 127.
334 */
335 static void init_loop_filter(Vp3DecodeContext *s)
336 {
337 int *bounding_values= s->bounding_values_array+127;
338 int filter_limit;
339 int x;
340 int value;
341
342 filter_limit = s->filter_limit_values[s->qps[0]];
343
344 /* set up the bounding values */
345 memset(s->bounding_values_array, 0, 256 * sizeof(int));
346 for (x = 0; x < filter_limit; x++) {
347 bounding_values[-x] = -x;
348 bounding_values[x] = x;
349 }
350 for (x = value = filter_limit; x < 128 && value; x++, value--) {
351 bounding_values[ x] = value;
352 bounding_values[-x] = -value;
353 }
354 if (value)
355 bounding_values[128] = value;
356 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
357 }
358
359 /*
360 * This function unpacks all of the superblock/macroblock/fragment coding
361 * information from the bitstream.
362 */
363 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
364 {
365 int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
366 int bit = 0;
367 int current_superblock = 0;
368 int current_run = 0;
369 int num_partial_superblocks = 0;
370
371 int i, j;
372 int current_fragment;
373 int plane;
374
375 if (s->keyframe) {
376 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
377
378 } else {
379
380 /* unpack the list of partially-coded superblocks */
381 bit = get_bits1(gb);
382 while (current_superblock < s->superblock_count) {
383 current_run = get_vlc2(gb,
384 s->superblock_run_length_vlc.table, 6, 2) + 1;
385 if (current_run == 34)
386 current_run += get_bits(gb, 12);
387
388 if (current_superblock + current_run > s->superblock_count) {
389 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
390 return -1;
391 }
392
393 memset(s->superblock_coding + current_superblock, bit, current_run);
394
395 current_superblock += current_run;
396 if (bit)
397 num_partial_superblocks += current_run;
398
399 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
400 bit = get_bits1(gb);
401 else
402 bit ^= 1;
403 }
404
405 /* unpack the list of fully coded superblocks if any of the blocks were
406 * not marked as partially coded in the previous step */
407 if (num_partial_superblocks < s->superblock_count) {
408 int superblocks_decoded = 0;
409
410 current_superblock = 0;
411 bit = get_bits1(gb);
412 while (superblocks_decoded < s->superblock_count - num_partial_superblocks) {
413 current_run = get_vlc2(gb,
414 s->superblock_run_length_vlc.table, 6, 2) + 1;
415 if (current_run == 34)
416 current_run += get_bits(gb, 12);
417
418 for (j = 0; j < current_run; current_superblock++) {
419 if (current_superblock >= s->superblock_count) {
420 av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
421 return -1;
422 }
423
424 /* skip any superblocks already marked as partially coded */
425 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
426 s->superblock_coding[current_superblock] = 2*bit;
427 j++;
428 }
429 }
430 superblocks_decoded += current_run;
431
432 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
433 bit = get_bits1(gb);
434 else
435 bit ^= 1;
436 }
437 }
438
439 /* if there were partial blocks, initialize bitstream for
440 * unpacking fragment codings */
441 if (num_partial_superblocks) {
442
443 current_run = 0;
444 bit = get_bits1(gb);
445 /* toggle the bit because as soon as the first run length is
446 * fetched the bit will be toggled again */
447 bit ^= 1;
448 }
449 }
450
451 /* figure out which fragments are coded; iterate through each
452 * superblock (all planes) */
453 s->total_num_coded_frags = 0;
454 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
455
456 for (plane = 0; plane < 3; plane++) {
457 int sb_start = superblock_starts[plane];
458 int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
459 int num_coded_frags = 0;
460
461 for (i = sb_start; i < sb_end; i++) {
462
463 /* iterate through all 16 fragments in a superblock */
464 for (j = 0; j < 16; j++) {
465
466 /* if the fragment is in bounds, check its coding status */
467 current_fragment = s->superblock_fragments[i * 16 + j];
468 if (current_fragment != -1) {
469 int coded = s->superblock_coding[i];
470
471 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
472
473 /* fragment may or may not be coded; this is the case
474 * that cares about the fragment coding runs */
475 if (current_run-- == 0) {
476 bit ^= 1;
477 current_run = get_vlc2(gb,
478 s->fragment_run_length_vlc.table, 5, 2);
479 }
480 coded = bit;
481 }
482
483 if (coded) {
484 /* default mode; actual mode will be decoded in
485 * the next phase */
486 s->all_fragments[current_fragment].coding_method =
487 MODE_INTER_NO_MV;
488 s->coded_fragment_list[plane][num_coded_frags++] =
489 current_fragment;
490 } else {
491 /* not coded; copy this fragment from the prior frame */
492 s->all_fragments[current_fragment].coding_method =
493 MODE_COPY;
494 }
495 }
496 }
497 }
498 s->total_num_coded_frags += num_coded_frags;
499 for (i = 0; i < 64; i++)
500 s->num_coded_frags[plane][i] = num_coded_frags;
501 if (plane < 2)
502 s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
503 }
504 return 0;
505 }
506
507 /*
508 * This function unpacks all the coding mode data for individual macroblocks
509 * from the bitstream.
510 */
511 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
512 {
513 int i, j, k, sb_x, sb_y;
514 int scheme;
515 int current_macroblock;
516 int current_fragment;
517 int coding_mode;
518 int custom_mode_alphabet[CODING_MODE_COUNT];
519 const int *alphabet;
520 Vp3Fragment *frag;
521
522 if (s->keyframe) {
523 for (i = 0; i < s->fragment_count; i++)
524 s->all_fragments[i].coding_method = MODE_INTRA;
525
526 } else {
527
528 /* fetch the mode coding scheme for this frame */
529 scheme = get_bits(gb, 3);
530
531 /* is it a custom coding scheme? */
532 if (scheme == 0) {
533 for (i = 0; i < 8; i++)
534 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
535 for (i = 0; i < 8; i++)
536 custom_mode_alphabet[get_bits(gb, 3)] = i;
537 alphabet = custom_mode_alphabet;
538 } else
539 alphabet = ModeAlphabet[scheme-1];
540
541 /* iterate through all of the macroblocks that contain 1 or more
542 * coded fragments */
543 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
544 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
545
546 for (j = 0; j < 4; j++) {
547 int mb_x = 2*sb_x + (j>>1);
548 int mb_y = 2*sb_y + (((j>>1)+j)&1);
549 current_macroblock = mb_y * s->macroblock_width + mb_x;
550
551 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
552 continue;
553
554 #define BLOCK_X (2*mb_x + (k&1))
555 #define BLOCK_Y (2*mb_y + (k>>1))
556 /* coding modes are only stored if the macroblock has at least one
557 * luma block coded, otherwise it must be INTER_NO_MV */
558 for (k = 0; k < 4; k++) {
559 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
560 if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
561 break;
562 }
563 if (k == 4) {
564 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
565 continue;
566 }
567
568 /* mode 7 means get 3 bits for each coding mode */
569 if (scheme == 7)
570 coding_mode = get_bits(gb, 3);
571 else
572 coding_mode = alphabet
573 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
574
575 s->macroblock_coding[current_macroblock] = coding_mode;
576 for (k = 0; k < 4; k++) {
577 frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
578 if (frag->coding_method != MODE_COPY)
579 frag->coding_method = coding_mode;
580 }
581
582 #define SET_CHROMA_MODES \
583 if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
584 frag[s->fragment_start[1]].coding_method = coding_mode;\
585 if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
586 frag[s->fragment_start[2]].coding_method = coding_mode;
587
588 if (s->chroma_y_shift) {
589 frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
590 SET_CHROMA_MODES
591 } else if (s->chroma_x_shift) {
592 frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
593 for (k = 0; k < 2; k++) {
594 SET_CHROMA_MODES
595 frag += s->fragment_width[1];
596 }
597 } else {
598 for (k = 0; k < 4; k++) {
599 frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
600 SET_CHROMA_MODES
601 }
602 }
603 }
604 }
605 }
606 }
607
608 return 0;
609 }
610
611 /*
612 * This function unpacks all the motion vectors for the individual
613 * macroblocks from the bitstream.
614 */
615 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
616 {
617 int j, k, sb_x, sb_y;
618 int coding_mode;
619 int motion_x[4];
620 int motion_y[4];
621 int last_motion_x = 0;
622 int last_motion_y = 0;
623 int prior_last_motion_x = 0;
624 int prior_last_motion_y = 0;
625 int current_macroblock;
626 int current_fragment;
627 int frag;
628
629 if (s->keyframe)
630 return 0;
631
632 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
633 coding_mode = get_bits1(gb);
634
635 /* iterate through all of the macroblocks that contain 1 or more
636 * coded fragments */
637 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
638 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
639
640 for (j = 0; j < 4; j++) {
641 int mb_x = 2*sb_x + (j>>1);
642 int mb_y = 2*sb_y + (((j>>1)+j)&1);
643 current_macroblock = mb_y * s->macroblock_width + mb_x;
644
645 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
646 (s->macroblock_coding[current_macroblock] == MODE_COPY))
647 continue;
648
649 switch (s->macroblock_coding[current_macroblock]) {
650
651 case MODE_INTER_PLUS_MV:
652 case MODE_GOLDEN_MV:
653 /* all 6 fragments use the same motion vector */
654 if (coding_mode == 0) {
655 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
656 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
657 } else {
658 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
659 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
660 }
661
662 /* vector maintenance, only on MODE_INTER_PLUS_MV */
663 if (s->macroblock_coding[current_macroblock] ==
664 MODE_INTER_PLUS_MV) {
665 prior_last_motion_x = last_motion_x;
666 prior_last_motion_y = last_motion_y;
667 last_motion_x = motion_x[0];
668 last_motion_y = motion_y[0];
669 }
670 break;
671
672 case MODE_INTER_FOURMV:
673 /* vector maintenance */
674 prior_last_motion_x = last_motion_x;
675 prior_last_motion_y = last_motion_y;
676
677 /* fetch 4 vectors from the bitstream, one for each
678 * Y fragment, then average for the C fragment vectors */
679 for (k = 0; k < 4; k++) {
680 current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
681 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
682 if (coding_mode == 0) {
683 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
684 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
685 } else {
686 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
687 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
688 }
689 last_motion_x = motion_x[k];
690 last_motion_y = motion_y[k];
691 } else {
692 motion_x[k] = 0;
693 motion_y[k] = 0;
694 }
695 }
696 break;
697
698 case MODE_INTER_LAST_MV:
699 /* all 6 fragments use the last motion vector */
700 motion_x[0] = last_motion_x;
701 motion_y[0] = last_motion_y;
702
703 /* no vector maintenance (last vector remains the
704 * last vector) */
705 break;
706
707 case MODE_INTER_PRIOR_LAST:
708 /* all 6 fragments use the motion vector prior to the
709 * last motion vector */
710 motion_x[0] = prior_last_motion_x;
711 motion_y[0] = prior_last_motion_y;
712
713 /* vector maintenance */
714 prior_last_motion_x = last_motion_x;
715 prior_last_motion_y = last_motion_y;
716 last_motion_x = motion_x[0];
717 last_motion_y = motion_y[0];
718 break;
719
720 default:
721 /* covers intra, inter without MV, golden without MV */
722 motion_x[0] = 0;
723 motion_y[0] = 0;
724
725 /* no vector maintenance */
726 break;
727 }
728
729 /* assign the motion vectors to the correct fragments */
730 for (k = 0; k < 4; k++) {
731 current_fragment =
732 BLOCK_Y*s->fragment_width[0] + BLOCK_X;
733 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
734 s->motion_val[0][current_fragment][0] = motion_x[k];
735 s->motion_val[0][current_fragment][1] = motion_y[k];
736 } else {
737 s->motion_val[0][current_fragment][0] = motion_x[0];
738 s->motion_val[0][current_fragment][1] = motion_y[0];
739 }
740 }
741
742 if (s->chroma_y_shift) {
743 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
744 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
745 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
746 }
747 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
748 motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
749 frag = mb_y*s->fragment_width[1] + mb_x;
750 s->motion_val[1][frag][0] = motion_x[0];
751 s->motion_val[1][frag][1] = motion_y[0];
752 } else if (s->chroma_x_shift) {
753 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
754 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
755 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
756 motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
757 motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
758 } else {
759 motion_x[1] = motion_x[0];
760 motion_y[1] = motion_y[0];
761 }
762 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
763 motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
764
765 frag = 2*mb_y*s->fragment_width[1] + mb_x;
766 for (k = 0; k < 2; k++) {
767 s->motion_val[1][frag][0] = motion_x[k];
768 s->motion_val[1][frag][1] = motion_y[k];
769 frag += s->fragment_width[1];
770 }
771 } else {
772 for (k = 0; k < 4; k++) {
773 frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
774 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
775 s->motion_val[1][frag][0] = motion_x[k];
776 s->motion_val[1][frag][1] = motion_y[k];
777 } else {
778 s->motion_val[1][frag][0] = motion_x[0];
779 s->motion_val[1][frag][1] = motion_y[0];
780 }
781 }
782 }
783 }
784 }
785 }
786
787 return 0;
788 }
789
790 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
791 {
792 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
793 int num_blocks = s->total_num_coded_frags;
794
795 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
796 i = blocks_decoded = num_blocks_at_qpi = 0;
797
798 bit = get_bits1(gb);
799
800 do {
801 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
802 if (run_length == 34)
803 run_length += get_bits(gb, 12);
804 blocks_decoded += run_length;
805
806 if (!bit)
807 num_blocks_at_qpi += run_length;
808
809 for (j = 0; j < run_length; i++) {
810 if (i >= s->total_num_coded_frags)
811 return -1;
812
813 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
814 s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
815 j++;
816 }
817 }
818
819 if (run_length == MAXIMUM_LONG_BIT_RUN)
820 bit = get_bits1(gb);
821 else
822 bit ^= 1;
823 } while (blocks_decoded < num_blocks);
824
825 num_blocks -= num_blocks_at_qpi;
826 }
827
828 return 0;
829 }
830
831 /*
832 * This function is called by unpack_dct_coeffs() to extract the VLCs from
833 * the bitstream. The VLCs encode tokens which are used to unpack DCT
834 * data. This function unpacks all the VLCs for either the Y plane or both
835 * C planes, and is called for DC coefficients or different AC coefficient
836 * levels (since different coefficient types require different VLC tables.
837 *
838 * This function returns a residual eob run. E.g, if a particular token gave
839 * instructions to EOB the next 5 fragments and there were only 2 fragments
840 * left in the current fragment range, 3 would be returned so that it could
841 * be passed into the next call to this same function.
842 */
843 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
844 VLC *table, int coeff_index,
845 int plane,
846 int eob_run)
847 {
848 int i, j = 0;
849 int token;
850 int zero_run = 0;
851 DCTELEM coeff = 0;
852 int bits_to_get;
853 int blocks_ended;
854 int coeff_i = 0;
855 int num_coeffs = s->num_coded_frags[plane][coeff_index];
856 int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
857
858 /* local references to structure members to avoid repeated deferences */
859 int *coded_fragment_list = s->coded_fragment_list[plane];
860 Vp3Fragment *all_fragments = s->all_fragments;
861 VLC_TYPE (*vlc_table)[2] = table->table;
862
863 if (num_coeffs < 0)
864 av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
865
866 if (eob_run > num_coeffs) {
867 coeff_i = blocks_ended = num_coeffs;
868 eob_run -= num_coeffs;
869 } else {
870 coeff_i = blocks_ended = eob_run;
871 eob_run = 0;
872 }
873
874 // insert fake EOB token to cover the split between planes or zzi
875 if (blocks_ended)
876 dct_tokens[j++] = blocks_ended << 2;
877
878 while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
879 /* decode a VLC into a token */
880 token = get_vlc2(gb, vlc_table, 5, 3);
881 /* use the token to get a zero run, a coefficient, and an eob run */
882 if (token <= 6) {
883 eob_run = eob_run_base[token];
884 if (eob_run_get_bits[token])
885 eob_run += get_bits(gb, eob_run_get_bits[token]);
886
887 // record only the number of blocks ended in this plane,
888 // any spill will be recorded in the next plane.
889 if (eob_run > num_coeffs - coeff_i) {
890 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
891 blocks_ended += num_coeffs - coeff_i;
892 eob_run -= num_coeffs - coeff_i;
893 coeff_i = num_coeffs;
894 } else {
895 dct_tokens[j++] = TOKEN_EOB(eob_run);
896 blocks_ended += eob_run;
897 coeff_i += eob_run;
898 eob_run = 0;
899 }
900 } else {
901 bits_to_get = coeff_get_bits[token];
902 if (bits_to_get)
903 bits_to_get = get_bits(gb, bits_to_get);
904 coeff = coeff_tables[token][bits_to_get];
905
906 zero_run = zero_run_base[token];
907 if (zero_run_get_bits[token])
908 zero_run += get_bits(gb, zero_run_get_bits[token]);
909
910 if (zero_run) {
911 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
912 } else {
913 // Save DC into the fragment structure. DC prediction is
914 // done in raster order, so the actual DC can't be in with
915 // other tokens. We still need the token in dct_tokens[]
916 // however, or else the structure collapses on itself.
917 if (!coeff_index)
918 all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
919
920 dct_tokens[j++] = TOKEN_COEFF(coeff);
921 }
922
923 if (coeff_index + zero_run > 64) {
924 av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
925 " %d coeffs left\n", zero_run, 64-coeff_index);
926 zero_run = 64 - coeff_index;
927 }
928
929 // zero runs code multiple coefficients,
930 // so don't try to decode coeffs for those higher levels
931 for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
932 s->num_coded_frags[plane][i]--;
933 coeff_i++;
934 }
935 }
936
937 if (blocks_ended > s->num_coded_frags[plane][coeff_index])
938 av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
939
940 // decrement the number of blocks that have higher coeffecients for each
941 // EOB run at this level
942 if (blocks_ended)
943 for (i = coeff_index+1; i < 64; i++)
944 s->num_coded_frags[plane][i] -= blocks_ended;
945
946 // setup the next buffer
947 if (plane < 2)
948 s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
949 else if (coeff_index < 63)
950 s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
951
952 return eob_run;
953 }
954
955 static void reverse_dc_prediction(Vp3DecodeContext *s,
956 int first_fragment,
957 int fragment_width,
958 int fragment_height);
959 /*
960 * This function unpacks all of the DCT coefficient data from the
961 * bitstream.
962 */
963 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
964 {
965 int i;
966 int dc_y_table;
967 int dc_c_table;
968 int ac_y_table;
969 int ac_c_table;
970 int residual_eob_run = 0;
971 VLC *y_tables[64];
972 VLC *c_tables[64];
973
974 s->dct_tokens[0][0] = s->dct_tokens_base;
975
976 /* fetch the DC table indexes */
977 dc_y_table = get_bits(gb, 4);
978 dc_c_table = get_bits(gb, 4);
979
980 /* unpack the Y plane DC coefficients */
981 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
982 0, residual_eob_run);
983
984 /* reverse prediction of the Y-plane DC coefficients */
985 reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
986
987 /* unpack the C plane DC coefficients */
988 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
989 1, residual_eob_run);
990 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
991 2, residual_eob_run);
992
993 /* reverse prediction of the C-plane DC coefficients */
994 if (!(s->avctx->flags & CODEC_FLAG_GRAY))
995 {
996 reverse_dc_prediction(s, s->fragment_start[1],
997 s->fragment_width[1], s->fragment_height[1]);
998 reverse_dc_prediction(s, s->fragment_start[2],
999 s->fragment_width[1], s->fragment_height[1]);
1000 }
1001
1002 /* fetch the AC table indexes */
1003 ac_y_table = get_bits(gb, 4);
1004 ac_c_table = get_bits(gb, 4);
1005
1006 /* build tables of AC VLC tables */
1007 for (i = 1; i <= 5; i++) {
1008 y_tables[i] = &s->ac_vlc_1[ac_y_table];
1009 c_tables[i] = &s->ac_vlc_1[ac_c_table];
1010 }
1011 for (i = 6; i <= 14; i++) {
1012 y_tables[i] = &s->ac_vlc_2[ac_y_table];
1013 c_tables[i] = &s->ac_vlc_2[ac_c_table];
1014 }
1015 for (i = 15; i <= 27; i++) {
1016 y_tables[i] = &s->ac_vlc_3[ac_y_table];
1017 c_tables[i] = &s->ac_vlc_3[ac_c_table];
1018 }
1019 for (i = 28; i <= 63; i++) {
1020 y_tables[i] = &s->ac_vlc_4[ac_y_table];
1021 c_tables[i] = &s->ac_vlc_4[ac_c_table];
1022 }
1023
1024 /* decode all AC coefficents */
1025 for (i = 1; i <= 63; i++) {
1026 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1027 0, residual_eob_run);
1028
1029 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1030 1, residual_eob_run);
1031 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1032 2, residual_eob_run);
1033 }
1034
1035 return 0;
1036 }
1037
1038 /*
1039 * This function reverses the DC prediction for each coded fragment in
1040 * the frame. Much of this function is adapted directly from the original
1041 * VP3 source code.
1042 */
1043 #define COMPATIBLE_FRAME(x) \
1044 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1045 #define DC_COEFF(u) s->all_fragments[u].dc
1046
1047 static void reverse_dc_prediction(Vp3DecodeContext *s,
1048 int first_fragment,
1049 int fragment_width,
1050 int fragment_height)
1051 {
1052
1053 #define PUL 8
1054 #define PU 4
1055 #define PUR 2
1056 #define PL 1
1057
1058 int x, y;
1059 int i = first_fragment;
1060
1061 int predicted_dc;
1062
1063 /* DC values for the left, up-left, up, and up-right fragments */
1064 int vl, vul, vu, vur;
1065
1066 /* indexes for the left, up-left, up, and up-right fragments */
1067 int l, ul, u, ur;
1068
1069 /*
1070 * The 6 fields mean:
1071 * 0: up-left multiplier
1072 * 1: up multiplier
1073 * 2: up-right multiplier
1074 * 3: left multiplier
1075 */
1076 static const int predictor_transform[16][4] = {
1077 { 0, 0, 0, 0},
1078 { 0, 0, 0,128}, // PL
1079 { 0, 0,128, 0}, // PUR
1080 { 0, 0, 53, 75}, // PUR|PL
1081 { 0,128, 0, 0}, // PU
1082 { 0, 64, 0, 64}, // PU|PL
1083 { 0,128, 0, 0}, // PU|PUR
1084 { 0, 0, 53, 75}, // PU|PUR|PL
1085 {128, 0, 0, 0}, // PUL
1086 { 0, 0, 0,128}, // PUL|PL
1087 { 64, 0, 64, 0}, // PUL|PUR
1088 { 0, 0, 53, 75}, // PUL|PUR|PL
1089 { 0,128, 0, 0}, // PUL|PU
1090 {-104,116, 0,116}, // PUL|PU|PL
1091 { 24, 80, 24, 0}, // PUL|PU|PUR
1092 {-104,116, 0,116} // PUL|PU|PUR|PL
1093 };
1094
1095 /* This table shows which types of blocks can use other blocks for
1096 * prediction. For example, INTRA is the only mode in this table to
1097 * have a frame number of 0. That means INTRA blocks can only predict
1098 * from other INTRA blocks. There are 2 golden frame coding types;
1099 * blocks encoding in these modes can only predict from other blocks
1100 * that were encoded with these 1 of these 2 modes. */
1101 static const unsigned char compatible_frame[9] = {
1102 1, /* MODE_INTER_NO_MV */
1103 0, /* MODE_INTRA */
1104 1, /* MODE_INTER_PLUS_MV */
1105 1, /* MODE_INTER_LAST_MV */
1106 1, /* MODE_INTER_PRIOR_MV */
1107 2, /* MODE_USING_GOLDEN */
1108 2, /* MODE_GOLDEN_MV */
1109 1, /* MODE_INTER_FOUR_MV */
1110 3 /* MODE_COPY */
1111 };
1112 int current_frame_type;
1113
1114 /* there is a last DC predictor for each of the 3 frame types */
1115 short last_dc[3];
1116
1117 int transform = 0;
1118
1119 vul = vu = vur = vl = 0;
1120 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1121
1122 /* for each fragment row... */
1123 for (y = 0; y < fragment_height; y++) {
1124
1125 /* for each fragment in a row... */
1126 for (x = 0; x < fragment_width; x++, i++) {
1127
1128 /* reverse prediction if this block was coded */
1129 if (s->all_fragments[i].coding_method != MODE_COPY) {
1130
1131 current_frame_type =
1132 compatible_frame[s->all_fragments[i].coding_method];
1133
1134 transform= 0;
1135 if(x){
1136 l= i-1;
1137 vl = DC_COEFF(l);
1138 if(COMPATIBLE_FRAME(l))
1139 transform |= PL;
1140 }
1141 if(y){
1142 u= i-fragment_width;
1143 vu = DC_COEFF(u);
1144 if(COMPATIBLE_FRAME(u))
1145 transform |= PU;
1146 if(x){
1147 ul= i-fragment_width-1;
1148 vul = DC_COEFF(ul);
1149 if(COMPATIBLE_FRAME(ul))
1150 transform |= PUL;
1151 }
1152 if(x + 1 < fragment_width){
1153 ur= i-fragment_width+1;
1154 vur = DC_COEFF(ur);
1155 if(COMPATIBLE_FRAME(ur))
1156 transform |= PUR;
1157 }
1158 }
1159
1160 if (transform == 0) {
1161
1162 /* if there were no fragments to predict from, use last
1163 * DC saved */
1164 predicted_dc = last_dc[current_frame_type];
1165 } else {
1166
1167 /* apply the appropriate predictor transform */
1168 predicted_dc =
1169 (predictor_transform[transform][0] * vul) +
1170 (predictor_transform[transform][1] * vu) +
1171 (predictor_transform[transform][2] * vur) +
1172 (predictor_transform[transform][3] * vl);
1173
1174 predicted_dc /= 128;
1175
1176 /* check for outranging on the [ul u l] and
1177 * [ul u ur l] predictors */
1178 if ((transform == 15) || (transform == 13)) {
1179 if (FFABS(predicted_dc - vu) > 128)
1180 predicted_dc = vu;
1181 else if (FFABS(predicted_dc - vl) > 128)
1182 predicted_dc = vl;
1183 else if (FFABS(predicted_dc - vul) > 128)
1184 predicted_dc = vul;
1185 }
1186 }
1187
1188 /* at long last, apply the predictor */
1189 DC_COEFF(i) += predicted_dc;
1190 /* save the DC */
1191 last_dc[current_frame_type] = DC_COEFF(i);
1192 }
1193 }
1194 }
1195 }
1196
1197 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1198 {
1199 int x, y;
1200 int *bounding_values= s->bounding_values_array+127;
1201
1202 int width = s->fragment_width[!!plane];
1203 int height = s->fragment_height[!!plane];
1204 int fragment = s->fragment_start [plane] + ystart * width;
1205 int stride = s->current_frame.linesize[plane];
1206 uint8_t *plane_data = s->current_frame.data [plane];
1207 if (!s->flipped_image) stride = -stride;
1208 plane_data += s->data_offset[plane] + 8*ystart*stride;
1209
1210 for (y = ystart; y < yend; y++) {
1211
1212 for (x = 0; x < width; x++) {
1213 /* This code basically just deblocks on the edges of coded blocks.
1214 * However, it has to be much more complicated because of the
1215 * braindamaged deblock ordering used in VP3/Theora. Order matters
1216 * because some pixels get filtered twice. */
1217 if( s->all_fragments[fragment].coding_method != MODE_COPY )
1218 {
1219 /* do not perform left edge filter for left columns frags */
1220 if (x > 0) {
1221 s->dsp.vp3_h_loop_filter(
1222 plane_data + 8*x,
1223 stride, bounding_values);
1224 }
1225
1226 /* do not perform top edge filter for top row fragments */
1227 if (y > 0) {
1228 s->dsp.vp3_v_loop_filter(
1229 plane_data + 8*x,
1230 stride, bounding_values);
1231 }
1232
1233 /* do not perform right edge filter for right column
1234 * fragments or if right fragment neighbor is also coded
1235 * in this frame (it will be filtered in next iteration) */
1236 if ((x < width - 1) &&
1237 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1238 s->dsp.vp3_h_loop_filter(
1239 plane_data + 8*x + 8,
1240 stride, bounding_values);
1241 }
1242
1243 /* do not perform bottom edge filter for bottom row
1244 * fragments or if bottom fragment neighbor is also coded
1245 * in this frame (it will be filtered in the next row) */
1246 if ((y < height - 1) &&
1247 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1248 s->dsp.vp3_v_loop_filter(
1249 plane_data + 8*x + 8*stride,
1250 stride, bounding_values);
1251 }
1252 }
1253
1254 fragment++;
1255 }
1256 plane_data += 8*stride;
1257 }
1258 }
1259
1260 /**
1261 * Pulls DCT tokens from the 64 levels to decode and dequant the coefficients
1262 * for the next block in coding order
1263 */
1264 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1265 int plane, int inter, DCTELEM block[64])
1266 {
1267 int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1268 uint8_t *perm = s->scantable.permutated;
1269 int i = 0;
1270
1271 do {
1272 int token = *s->dct_tokens[plane][i];
1273 switch (token & 3) {
1274 case 0: // EOB
1275 if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1276 s->dct_tokens[plane][i]++;
1277 else
1278 *s->dct_tokens[plane][i] = token & ~3;
1279 goto end;
1280 case 1: // zero run
1281 s->dct_tokens[plane][i]++;
1282 i += (token >> 2) & 0x7f;
1283 block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1284 i++;
1285 break;
1286 case 2: // coeff
1287 block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1288 s->dct_tokens[plane][i++]++;
1289 break;
1290 default:
1291 av_log(s->avctx, AV_LOG_ERROR, "internal: invalid token type\n");
1292 return i;
1293 }
1294 } while (i < 64);
1295 end:
1296 // the actual DC+prediction is in the fragment structure
1297 block[0] = frag->dc * s->qmat[0][inter][plane][0];
1298 return i;
1299 }
1300
1301 /**
1302 * called when all pixels up to row y are complete
1303 */
1304 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1305 {
1306 int h, cy;
1307 int offset[4];
1308
1309 if(s->avctx->draw_horiz_band==NULL)
1310 return;
1311
1312 h= y - s->last_slice_end;
1313 y -= h;
1314
1315 if (!s->flipped_image) {
1316 if (y == 0)
1317 h -= s->height - s->avctx->height; // account for non-mod16
1318 y = s->height - y - h;
1319 }
1320
1321 cy = y >> 1;
1322 offset[0] = s->current_frame.linesize[0]*y;
1323 offset[1] = s->current_frame.linesize[1]*cy;
1324 offset[2] = s->current_frame.linesize[2]*cy;
1325 offset[3] = 0;
1326
1327 emms_c();
1328 s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1329 s->last_slice_end= y + h;
1330 }
1331
1332 /*
1333 * Perform the final rendering for a particular slice of data.
1334 * The slice number ranges from 0..(c_superblock_height - 1).
1335 */
1336 static void render_slice(Vp3DecodeContext *s, int slice)
1337 {
1338 int x, y, i, j;
1339 LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1340 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1341 int motion_halfpel_index;
1342 uint8_t *motion_source;
1343 int plane, first_pixel;
1344
1345 if (slice >= s->c_superblock_height)
1346 return;
1347
1348 for (plane = 0; plane < 3; plane++) {
1349 uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane];
1350 uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane];
1351 uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane];
1352 int stride = s->current_frame.linesize[plane];
1353 int plane_width = s->width >> (plane && s->chroma_x_shift);
1354 int plane_height = s->height >> (plane && s->chroma_y_shift);
1355 int8_t (*motion_val)[2] = s->motion_val[!!plane];
1356
1357 int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1358 int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1359 int slice_width = plane ? s->c_superblock_width : s->y_superblock_width;
1360
1361 int fragment_width = s->fragment_width[!!plane];
1362 int fragment_height = s->fragment_height[!!plane];
1363 int fragment_start = s->fragment_start[plane];
1364
1365 if (!s->flipped_image) stride = -stride;
1366 if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1367 continue;
1368
1369
1370 if(FFABS(stride) > 2048)
1371 return; //various tables are fixed size
1372
1373 /* for each superblock row in the slice (both of them)... */
1374 for (; sb_y < slice_height; sb_y++) {
1375
1376 /* for each superblock in a row... */
1377 for (sb_x = 0; sb_x < slice_width; sb_x++) {
1378
1379 /* for each block in a superblock... */
1380 for (j = 0; j < 16; j++) {
1381 x = 4*sb_x + hilbert_offset[j][0];
1382 y = 4*sb_y + hilbert_offset[j][1];
1383
1384 i = fragment_start + y*fragment_width + x;
1385
1386 // bounds check
1387 if (x >= fragment_width || y >= fragment_height)
1388 continue;
1389
1390 first_pixel = 8*y*stride + 8*x;
1391
1392 /* transform if this block was coded */
1393 if (s->all_fragments[i].coding_method != MODE_COPY) {
1394 int intra = s->all_fragments[i].coding_method == MODE_INTRA;
1395
1396 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1397 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1398 motion_source= golden_plane;
1399 else
1400 motion_source= last_plane;
1401
1402 motion_source += first_pixel;
1403 motion_halfpel_index = 0;
1404
1405 /* sort out the motion vector if this fragment is coded
1406 * using a motion vector method */
1407 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1408 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1409 int src_x, src_y;
1410 motion_x = motion_val[y*fragment_width + x][0];
1411 motion_y = motion_val[y*fragment_width + x][1];
1412
1413 src_x= (motion_x>>1) + 8*x;
1414 src_y= (motion_y>>1) + 8*y;
1415
1416 motion_halfpel_index = motion_x & 0x01;
1417 motion_source += (motion_x >> 1);
1418
1419 motion_halfpel_index |= (motion_y & 0x01) << 1;
1420 motion_source += ((motion_y >> 1) * stride);
1421
1422 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1423 uint8_t *temp= s->edge_emu_buffer;
1424 if(stride<0) temp -= 9*stride;
1425 else temp += 9*stride;
1426
1427 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1428 motion_source= temp;
1429 }
1430 }
1431
1432
1433 /* first, take care of copying a block from either the
1434 * previous or the golden frame */
1435 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1436 /* Note, it is possible to implement all MC cases with
1437 put_no_rnd_pixels_l2 which would look more like the
1438 VP3 source but this would be slower as
1439 put_no_rnd_pixels_tab is better optimzed */
1440 if(motion_halfpel_index != 3){
1441 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1442 output_plane + first_pixel,
1443 motion_source, stride, 8);
1444 }else{
1445 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1446 s->dsp.put_no_rnd_pixels_l2[1](
1447 output_plane + first_pixel,
1448 motion_source - d,
1449 motion_source + stride + 1 + d,
1450 stride, 8);
1451 }
1452 }
1453
1454 s->dsp.clear_block(block);
1455 vp3_dequant(s, s->all_fragments + i, plane, !intra, block);
1456
1457 /* invert DCT and place (or add) in final output */
1458
1459 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1460 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1461 block[0] += 128<<3;
1462 s->dsp.idct_put(
1463 output_plane + first_pixel,
1464 stride,
1465 block);
1466 } else {
1467 s->dsp.idct_add(
1468 output_plane + first_pixel,
1469 stride,
1470 block);
1471 }
1472 } else {
1473
1474 /* copy directly from the previous frame */
1475 s->dsp.put_pixels_tab[1][0](
1476 output_plane + first_pixel,
1477 last_plane + first_pixel,
1478 stride, 8);
1479
1480 }
1481 }
1482 }
1483
1484 // Filter up to the last row in the superblock row
1485 apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1486 }
1487 }
1488
1489 /* this looks like a good place for slice dispatch... */
1490 /* algorithm:
1491 * if (slice == s->macroblock_height - 1)
1492 * dispatch (both last slice & 2nd-to-last slice);
1493 * else if (slice > 0)
1494 * dispatch (slice - 1);
1495 */
1496
1497 vp3_draw_horiz_band(s, FFMIN(64*slice + 64-16, s->height-16));
1498 }
1499
1500 /*
1501 * This is the ffmpeg/libavcodec API init function.
1502 */
1503 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1504 {
1505 Vp3DecodeContext *s = avctx->priv_data;
1506 int i, inter, plane;
1507 int c_width;
1508 int c_height;
1509 int y_fragment_count, c_fragment_count;
1510
1511 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1512 s->version = 0;
1513 else
1514 s->version = 1;
1515
1516 s->avctx = avctx;
1517 s->width = FFALIGN(avctx->width, 16);
1518 s->height = FFALIGN(avctx->height, 16);
1519 if (avctx->pix_fmt == PIX_FMT_NONE)
1520 avctx->pix_fmt = PIX_FMT_YUV420P;
1521 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1522 if(avctx->idct_algo==FF_IDCT_AUTO)
1523 avctx->idct_algo=FF_IDCT_VP3;
1524 dsputil_init(&s->dsp, avctx);
1525
1526 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1527
1528 /* initialize to an impossible value which will force a recalculation
1529 * in the first frame decode */
1530 for (i = 0; i < 3; i++)
1531 s->qps[i] = -1;
1532
1533 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1534
1535 s->y_superblock_width = (s->width + 31) / 32;
1536 s->y_superblock_height = (s->height + 31) / 32;
1537 s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1538
1539 /* work out the dimensions for the C planes */
1540 c_width = s->width >> s->chroma_x_shift;
1541 c_height = s->height >> s->chroma_y_shift;
1542 s->c_superblock_width = (c_width + 31) / 32;
1543 s->c_superblock_height = (c_height + 31) / 32;
1544 s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1545
1546 s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1547 s->u_superblock_start = s->y_superblock_count;
1548 s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1549 s->superblock_coding = av_malloc(s->superblock_count);
1550
1551 s->macroblock_width = (s->width + 15) / 16;
1552 s->macroblock_height = (s->height + 15) / 16;
1553 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1554
1555 s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1556 s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1557 s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1558 s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1559
1560 /* fragment count covers all 8x8 blocks for all 3 planes */
1561 y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1562 c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1563 s->fragment_count = y_fragment_count + 2*c_fragment_count;
1564 s->fragment_start[1] = y_fragment_count;
1565 s->fragment_start[2] = y_fragment_count + c_fragment_count;
1566
1567 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1568 s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1569 s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1570 s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
1571 s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
1572
1573 if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1574 !s->coded_fragment_list[0] || !s->motion_val[0] || !s->motion_val[1]) {
1575 vp3_decode_end(avctx);
1576 return -1;
1577 }
1578
1579 if (!s->theora_tables)
1580 {
1581 for (i = 0; i < 64; i++) {
1582 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1583 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1584 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1585 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1586 s->base_matrix[2][i] = vp31_inter_dequant[i];
1587 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1588 }
1589
1590 for(inter=0; inter<2; inter++){
1591 for(plane=0; plane<3; plane++){
1592 s->qr_count[inter][plane]= 1;
1593 s->qr_size [inter][plane][0]= 63;
1594 s->qr_base [inter][plane][0]=
1595 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1596 }
1597 }
1598
1599 /* init VLC tables */
1600 for (i = 0; i < 16; i++) {
1601
1602 /* DC histograms */
1603 init_vlc(&s->dc_vlc[i], 5, 32,
1604 &dc_bias[i][0][1], 4, 2,
1605 &dc_bias[i][0][0], 4, 2, 0);
1606
1607 /* group 1 AC histograms */
1608 init_vlc(&s->ac_vlc_1[i], 5, 32,
1609 &ac_bias_0[i][0][1], 4, 2,
1610 &ac_bias_0[i][0][0], 4, 2, 0);
1611
1612 /* group 2 AC histograms */
1613 init_vlc(&s->ac_vlc_2[i], 5, 32,
1614 &ac_bias_1[i][0][1], 4, 2,
1615 &ac_bias_1[i][0][0], 4, 2, 0);
1616
1617 /* group 3 AC histograms */
1618 init_vlc(&s->ac_vlc_3[i], 5, 32,
1619 &ac_bias_2[i][0][1], 4, 2,
1620 &ac_bias_2[i][0][0], 4, 2, 0);
1621
1622 /* group 4 AC histograms */
1623 init_vlc(&s->ac_vlc_4[i], 5, 32,
1624 &ac_bias_3[i][0][1], 4, 2,
1625 &ac_bias_3[i][0][0], 4, 2, 0);
1626 }
1627 } else {
1628 for (i = 0; i < 16; i++) {
1629
1630 /* DC histograms */
1631 if (init_vlc(&s->dc_vlc[i], 5, 32,
1632 &s->huffman_table[i][0][1], 4, 2,
1633 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1634 goto vlc_fail;
1635
1636 /* group 1 AC histograms */
1637 if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1638 &s->huffman_table[i+16][0][1], 4, 2,
1639 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1640 goto vlc_fail;
1641
1642 /* group 2 AC histograms */
1643 if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1644 &s->huffman_table[i+16*2][0][1], 4, 2,
1645 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1646 goto vlc_fail;
1647
1648 /* group 3 AC histograms */
1649 if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1650 &s->huffman_table[i+16*3][0][1], 4, 2,
1651 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1652 goto vlc_fail;
1653
1654 /* group 4 AC histograms */
1655 if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1656 &s->huffman_table[i+16*4][0][1], 4, 2,
1657 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1658 goto vlc_fail;
1659 }
1660 }
1661
1662 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1663 &superblock_run_length_vlc_table[0][1], 4, 2,
1664 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1665
1666 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1667 &fragment_run_length_vlc_table[0][1], 4, 2,
1668 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1669
1670 init_vlc(&s->mode_code_vlc, 3, 8,
1671 &mode_code_vlc_table[0][1], 2, 1,
1672 &mode_code_vlc_table[0][0], 2, 1, 0);
1673
1674 init_vlc(&s->motion_vector_vlc, 6, 63,
1675 &motion_vector_vlc_table[0][1], 2, 1,
1676 &motion_vector_vlc_table[0][0], 2, 1, 0);
1677
1678 /* work out the block mapping tables */
1679 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1680 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1681 if (!s->superblock_fragments || !s->macroblock_coding) {
1682 vp3_decode_end(avctx);
1683 return -1;
1684 }
1685 init_block_mapping(s);
1686
1687 for (i = 0; i < 3; i++) {
1688 s->current_frame.data[i] = NULL;
1689 s->last_frame.data[i] = NULL;
1690 s->golden_frame.data[i] = NULL;
1691 }
1692
1693 return 0;
1694
1695 vlc_fail:
1696 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1697 return -1;
1698 }
1699
1700 /*
1701 * This is the ffmpeg/libavcodec API frame decode function.
1702 */
1703 static int vp3_decode_frame(AVCodecContext *avctx,
1704 void *data, int *data_size,
1705 AVPacket *avpkt)
1706 {
1707 const uint8_t *buf = avpkt->data;
1708 int buf_size = avpkt->size;
1709 Vp3DecodeContext *s = avctx->priv_data;
1710 GetBitContext gb;
1711 static int counter = 0;
1712 int i;
1713
1714 init_get_bits(&gb, buf, buf_size * 8);
1715
1716 if (s->theora && get_bits1(&gb))
1717 {
1718 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1719 return -1;
1720 }
1721
1722 s->keyframe = !get_bits1(&gb);
1723 if (!s->theora)
1724 skip_bits(&gb, 1);
1725 for (i = 0; i < 3; i++)
1726 s->last_qps[i] = s->qps[i];
1727
1728 s->nqps=0;
1729 do{
1730 s->qps[s->nqps++]= get_bits(&gb, 6);
1731 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1732 for (i = s->nqps; i < 3; i++)
1733 s->qps[i] = -1;
1734
1735 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1736 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1737 s->keyframe?"key":"", counter, s->qps[0]);
1738 counter++;
1739
1740 if (s->qps[0] != s->last_qps[0])
1741 init_loop_filter(s);
1742
1743 for (i = 0; i < s->nqps; i++)
1744 // reinit all dequantizers if the first one changed, because
1745 // the DC of the first quantizer must be used for all matrices
1746 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1747 init_dequantizer(s, i);
1748
1749 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1750 return buf_size;
1751
1752 s->current_frame.reference = 3;
1753 s->current_frame.pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
1754 if (avctx->get_buffer(avctx, &s->current_frame) < 0) {
1755 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1756 goto error;
1757 }
1758
1759 if (s->keyframe) {
1760 if (!s->theora)
1761 {
1762 skip_bits(&gb, 4); /* width code */
1763 skip_bits(&gb, 4); /* height code */
1764 if (s->version)
1765 {
1766 s->version = get_bits(&gb, 5);
1767 if (counter == 1)
1768 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1769 }
1770 }
1771 if (s->version || s->theora)
1772 {
1773 if (get_bits1(&gb))
1774 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1775 skip_bits(&gb, 2); /* reserved? */
1776 }
1777 } else {
1778 if (!s->golden_frame.data[0]) {
1779 av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
1780
1781 s->golden_frame.reference = 3;
1782 s->golden_frame.pict_type = FF_I_TYPE;
1783 if (avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1784 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1785 goto error;
1786 }
1787 s->last_frame = s->golden_frame;
1788 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1789 }
1790 }
1791
1792 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1793 s->current_frame.qstride= 0;
1794
1795 memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
1796
1797 if (unpack_superblocks(s, &gb)){
1798 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1799 goto error;
1800 }
1801 if (unpack_modes(s, &gb)){
1802 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1803 goto error;
1804 }
1805 if (unpack_vectors(s, &gb)){
1806 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1807 goto error;
1808 }
1809 if (unpack_block_qpis(s, &gb)){
1810 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1811 goto error;
1812 }
1813 if (unpack_dct_coeffs(s, &gb)){
1814 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1815 goto error;
1816 }
1817
1818 for (i = 0; i < 3; i++) {
1819 int height = s->height >> (i && s->chroma_y_shift);
1820 if (s->flipped_image)
1821 s->data_offset[i] = 0;
1822 else
1823 s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
1824 }
1825
1826 s->last_slice_end = 0;
1827 for (i = 0; i < s->c_superblock_height; i++)
1828 render_slice(s, i);
1829
1830 // filter the last row
1831 for (i = 0; i < 3; i++) {
1832 int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
1833 apply_loop_filter(s, i, row, row+1);
1834 }
1835 vp3_draw_horiz_band(s, s->height);
1836
1837 *data_size=sizeof(AVFrame);
1838 *(AVFrame*)data= s->current_frame;
1839
1840 /* release the last frame, if it is allocated and if it is not the
1841 * golden frame */
1842 if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1843 avctx->release_buffer(avctx, &s->last_frame);
1844
1845 /* shuffle frames (last = current) */
1846 s->last_frame= s->current_frame;
1847
1848 if (s->keyframe) {
1849 if (s->golden_frame.data[0])
1850 avctx->release_buffer(avctx, &s->golden_frame);
1851 s->golden_frame = s->current_frame;
1852 s->last_frame.type = FF_BUFFER_TYPE_COPY;
1853 }
1854
1855 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1856
1857 return buf_size;
1858
1859 error:
1860 if (s->current_frame.data[0])
1861 avctx->release_buffer(avctx, &s->current_frame);
1862 return -1;
1863 }
1864
1865 /*
1866 * This is the ffmpeg/libavcodec API module cleanup function.
1867 */
1868 static av_cold int vp3_decode_end(AVCodecContext *avctx)
1869 {
1870 Vp3DecodeContext *s = avctx->priv_data;
1871 int i;
1872
1873 av_free(s->superblock_coding);
1874 av_free(s->all_fragments);
1875 av_free(s->coded_fragment_list[0]);
1876 av_free(s->dct_tokens_base);
1877 av_free(s->superblock_fragments);
1878 av_free(s->macroblock_coding);
1879 av_free(s->motion_val[0]);
1880 av_free(s->motion_val[1]);
1881
1882 for (i = 0; i < 16; i++) {
1883 free_vlc(&s->dc_vlc[i]);
1884 free_vlc(&s->ac_vlc_1[i]);
1885 free_vlc(&s->ac_vlc_2[i]);
1886 free_vlc(&s->ac_vlc_3[i]);
1887 free_vlc(&s->ac_vlc_4[i]);
1888 }
1889
1890 free_vlc(&s->superblock_run_length_vlc);
1891 free_vlc(&s->fragment_run_length_vlc);
1892 free_vlc(&s->mode_code_vlc);
1893 free_vlc(&s->motion_vector_vlc);
1894
1895 /* release all frames */
1896 if (s->golden_frame.data[0])
1897 avctx->release_buffer(avctx, &s->golden_frame);
1898 if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1899 avctx->release_buffer(avctx, &s->last_frame);
1900 /* no need to release the current_frame since it will always be pointing
1901 * to the same frame as either the golden or last frame */
1902
1903 return 0;
1904 }
1905
1906 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1907 {
1908 Vp3DecodeContext *s = avctx->priv_data;
1909
1910 if (get_bits1(gb)) {
1911 int token;
1912 if (s->entries >= 32) { /* overflow */
1913 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1914 return -1;
1915 }
1916 token = get_bits(gb, 5);
1917 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1918 s->huffman_table[s->hti][token][0] = s->hbits;
1919 s->huffman_table[s->hti][token][1] = s->huff_code_size;
1920 s->entries++;
1921 }
1922 else {
1923 if (s->huff_code_size >= 32) {/* overflow */
1924 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1925 return -1;
1926 }
1927 s->huff_code_size++;
1928 s->hbits <<= 1;
1929 if (read_huffman_tree(avctx, gb))
1930 return -1;
1931 s->hbits |= 1;
1932 if (read_huffman_tree(avctx, gb))
1933 return -1;
1934 s->hbits >>= 1;
1935 s->huff_code_size--;
1936 }
1937 return 0;
1938 }
1939
1940 #if CONFIG_THEORA_DECODER
1941 static const enum PixelFormat theora_pix_fmts[4] = {
1942 PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
1943 };
1944
1945 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1946 {
1947 Vp3DecodeContext *s = avctx->priv_data;
1948 int visible_width, visible_height, colorspace;
1949
1950 s->theora = get_bits_long(gb, 24);
1951 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
1952
1953 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
1954 /* but previous versions have the image flipped relative to vp3 */
1955 if (s->theora < 0x030200)
1956 {
1957 s->flipped_image = 1;
1958 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
1959 }
1960
1961 visible_width = s->width = get_bits(gb, 16) << 4;
1962 visible_height = s->height = get_bits(gb, 16) << 4;
1963
1964 if(avcodec_check_dimensions(avctx, s->width, s->height)){
1965 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
1966 s->width= s->height= 0;
1967 return -1;
1968 }
1969
1970 if (s->theora >= 0x030200) {
1971 visible_width = get_bits_long(gb, 24);
1972 visible_height = get_bits_long(gb, 24);
1973
1974 skip_bits(gb, 8); /* offset x */
1975 skip_bits(gb, 8); /* offset y */
1976 }
1977
1978 skip_bits(gb, 32); /* fps numerator */
1979 skip_bits(gb, 32); /* fps denumerator */
1980 skip_bits(gb, 24); /* aspect numerator */
1981 skip_bits(gb, 24); /* aspect denumerator */
1982
1983 if (s->theora < 0x030200)
1984 skip_bits(gb, 5); /* keyframe frequency force */
1985 colorspace = get_bits(gb, 8);
1986 skip_bits(gb, 24); /* bitrate */
1987
1988 skip_bits(gb, 6); /* quality hint */
1989
1990 if (s->theora >= 0x030200)
1991 {
1992 skip_bits(gb, 5); /* keyframe frequency force */
1993 avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
1994 skip_bits(gb, 3); /* reserved */
1995 }
1996
1997 // align_get_bits(gb);
1998
1999 if ( visible_width <= s->width && visible_width > s->width-16
2000 && visible_height <= s->height && visible_height > s->height-16)
2001 avcodec_set_dimensions(avctx, visible_width, visible_height);
2002 else
2003 avcodec_set_dimensions(avctx, s->width, s->height);
2004
2005 if (colorspace == 1) {
2006 avctx->color_primaries = AVCOL_PRI_BT470M;
2007 } else if (colorspace == 2) {
2008 avctx->color_primaries = AVCOL_PRI_BT470BG;
2009 }
2010 if (colorspace == 1 || colorspace == 2) {
2011 avctx->colorspace = AVCOL_SPC_BT470BG;
2012 avctx->color_trc = AVCOL_TRC_BT709;
2013 }
2014
2015 return 0;
2016 }
2017
2018 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2019 {
2020 Vp3DecodeContext *s = avctx->priv_data;
2021 int i, n, matrices, inter, plane;
2022
2023 if (s->theora >= 0x030200) {
2024 n = get_bits(gb, 3);
2025 /* loop filter limit values table */
2026 for (i = 0; i < 64; i++) {
2027 s->filter_limit_values[i] = get_bits(gb, n);
2028 if (s->filter_limit_values[i] > 127) {
2029 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2030 s->filter_limit_values[i] = 127;
2031 }
2032 }
2033 }
2034
2035 if (s->theora >= 0x030200)
2036 n = get_bits(gb, 4) + 1;
2037 else
2038 n = 16;
2039 /* quality threshold table */
2040 for (i = 0; i < 64; i++)
2041 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2042
2043 if (s->theora >= 0x030200)
2044 n = get_bits(gb, 4) + 1;
2045 else
2046 n = 16;
2047 /* dc scale factor table */
2048 for (i = 0; i < 64; i++)
2049 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2050
2051 if (s->theora >= 0x030200)
2052 matrices = get_bits(gb, 9) + 1;
2053 else
2054 matrices = 3;
2055
2056 if(matrices > 384){
2057 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2058 return -1;
2059 }
2060
2061 for(n=0; n<matrices; n++){
2062 for (i = 0; i < 64; i++)
2063 s->base_matrix[n][i]= get_bits(gb, 8);
2064 }
2065
2066 for (inter = 0; inter <= 1; inter++) {
2067 for (plane = 0; plane <= 2; plane++) {
2068 int newqr= 1;
2069 if (inter || plane > 0)
2070 newqr = get_bits1(gb);
2071 if (!newqr) {
2072 int qtj, plj;
2073 if(inter && get_bits1(gb)){
2074 qtj = 0;
2075 plj = plane;
2076 }else{
2077 qtj= (3*inter + plane - 1) / 3;
2078 plj= (plane + 2) % 3;
2079 }
2080 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2081 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2082 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2083 } else {
2084 int qri= 0;
2085 int qi = 0;
2086
2087 for(;;){
2088 i= get_bits(gb, av_log2(matrices-1)+1);
2089 if(i>= matrices){
2090 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2091 return -1;
2092 }
2093 s->qr_base[inter][plane][qri]= i;
2094 if(qi >= 63)
2095 break;
2096 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2097 s->qr_size[inter][plane][qri++]= i;
2098 qi += i;
2099 }
2100
2101 if (qi > 63) {
2102 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2103 return -1;
2104 }
2105 s->qr_count[inter][plane]= qri;
2106 }
2107 }
2108 }
2109
2110 /* Huffman tables */
2111 for (s->hti = 0; s->hti < 80; s->hti++) {
2112 s->entries = 0;
2113 s->huff_code_size = 1;
2114 if (!get_bits1(gb)) {
2115 s->hbits = 0;
2116 if(read_huffman_tree(avctx, gb))
2117 return -1;
2118 s->hbits = 1;
2119 if(read_huffman_tree(avctx, gb))
2120 return -1;
2121 }
2122 }
2123
2124 s->theora_tables = 1;
2125
2126 return 0;
2127 }
2128
2129 static av_cold int theora_decode_init(AVCodecContext *avctx)
2130 {
2131 Vp3DecodeContext *s = avctx->priv_data;
2132 GetBitContext gb;
2133 int ptype;
2134 uint8_t *header_start[3];
2135 int header_len[3];
2136 int i;
2137
2138 s->theora = 1;
2139
2140 if (!avctx->extradata_size)
2141 {
2142 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2143 return -1;
2144 }
2145
2146 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2147 42, header_start, header_len) < 0) {
2148 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2149 return -1;
2150 }
2151
2152 for(i=0;i<3;i++) {
2153 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2154
2155 ptype = get_bits(&gb, 8);
2156
2157 if (!(ptype & 0x80))
2158 {
2159 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2160 // return -1;
2161 }
2162
2163 // FIXME: Check for this as well.
2164 skip_bits_long(&gb, 6*8); /* "theora" */
2165
2166 switch(ptype)
2167 {
2168 case 0x80:
2169 theora_decode_header(avctx, &gb);
2170 break;
2171 case 0x81:
2172 // FIXME: is this needed? it breaks sometimes
2173 // theora_decode_comments(avctx, gb);
2174 break;
2175 case 0x82:
2176 if (theora_decode_tables(avctx, &gb))
2177 return -1;
2178 break;
2179 default:
2180 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2181 break;
2182 }
2183 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2184 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2185 if (s->theora < 0x030200)
2186 break;
2187 }
2188
2189 return vp3_decode_init(avctx);
2190 }
2191
2192 AVCodec theora_decoder = {
2193 "theora",
2194 AVMEDIA_TYPE_VIDEO,
2195 CODEC_ID_THEORA,
2196 sizeof(Vp3DecodeContext),
2197 theora_decode_init,
2198 NULL,
2199 vp3_decode_end,
2200 vp3_decode_frame,
2201 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2202 NULL,
2203 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2204 };
2205 #endif
2206
2207 AVCodec vp3_decoder = {
2208 "vp3",
2209 AVMEDIA_TYPE_VIDEO,
2210 CODEC_ID_VP3,
2211 sizeof(Vp3DecodeContext),
2212 vp3_decode_init,
2213 NULL,
2214 vp3_decode_end,
2215 vp3_decode_frame,
2216 CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2217 NULL,
2218 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2219 };